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Abstract This study tackles the energy management problem for wind distributed generators in AC microgrids (MGs)
operating in both connected and isolated modes. A mathematical formulation is proposed to minimize energy losses
and CO2 emissions, incorporating technical and regulatory constraints to reflect real-world MG operations. The solution
methodology combines the Population-Based Genetic Algorithm (PGA) with an hourly power flow analysis based on the
successive approximation (SA) method. To validate the proposed approach, a comprehensive comparison is conducted
against three widely used metaheuristic algorithms: Particle Swarm Optimization (PSO), JAYA, and the Generalized Normal
Distribution Optimizer (GNDO). Employing a rigorous statistical framework, including ANOVA and Tukey HSD tests, the
algorithms’ performance is evaluated through 100 independent runs per objective and configuration, using a 33-node AC
MG with variable generation and demand as the test scenario. Results demonstrate that PGA consistently outperforms other
algorithms, achieving lower mean values and variance in both energy loss and emission minimization. GNDO, by contrast,
shows higher variability and less effective optimization. Then, to further validate the strong performance and adaptability of
the PGA, it is applied to a 69-node MG, where it achieves significant reductions in both emissions and energy losses. This
work not only underscores the robustness and adaptability of PGA for sustainable microgrid management but also establishes
a standardized framework for evaluating optimization algorithms in energy systems.
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1. Introduction

The increasing integration of distributed renewable energy sources, particularly wind energy, has driven the
development of MGs to enhance energy efficiency and resilience in modern power systems [1]. Wind energy
offers two significant advantages over photovoltaic (PV) generation: (i) its ability to produce energy continuously
throughout the day and (ii) the absence of concentrated peak generation during specific hours (e.g., 13:00–14:00
for PV systems). This avoids the issue of overgeneration, which can adversely impact the electrical system by
disrupting voltage and frequency regulation. Such disruptions often necessitate generation curtailment, leading to
wasted regional energy potential and an increased dependence on battery storage systems. The latter further elevate
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electrical grids’ investment and operational costs, making wind energy a more favorable option in specific scenarios
[2].

The MGs, defined as localized clusters of distributed energy resources capable of operating either connected to
the main grid or in isolated (islanded) mode, provide flexibility in power distribution and enhance system reliability
[3]. However, operating MGs with a high penetration of renewable energy sources, such as wind generators
(WGs), presents significant challenges in maintaining system stability and meeting performance objectives. These
challenges are particularly critical when seeking to minimize energy losses and reduce environmental emissions
associated with conventional generation—two essential factors for grid operators and the well-being of electrical
grid users [4]. Addressing these issues is the primary focus of this research.

One primary challenge in the operation of MGs is optimizing power flow to achieve a balance between
operational efficiency and environmental impact. This study addresses two critical objectives within this context:
minimizing active power losses across the network and reducing CO2 emissions from power generation sources.
Reducing energy losses is crucial for enhancing the efficiency of power delivery and mitigating the strain on
network infrastructure, which is particularly relevant in MGs with distributed wind generation under various
operational scenarios [5]. Additionally, reducing CO2 emissions aligns with global efforts to combat climate
change by transitioning toward more sustainable energy systems [6].

An analysis of the literature reveals several works addressing the optimal operation of wind-distributed
generators in electrical grids, focusing on reducing energy losses and CO2 emissions. One such example is the
work presented in [7] where the authors address the problem of integration and operation of distributed WGs in an
83-node electrical system, focusing on minimizing system losses while adhering to voltage and power constraints.
The proposed solution employs a master-slave methodology [8]; a Genetic Algorithm (GA) is used in the master
stage to determine the optimal placement of WGs, and the Primal-Dual Interior-Point Method (PDIPM) is applied
in the slave stage to manage generator operations and perform power flow analysis. A key contribution of this work
is the application of the PDIPM to optimize the energy generated by wind turbines. Despite this, the study does
not consider the telescopic behavior of distribution networks or the current limits in these lines, which limits the
realistic representation of the system.

The study presented in [9] focused on minimizing energy losses in 33- and 69-node test systems by determining
the optimal placement and operation of WGs within the electrical networks. To achieve this, the authors utilized
a GA to optimize both parameters. The analysis incorporated voltage constraints and ensured the balance of
active and reactive power in the proposed network, reducing system losses exceeding 30% for both active and
reactive power. Nonetheless, the study did not include the power limitations of generation equipment or the current
constraints of electrical lines, which are essential considerations in real-world systems.

The study reported in [10] explores the optimal power flow problem in distributed generation systems (DGS)
integrating thermal, wind, and solar technologies. A multi-objective optimization approach, ACNSDE, derived
from NSGA-II and combining GA and Differential Evolution (DE) techniques, is proposed to enhance technical,
economic, and environmental performance. Tests conducted on a 30-node network with thermal, wind, and solar
generators and a 57-node network without renewables show that ACNSDE reduces costs more effectively than
NSGA-II. At the same time, the latter performs better in minimizing emissions and power losses. Despite these
advantages, the study does not account for generation and demand variability, which limits its applicability to real-
world scenarios. Additionally, it lacks a statistical analysis to demonstrate the performance of the proposed solution
methodology compared to the methods used for comparison.

The authors in [11] proposed an Advanced Prioritized Deep-Q-Network (AP DQN) algorithm to optimize energy
production of wind and PV generators in AC MGs, integrating advanced techniques such as a multi-headed
attention mechanism and prioritized experience replay to improve decision-making. This approach, similar to
other methodologies reviewed in this work, addresses critical challenges in energy management by enhancing
system reliability and reducing energy losses and emissions. The AP DQN algorithm achieved excellent results
in objective functions and reliability compared to traditional methods; however, its reliance on discrete decision-
making and the lack of optimization in the reward function present areas for improvement. These gaps align with
the broader need for research identified in the state-of-the-art reviews, emphasizing the importance of refining
methodologies to better account for variability, scalability, and computational efficiency in real-world scenarios.
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Additionally, in order to provide a broad and rigorous perspective on previous research aimed at enhancing
various performance indicators in MGs through the intelligent management of WGs, Table 1 is presented. This
table summarizes the reviewed studies, the methodologies applied, the test systems employed, and the economic
indicators targeted for optimization.

Table 1. Summary table of recent research on optimization problems involving intelligent WGs management

Research Proposed methodology Test system Objective function

[12] RUNge Kutta Optimizer (RUN) IEEE 57 bus system Energy losses, Voltage Stability
[13] PSO-GWO hybrid algorithm IEEE 30 bus system Operational costs
[14] Adaptive Lightning Attachment Procedure Optimizer (ALAPO) IEEE 57 bus system Energy loss, Voltage Stability
[15] Enhanced Slime Mould Algorithm (ESMA) IEEE 30 bus system Operational costs, Emissions costs
[16] Multi-objective Snow Ablation Optimizer (MOSAO) IEEE 30 bus system Operational costs, Voltage Stability, Energy Losses
[17] Barnacles Mating Optimizer (BMO) IEEE 30, 57 bus systems Operational costs, Energy losses and Emissions
[18] Improved Salp Swarm Algorithm (ISSA) IEEE 30, 57, 118 bus systems Operational costs
[19] Improved Differential Evolution algorithm (IDE) IEEE 30 bus system Operational costs, Energy losses and Emissions

The state-of-the-art review conducted in this work on the energy management of WGs in AC MGs or electrical
grids highlights that this is a developing field, with limited studies available in the literature. This underscores
the need for further research and development to address the challenges and opportunities within this domain. In
contrast, the energy management of distributed PV generators in AC MGs has been widely studied [20, 21, 22], with
solution methodologies primarily focused on optimization tools based on sequential programming to reduce costs
and simplify the use of commercial software. Among these, metaheuristic optimization techniques have gained
significant attention and have been extensively explored in recent years. Drawing on this knowledge, this paper
develops solution methodologies tailored to the addressed problem, achieving excellent results in energy loss and
CO2 emission reductions while ensuring adequate repeatability of the solutions for grid operators.

The integration of technical and environmental considerations, such as energy losses and emissions reduction,
remains an area requiring further exploration in the energy management of WGs in AC MGs. This research
seeks to address this gap by proposing an optimization approach that concurrently considers energy losses and
CO2 emissions as core performance metrics in MG operation. A comprehensive mathematical formulation of
these objectives is developed, incorporating all constraints specific to MGs operating with distributed WGs. This
model ensures that power flow and emissions are optimized in both grid-connected and isolated operational modes,
providing a robust framework for sustainable MG management.

To address the non-linear optimization problem associated with energy management of wind-distributed
generators in AC MGs, aimed at reducing energy losses and CO2 emissions, and to provide solutions to the
challenges and needs identified in the state-of-the-art review, a hybrid methodology is proposed. This methodology
combines the PGA for managing the energy output of WGs within the MG and an hourly power flow method based
on the SA technique to solve the power flow problem. This approach accounts for variable generation and demand,
enabling the evaluation of the proposed wind power schemes regarding the objective function and constraints.
For comparison, additional metaheuristic algorithms (PSO, JAYA, and the GNDO) were also employed, using the
same power flow method. These algorithms were selected for their proven effectiveness in solving complex, non-
linear optimization problems in power systems [3, 23, 24, 25]. An adapted 33-bus MG is used as the test scenario,
considering both grid-connected and isolated operation modes. The scenario also accounts for emissions associated
with energy purchases from the electrical grid and power production through diesel fuel.

