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Abstract A new compound extension of the Fréchet distribution is introduced and studied. Some of its properties including
moments, incomplete moments, probability weighted moments, moment generating function, stress strength reliability
model, residual life and reversed residual life functions are derived. The mean squared errors (MSEs) for some estimation
methods including maximum likelihood estimation (MLE), Cramér–von Mises (CVM) estimation, Bootstrapping (Boot.)
estimation and Kolmogorov estimates (KE) method are used to estimate the unknown parameter via a simulation study.
Two real applications are presented for comparing the estimation methods. Another two real applications are presented for
comparing the competitive models. The nonparametric Hill estimator under the breaking stress of carbon fibers is estimated
using the tail index (TIx) of the new model. Finally, a case study on reliability analysis of composite materials for aerospace
applications is presented.
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1. Introduction and physical motivation

Consider a sequence of independent and identically distributed random variables (iid RV) X1, X2, ..., Xm, all
sharing the same cumulative distribution function (CDF). One of the most interesting statistics is the sample
maximum

ςm (Xi|i = 1, 2, ...m) = max {X1, X2, ..., Xm} .

One is keen on the behaviour of ςm as the sample size m increases to infinity, then

Pr (ςm ≤ x) = Pr (X1 ≤ x,X2 ≤ x, ...,Xm ≤ x)

= Pr (X1 ≤ x) Pr (X2 ≤ x) ...Pr (Xm ≤ x)

= F (x)F (x) ...F (x) = Fm (x) .
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2354 A NOVEL FRÉCHET-POISSON MODEL

Assume there are sequences of constants (τm > 0) and (ℓm) such that

Pr

[
1

τm
(ςm − ℓm) ≤ x

]
→ G (x) as m → ∞,

then if G (x) is a non-degenerate distribution function, then it will belong to one of the three following fundamental
types of classic extreme value families which are Type I (Gumbel distribution), Type II ( Fréchet (Fr) distribution)
and Type III (Weibull distribution). The extreme value theory concentrates on the behavior of the block maxima or
minima. The EVT was presented first by Fréchet [41] and Fisher and Tippett [39], then continued by Von Mises [93]
and then completed by Gnedenko [42], Von Mises [94], among others. In past ten years, researchers have extended
and generalized the classical extreme value models to accommodate more real data structures and improve their
flexibility. For example: Korkmaz et al. [57], Yousof et al. [103], Al-Babtain et al. [24], Elsayed and Yousof [37],
Elgohari and Yousof [35] and Verster and Mbongo [92].

A r.v. X is said to have the Fréchet (Fr) distribution if its probability density function (PDF) and CDF are given
by

g(x) = babx−(b+1)ϱ (x|a, b) , (1)

and
G(x) = ϱ (x|a, b) , (2)

respectively, where a > 0, b > 0, x > 0, ϱ (x|a, b) = exp
[
−
(
ax−1

)b]
, a is a scale parameter and b is a shape

parameter. For a = 1, we have the one parameter Fr distribution. For b = 2, we have the Inverse Rayleigh (IR)
distribution. For b = 1, we have the inverse Exponential (IE) distribution. Recent advancements in extending the
Fréchet distribution have significantly enhanced its flexibility and applicability, as demonstrated by several key
studies. Ahmed and Yousof [23] introduced a group acceptance sampling plan based on percentiles for the Weibull
Fréchet (WFr) model, offering a robust framework for quality control in industrial settings by effectively controlling
producer’s and consumer’s risks. Ibrahim et al. [54] proposed a three-parameter xgamma Fréchet distribution,
which combines the xgamma family with the Fréchet model to capture diverse shapes and tail behaviors, while
exploring various estimation techniques such as maximum likelihood, least squares, and Bayesian methods, and
validating its superior fit through real applications. Salah et al.[80] developed an expanded Fréchet model that
incorporates additional parameters and copula functions to account for dependence structures in multivariate
data, investigating its mathematical properties and demonstrating its effectiveness through simulation studies
and practical applications in fields like environmental science and finance. Yousof et al. [107] focused on a
two-parameter xgamma Fréchet distribution, providing characterizations, reliability measures, and copula-based
extensions, while comparing classical estimation methods using simulated datasets and showcasing its applicability
in reliability analysis. Lastly, Jahanshahi et al. [55] introduced the Burr X Fréchet model, which integrates the Burr
X and Fréchet distributions to handle heavy-tailed and asymmetric data, exploring both classical inference and
Bayesian estimation methods and highlighting its utility in environmental sciences and engineering. Collectively,
these studies contribute to the growing body of literature on Fréchet-based models by introducing innovative
extensions, examining comprehensive estimation techniques, and validating their practical applications across
diverse disciplines, thereby enriching the theoretical foundations of extreme value theory and expanding its real
relevance. In fact, the statistical literature contains many works closely related to the distributions of the theory of
extended values, and all of these works are considered useful either in terms of applications or in terms of statistical
theory. Among these works, see [91], [53], [15], [46], [13], [14] and [69].

Recentely, Aryal and Yousof [25] introduced and studied a new flexible compound family of distributions called
exponentiated generalized G Poisson (EGGP) family. The CDF and PDF of the EGGP family given by

F (x) = c−1
[λ]

[
1− exp

(
−λ {1− [1−G (x)]

α}β
)]

, (3)

Stat., Optim. Inf. Comput. Vol. 13, June 2025



MOHAMED IBRAHIM, S. I. ANSARI, A. H. AL-NEFAIE, A. M. ABOALKHAIR, M. S. HAMED, H. M YOUSOF 2355

where α > 0, β > 0, λ ∈ R− {0},x ∈ R, c[λ] = [1− exp(−λ)] and

f (x) = αβλc−1
[λ]

g (x) [1−G (x)]
α−1 {1− [1−G (x)]

α}β−1

exp
(
λ {1− [1−G (x)]

α}β
) , (4)

respectively. For β = 1 we have the exponentiated G Poisson (EGP) class of distributions and for α = 1 we have
the generalized G Poisson (GGP) class of distributions both of which are embedded in EGGP class. Using (1) and
(3), we derive a new compound Fr distribution called exponentiated generalized Fréchet Poisson (EGFrP) model
with CDF that can be expressed as

FΨ (x) =
1− exp

[
−λ (1− {1− ϱ (x|a, b)}α)β

]
c[λ]