To identify the optimization methodology with the best performance, each algorithm was executed 100 times by
considering the MG operation in both operation modes, allowing for a comparative analysis aimed at identifying
the most effective solution approach for both grid-connected and isolated MG operational modes in terms of quality
and repeatability of solution, by employing a rigorous statistical framework, including ANOVA and Tukey HSD
tests.

As main academic and power sector contributions, this paper presents a comprehensive approach for optimizing
the operation of AC MGs, allowing system operators to prioritize, according to their needs, the minimization
of either technical energy losses or CO2 emissions. From an academic perspective, a robust mathematical
model is developed that accurately represents the operational dynamics of distributed wind generators under
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both grid-connected and isolated modes, incorporating technical and environmental constraints. In addition, an
adapted version of PGA is proposed, introducing improvements in generational replacement strategy, real-valued
recombination and mutation operators, and diversity preservation mechanisms. The performance of the PGA
is rigorously compared against other metaheuristic optimizers (PSO, JAYA, GNDO) through solid statistical
analysis (ANOVA, Tukey HSD), contributing to the literature with a standardized methodology for benchmarking
optimization algorithms in energy systems.

From the power sector perspective, this work provides practical tools for more flexible, efficient, and sustainable
energy management in MGs. The results obtained on a 33-bus and a 69-bus test networks with real demand
and wind generation profiles from Colombia demonstrate the applicability of the proposed approach in real-
world operational contexts, particularly in rural or peri-urban areas with limited infrastructure or intermittent
grid connectivity. By validating the model under both grid-connected and islanded modes, the study highlights its
robustness and relevance for distribution system operators (DSOs) who must manage variable renewable resources
without compromising reliability. The proposed framework enables decision-makers to dynamically prioritize
between loss reduction and CO2 emission minimization according to system needs, policy targets, or economic
incentives, thereby aligning technical operation with regulatory and environmental objectives. Additionally,
the comparative analysis of metaheuristic algorithms provides actionable insights for selecting and deploying
optimization tools in complex energy dispatch problems, contributing to more informed planning and real-time
operational strategies in distributed power systems.

This paper is organized as follows: Section 2 introduces the mathematical formulation of the optimization
problem, detailing the objective functions and constraints related to energy losses and CO2 emissions. Section 3
explains the proposed methodology and provides an overview of the metaheuristic algorithms used for comparison,
and describes the tunning optimization process. Section 4 describes the electrical configuration and parameter
data of the test systems employed. Section 5 presents a detailed analysis of the results, including comparative
performance metrics for each algorithm. Finally, Section 6 discusses the key contributions of the study, its practical
implications, and suggestions for future research aimed at advancing environmental performance objectives within
MGs.

2. Mathematical Formulation of the Problem

This section provides the mathematical formulation for the optimization problem focusing on minimizing both
active power losses and CO2 emissions in a MG equipped with distributed WGs. The formulation considers
the unique operational characteristics of MGs, including grid-connected and islanded modes, while addressing
constraints specific to power generation, load demand, and technical limitations of the network.

2.1. Objective Functions

The optimization problem in this study is designed to achieve two primary objectives: minimizing active power
losses (FO1) and minimizing CO2 emissions (FO1).

The first objective function, FO1, aims to minimize the total active power losses across the MG network, which
directly impacts the efficiency of power delivery. The function is defined as follows:

FO1 = minEloss = min

( ∑
h∈ΩH

∑
i∈ΩL

Rl|Il,h|2∆h

)
(1)

In Equation (1), Eloss represents the cumulative power losses over a specified time horizon, ΩH. The term Rl

denotes the resistance of line l, while Il,h represents the current flowing through line l at time h. The power losses
are integrated over each period ∆h, ensuring that losses are minimized for the entire day.

The second objective function, FO2, seeks to minimize CO2 emissions associated with conventional power
generation within the MG (grid and Fossil generation). This objective is crucial for aligning the MG’s operation
with environmental sustainability goals. The emission minimization function is expressed as:
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FO2 = minECO2
= min

( ∑
h∈ΩH

∑
i∈ΩN

CEiP
s
i,h∆h

)
(2)

In Equation (2), ECO2
represents the total CO2 emissions over the time horizon ΩH. The term CEi corresponds

to the emission factor associated with the conventional generator at node i, which may vary depending on the type
of conventional generation supplying energy to the grid, such as grid connection, diesel generation, gas generation,
or other sources [6]. While P s

i,h is the active power generated by conventional sources at node i during hour h. The
summation over h and i captures the cumulative emissions over the operational day, and ∆h represents the duration
of each hourly interval.

2.2. Constraints

The optimization model incorporates all the constraints necessary to reflect the technical and operational limitations
of the MG system. These constraints ensure that the solutions obtained are not only optimal in terms of the defined
objectives but also feasible for real-world application.

P s
i,h − P d

i,h + P ag
i,h = Vi,h

∑
j∈N

Yi,jVj,h cos(θi,h − θj,h − φi,j), ∀i ∈ N ,∀h ∈ H (3)

The first set of constraints, in Equation 3, addresses the power balance within the MG, ensuring that active and
reactive power demand is met at every node. The active power balance is given in 3. In this equation, P s

i,h is the
active power supplied by conventional sources at node i at time h, P d

i,h denotes the active power demand at node
i, and P ag

i,h is the active power contributed by the wind generator at node i. The terms Vi,h and Vj,h represent the
voltage magnitudes at nodes i and j, respectively, while Yi,j is the admittance magnitude between nodes i and j,
and φi,j is the admittance angle.

Qs
i,h −Qd

i,h = Vi,h

∑
j∈N

Yi,jVj,h sin(θi,h − θj,h − φi,j), ∀i ∈ N ,∀h ∈ H (4)

The reactive power balance constraint, in Equation 4, is similarly defined in 4. Where, Qs
i,h is the reactive power

supplied by conventional generators at node i, and Qd
i,h represents the reactive power demand at node i.

P gc,min
i ≤ P gc

i,h ≤ P gc,max
i , ∀i ∈ N ,∀h ∈ H (5)

Qgc,min
i ≤ Qgc

i,h ≤ Qgc,max
i , ∀i ∈ N ,∀h ∈ H (6)

Additionally, the generation limits of conventional generators are constrained by Equations 5 and 6. Specifically,
P gc,min
i and P gc,max

i represent the minimum and maximum active power limits, respectively, for the conventional
generator at node i, while Qgc,min

i and Qgc,max
i define the corresponding reactive power limits. In the connected

mode of the MG, these limits depend on the grid’s capacity during each operational hour. Conversely, in the isolated
mode, they are determined by the power limits specified in the datasheet of the generator installed within the MG.

P ag,min
i ≤ P ag

i,h ≤ P ag
i Gag

h , ∀i ∈ N ,∀h ∈ H (7)

The power output from WGs, P ag
i,h, is also limited by the available wind energy at each hour h, as can be

appreciated in Equation 7. Where P ag,min
i represents the minimum power that can be generated by the WGs at

node i, and Gag
h denotes the wind generation curve based on wind speed and turbine characteristics.

V min
i ≤ Vi,h ≤ V max

i , ∀i ∈ N ,∀h ∈ H (8)

Voltage limits across all nodes are enforced by using Equation 8. Being V min
i and V max

i the minimum and
maximum allowable voltages at node i.
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|Iij,h| ≤ Imax
ij , ∀ij ∈ N ,∀h ∈ H (9)

Lastly, line current constraints are imposed to prevent overloading by using Equation 9. In this Equation, Iij,h
denotes the current through line ij at hour h, and Imax

ij is the maximum permissible current.

0 ≤ P gc
i,h, ∀i ∈ N ,∀h ∈ H (10)

Both objectives, minimizing power losses and CO2 emissions, are achieved while adhering to the technical and
operational constraints required for the safe and efficient operation of the MG in both grid-connected and isolated
modes. In the islanded operation mode, an additional constraint must be introduced to reflect the operational limits
of the conventional diesel generator, which becomes the sole dispatchable resource. Unlike the grid-connected
mode, the islanded mode lacks energy storage systems that would allow the MG to absorb excess power. Therefore,
it is essential to ensure that the diesel generator does not operate with negative output power. This requirement is
explicitly addressed in the mathematical formulation through Equation 10, which sets a minimum power output of
zero. Furthermore, to ensure realistic and reliable operation, a typical nominal operating range of 40% to 80% of
the generator’s rated power is considered [26]. Although the model is formulated in terms of power variables using
power flow analysis, current-based constraints can be readily derived from voltage and power values when needed
for compatibility with protection or control systems.

2.3 Interpretative Overview of the Mathematical Model

To enhance interpretability, this section provides a simplified explanation of how the mathematical formulation
applies to practical microgrid operations.

The two objective functions, minimization of energy losses and CO2 emissions, can be viewed as performance
indicators that grid operators seek to improve through optimized scheduling and dispatch of available generation
sources. Equation (1), for instance, models how energy is dissipated in transmission lines due to their resistance
and current levels over time. Minimizing this quantity means operating the MG in a way that reduces unnecessary
power flow, which directly translates to improved efficiency.