, (5)

where Ψ = (α, β, λ, a, b) , α > 0, β > 0, λ ∈ R− {0}, a > 0, b > 0, x > 0 and the corresponding PDF can be
written as

fΨ (x) = αβλbab
x−(b+1)ϱ (x|a, b)

c[λ] {1− ϱ (x|a, b)}1−α

(1− {1− ϱ (x|a, b)}α)β−1

exp
[
λ (1− {1− ϱ (x|a, b)}α)β

] . (6)

Table 1: Sub-models of the EGFrP model.
α β λ a b Reduced model CDF

2 EGIRP
1−exp[−λ(1−{1−ϱ(x|a,2)}α)β]

c[λ]

1 EGIEP
1−exp(−λ{1−[1−ϱ(x|a,1)]α}β)

c[λ]

1 EGFrP
1−exp[−λ(1−{1−ϱ(x|1,b)}α)β]

c[λ]

1 EFrP 1−exp[−λ(1−{1−ϱ(x|a,b)}α)]
c[λ]

1 2 EIRP 1−exp[−λ(1−{1−ϱ(x|a,2)}α)]
c[λ]

1 1 EIEP 1−exp[−λ(1−{1−ϱ(x|a,1)}α)]
c[λ]

1 1 EFrP 1−exp[−λ(1−{1−ϱ(x|1,b)}α)]
c[λ]

1 GFrP
1−exp[−λ(1−{1−ϱ(x|a,b)})β]

c[λ]

1 2 GIRP
1−exp[−λ(1−{1−ϱ(x|a,2)})β]

c[λ]

1 1 GIEP
1−exp[−λ(1−{1−ϱ(x|a,1)})β]

c[λ]

1 1 GFrP
1−exp[−λ(1−{1−ϱ(x|1,b)})β]

c[λ]

1 1 FrP 1−exp[−λ{ϱ(x|a,b)}]
c[λ]

1 1 2 IRP 1−exp[−λ{ϱ(x|a,2)}]
c[λ]

1 1 1 IEP 1−exp(−λ{ϱ(x|a,1)})
c[λ]

Some important extensions of the Fréchet distribution can be cited, see for example Yousof et el. [95], Yousof et
al. [96] and Yousof et al. ([99], [104], [108] and [107]) among others.

2. TIx

The TIx is a measure of how heavy the tails of the distribution are, and it is typically derived by examining the
asymptotic decay rate of the survival function FΨ (x)|x → ∞ = 1− FΨ (x), where FΨ (x) is CDF. For large values
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of x, note that x−1 → 0. Therefore, we can expand the quantity ϱ (x|a, b) using a Taylor approximation, where

ϱ (x|a, b)|x → ∞ ≈
(
ax−1

)b
,

the the TIx for the new can then expressed as

TIx = αb (2− β) + 1, (7)

where b conrols the power-law decay rate of the tail, α influences the exponentiation of the tail behavior and
β modifies the overall shape of the distribution, including its tail weight. The TIx plays a crucial role in VaR
analysis, particularly when using the EGFrP model. The Value at Risk (VaR) indicator a widely used risk measure
in economy, finance, reliability and insurance to quantify the potential loss in value of a risky asset or portfolio over
a specific time horizon at a given confidence level. The TIx determines the heaviness of the tails of the distribution,
which directly impacts the estimation of extreme losses and thus the accuracy of VaR calculations. In financial
and actuarial contexts, heavy-tailed distributions are critical because they better capture the occurrence of rare but
catastrophic events (e.g., market crashes, natural disasters). Accurate modeling of these extreme events is essential
for reliable VaR estimation. At high confidence levels (CLs) (like, γ=0.95 or γ=0.99), the contribution of the tail
region becomes dominant in VaR calculations. For heavy-tailed distributions (TIx is too much small), the VaR
increases significantly at higher CLs because the probability of extreme losses does not diminish rapidly. For light-
tailed distributions (TIx is very large), the VaR grows more slowly as the confidence level increases, reflecting
the reduced likelihood of extreme events. This sensitivity of VaR to the tail index highlights the importance of
accurately estimating TIx in the EGFrP model. On the other hand, the VaR at a confidence level γ (e.g., γ=0.95 or
γ=0.99) is defined as

VaR=F−1
Ψ (1− γ) (8)

where F−1
Ψ (α∗) is the quantile function of the distribution corresponding to probability α∗. For heavy-tailed

distributions like the EGFrP, the quantile function can often be approximated using the tail behavior of the
distribution. For heavy-tailed distributions, we have

FΨ (x)|x → ∞ = C × xTIx, (9)

where C > 0 is a normalization constant, then

FΨ (α∗)|x → ∞ =

(
1

1− α∗C

) 1
αb(2−β)+1

, (10)

Using the above relationship, the VaR at confidence level γ can be approximated as

VaR=
(
1

γ
C

) 1
αb(2−β)+1

.

For large x, the exponential term exp
[
−λ (1− {1− ϱ (x|a, b)}α)β

]
approaches 1, so the dominant term in FΨ (α∗)

is proportional to x−αb(2−β)+1. Thus, Using the inverse of (5), we get

VaR=
(
αβλbaαb

1

[αb (2− β)] (1− γ) c[λ]

) 1
αb(2−β)+1

.

3. Nonparametric Hill estimator

The Hill estimator is a widely used method for estimating the TIx of heavy-tailed distributions. It is particularly
suited for datasets where the tail behavior dominates, and it provides an empirical estimate of the tail index based
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on the largest observations in the dataset. The nonparametric Hill estimator can be expressed as

T̂IxHill = Z
−1

, (11)

where

Z =
1

n

n∑
i=0

log

[
X(i)

X(n)

]
. (12)

where n is the number of top-order statistics used in the estimation., X(i) refers to the ith largest observation. and
X(n) refers to the The nth largest observation. For more finalcial and related VaR applications see [10], [85], [87],
[86], [89], [106], [109], [90].

4. Mathematical Properties

4.1. Useful expansions

Using the power series expansion of exp(x) the PDF in (6) can be expressed as

f (x) = αβbabc−1
[λ]x

−(b+1)ϱ (x|a, b) {1− ϱ (x|a, b)}α−1

×
∞∑

κ1=0

(−1)
κ1

κ1!λ−κ1−1
(1− {1− ϱ (x|a, b)}α)β(κ1+1)−1

.