Similarly, Equation (2) quantifies total CO2 emissions by multiplying the power generated by conventional
sources at each time step with their associated emission factors. In a practical setting, this encourages the MG
controller to prioritize clean wind energy over grid or diesel power, particularly during hours when demand and
generation patterns are aligned.

The constraint equations represent the physical and operational boundaries of the MG. For example, Equation
(3) ensures that the total power injected at each bus equals the sum of power demands and line flows, which reflects
Kirchhoff’s current law in power systems. Voltage and current constraints (Equations (8) and (9)) prevent damage
to equipment and ensure stable operation.

To visualize, one might think of the optimization algorithm as a control assistant that tests thousands of possible
daily dispatch schedules, each conforming to the system constraints, and selects the one that results in the least
amount of energy waste and environmental impact.

3. Solution Methodology

The optimization problem defined in this study is solved using the PGA combined with an hourly power flow
method based on the SA method to evaluate the objective function and constraints representing the problem. The
hourly power flow methodology, as described in [27], is applied consistently across all solution methodologies used
in this study. For comparison, three widely employed metaheuristic algorithms in energy management systems for
MG and distribution systems are also implemented: PSO, JAYA, and GNDO. Each one of these methods brings
distinct approaches to exploring the solution space for minimizing power losses and CO2 emissions within a MG
system, operating in both grid-connected and isolated modes. A comparative analysis is conducted to evaluate the
effectiveness of each algorithm in obtaining optimal solutions for the defined objective functions.

Stat., Optim. Inf. Comput. Vol. 14, August 2025



642 OPTIMIZING ENERGY MANAGEMENT IN AC MICROGRIDS

The selection of the four metaheuristic algorithms (PGA, PSO, JAYA, and GNDO) was guided by a balance
between exploration-exploitation capabilities, relevance in recent power system literature, and algorithmic
diversity. PGA was selected as the primary method due to its robust evolutionary dynamics and low susceptibility
to premature convergence, particularly suitable for constrained nonlinear problems with multiple local minima,
such as microgrid energy management. PSO and JAYA were included due to their widespread use in energy
optimization problems and their complementary characteristics: PSO emphasizes swarm intelligence with tunable
convergence behavior, while JAYA requires no control parameters, reducing the burden of configuration. GNDO
was chosen to evaluate a probabilistic population model based on normal distribution, offering a contrasting search
behavior and higher randomness. Regarding parameter tuning, each algorithm’s hyperparameters were optimized
using an external PSO-based tuning procedure, following the approach in [28]. This ensures fairness in comparison
and improves each algorithm’s ability to exploit the search space effectively. The tuning process considered both
solution quality and computational efficiency.

The PGA, proposed as the solution methodology for the problem addressed in this paper, is an optimization
technique inspired by natural selection, recombination, and mutation, designed to effectively explore complex and
non-linear solution spaces [29]. The PGA balances exploration and exploitation by maintaining diversity within a
population of solutions. It is particularly effective at avoiding local optima in constrained and dynamic problems,
such as energy management in MGs. Its capability to handle multi-objective optimization tasks and integrate
specific problem constraints enhances its versatility, offering robust performance in scenarios where identifying
global optima is challenging. Additionally, implementing a descendant population reduces convergence time. It
improves solution quality in terms of the best and average results and the repeatability of high-performance
outcomes across executions. To the best of our knowledge, there is no evidence in the literature of this method
being applied to optimize the operation WGs in MGs, considering both isolated and connected modes.

The PSO is inspired by the social behavior observed in swarms and flocks in nature [30]. In PSO, each particle,
representing a candidate solution, adjusts its position within the solution space based on its own best-known
position and the best-known position discovered by the swarm. This adjustment process is guided by velocity
updates that incorporate both cognitive and social components, enabling particles to balance exploration and
exploitation of the search space effectively [31], which makes it suitable for comparing their results with other
methods. The algorithm’s strength lies in its simplicity and ability to converge to high-quality solutions with
relatively few parameters to configure, making it well-suited for solving complex multi-objective optimization
problems [24].

The JAYA algorithm is a parameter-free optimization method designed to minimize or maximize a given
objective function by iteratively adjusting solutions within a population to move closer to the best solution and
away from the worst solution . Each candidate solution is influenced by the best and worst solutions in the
population at each iteration, resulting in an efficient exploration of the search space without requiring additional
control parameters. This feature distinguishes JAYA from other algorithms, as it reduces the risk of suboptimal
parameter tuning and enhances robustness across different optimization scenarios [32]. JAYA’s parameter-free
design also simplifies its implementation, making it a practical choice for operational optimization tasks such
as those presented in this MG study.

The GNDO is based on statistical modeling of populations using normal distribution properties. GNDO
alternates between global and local search phases by adjusting the population mean and standard deviation,
ensuring diversity in the search process. During the local search, GNDO narrows down the search space by aligning
individuals closer to the best-performing solution, while the global search uses random perturbations within the
normal distribution to explore broader areas of the solution space. This dual-phase approach provides a robust
mechanism for escaping local optima, which is particularly advantageous in complex optimization landscapes like
those encountered in MG operational problems [25].

The proposed methodology uses the PGA for solving the problem of optimal operation of WGs in the AC MG
for reducing the energy losses and CO2 emissions, by using an hourly power flow method based on SA method for
evaluating the objective function and set of constraints related to each solution proposed by the PGA.

The PGA is an evolutionary optimization technique inspired by natural selection and genetic evolution, processes
that shape the adaptive capabilities of biological organisms [3]. PGA utilizes genetic operators—selection,
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recombination, and mutation—to iteratively improve a population of candidate solutions. Each candidate solution,
or individual, represents a possible configuration for the MG operation. Distinct from the traditional GA proposed
by Chu and Beasley, PGA performs population-wide evolution by updating an entire generation of parents with
offspring that encode the best genetic information, thereby accelerating convergence and enhancing solution
quality. This characteristic allows PGA to maintain diversity within the population and prevents premature
convergence.

Algorithm 1: Iterative Process of the PGA
Data: Initialize MG parameters and PGA parameters
for t = 1 : itermax do

if iter == 1 then
1. Generate the initial population randomly;
2. Evaluate the fitness function for each individual using the using the hourly power flow based on
SA;

3. Select the best solution as the incumbent;
else

4. Generate a population of offspring using selection, recombination, and mutation processes;
5. Evaluate the fitness function for the offspring population using the hourly power flow based on
SA;

6. Replace parents with offspring that yield improved fitness values;
7. Update the incumbent with the best solution;
8. if convergence criterion met then

8.1 End the iterative process and select the incumbent as the solution to the problem;
Break;

else
8.2 Return to Step 4;

The core processes of PGA involve selection, recombination, and mutation, each contributing to the progressive
improvement of the population. Initially, an entire population of individuals is randomly generated, with each
individual representing a set of power outputs for the distributed WGs within the MG. The selection process
involves choosing parent individuals based on their fitness values, allowing those with higher performance to pass
on their traits to the next generation. Recombination creates offspring by combining traits from pairs of parents,
often using averaging techniques that are suitable for continuous optimization problems. Mutation introduces
random alterations to offspring, generating values within the permissible limits of active power for each time
period.

The proposed PGA introduces key modifications compared to traditional Genetic Algorithms. Specifically, it
applies a generational replacement strategy, where the entire parent population can be replaced if all offspring
exhibit superior fitness, promoting faster convergence. Moreover, the algorithm utilizes real-valued recombination
through averaging and bounded mutation within operational limits, both tailored to the continuous nature of the
microgrid dispatch problem. These adaptations help preserve population diversity and improve solution quality,
addressing common limitations of conventional GAs [33].

To maintain the readability of the main text, a summary of the pseudocode and key steps for the PSO, JAYA,
and GNDO algorithms is provided in Appendix A. Each algorithm follows its standard population-based iterative
structure, adapted to the specific requirements of the power flow model and the constraint-handling penalty
function.

The selection of the four metaheuristic algorithms (PGA, PSO, JAYA, and GNDO) was guided by their
prominence in recent power system optimization literature, algorithmic diversity, and demonstrated effectiveness
in solving non-linear and constrained problems characteristic of microgrid energy management [34, 23, 25]. The
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PGA was chosen as the primary method due to its strong global search capabilities, resilience against premature
convergence, and flexibility in evolutionary adaptation.

PSO and JAYA were included as benchmark algorithms because of their extensive use in energy-related
applications and their complementary features: PSO relies on swarm-based search dynamics with tunable
convergence behavior, while JAYA employs a parameter-free mechanism that reduces the complexity of algorithm
configuration. GNDO was selected for its probabilistic exploration strategy based on normal distribution learning,
offering a contrasting search behavior that enriches the comparative analysis.

This selection enables a comprehensive and balanced evaluation across diverse heuristic paradigms.
Furthermore, to ensure fairness and reproducibility in performance assessment, all algorithms were consistently
tuned using a PSO-based parameter optimization procedure.

The evaluation of fitness values occurs at each generation, measuring the effectiveness of each individual in
achieving the objective of minimizing either power losses or CO2 emissions, depending on the context of the
function used, while penalizing the fitness value whenever a constraint is violated. Offspring with superior fitness
values replace less fit parents, thereby improving the population’s average performance.

An hourly power flow method based on the SA technique is employed to evaluate the proposed power injections
for WGs installed in the MG. This approach ensures efficient load flow analysis with low computational demand
and reliable convergence [35]. The method performs an hourly power flow calculations, 24 hours in this particular
case, adjusting system generation and demand according to the provided data for each time period. During this
process, the hourly impact on the objective function and system constraints is assessed using nodal voltage values
obtained from each power flow and other system parameters. Constraint violations are penalized through an
adaptation function, which adjusts the objective function accordingly. After analyzing all 24 hours, the total daily
impact on the objective function is calculated by summing the hourly results, representing the MG’s operational
performance over the day.

To perform this task, PGA supplies essential input data for the hourly power flow, including system parameters,
hourly wind generation power (variables of the problem), and power demand. Subsequently, for each hour h, the
following steps are executed:

• Load user demand for hour h.
• Load the wind generation power for each distributed generator at hour h.
• Solve the power flow for hour h using the SA method [36]. This iterative approach calculates nodal

voltages, as expressed in Equation 11, where voltage convergence is achieved when the tolerance criterion
(ε = 1× 10−10) is met.

V t+1
d,h = −Y −1

dd [diag−1(V t
d )Sd,h + YdgVg,h] (11)

• Evaluate the objective function (e.g., energy losses or CO2 emissions), and identify constraint violations for
hour h.

• Apply penalties for violations using the adaptation function (Equation 12), which adjusts the objective
function by incorporating penalties based on the severity of the violations.

FA = FO + Pen (12)

For grid-connected operation, penalties are defined as:

Pen = fp1 · V lload + fp2 · V lvoltage (13)

Where V lload and V lvoltage denote violations of loading and voltage limits, and fp1 and fp2 are heuristic
penalty factors (set at 1000). This fixed-penalty approach follows common practices in the literature and
offers a good trade-off between computational simplicity and effective constraint handling [34, 37].
For isolated operation, additional constraints are incorporated:

Pen = fp1 · V lload + fp2 · V lvoltage + fp3 · V lPslack + fp4 · V ldiesel (14)
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Here, V lPslack and V ldiesel correspond to violations related to energy sales at the slack bus and diesel
generator outputs exceeding their defined limits, respectively.

• Accumulate hourly adaptation functions into a single daily value.
• Send the computed adaptation function back to the PGA for the next iteration.

After to evaluate the fitness functions of all individuals, the best solution within the current population is stored
as the incumbent and is updated whenever a new superior solution is found in subsequent iterations. This iterative
process continues until a specified convergence criterion, typically the maximum number of generations, is met.

PGA’s approach to replacement and population evolution allows it to maintain a high diversity in solution
configurations while achieving rapid convergence toward optimal solutions. By adapting the power outputs based
on selection pressures, the algorithm continuously refines the MG’s operational parameters, offering a robust
solution for minimizing operational objectives within the given constraints.

3.1. Tuning of Optimization Parameters

To ensure a fair and effective comparison between optimization methods, each algorithm was systematically tuned
using a dedicated PSO algorithm, referred to here as the PSO-tuner. The objective of the PSO-tuner was to identify
the optimal set of hyperparameters for each metaheuristic algorithm (PGA, PSO, JAYA, GNDO) that minimized
the primary objective functions (FO1 and FO2) in both grid-connected and isolated modes.

This tuning process was performed independently for each optimization method, following the methodology
reported in [28]. For each candidate hyperparameter set, the corresponding metaheuristic algorithm was executed
three times and the average objective function value was used as the fitness value. The convergence criterion of the
PSO-tuner was defined as either a maximum of 300 generations or no improvement in the global best solution over
30 consecutive iterations. The PSO-tuner parameters are detailed in Table 2.

Table 2. Configuration of the PSO-Tuner for Metaheuristic Parameter Optimization

Parameter Value Description

Swarm Size 8 particles Number of hyperparameter candidates per generation
Max Generations 300 Maximum number of iterations
Cognitive Factor (c1) 1.494 Self-learning influence
Social Factor (c2) 1.494 Group-learning influence
Inertia Weight (w) Linearly decreasing from 0.7 to 0.001 Balance between exploration and exploitation
Velocity Clamping Dynamic, based on parameter bounds Prevents divergence
Fitness Evaluation Mean of algorithm executions Reduces stochastic variability
Convergence Criterion Max generation or stagnation in 30 iterations Stopping rule

A sensitivity analysis of the PSO-tuner results showed stable convergence behavior across all methods. The best
parameter configurations were found to be consistent within small deviations (< 5%) when the PSO-tuner was run
multiple times under different seeds. This confirms the robustness and repeatability of the tuning process.

The final tuned parameter values for each algorithm in both microgrid configurations are reported in Table 3.

4. Test Systems

To verify the scalability of both the proposed model and optimization strategy, two standardized test systems
of 33 and 69 buses are employed [38, 39]. The 33-bus MG is used to assess the performance of the proposed
strategy alongside the other comparison techniques. Once the superiority of the proposed approach is established,
its flexibility and ability to adapt to more complex networks are further evaluated through its application to a 69-bus
MG.
4.1. Test System: 33-nodes AC MG

This work employs an adapted version of the 33-node AC MG reported in [38] as the test system. The adapted
system preserves the original configuration of 33 nodes and 32 lines while enabling operation in both connected
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Table 3. Parameters of Optimization Methodologies for the 33-node MG in Grid-Connected and Standalone Modes

Methodology Parameter Grid-Connected Mode Isolated Mode

PGA
Number of Individuals 32 35
Number of Iterations 6000 6000
Number of Mutations 1 1

PSO

Number of Individuals 168 462
Number of Iterations 1987 648
Minimum Inertia 0.5515 0.7522
Maximum Inertia 0.6333 0.8136
Cognitive Factor 1.9861 0.6259
Social Factor 1.4330 1.2795
Velocity Limit Factor 0.0814 0.0271

JAYA
Number of Individuals 17 21
Number of Iterations 12000 9863

GNDO
Number of Individuals 500 500
Number of Iterations 500 500
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Figure 1. Electrical diagram of the 33 nodes MG by considering connected and isolated operating modes.

and isolated modes. Node 1 is the slack bus, integrating a diesel generator and the electrical grid to facilitate these
operational modes. Additionally, three distributed WGs with a nominal capacity of 1200 kW are installed at buses
12, 15, and 31 to enhance renewable energy integration. The diesel generator has a nominal capacity of 4000 kW,
with a power output range of 40% to 80% of its nominal capacity. For emission factors, this work considers values
of 0.1644 kg of CO2 per kWh for grid electricity emissions and 0.2671 kg of CO2 per kWh for diesel emissions.

The technical parameters of the MG, summarized in Table 4, include detailed information for each line, such as
the line number, sending and receiving buses, resistance and reactance line, active and reactive power demands at
the receiving bus, and the maximum current capacity of the line. Finally, this test system considers a maximum
voltage profile variation of ±8% of the nominal grid voltage. This configuration provides a robust framework for
analyzing energy management and operational strategies under diverse scenarios.

To incorporate the effects of variable power generation and demand in the MG, this work utilizes wind generation
and power demand data reported for a region in Colombia, as illustrated in Figure 2. The wind generation profiles
were derived using NASA-reported data and the parameters of the wind turbines, following the methodology
outlined in [40]. Meanwhile, the power demand behavior was obtained from data provided by the local utility,
ensuring a realistic representation of energy consumption patterns in the region.
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Table 4. Technical parameters of the 33-node MG.

Line l Sending Node i Receiving Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Imax
ij (A)

1 1 2 0.0922 0.0477 100 60 385
2 2 3 0.4930 0.2511 90 40 355
3 3 4 0.3660 0.1864 120 80 240
4 4 5 0.3811 0.1941 60 30 240
5 5 6 0.8190 0.7070 60 20 240
6 6 7 0.1872 0.6188 200 100 110
7 7 8 1.7114 1.2351 200 100 85
8 8 9 1.0300 0.7400 60 20 70
9 9 10 1.0400 0.7400 60 20 70
10 10 11 0.1966 0.0650 45 30 55
11 11 12 0.3744 0.1238 60 35 55
12 12 13 1.4680 1.1550 60 35 55
13 13 14 0.5416 0.7129 120 80 40
14 14 15 0.5910 0.5260 60 10 25
15 15 16 0.7463 0.5450 60 20 20
16 16 17 1.2890 1.7210 60 20 20
17 17 18 0.7320 0.5740 90 40 20
18 2 19 0.1640 0.1565 90 40 40
19 19 20 1.5042 1.3554 90 40 25
20 20 21 0.4095 0.4784 90 40 20
21 21 22 0.7089 0.9373 90 40 20
22 3 23 0.4512 0.3083 90 50 85
23 23 24 0.8980 0.7091 420 200 85
24 24 25 0.8960 0.7011 420 200 40
25 6 26 0.2030 0.1034 60 25 125
26 26 27 0.2842 0.1447 60 25 110
27 27 28 1.0590 0.9337 60 20 110
28 28 29 0.8042 0.7006 120 70 110
29 29 30 0.5075 0.2585 200 600 95
30 30 31 0.9744 0.9630 150 70 55
31 31 32 0.3105 0.3619 210 100 30
32 32 33 0.3410 0.5302 60 40 20
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Figure 2. Average daily generation of WGs and power demand.
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4.2. Test System: 69-nodes AC MG

After validating the proposed strategy and the comparison techniques on the 33-bus test system, the methodology
is subsequently applied to a 69-bus test system, as reported in [39]. The technical specifications of this system are
provided in Appendix B to avoid interrupting the flow of the main text, given the extensive size of the corresponding
table.