Using the series expansion(
1− 1

ξ2
ξ1

)ξ3

| ξ1
ξ2

<1,ξ3>0
=

∞∑
d=0

(−1)
d
Γ (1 + ξ3)

d!Γ (1 + ξ3 − d)

(
1

ξ2
ξ1

)d

,

the previous equation can be expressed as

f (x) =

∞∑
κ3=0

ζκ3
πκ∗

3
(x; a, b) |κ∗

3=κ3+1, (13)

where

ζκ3
=

αβ (−1)
κ3

c[λ]κ
∗
3

∞∑
κ1,κ2=0

(−1)
κ1+κ2

κ1!λ−κ1−1

(
β (κ1 + 1)− 1

κ2

)(
α (κ2 + 1)− 1

κ3

)
,

and
πκ∗

3
(x; a, b) = κ∗

3ba
bx−(b+1)exp

[
−κ∗

3

(
ax−1

)b]
is the Fr density with scale parameter aκ

∗ 1
b

3 and shape parameter b. By integrating (13), we obtain the mixture
representation of F (x) as

F (x) =

∞∑
κ3=0

ζκ3 Πκ∗
3
(x; a, b),

where
Πκ∗

3
(x; a, b) = exp

[
−κ∗

3

(
ax−1

)b]
is the CDF of the Fr model with scale parameter aκ∗ 1

b
3 and shape parameter b. Equation (13) reveals that the EGFrP

density function is a linear combination of Fr densities. Thus, some structural properties of the new family such as
the ordinary and incomplete moments and generating function can be immediately obtained from well-established
properties of the Fr distribution.
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4.2. General properties

The rth ordinary moment of X is given by

µ′
r,X = E(Xr) =

∫ ∞

−∞
xr f (x) dx.

Using (13), we obtain

µ′
r,X =

∞∑
κ3=0

ζκ3a
rκ

∗ r
b

3 Γ
(
1− r

b

)
|b>r, (14)

where Γ (τ) =
∫∞
0

xτ−1 exp (−t) dx. Setting r = 1 in (14), we have the mean of X as

E (X) = µ′
1,X =

∞∑
κ3=0

ζκ3
aκ

∗ 1
b

3 Γ

(
1− 1

b

)
|b>1.

The skewness and kurtosis can be calculated from the ordinary moments using well-known relationships. We can
obtain skewness and kurtosis measures using the quantile new model. The Bowley’s skewness measure is given by

Skewness =
Q

(
3
4

)
− 2Q

(
1
2

)
+Q

(
1
4

)
−Q

(
1
4

)
+Q

(
3
4

) ,

and the Moors’s kurtosis measure is

Kurtosis =
Q

(
7
8

)
+Q

(
3
8

)
−Q

(
1
8

)
−Q

(
5
8

)
−Q

(
2
8

)
+Q

(
6
8

) .

These two measures enjoys the advantage of having less sensitivity to outliers. Moreover, they do exist for the
certain model without moments. Both measures equal zero for the normal distribution. 3-dimentional (3D) plots
of skewness and kurtosis of the new model are presented in Figure 6 and Figure 2. This plot indicates that both
measures depends on the shape parameters a and b.

4.3. Moment generating function (MGF)

We can find the MGF, say MX (t) = E [exp (tX)], using a different method, the first method is given by

MX (t) =

∞∑
r=0

tr

r!
µ

′

r =

∞∑
κ3,r=0

tr

r!
ζκ3a

rκ
∗ r

b
3 Γ

(
1− r

b

)
|b>r.

The second method, consider the Wright generalized hypergeometric function defined by

[p]Ψ[q]

[
a1, A1, . . . , ap, Ap

b1, B1, . . . , bq, Bq
; x

]
=

∞∑
n=0

∏p
ξ=1 Γ (aξ +Aξ n)∏q
ξ=1 Γ (bξ +Bξ n)

xn

n!
.

Then, we can write the MGF of (1) as

MX (t) = [1]Ψ[0]

[ (
1,− 1

b

)
− ; a t

]
. (15)

Combining (7) and (9), we obtain the MGF of X , say MX (t), as

MX (t) =

∞∑
κ3=0

ζκ3 [1]Ψ[0]

[ (
1,− 1

b

)
− ; aκ

∗ 1
b

3 t

]
.
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Figure 1. 3D plot of skewness for the EGFrP distribution.
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Figure 2. 3D plot of kurtosis for the EGFrP distribution.
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4.4. Incomplete moments

The sth incomplete moment, say ξs,X (t) , is given by ξs,X (t) =
∫ t

−∞ xsf (x) dx. Using (7), we obtain

ξs,X (t) =

∞∑
κ3=0

ζκ3
asκ

∗ s
b

3 γ
(
1− s

b
,
(
at−1

)b) |b>s, (16)

where

γ (τ1, τ2) =

∫ τ2

0

tτ1−1 exp (−t) dt =
τ τ12
τ1

{1F1 [τ1; τ1τ2 + 1;−τ2]} =

∞∑
κ3=0

(−1)
κ3

κ3! (τ1 + κ3)
τ τ1+κ3
2 ,

the function 1F1 [·, ·, ·] is called the confluent hypergeometric function. The first incomplete moment of the EGFrP
model, ξ1,X (t), can be obtained by setting s = 1 in (16).

4.5. Probability Weighted Moments (PWMs)

The (s, r)th PWM of X following the EGFrP model, say ρs,r, is formally defined by ρs,r,X = E {Xs F (X)r} .
Using equations (5) and (6), we can write

f (x) F (x)r =

∞∑
κ3=0

wκ3
πκ∗

3
(x; a, b) ,

where

wκ3 =
αβ

c[λ]κ
∗
3

∞∑
w,κ1,κ2=0

(−1)
w+κ1+κ2+κ3

κ1!λ−κ1−1 (1 + w)
−κ1

(
r

w

)(
β (κ1 + 1)− 1

κ2

)(
α (1 + κ2)− 1

κ3

)
.

Then, the (s, r)th PWM of X can be expressed as

ρs,r,X =

∞∑
κ3=0

wκ3
asκ

∗ s
b

3 Γ
(
1− s

b

)
|b>s.

4.6. Residual Life and Reversed Residual Life

The nth moment of the residual life, say

τn,X(t) = E
[
(X − t)n |X>t

n=1,2,...

]
.

The nth moment of the residual life of X is given by

τn,X(t) =
1

1− F (t)

∫ ∞

t

(x− t)ndF (x).

Therefore, we have

τn,X(t) =
1

1− F (t)

∞∑
κ3=0

ζ∗κ3
anκ

∗n
b

3 Γ
(
1− n

b
,
(
at−1

)b) |b>n, (17)

where

ζ∗κ3
= ζκ3

∑n

r=0

(
n

r

)
(−t)

n−r

and

Γ (τ1, τ2) = Γ (τ1)− γ (τ1, τ2) =

∫ ∞

τ2

tτ1−1 exp (−t) dt.
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The nth moment of the reversed residual life can be expressed as

ωn,X(t) = E
[
(t−X)n |X≤t and t>0

n=1,2,...