As in the 33-bus network, Node 1 can operate either connected to the main grid or in isolated mode, supported
by a diesel generator. Although the same emission factors are used, some modifications were necessary to adapt
the methodology to the characteristics of this MG. First, WGs are installed at Buses 15, 33, and 62. Additionally,
in islanded mode, the diesel generator has a rated power of 3000 kW. Finally, to introduce greater variability in
both demand and generation, the profiles shown in Figures 3 and 4 are employed.
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Figure 3. Hourly power demand.
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Figure 4. Hourly power generation by WGs

The demand profile was provided by a distribution company in Colombia, while the generation profile was
obtained using artificial neural networks (ANNs), based on the climatic behavior of a specific region in the country
[38]. Figure 3 illustrates the weekly demand profile. The curve labeled ”regular” corresponds to the typical behavior
observed on Mondays, Tuesdays, Thursdays, and Fridays, while the remaining curves represent the specific demand
patterns for the other days of the week. Conversely, Figure 4 depicts the wind turbine generation patterns for each
of the seven days.
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5. Results and Discussion

Each algorithm was independently executed 100 times for each objective function to obtain statistical data for
a robust performance comparison. As discussed below, the evaluation of each algorithm’s effectiveness considers
several parameters, such as the best solution achieved, consistency across multiple runs, and other statistical metrics
[41].

The simulations were executed using the MATLAB software on a personal computer with an Intel(R) Core(TM)
i7-11800H processor running at 2.30GHz, 16 GB of RAM, and a 64-bit Windows 11 OS. To evaluate the
performance of each algorithm, each method was run 100 times. All algorithms were custom-implemented in
MATLAB R2023a. To ensure transparency, pseudocode for the PGA is presented in Section 3, and additional
pseudocode for PSO, JAYA, and GNDO is available in Appendix A. Additionally, the PGA is compared with two
other optimization techniques, Gray Wolf Optimizer (GWO) [42] and Harris Hawks Optimizer (HHO) [43], in
order to evaluate the performance of the proposed strategy against more recent methods reported in the literature.
These two techniques did not achieve sufficiently strong performance to warrant prioritization in the main body of
the document. Therefore, their results are presented in Appendix C, in order to avoid disrupting the flow and clarity
of the analysis provided for the other comparison techniques. Subsequently, the functionality and flexibility of the
PGA are validated in a larger MG, considering both grid-connected and islanded operating modes.

5.1. Statistical Results for Objective Function FO1: Energy Losses

Table 5 presents the statistical results for FO1 (energy losses in kWh) for both the connected and isolated MG
configurations. The metrics include minimum values, mean values, and standard deviations for each algorithm.
These results demonstrate the performance of the optimization methods in reducing energy losses.

The connected configuration shows that the PGA algorithm achieved the lowest average energy losses (1399.47
kWh) with a minimal standard deviation (0.019 kWh). This highlights its high consistency and effectiveness.
Similarly, the PSO and JAYA algorithms also performed well, achieving losses close to PGA but with slightly
higher variations. On the other hand, GNDO exhibited higher average energy losses (1457.27 kWh) and a more
substantial standard deviation (10.38 kWh), indicating lower performance and stability than the other algorithms.

In the isolated configuration, the results maintain a similar trend, with PGA achieving the lowest average losses
(1443.54 kWh) and a standard deviation of 1.90 kWh. PSO and JAYA produced competitive results, but their higher
standard deviations indicate less stability in this configuration. GNDO again recorded the highest losses on average
(1512.62 kWh), reinforcing its inferior performance in minimizing energy losses.

Another analysis can be conducted by comparing the different metaheuristic techniques with their corresponding
base cases. For the base case of the MG in connected mode, energy losses amount to 3378.92 kWh. All algorithms
demonstrated significant improvements over this baseline in both configurations. For example, the PGA algorithm
reduced energy losses by an average of 58.6%. Even the least efficient algorithm, GNDO, achieved an average
reduction of 56.9%. These results highlight the effectiveness of all algorithms in reducing energy losses relative to
the base case, with PGA emerging as the most efficient and consistent.

However, no base case is provided for the MG operating in isolated mode. This is due to the fact that to meet
demand, the diesel generators operate during hours that exceed their technical and physical limitations, as outlined
in the constraints of Equations 5, 6, and 10. As a result, this analysis for the isolated mode is not feasible.

5.2. Statistical Results for Objective Function FO2: CO2 Emissions

Table 6 presents the results for the objective function FO2, which evaluates the ability of each algorithm to
minimize CO2 emissions in both the connected and isolated MG configurations. The analysis focuses on the
minimum values, mean values, and standard deviations of emissions, providing insights into the performance and
consistency of each method.

In the connected configuration, the PGA algorithm achieved the lowest average CO2 emissions at 4564.63
kg, with a low standard deviation of 1.03 kg, highlighting its consistent and superior performance. The PSO
and JAYA algorithms produced slightly higher average emissions at 4616.32 kg and 4620.64 kg, respectively,
with considerably more significant standard deviations (81.40 kg for PSO and 115.56 kg for JAYA). The GNDO
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Table 5. Statistical Results for Objective Function FO1 (Energy Losses kWh)

MG Configuration Algorithm Min Average Std. Deviation Confidence Interval (95%)

Connected

PGA 1399.415121 1399.466560 0.019275 [1399.46, 1399.47]
PSO 1399.322343 1404.610195 8.490610 [1402.94, 1406.28]
JAYA 1399.322343 1402.689994 7.101619 [1401.30, 1404.08]

GNDO 1435.638261 1457.270673 10.382137 [1455.24, 1459.30]

Isolated

PGA 1439.652477 1443.538385 1.900417 [1443.16, 1443.92]
PSO 1437.395317 1447.720331 11.582392 [1445.42, 1450.02]
JAYA 1437.302769 1459.141396 20.771458 [1454.99, 1463.29]

GNDO 1476.241751 1512.618975 14.043032 [1509.86, 1515.38]

algorithm exhibits higher average CO2 emissions than the other methodologies (5892.02 kg) and a considerable
standard deviation (96.7911 kg), positioning it as the poorest performance algorithm.

In the isolated configuration, the PGA algorithm again achieved the lowest average emissions at 10295.68 kg,
with a standard deviation of 0.57 kg, confirming its effectiveness and stability across configurations. The PSO and
JAYA algorithms produced higher average emissions at 10343.31 kg and 10423.74 kg, with significantly larger
deviations (83.94 kg for PSO and 171.95 kg for JAYA). The GNDO algorithm recorded the highest average
emissions at 11478.59 kg with the largest deviation (201.99 kg), indicating its poor performance in minimizing
CO2 emissions under isolated conditions.

The base case for CO2 emissions in the MG operating in connected mode is 12,541.20 kg. Following the same
procedure used for energy loss reduction, an analysis can be conducted to compare the performance of different
metaheuristic techniques against the base case in connected mode. For example, the PGA algorithm reduced
emissions by an average of 63.6%, while PSO and JAYA achieved reductions of 63.2% and 63.1%, respectively.
GNDO also outperformed the base case, achieving a reduction of 53.02%. These results demonstrate that all
algorithms significantly improve upon the base case, with PGA achieving the best overall balance of consistency,
robustness, and emissions reduction.

Table 6. Statistical Results for Objective Function FO2 (kg of CO2 Emissions)

MG Configuration Algorithm Min Average Std. Deviation Confidence Interval (95%)

Connected

PGA 4562.390072 4564.626150 1.027337 [4564.43, 4564.82]
PSO 4555.664572 4616.322794 81.401744 [4599.36, 4633.29]
JAYA 4555.757447 4620.642668 115.556099 [4597.68, 4643.60]

GNDO 5647.699742 5892.018031 96.791183 [5872.70, 5911.33]

Isolated

PGA 10293.893570 10295.677661 0.565508 [10295.56, 10295.80]
PSO 10282.780898 10343.312645 83.936778 [10326.80, 10359.82]
JAYA 10282.642841 10423.743669 171.951890 [10390.56, 10456.92]

GNDO 11020.397672 11478.588214 201.987411 [11438.47, 11518.70]

The findings highlight the superior performance of the PGA algorithm in minimizing CO2 emissions,
maintaining consistent results with low variability across configurations. Although PSO and JAYA also performed
well, their higher deviations indicate less stability than PGA. GNDO exhibited the highest emissions in the isolated
configuration and a higher standard deviation on both configurations of the MG, making it a less reliable option for
emissions optimization.

Figures 5 and 6 visually compare the performance of the algorithms using boxplots and violin plots. These
visualizations provide a comprehensive overview of each algorithm’s distribution and consistency in both
connected and isolated configurations, supporting the statistical findings.
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Figure 5. Boxplot and Violin Plot Analysis of FO1 (Energy Losses) for Connected and Isolated MG Configurations

5.3. Analysis of FO1 - Energy Losses

For the objective FO1, which targets the minimization of energy losses, the results across the connected and
isolated configurations reveal significant insights. In the connected configuration (top left plots in Figure 5), the
boxplot indicates that the PGA algorithm consistently achieves the lowest median energy loss values, with minimal
variance, as evidenced by a nearly imperceptible interquartile range and a small number of outliers. This suggests
that PGA provides a highly robust and stable solution for minimizing energy losses in a connected setup, where
variations in solution quality are virtually negligible.

In contrast, PSO and JAYA exhibit greater variability in their results, as shown by the wider spread of data points
in the violin plots. Specifically, PSO displays a notable range in solution quality, likely due to its particle-based
search strategy that explores a broader solution space. JAYA also shows a moderate level of dispersion, indicating
that it occasionally approaches optimal values but lacks the precision of PGA. The GNDO algorithm, however,
demonstrates the highest energy losses and the largest variability, suggesting it is less suitable for this objective
within a connected MG scenario.

For the isolated configuration (bottom left plots in Figure 5), PGA again proves to be the most effective
algorithm. The results are tightly clustered around a low mean energy loss, reinforcing PGA’s reliability in
providing consistently low-loss solutions even when the MG operates independently. Similar to the connected
case, PSO and JAYA show larger spreads and higher mean values, while GNDO once more yields the highest loss
values, indicating it is less effective for minimizing energy losses in isolated settings.
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5.4. Analysis of FO2 - CO2 Emissions

The objective FO2 focuses on minimizing CO2 emissions, with results presented in Figure 6. In the connected MG
configuration (top plots), PGA emerges as the most effective method, as it consistently achieves the lowest CO2

emissions with minimal dispersion, as seen in the compactness of the violin plot. PSO and JAYA, although capable
of attaining competitive solutions, show greater variability and higher mean emissions than PGA, underscoring the
superior stability of PGA in emission reduction. GNDO, however, produces significantly higher emissions, still, its
results appear inconsistent and may be less reliable due to the span of the boxplot, suggesting a lack of robustness
in maintaining stable low-emission outcomes.

In the isolated configuration (bottom plots), PGA demonstrates superior performance, achieving consistently low
emissions with a narrow distribution of results. PSO and JAYA present moderate variability, indicating that their
performance is more sensitive to initial conditions and algorithmic parameters in isolated setups. GNDO, while
achieving a range of values, generally produces higher CO2 emissions, reinforcing its unsuitability for stringent
emission reduction goals in this context.

The boxplot and violin plot analyses collectively highlight PGA as the most reliable and robust algorithm
across both objectives and MG configurations. Its minimal variance and superior performance in achieving low
energy losses and CO2 emissions indicate that PGA is particularly well-suited for this optimization problem.
The consistency observed in PGA’s results contrasts with the performance of PSO and JAYA, which, although
sometimes competitive, show greater variability and are more prone to suboptimal outcomes. GNDO is regarded
as the least effective method, achieving high-emission values in connected and isolated cases, and it also lacks the
stability necessary for practical implementation.

The findings suggest that implementing PGA can effectively meet both energy and environmental objectives in
MG operations. Its robustness and efficiency make it a highly advantageous choice for both connected and isolated
scenarios, particularly when precise, low-variance solutions are essential.

5.5. ANOVA Analysis of Algorithm Performance

To statistically validate the differences in performance among the algorithms for the objectives FO1 (energy losses)
and FO2 (CO2 emissions), an ANOVA analysis was conducted. This test compares the mean values achieved
by each algorithm across 100 independent runs, determining if the observed differences in results are statistically
significant. The analysis was carried out for both the connected and isolated configurations of the MG, and includes
assessments of normality and homoscedasticity via Shapiro-Wilk and Levene’s tests, respectively.

5.5.1. ANOVA Results for FO1 - Energy Losses For the connected MG configuration with FO1 as the objective,
the ANOVA results indicate a highly significant difference between the algorithms, with a p-value of 7.39× 10−206.
The high F-statistic of 1321.98 (see Table 7) suggests that at least one algorithm performs statistically differently
in minimizing energy losses. The Shapiro-Wilk test yielded a statistic of 0.846, with a p-value of 2.58× 10−19,
suggesting a deviation from normality in the residuals. Furthermore, Levene’s test for equality of variances returned
a statistic of 32.40 with a p-value of 9.49× 10−19, indicating heteroscedasticity, which implies that variances across
the algorithms are not homogeneous.

For the isolated MG configuration, ANOVA results reveal similar trends, with a significant F-statistic of 532.13
and a p-value of 1.66× 10−138, as shown in Table 7. The Shapiro-Wilk and Levene’s tests indicate non-normality
and heteroscedasticity, with p-values of 3.28× 10−19 and 3.41× 10−15, respectively. These findings imply that,
despite variability in the data, there are statistically significant differences in energy loss minimization across the
algorithms in both MG configurations.

5.5.2. ANOVA Results for FO2 - CO2 Emissions ANOVA analysis indicates statistically significant differences
among the algorithms for objective FO2, which focuses on minimizing CO2 emissions, in both connected and
isolated microgrid configurations.

In the connected configuration, the F-statistic is extremely high at 5691.94, with a p-value of effectively 0 (Table
8). These results confirm that the algorithms exhibit significant variation in their ability to minimize emissions.
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Figure 6. Boxplot and Violin Plot Analysis of FO2 (CO2 Emissions) for Connected and Isolated MG Configurations

Table 7. ANOVA Results for FO1 (Energy Losses) in Connected and Isolated MG Configurations

Configuration Sum of Squares df F p-value

Connected (Algorithm) 228350.67 3 1321.98 7.39× 10−206

Connected (Residual) 22800.95 396 - -
Isolated (Algorithm) 305879.92 3 532.13 1.66× 10−138

Isolated (Residual) 75875.94 396 - -

The Shapiro-Wilk test for normality yields a statistic of 0.828 and a p-value of 2.16× 10−20, indicating non-
normal residuals. Furthermore, Levene’s test reveals heteroscedasticity, with a statistic of 18.00 and a p-value of
5.73× 10−11, suggesting that variances among the algorithms are unequal.

In the isolated configuration, ANOVA results remain highly significant, with an F-statistic of 1647.45 and a
p-value of 3.18× 10−223. The Shapiro-Wilk test produces a statistic of 0.915 and a p-value of 2.97× 10−14,
again confirming the non-normality of residuals. Levene’s test (p-value of 3.40× 10−32) further corroborates the
presence of unequal variances across the algorithms.

These findings highlight substantial differences in the algorithms’ performances in minimizing CO2 emissions
across configurations. While all methods provide improvements over the base case, the variability observed in some
algorithms, such as GNDO and JAYA, underscores the need for careful algorithm selection based on the desired
balance between robustness and emission reduction.

The statistical analysis reinforces that the PGA algorithm consistently achieves superior performance in
minimizing CO2 emissions in both configurations, with significantly lower mean emissions and reduced variability
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Table 8. ANOVA Results for FO2 (CO2 Emissions) in Connected and Isolated MG Configurations

Configuration Sum of Squares df F p-value

Connected (Algorithm) 1.2529e+08 3 5691.94 0.0
Connected (Residual) 2.9056e+06 396 - -
Isolated (Algorithm) 9.5649e+07 3 1647.45 3.18× 10−223

Isolated (Residual) 7.6638e+06 396 - -

compared to the other algorithms. The non-normality and heteroscedasticity observed in the residuals suggest that
while PGA demonstrates robustness and reliability, other methods, such as GNDO and JAYA, exhibit greater
variability, potentially limiting their applicability in scenarios requiring consistent performance. These results
further validate PGA as a reliable choice for optimization in microgrid systems where emission minimization
is a critical objective.

5.6. Tukey HSD Test Analysis

To further analyze the effectiveness of each optimization algorithm, a Tukey HSD (Honestly Significant Difference)
test was conducted for the objective functions FO1 (energy losses) and FO2 (CO2 emissions). This test assesses
pairwise differences between algorithmic means, identifying which pairs exhibit statistically significant differences.
The results provide insights into whether the PGA consistently outperforms other methods across connected and
isolated MG configurations.

5.6.1. Tukey HSD Results for FO1 - Energy Losses For the connected microgrid configuration, the Tukey test
results for FO1 demonstrate statistically significant differences between most algorithm pairs at a confidence level
of 95%. The algorithm GNDO exhibited significantly higher energy losses than the other algorithms, with mean
differences of -54.58, -57.80, and -52.66 compared to JAYA, PGA, and PSO, respectively. These results, with
corresponding p-values of 0.0, strongly suggest that GNDO is suboptimal for minimizing energy losses.

The comparison between JAYA and PGA yielded a mean difference of -3.22 with a p-value of 0.015, indicating
a statistically significant advantage for PGA. Additionally, the difference between PGA and PSO was found to
be 5.14 with a p-value of 0.0, reinforcing the superior performance of PGA in this configuration. However, the
comparison between JAYA and PSO did not reach statistical significance (p-value = 0.2799), suggesting similar
performance between these two algorithms for FO1 in the connected setup.