]
or as

ωn,X(t) =
1

F (t)

∫ t

0

(t− x)ndF (x).

Then, the nth moment of the reversed residual life of X becomes

ωn,X(t) =
1

F (t)

∞∑
κ3=0

ζ∗∗κ3
anκ

∗n
b

3 γ
(
1− n

b
,
(
at−1

)b) |b>n, (18)

where

ζ∗∗κ3
= ζκ3

∑n

r=0
(−1)

r

(
n

r

)
tn−r.

5. Stress strength reliability model

The stress-strength model is the most widely used approach for reliability estimation. This model is used in many
applications of physics and engineering such as strength failure and system collapse. In stress-strength modeling,

R(X2<X1) = Pr(X2 < X1) =

∫ ∞

0

f (x1)F (x2) dx, (19)

is a measure of reliability of the system when it is subjected to random stress X2 and has strength X1. The system
fails if and only if the applied stress is greater than its strength and the component will function satisfactorily
whenever X1 > X2. R(X2<X1) can be considered as a measure of system performance and naturally arise in
electrical and electronic systems. Other interpretation can be that, the reliability, say R(X2<X1), of the system
is the probability that the system is strong enough to overcome the stress imposed on it. Let X1 and X2 be two
independent positive random variables having EGFrP (α1, β1, λ1, a, b) and EGFrP (α2, β2, λ2, a, b) distributions.
The reliability R(X2<X1) is given by

R(X2<X1) =

∫ ∞

0

f1(x;α1, β1, λ1, a, b)F2(x;α2, β2, λ2, a, b)dx.

Then, we have

R(X2<X1) =

∞∑
κ5,κ6=0

Υκ5,κ6
, (20)

where

Υκ5,κ6
=

α1α2β1β2 (−1)
κ5+κ6

c[λ1]c[λ2]

∞∑
κ1,κ2,κ3,κ4=0

(−1)
κ1+κ2+κ3+κ4

κ1!κ3!λ
−κ1−1
1 λ−κ3−1

2 (κ6 + 1) (κ5 + κ6 + 2)

×
(
β1 (κ1 + 1)− 1

κ2

)(
β2κ

∗
3 − 1

κ4

)(
α1 (κ2 + 1)− 1

κ5

)(
α2 (κ4 + 1)− 1

κ6

)
.

6. Estimation

6.1. The maximum likelihood estimation method

Let X1, X2, . . . , Xn be a random sample from the EGFrP model with parameters λ, α, β, a and b. Let Ω =
(α, β, λ, a, b)⊺ be a 5× 1 parameter vector. For determining the maximum likelihood estimation (MLE) of Ω,

Stat., Optim. Inf. Comput. Vol. 13, June 2025
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we have the log-likelihood function

ℓ(Ω) = n logα+ n log β + n log λ− n log [1− exp(−λ)] + n log b+ nb log a

− (b+ 1)

n∑
i=1

log xi −
n∑

i=1

(
ax−1

i

)b
+ (α− 1)

n∑
i=1

log {1− ϱ (xi|a, b)}

+(β − 1)

n∑
i=1

log (1− {1− ϱ (xi|a, b)}α)

−λ

n∑
i=1

(1− {1− ϱ (xi|a, b)}α)
β
,

where ϱ (xi|a, b) = exp
[
−
(
ax−1

i

)b]
. The components of the score vector

U (Ω) =
∂ℓ

∂Ω
=

(
Uα =

∂ℓ

∂α
,Uβ =

∂ℓ

∂β
,Uλ =

∂ℓ

∂λ
,Ua =

∂ℓ

∂a
,Ub =

∂ℓ

∂b

)⊺

,

can be easily derived. It is usually more convenient to use nonlinear optimization methods such as the quasi-Newton
algorithm to numerically maximize ℓ. For interval estimation of the parameters, we obtain the 5× 5 observed
information matrix J(Ω) = { ∂2ℓ

∂r ∂s} (for r, s = α, β, λ, a, b), whose elements can be computed numerically. Under
standard regularity conditions when n → ∞, the distribution of Ω̂ can be approximated by a multivariate normal
N5(0, J(Ω̂)−1) distribution to construct approximate confidence intervals for the parameters. Here, J(Ω̂) is the
total observed information matrix evaluated at Ω̂. The method of the re-sampling Boot. can be used for correcting
the biases of the MLEs of the model parameters. Good interval estimates may also be obtained using the Boot.
percentile method. The elements of J(Ω) are easily to be derived.

6.2. The Cramér–von Mises estimation (CVME) method

The CVME of the parameter vector Ψ are obtained via minimizing the following expression with respect to θ, a, b
and c , where

CVM(Ψ) =
1

12
n−1 +

n∑
i=1

[
FΨ (xi)− d

[1]
(i,n)

]2
,

and d
[1]
(i,n) =

2i−1
2n , then

CVM(Ψ) =

n∑
i=1

[
FΨ (xi)− d

[1]
(i,n)

]2
.

Then, CVME are obtained by as presented by Ibrahim [52] and solving the following non-linear equations

n∑
i=1

{
1− τϱ
c[λ]

− d
[1]
(i,n)

}
Q(α)(xi,Ψ) = 0,

n∑
i=1

{
1− τϱ
c[λ]

− d
[1]
(i,n)

}
Q(β)(xi,Ψ) = 0,

n∑
i=1

{
1− τϱ
c[λ]

− c
[1]
(i,n)

}
Q(λ)(xi,Ψ) = 0,

n∑
i=1

{
1− τϱ
c[λ]

− d
[1]
(i,n)

}
Q(a)(λ,Ψ) = 0,

and
n∑

i=1

{
1− τϱ
c[λ]

− d
[1]
(i,n)

}
Q(b)(xi,Ψ) = 0,

where τϱ=exp
[
−λ (1− {1− ϱ (xi|a, b)}α)

β
]
, Q(∗)(xi,Ψ) = ∂FΨ (xi) /∂ (∗) are the first derivatives of the CDF

of PBXIW distribution with respect to α, β, λ, a, b respectively.
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6.3. The Boot. estimation method