In the isolated configuration, the Tukey test results also highlighted GNDO as the least effective algorithm, with
substantial and statistically significant mean differences compared to JAYA, PGA, and PSO, all with p-values of 0.0.
The mean difference between JAYA and PGA was -15.60 (p-value = 0.0), further confirming the superior efficiency
of PGA in reducing energy losses. The comparison between PGA and PSO did not reach significance in this setup
(p-value = 0.1435), indicating similar performance between these two algorithms in the isolated configuration.

5.6.2. Tukey HSD Results for FO2 - CO2 Emissions The Tukey HSD test for FO2 (CO2 emissions) reveals
significant differences among the algorithms in the connected configuration. GNDO consistently underperforms,
with significantly higher emissions compared to JAYA, PGA, and PSO. The mean differences between GNDO and
the other algorithms are -1271.38, -1327.39, and -1275.70, respectively, all with p-values of 0.0. This indicates that
GNDO’s performance in minimizing emissions is statistically inferior in the connected configuration.

In terms of pairwise comparisons among the other algorithms, JAYA and PGA show a statistically significant
mean difference of -56.02 (p-value = 0.0), confirming PGA’s superior performance in emission reduction. Similarly,
the comparison between PGA and PSO yields a mean difference of 51.70 (p-value = 0.0001), favoring PGA. On the
other hand, the comparison between JAYA and PSO is not statistically significant, with a mean difference of -4.32
(p-value = 0.9844), suggesting comparable effectiveness between these two algorithms for emissions reduction.

In the isolated configuration, the Tukey test results further confirm GNDO’s poor performance, with significant
differences compared to the other algorithms, all with p-values of 0.0. The mean difference between JAYA and

Stat., Optim. Inf. Comput. Vol. 14, August 2025



H. PINTO, LF. GRISALES-NOREÑA, AND V. BOTERO-GÓMEZ 655

PGA is -128.07 (p-value = 0.0), indicating that PGA significantly outperforms JAYA in minimizing emissions.
However, the comparison between PGA and PSO in this configuration is marginal, with a mean difference of 47.64
and a p-value of 0.0747, suggesting similar performance between these two algorithms under isolated conditions.

Table 9. Tukey HSD Test Summary for FO1 (Energy Losses) and FO2 (CO2 Emissions) in Connected and Isolated MG
Configurations

Objective Configuration Algorithm Comparison Mean Difference p-value

FO1 Connected GNDO - PGA -57.80 0.0
FO1 Connected JAYA - PGA -3.22 0.015
FO1 Connected PGA - PSO 5.14 0.0
FO1 Isolated GNDO - PGA -69.08 0.0
FO1 Isolated JAYA - PGA -15.60 0.0
FO1 Isolated PGA - PSO 4.18 0.1435
FO2 Connected GNDO - JAYA -1271.38 0.0
FO2 Connected GNDO - PGA -1327.39 0.0
FO2 Connected GNDO - PSO -1275.70 0.0
FO2 Connected JAYA - PGA -56.02 0.0
FO2 Connected JAYA - PSO -4.32 0.9844
FO2 Connected PGA - PSO 51.70 0.0001
FO2 Isolated GNDO - PGA -1182.91 0.0
FO2 Isolated JAYA - PGA -128.07 0.0
FO2 Isolated PGA - PSO 47.64 0.0747

The Tukey HSD analysis reaffirms that PGA is the most effective algorithm for minimizing both energy losses
and CO2 emissions across different configurations, with statistically significant improvements over other methods
in most pairwise comparisons. GNDO consistently performs poorly, and JAYA is outperformed by PGA in nearly
all significant comparisons. Although PSO sometimes achieves results similar to PGA, particularly in the isolated
configuration, PGA’s consistent superiority across different setups supports its selection as the optimal method for
this specific problem.

5.7. Application and results of the proposed methodology on a 69-bus system.

Finally, in order to validate the capability and flexibility of the proposed strategy to operate on larger systems,
additional tests were conducted considering variations in demand and generation over a one-week operational
horizon. This is presented in Tables 10 and 11.

Table 10. Statistical Results for Objective Function FO1 (Energy Losses kWh) in 69-node MG.

Operation Mode Case Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Connected
Base Case 2030.622553 2030.622553 1936.407934 2030.622553 2030.622553 1922.856209 1810.562951
PGA 760.6296204 750.6348379 721.9494392 755.1520891 760.5338122 705.7271153 689.206721

Isolated PGA 830.6388696 840.5781539 790.2559191 831.8810829 828.9988515 790.5427154 773.5415531

Table 10 shows the 69-node MG in both grid-connected and isolated modes, with the implementation of the
PGA algorithm, in accordance with the proposed methodology to reduce energy losses. First, in the grid-connected
mode, a weekly average value of 734.8334 kWh is obtained after comparing with the base case, corresponding to
an average weekly reduction of 62.6977%. In the islanded mode, although no base case is available, due to the
same reasons stated for the 33-node MG, a weekly average energy value of 812.3482 kWh is achieved, complying
with the system’s technical constraints.

Table 11 presents the implementation of the PGA algorithm for reducing CO2 emissions in the 69-node MG.
In grid-connected mode, the PGA achieves an average emission value of -1226.7908 KgCO2. It is important to
clarify that this negative value does not indicate a computational error; rather, it reflects that the MG supplies more
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Table 11. Statistical Results for Objective Function FO2 (kg of CO2 Emissions) in 69-node MG.

Operation Mode Case Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Connected
Base Case 9735.63236 9735.63236 9540.216466 9735.63236 9735.63236 9536.162274 9284.906718
PGA -915.6485283 -1575.008902 -1101.380518 -1199.101298 -917.7383889 -1469.271553 -1409.437365

Isolated PGA 7701.459191 7703.637442 7702.150508 7702.479587 7702.653622 7702.204556 7702.670412

energy to the main grid than it consumes. As a result, a net emission reduction is achieved not only within the MG
itself but also across the wider electrical system. In contrast, under isolated operation, an average emission value of
7702.4650 KgCO2 is recorded. This value cannot be negative due to the generation constraints of diesel generators
and complies with the system’s technical limitations.

6. Conclusions

This study evaluated the performance of four metaheuristic algorithms, PGA, PSO, JAYA, and GNDO, in
optimizing two key objectives in MG operation: energy losses and CO2 emissions. This research provides
robust evidence of PGA’s consistent superiority in minimizing both objectives across different MG configurations
(connected and isolated) by conducting a comprehensive statistical analysis, including box plots, violin plots,
ANOVA, and Tukey HSD tests. The results showed that PGA achieved statistically significantly lower values for
both objective functions compared to the other methods, especially GNDO, which consistently underperformed
in all configurations. Additionally, while PSO occasionally achieved results comparable to PGA, particularly in
isolated settings, the consistent efficacy of PGA across all scenarios validates its suitability as the optimal algorithm
for these objectives in MG optimization.

Numerically, the PGA algorithm achieved a 58.6% reduction in energy losses in the connected configuration of
the MG, compared to the base case of 3378.92 kWh. Similarly, for CO2 emissions, PGA reduced emissions in the
connected configuration by 63.6%, relative to the base case of 12,541.20 kg. While PSO and JAYA also provided
competitive reductions, particularly in isolated conditions, PGA’s stability and low deviation across scenarios
further solidify its position as the most reliable choice for optimizing energy and environmental performance in
MGs.

The strong performance of the proposed PGA was subsequently validated in a 69-bus MG under both grid-
connected and isolated operating modes. In the grid-connected configuration, the PGA achieved an average
reduction of 62.6977% in energy losses. For emissions reduction, it yielded an average value of -1226.7908 kgCO2,
demonstrating that the strategy enables an intelligent dispatch of WGs that contributes to a system-wide reduction
in emissions, including those from the main power grid. In the isolated mode, the PGA achieved average values
of 812.3482 kWh and 7702.4650 kgCO2 for the optimization of energy losses and emissions, respectively, while
satisfying the technical constraints of the MG in this configuration.

The primary contribution of this research lies in its rigorous statistical evaluation of metaheuristic algorithms for
minimizing energy losses and CO2 emissions in MGs. By addressing the gaps in existing literature regarding the
comparative performance of these algorithms by considering multiple objective functions related to technical and
environmental aspects, this study provides valuable insights into algorithm selection for similar energy systems.
The findings support the notion that PGA’s evolutionary mechanisms provide a robust solution for problems where
both energy efficiency and environmental impact are critical, thereby advancing the understanding of effective
optimization in renewable energy applications.

Future research could extend this analysis by incorporating additional objective functions, such as total operating
cost and system reliability, to develop a more holistic optimization framework. Furthermore, the impact of dynamic
constraints related to renewable energy variability and power demand could be examined: generator ramp rates,
demand-side management strategies, as well as the optimal operation of batteries in conjunction with wind
generators, by considering degradation effects and cycling costs to enhance the realism and flexibility of the
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microgrid model. Furthermore, it could be considered the integration of advanced hybrid metaheuristics that
combine the strengths of multiple algorithms. A specific focus on minimizing power losses (Ploss) and CO2

emissions could provide further insights into sustainable MG operation, particularly under different environmental
conditions and grid configurations. Furthermore, it can be considered as future work to extend the optimization
framework to incorporate economic objectives, such as the minimization of the Levelized Cost of Energy (LCOE),
alongside technical and environmental goals. Finally, the application of machine learning techniques for predictive
analysis and adaptive algorithm tuning could enhance real-time optimization, contributing to more responsive and
resilient MG systems. Although the proposed approach demonstrated robust performance using fixed heuristic
penalty factors, we recognize that this strategy may face limitations as the dimensionality and complexity of the
optimization problem increase.