The broader category of resampling methods encompasses bootstrapping, a technique that employs random
sampling with replacement to mimic the original sampling process. Bootstrapping allows for the estimation of
various statistical properties, such as bias, variance, confidence intervals, prediction error, and more, providing
accuracy assessments for sample estimates. This approach can approximate the sampling distribution of nearly any
statistic by leveraging random sampling techniques. A commonly used approximation is the empirical distribution
function derived from the observed data. When it is reasonable to assume that a dataset originates from a population
with a consistent distribution, bootstrapping involves creating multiple resamples (with replacement) from the
observed data, each of the same size as the original dataset. This method is particularly powerful in applications
where the sample size is small, as it does not rely on traditional assumptions about the underlying distribution
of the data. In general, when sample sizes are less than 40, assuming a normal or t-distribution may not be
appropriate. However, bootstrapping performs effectively even with fewer than 40 observations because it relies
on resampling rather than distributional assumptions. The technique makes no presuppositions about the shape
or nature of the data’s distribution, making it highly versatile. The increasing popularity of bootstrapping is
largely due to advancements in computing power, as the method requires significant computational resources
to repeatedly resample and analyze datasets. Historically, this computational demand limited its practicality, but
modern technology has made bootstrapping an accessible and widely-used tool in statistical analysis. By enabling
the use of resampling techniques without distributional assumptions, bootstrapping has become an indispensable
method for robust statistical inference.

6.4. KE method

The KEs are obtained by minimizing the function

K = max
1≤i≤n

{
i

n
− FΨ (xi:n) , FΨ (xi:n)− d

[2]
(i,n)

}
,

where
d
[2]
(i,n) =

i− 1

n
.

6.5. Anderson–Darling left-tail of the second order (AD2LE)

The AD2LEs are obtained by minimizing

AD2LE (Ψ) = 2

n∑
i=1

log
[
FΨ (xi:n)

]
+

1

n

n∑
i=1

2i− 1

FΨ (xi:n)
.

Then, the parameter estimates can be obtained by solving the nonlinear equations

∂ [AD2LE (Ψ)] /∂α = 0, ∂ [AD2LE (Ψ)] /∂β = 0,

∂ [AD2LE (Ψ)] /∂λ = 0, ∂ [AD2LE (Ψ)] /∂a = 0

and
∂ [L.T. ADE (Ψ)] /∂b = 0.

7. Simulation studies

In this section, we present a comprehensive simulation study designed to evaluate and compare the performance
of five estimation methods under varying sample sizes. The primary objective is to assess the accuracy and
consistency of these methods in estimating parameters of a given distribution, as measured by the MSE. The
simulation is conducted for three different sample sizes: n =50, n =100, and n =200, allowing us to examine how
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Table 1: The MSEs for n = 50.
Parameters MLE CVM Boot. KE AD2LE
α = 0.9 0.02354 0.03155 0.01346 0.03950 244.6381
β = 0.9 0.01504 0.02250 0.08192 0.02199 0.01887
λ = 0.5 0.24780 0.26775 0.40109 0.29456 160.0155
a = 1.5 0.01978 0.02970 0.10252 0.03027 0.02530
b = 1.5 0.02551 0.04406 0.15889 0.08287 0.04739

α = 1.2 0.02459 0.02944 0.03503 0.03657 1.58083
β = 1.5 0.04098 0.05481 0.03789 0.05037 0.04981
λ = 0.8 0.26120 0.26322 0.33283 0.05037 74.40626
a = 0.9 0.01524 0.01968 0.01358 0.01803 0.01897
b = 0.9 0.01024 0.02266 0.03158 0.03126 0.02798

the performance of each method evolves with increasing data availability. Tables 1, 2, and 3 summarize the MSEs
for each method and parameter combination at the respective sample sizes. These results not only highlight the
relative performance of the methods but also shed light on their suitability for practical applications where accurate
parameter estimation is critical.

Table 1 presents the MSE for five estimation methods for a simulation study with sample size n =50. The MSEs
are calculated for different parameter values (α,β,λ,a, b) under two scenarios: (α =0.9, β =0.9, λ=0.5, a =1.5,
b =1.5) and (α =1.2, β =1.5, λ=0.8, a =0.9, b =0.9). Overall, the performance of the methods varies significantly
across parameters and applications. For the first scenario (α =0.9), Bootstrapping achieves the lowest MSE for
α (0.01346) and β (0.08192), but its performance deteriorates for other parameters, particularly λ (0.40109) and
b (0.15889). MLE generally performs well, providing consistently low MSEs for most parameters, except for λ
(0.24780). CVM shows moderate performance, with slightly higher MSEs than MLE but lower than Bootstrapping
for most parameters. The KE method exhibits mixed results, performing reasonably well for β but poorly for
others like λ. Notably, AD2LE produces extremely high MSEs for all parameters in this scenario, making it
unsuitable. In the second scenario (α =1.2), MLE and CVM remain competitive, with MLE showing slightly
better performance overall. Bootstrapping performs well for α and a, but its MSEs increase for other parameters.
KE demonstrates reasonable consistency, though not as strong as MLE or CVM. The AD2LE again shows poor
performance, with unacceptably high MSEs for most parameters. Based on these results, MLE emerges as the most
reliable method across both scenarios due to its consistent performance, followed closely by CVM . Bootstrapping
and KE may be suitable for specific parameters but exhibit variability, while AD2LE is not recommended due
to its high MSEs. This analysis underscores the importance of selecting an estimation method tailored to the
specific parameter and dataset characteristics.Table 2 presents the MSEs for five estimation methods in a simulation
study with a larger sample size of n =100. The MSEs are evaluated for different parameter values (α,β,λ,a,b)
under two scenarios: (α =0.9, β =0.9, λ=0.5, a =1.5, b =1.5) and (α =1.2, β =1.5, λ=0.8, a =0.9, b =0.9). As
expected, the overall MSEs decrease compared to the n =50 case due to the larger sample size, but the relative
performance of the methods remains informative. For the first scenario (α =0.9), MLE consistently exhibits the
lowest MSEs across all parameters, with particularly strong performance for α (0.01015), β (0.00780), and λ
(0.12264). The CVM closely follows MLE, showing slightly higher but still competitive MSEs. Bootstrapping
performs well for some parameters (e.g., α and a) but struggles with others, notably λ (0.46956) and b (0.02766).
The KE method demonstrates moderate performance, with MSEs generally lying between those of MLE/CVM and
Bootstrapping. The AD2LE, however, continues to exhibit unacceptably high MSEs for most parameters, especially
λ (6.4134) and b (0.02029). In the second scenario (α =1.2), MLE again stands out as the most reliable method,
maintaining low MSEs across all parameters. CVM performs similarly but shows slightly higher variability in
certain cases (like α and λ). Bootstrapping’s performance improves for some parameters (e.g., α and a) but remains
inconsistent for others. The KE method offers reasonable results, though it is outperformed by MLE and CVM in
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Table 2: The MSEs for n = 100.
Parameters MLE CVM Boot. KE AD2LE
α = 0.9 0.01015 0.01352 0.01622 0.01726 24.7397
β = 0.9 0.00780 0.00949 0.05246 0.01013 0.00939
λ = 0.5 0.12264 0.12032 0.46956 0.13699 6.4134
a = 1.5 0.01038 0.01283 0.06501 0.01408 0.01261
b = 1.5 0.01269 0.02157 0.02766 0.04135 0.02029

α = 1.2 0.01223 0.0428 0.01484 0.01637 0.13954
β = 1.5 0.02035 0.02516 0.02924 0.02618 0.02571
λ = 0.8 0.12570 0.12808 0.14916 0.13971 1.18195
a = 0.9 0.00755 0.00907 0.00985 0.00937 0.00982
b = 0.9 0.00514 0.01148 0.04153 0.01490 0.01239

most cases. AD2LE, despite reduced MSEs compared to n =50, still produces relatively high errors, making it
unsuitable for practical use. Based on these findings, MLE is the most robust and consistent method across both
scenarios, followed closely by CVM . Bootstrapping and KE may be viable alternatives for specific parameters but
exhibit more variability. AD2LE is not recommended due to its persistently high MSEs, even with the increased
sample size. This analysis highlights the importance of selecting an estimation method that balances accuracy and
consistency, especially as sample sizes grow.

Table 3 presents the MSEs for the five estimation methods in a simulation study with a sample size of
n =200. The MSEs are evaluated for different parameter values (α,β,λ,a,b) under two scenarios: (α =0.9, β =0.9,
λ=0.5,a =1.5, b =1.5) and (α =1.2, β =1.5, λ=0.8, a =0.9, b =0.9). With the increased sample size, the overall
MSEs decrease compared to smaller sample sizes (n =50 and n =100), allowing for a clearer comparison of
the methods’ relative performance. For the first scenario (α =0.9), MLE consistently exhibits the lowest MSEs
across all parameters, such as α (0.00527), β (0.00366), and λ (0.05939). The CVM closely follows MLE, with
slightly higher but still competitive MSEs. Bootstrapping performs well for some parameters (e.g., β and a)
but shows higher variability for others, particularly λ (0.08821) and b (0.01421). The KE method demonstrates
moderate performance, generally lying between MLE and Bootstrapping. AD2LE, however, continues to exhibit
significantly higher MSEs, especially for λ (0.20561) and b (0.02029), making it unsuitable for practical use. In
the second scenario (α =1.2), MLE again stands out as the most reliable method, maintaining low MSEs across all
parameters. The CVM performs similarly but shows slightly higher errors for certain parameters (e.g., α and λ).
Bootstrapping’s performance improves for some parameters (e.g., α and β) but remains inconsistent for others. The
KE method offers reasonable results but is outperformed by MLE and CVM in most cases. The AD2LE, despite
reduced MSEs compared to smaller sample sizes, still produces relatively high errors, particularly for λ (0.44389).
Based on these findings, the MLE is the most robust and consistent method across both scenarios, followed closely
by CVM . Bootstrapping and KE may be viable alternatives for specific parameters but exhibit more variability.
The AD2LE is not recommended due to its persistently high MSEs, even with the larger sample size. This analysis
underscores the importance of selecting an estimation method that balances accuracy and consistency, especially
as sample sizes increase, ensuring reliable parameter estimation.

Finally, Table 4 presents the MSEs for different parameter estimates obtained using various estimation methods,
including MLE, CVM, Bootstrap,KE, and AD2LE, based on simulated data where n = 500. A comparative
analysis of the results reveals that MLE and CVM consistently yield lower MSEs across most parameters,
indicating their reliability in providing more stable estimates. In contrast, the Bootstrap method exhibits higher
MSEs, particularly for the parameter λ, suggesting that it introduces greater variability in estimation. KE and
AD2LE display fluctuating performance, with AD2LE producing notably large errors for specific parameters,
highlighting its inconsistency. Among all parameters, λ appears to be the most challenging to estimate accurately,
as it consistently results in higher MSE values across all methods. These findings suggest that MLE and CVM
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Table 3: The MSEs for n = 200.
Parameters MLE CVM Boot. KE AD2LE
α = 0.9 0.00527 0.00700 0.01288 0.00767 0.06007
β = 0.9 0.00366 0.00481 0.00343 0.00511 0.00939
λ = 0.5 0.05939 0.06295 0.08821 0.06561 0.20561
a = 1.5 0.00488 0.00655 0.00463 0.00705 0.01261
b = 1.5 0.00597 0.01092 0.01421 0.02122 0.02029

α = 1.2 0.00571 0.00707 0.00702 0.00729 0.05109
β = 1.5 0.00891 0.01202 0.00913 0.01284 0.01277
λ = 0.8 0.05918 0.06333 0.07638 0.06548 0.44389
a = 0.9 0.00331 0.00434 0.00334 0.00459 0.00489
b = 0.9 0.00255 0.00533 0.00424 0.00777 0.00528

Table 4: The MSEs for n = 500.
Parameters MLE CVM Bootstrap KE AD2LE
α = 0.9 0.00221 0.00263 0.00384 0.00287 0.01667
β = 0.9 0.00137 0.00183 0.00257 0.00197 0.00225
λ = 0.5 0.02493 0.02392 0.04793 0.02522 0.08186
a = 1.5 0.00182 0.00250 0.00355 0.00271 0.00302
b = 1.5 0.00201 0.00439 0.00680 0.00797 0.00440

α = 1.2 0.00335 0.00277 0.00534 0.00282 0.01213
β = 1.5 0.00339 0.00486 0.00779 0.00498 0.00564
λ = 0.8 0.02305 0.02527 0.06056 0.02558 0.08101
a = 0.9 0.00126 0.00176 0.00292 0.00178 0.00216
b = 0.9 0.00092 0.00237 0.00315 0.00299 0.00234

are the most effective estimation techniques in terms of minimizing MSE, whereas Bootstrap and AD2LE may
introduce additional variability and uncertainty in parameter estimation.