Appendix A. Pseudocode of Comparative Algorithms

This appendix presents the pseudocode for the PSO, JAYA, and GNDO algorithms used in this study.

A.1 Particle Swarm Optimization (PSO)

Algorithm 2: PSO Pseudocode
Data: Initialize system data, PSO parameters (e.g., w, c1, c2)
Generate initial population of particles with random positions and velocities;
Evaluate fitness of each particle using SA-based power flow;
Set personal best (pbest) and global best (gbest);
for each iteration do

for each particle do
Update velocity: vt+1

i = wvti + c1r1(pbesti − xt
i) + c2r2(gbest− xt

i);
Update position: xt+1

i = xt
i + vt+1

i ;
Evaluate new fitness and apply penalties;
Update pbest and gbest if necessary;

if stopping criterion met then
break;

Result: Best particle position (solution)

A.2 JAYA Algorithm

Algorithm 3: JAYA Pseudocode
Data: Initialize system data and JAYA parameters
Generate initial population of candidate solutions;
Evaluate fitness of each individual using SA-based power flow;
for each iteration do

Identify best and worst solutions in the population;
for each candidate do

Update solution using: Xnew = X + r1 · (Xbest − |X|)− r2 · (Xworst − |X|);
Apply boundary limits and evaluate new fitness;
Replace if Xnew is better;

if stopping criterion met then
break;

Result: Best solution found
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A.3 Generalized Normal Distribution Optimizer (GNDO)

Algorithm 4: GNDO Pseudocode
Data: Initialize system data and GNDO parameters
Generate initial population from normal distribution;
Evaluate fitness of each individual using SA-based power flow;
for each iteration do

Compute population mean µ and standard deviation σ;
for each individual do

Generate local and global search candidate solutions using N (µ, σ);
Evaluate candidates and choose the better one;
Replace individual if new solution is superior;

if stopping criterion met then
break;

Result: Best solution in final population

Appendix B. Technical parameters of the 69-node MG

This appendix provides the parameters of the 69-bus MG used in this study, including the technical specifications
of the lines and the nodal load demands, see details in the Table 12.

Appendix C. Validation with additional Recent Methodologies.

In this appendix, to assess the effectiveness of the proposed methodology against other recent metaheuristic
techniques, Tables 13 and 14 are presented. These tables show the results obtained using the GWO and HHO,
which are compared to the PGA for both objective functions. The corresponding parameter settings for these
algorithms are provided in Table 15.

Upon analyzing the results obtained by these techniques, as presented in Tables 13 and 14, it can be observed that
the HHO exhibits very high standard deviations, exceeding those of all other techniques studied in this work, with
a maximum reaching 357.4346 kgCO2. In the case of the GWO, although it achieved satisfactory results, it did
not outperform the PGA in any of the evaluated performance metrics. This is particularly evident in the standard
deviation, where GWO presents a value approximately 15 times higher than that of the PGA. For these reasons,
the latter two techniques are not examined in as much depth as the other comparison methods; however, they still
provide insight into the performance of newer algorithms in the proposed system.
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Table 12. Technical parameters of the 69-node MG

Line l Sending Node i Receiving Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Imax
ij (A)

1 1 2 0.0005 0.0012 0 0 410
2 2 3 0.0005 0.0012 0 0 410
3 3 4 0.0015 0.0036 0 0 410
4 4 5 0.0251 0.0294 0 0 266
5 5 6 0.366 0.1864 2.6 2.2 266
6 6 7 0.3811 0.1941 40.4 30 266
7 7 8 0.0922 0.047 75 54 266
8 8 9 0.0493 0.0251 30 22 266
9 9 10 0.819 0.2707 28 19 99
10 10 11 0.1872 0.0619 145 104 99
11 11 12 0.7114 0.2351 145 104 99
12 12 13 1.03 0.34 8 5 99
13 13 14 1.044 0.345 8 5 99
14 14 15 1.058 0.3496 0 0 99
15 15 16 0.1966 0.065 45 30 99
16 16 17 0.3744 0.1238 60 35 99
17 17 18 0.0047 0.0016 60 35 99
18 18 19 0.3276 0.1083 0 0 99
19 19 20 0.2106 0.069 1 0.6 99
20 20 21 0.3416 0.1129 114 81 99
21 21 22 0.014 0.0046 5 3.5 99
22 22 23 0.1591 0.0526 0 0 99
23 23 24 0.3463 0.1145 28 20 99
24 24 25 0.7488 0.2475 0 0 99
25 25 26 0.3089 0.1021 14 10 99
26 26 27 0.1732 0.0572 14 10 99
27 3 28 0.0044 0.0108 26 18.6 99
28 28 29 0.064 0.1565 26 18.6 99
29 29 30 0.3978 0.1315 0 0 99
30 30 31 0.0702 0.0232 0 0 99
31 31 32 0.351 0.116 0 0 99
32 32 33 0.839 0.2816 10 10 99
33 33 34 1.708 0.5646 14 14 99
34 34 35 1.474 0.4873 4 4 99
35 3 36 0.0044 0.0108 26 18.55 99
36 36 37 0.064 0.1565 26 18.55 99
37 37 38 0.1053 0.123 0 0 99
38 38 39 0.0304 0.0355 24 17 99
39 39 40 0.0018 0.0021 24 17 99
40 40 41 0.7283 0.8509 102 1 99
41 41 42 0.31 0.3623 0 0 99
42 42 43 0.041 0.0478 6 4.3 99
43 43 44 0.0092 0.0116 0 0 99
44 44 45 0.1089 0.1373 39.22 26.3 99
45 45 46 0.0009 0.0012 39.22 26.3 99
46 4 47 0.0034 0.0084 0 0 99
47 47 48 0.0851 0.2083 79 56.4 99
48 48 49 0.2898 0.7091 384.7 274.5 99
49 49 50 0.0822 0.2011 384.7 274.5 99
50 8 51 0.0928 0.0473 40.5 28.3 99
51 51 52 0.3319 0.114 3.6 2.7 99
52 9 53 0.174 0.0886 4.35 3.5 195
53 53 54 0.203 0.1034 26.4 19 195
54 54 55 0.2842 0.1447 24 17.2 195
55 55 56 0.2813 0.1433 0 0 195
56 56 57 1.59 0.5337 0 0 195
57 57 58 0.7837 0.263 0 0 195
58 58 59 0.3042 0.1006 100 72 195
59 59 60 0.3861 0.1172 0 0 195
60 60 61 0.5075 0.2585 1244 888 195
61 61 62 0.0974 0.0496 32 23 99
62 62 63 0.145 0.0738 0 0 99
63 63 64 0.7105 0.3619 227 162 99
64 64 65 1.041 0.5302 59 42 99
65 11 66 0.2012 0.0611 18 13 99
66 66 67 0.0047 0.0014 18 13 99
67 12 68 0.7394 0.2444 28 20 99
68 68 69 0.0047 0.0016 28 20 99
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Table 13. Additional Statistical Results for Objective Function FO1 (Energy Losses kWh) for GWO and HHO

MG Configuration Algorithm Min Average Std. Deviation Confidence Interval (95%)

Connected
PGA 1399.415121 1399.466560 0.019275 [1399.46, 1399.47]
GWO 1399.593203 1399.765229 0.118485 [1399.74, 1399.79]
HHO 1510.055314 1519.779417 7.492373 [1518.31, 1521.25]

Isolated
PGA 1439.652477 1443.538385 1.900417 [1443.16, 1443.92]
GWO 1442.677862 1449.267999 3.619485 [1448.56, 1449.98]
HHO 1863.481322 1926.153201 36.471287 [1919.00, 1933.30]

Table 14. Additional Statistical Results for Objective Function FO2 (kg of CO2 Emissions) for GWO and HHO

MG Configuration Algorithm Min Average Std. Deviation Confidence Interval (95%)

Connected
PGA 4562.390072 4564.626150 1.027337 [4564.43, 4564.82]
GWO 4614.116806 4633.752997 16.251334 [4630.57, 4636.94]
HHO 6459.417996 6507.939523 31.417839 [6501.78, 6514.10]

Isolated
PGA 10293.893570 10295.677661 0.565508 [10295.56, 10295.80]
GWO 10390.152009 10431.623638 52.713135 [10421.29, 10441.96]
HHO 14182.850004 14878.538489 357.434610 [14808.48, 14948.60]

Table 15. Additional Parameters of Optimization Methodologies for the 33-node MG in Grid-Connected and Standalone
Modes (GWO and HHO)

Methodology Parameter Grid-Connected Mode Isolated Mode

GWO
Number of Individuals 195 200
Number of Iterations 1100 1000
Control coefficient 0.1166 0.1355

GNDO
Number of Individuals 50 46
Number of Iterations 5000 5200
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