8. Applications for comparing methods

This Section compares the MLE, CVME, Bootstrapping, KE method, and AD2LEs methods for fitting distributions
to real datasets. Two datasets are analyzed: 100 observations of carbon fiber breaking stress (Nichols and Padgett
[70]) ((0.92, 0.928, 0.997, 0.9971, 1.061, 1.117, 1.162, 1.183, 1.187, 1.192, 1.196, 1.213, 1.215, 1.2199, 1.22,
1.224, 1.225, 1.228, 1.237, 1.24, 1.244, 1.259, 1.261, 1.263, 1.276, 1.31, 1.321, 1.329, 1.331, 1.337, 1.351, 1.359,
1.388, 1.408, 1.449, 1.4497, 1.45, 1.459, 1.471, 1.475, 1.477, 1.48, 1.489, 1.501, 1.507, 1.515, 1.53, 1.5304, 1.533,
1.544, 1.5443, 1.552, 1.556, 1.562, 1.566, 1.585, 1.586, 1.599, 1.602, 1.614, 1.616, 1.617, 1.628, 1.684, 1.711,
1.718, 1.733, 1.738, 1.743, 1.759, 1.777, 1.794, 1.799, 1.806, 1.814, 1.816, 1.828, 1.83, 1.884, 1.892, 1.944, 1.972,
1.984, 1.987, 2.02, 2.0304, 2.029, 2.035, 2.037, 2.043, 2.046, 2.059, 2.111, 2.165, 2.686, 2.778, 2.972, 3.504,
3.863, 5.306)) and 63 observations of glass fiber strengths (Smith and Naylor [88]) (1.014, 1.081, 1.082, 1.185,
1.223, 1.248, 1.267, 1.271, 1.272, 1.275, 1.276, 1.278, 1.286, 1.288, 1.292, 1.304, 1.306, 1.355, 1.361, 1.364,
1.379, 1.409, 1.426, 1.459, 1.46, 1.476, 1.481, 1.484, 1.501, 1.506, 1.524, 1.526, 1.535, 1.541, 1.568, 1.579, 1.581,
1.591, 1.593, 1.602, 1.666, 1.67, 1.684, 1.691, 1.704, 1.731, 1.735, 1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 1.876,
1.878, 1.91, 1.916, 1.972, 2.012, 2.456, 2.592, 3.197, 4.121). The performance of these methods is evaluated using
the Anderson–Darling (AD) and Cramér–von Mises (CvM) criteria, which assess goodness-of-fit. MLE is found
to be efficient but may underperform in small samples, while CVME provides robust results across datasets. For
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Table 5: Comparing methods under the carbon fiber breaking stress data.

α̂ β̂ λ̂ â b̂ CvM AD
MLE 2.121 1.855 0.787 1.541 2.626 0.079 0.595
CVM 6.377 6.960 −1.758 1.526 1.418 0.080 0.674
KE 2.442 1.924 −0.481 0.425 0.206 0.192 1.463

Bootst. 2.265 1.461 1.483 1.778 2.391 0.074 0.556
AD2LE 4.747 1.452 0.973 2.227 1.844 0.079 0.659

Table 6: Comparing methods under the strengths data.

α̂ β̂ λ̂ â b̂ CvM AD
MLE 43.673 0.215 -4.882 3.975 1.494 7.914 47.765
CVM 9.535 5.122 -3.407 1.763 1.763 0.729 3.980
KE 5.744 4.680 -1.795 0.865 0.00004 0.701 3.830

Bootst. 82.718 0.357 -4.485 4.091 1.585 0.203 1.095
AD2LE 18.511 0.211 -4.252 4.004 1.326 0.428 2.347

more extreme reliability data and related applications see Minkah et al. [69], Yousof et al. [91], Shehata et al.
[83], Alizadeh et al. ([26]; [27]). In fact, in the past five years, researchers have become increasingly interested in
processing reliability data using probability families and probability distributions, for example see [7], [73], [74],
[75], [84], [98], [100], [101], [102], [9], [17], [36], [30], [71], [19], [20], [21], [43], [44], [90], [45], [50] and [51].

Table 5 presents a comparative analysis of five estimation methods for fitting the carbon fiber breaking stress
dataset. Among the methods, Bootstrapping emerges as the most effective, achieving the smallest CvM =0.074 and
AD=0.556. This indicates its superior ability to capture both the central tendency and the tails of the distribution.
While MLE and AD2LE show comparable CvM values (0.079), their higher AD values (0.595 and 0.659,
respectively) suggest they are less adept at modeling the tails. Conversely, the KE method performs poorly, with
significantly larger CvM =0.192 and AD =1.463, highlighting its unsuitability for this dataset. Thus, Bootstrapping
is recommended as the optimal method for estimating parameters in the context of carbon fiber breaking stress
data.

Table 6 evaluates the performance of five estimation methods using the CvM and AD criteria for the glass
fiber strengths dataset. In this case, the AD2LE method outperforms the others, yielding the smallest CvM =0.428
and AD=2.347, indicating its strong capability to model both the overall distribution and its tails. Bootstrapping
ranks second with CvM=0.203 and AD =1.095, demonstrating good but not optimal performance. The KE and
CVM methods show moderate results, with similar CvM and AD values CvM ≈0.701, AD≈3.830), suggesting
they provide reasonable fits but are less robust than AD2LE. Notably, MLE performs exceptionally poorly,
with extremely high CvM=7.914 and AD =47.765, likely due to issues with parameter estimation or model
misspecification. Therefore, AD2LE is recommended as the most reliable method for analyzing the glass fiber
strengths dataset, particularly when tail behavior is critical.

9. Applications for comparing models

The statistical analysis of the first dataset reveals that the mean (1.6578) is higher than the median (1.5442),
indicating a right-skewed distribution, where larger values pull the mean upwards. The mode (0.92), being
significantly lower than both the mean and median, further confirms the asymmetry of the data. The standard
deviation (0.5994) suggests considerable variation, highlighting a wide spread of values. The high skewness
(3.1824) confirms that the dataset is strongly right-skewed, with extreme values such as 3.863 and 5.306
contributing to the long right tail. Moreover, the kurtosis value (14.4236) indicates a leptokurtic distribution,
meaning the dataset has heavy tails and a sharp peak, emphasizing the presence of significant outliers. This
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suggests that the data is not normally distributed and contains extreme values that could heavily influence mean-
based interpretations. Given this, using robust statistical techniques or log transformation may be beneficial when
analyzing or modeling this dataset, as standard methods may be overly sensitive to the presence of extreme values.
However, the statistical analysis of the second dataset reveals that the mean (1.6156) is higher than the median
(1.526), suggesting a right-skewed distribution, where larger values influence the mean. The mode (1.014) is the
most frequently occurring value and is significantly lower than both the mean and median, reinforcing the skewness
of the data. The standard deviation (0.4818) indicates moderate variability within the dataset. The high skewness
(2.9397) confirms that the dataset is strongly right-skewed, with extreme values such as 3.197 and 4.121 pulling the
distribution to the right. Additionally, the kurtosis (11.4942) suggests a leptokurtic distribution, characterized by
heavy tails and a pronounced peak, implying the presence of significant outliers. Given this distribution, standard
statistical techniques might be sensitive to extreme values, and robust methods or transformations may be necessary
for accurate data modeling and analysis. For more relevant data sets see [63], [64], [65], [66] [67] and [68].

This section presents two practical applications of the EGFrP distribution using real datasets, aiming to
compare its performance and goodness-of-fit with several well-established Fréchet-based distributions, including
the Weibull Fréchet (WFr) proposed by Afify et al. [22], which combines the Weibull and Fréchet models for
enhanced flexibility in heavy-tailed data; the Exponentiated Fréchet (EFr) introduced by Nadarajah and Kotz
[60], extending the Fréchet distribution with an exponentiation parameter to capture diverse data shapes; the
Kumaraswamy Fréchet (KumFr), integrating the Kumaraswamy family for greater adaptability to bounded and
skewed datasets; the Beta Fréchet (BFr) presented by Barreto-Souza et al. [32], combining the beta family with
the Fréchet model for a wide range of tail behaviors; the Transmuted Fréchet (TFr), introducing a transmutation
parameter to modify the baseline Fréchet distribution for better fitting of complex patterns; the Gamma Extended
Fréchet (GEFr) introduced by Silva et al. [82], incorporating a gamma component to improve modeling of extreme
values; the Marshall-Olkin Fréchet (MOFr), utilizing the Marshall-Olkin extension for robust handling of survival
and reliability data; and the classical Fréchet (Fr) distribution as a benchmark for comparison. Through these
comparisons, we aim to demonstrate the EGFrP distribution’s superior flexibility, where (for x > 0):

WFr:

f(x;α, β, a, b) = abβαβx−(β+1) exp
[
−b

(
αx−1

)β]
×
{
1− exp

[
−
(
αx−1

)β]}−(b+1)

× exp

−a

 exp
[
−
(
αx−1

)β]
1− exp

[
− (αx−1)

β
]


b ;

KumFr:

f(x;α, β, a, b) = abβαβ x−(β+1) exp
[
−a

(
αx−1

)β]{
1− exp

[
−a

(
αx−1

)β]}b−1

;

EFr:

f(x;α, β, a) = aβαβ x−(β+1) exp
[
−
(
αx−1

)β] {
1− exp

[
−
(
αx−1

)β]}a−1

;

BFr:

f(x;α, β, a, b) =
βαβ

B (a, b)
x−(β+1) exp

[
−a

(
αx−1

)β] {
1− exp

[
−
(
αx−1

)β]}b−1

;
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GEFr:

f(x;α, β, a, b) =
aβαβ

Γ (b)
x−(β+1) exp

[
−
(
αx−1

)β]
×
{
1− exp

[
−
(
αx−1

)β]}a−1

×
{
− log

{
1− exp

[
−
(
αx−1

)β]}a}b−1

;

TFr:

f(x;α, β, a) = βαβx−(β+1) exp
[
−
(
αx−1

)β]{
(a+ 1)− 2a exp

[
−
(
αx−1

)β]} | (|a| ≤ 1) ;

MOFr:

f(x;α, β, a) = aβαβ x−(β+1) exp
[
−
(
αx−1

)β]{
a+ (1− a) exp

[
−
(
αx−1

)β]}−2

.

The unknown parameters of the above PDFs are all positive real numbers except for the TFr distribution. In order to
compare the distributions, we consider the following criteria: the −2ℓ̂ (Maximized Log-Likelihood), AIC (Akaike
Information Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Bayesian information criterion) and
HQIC (Hannan-Quinn Information Criterion). These statistics are given by

AIC = −2ℓ̂(Ω) + 2κ,

BIC = −2ℓ̂(Ω) + κ log(n),

HQIC = −2ℓ̂(Ω) + 2κ log[log(n)]

and
CAIC = −2ℓ̂(Ω) + 2κn/(n− κ− 1),

where ℓ̂(Ω) denotes the log-likelihood function evaluated at the MLEs, κ is the number of model parameters and n is
the sample size. In evaluating the best-fit model for the given datasets, the selection is based on choosing the model
that yields the minimum values for relevant statistical measures, and all computations are performed using the R
programming environment. An essential graphical tool in this process is the Total Time on Test (TTT) plot, which
serves as a diagnostic method to assess whether the data aligns with a specific distribution, as outlined by Aarset
[1]. According to Aarset’s findings, the hazard rate function (HRF) exhibits distinct characteristics depending on
the shape of the TTT plot: a straight diagonal indicates a constant HRF, a concave plot suggests an increasing HRF,
while a convex plot implies a decreasing HRF. Furthermore, if the TTT plot initially displays convexity followed
by concavity, the HRF takes on a U-shaped or bathtub form; otherwise, it is unimodal. To visualize the data, Figure
3 provides quantile-quantile (QQ) plots in the first row and box plots in the second row. Additionally, Figure 4
presents the TTT plots in the first row and nonparametric Kernel Density Estimation (KDE) plots in the second
row. Figurer 5 presents the estimated PDF, Probability-Probability (P-P) plot, estimated CDF and Kaplan-Meier
survival plot for 1st data set. Figurer 6 presents the estimated PDF, P-P plot, estimated CDF and Kaplan-Meier
survival plot for 2nd data set. Based on Figures 5 and 6, the empirical HRFs of both datasets are determined to be
monotonically increasing. Table 7 presents the −2ℓ̂(Ω), AIC , BIC , HQIC and CAIC for 1st data. Table 8 shows the
MLEs and their standard errors (in parentheses) for 1st data. Table 9 presents the −2ℓ̂(Ω), AIC , BIC , HQIC and
CAIC for 2nd data. Table 10 shows the MLEs and their standard errors (in parentheses) for 2nd data. For more real
data sets for checking the applicability see [72], [38], [62], [8], [33], [11], [56],[18], [34], [6], [40],[3], [16] and
[48].
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Figure 3. The QQ plots (first row) and box plots (second row).
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Table 7: −2ℓ̂(Ω), AIC , BIC , HQIC and CAIC for 1st data.
Model Goodness of fit criteria

−2ℓ̂(Ω) AIC BIC HQIC CAIC
EGFrP 105.4 115.44 128.46 120.71 116.08

WFr 286.5 294.50 304.90 298.70 294.90
EFr 289.7 295.70 303.50 298.90 296.00

KumFr 289.1 297.10 307.50 301.30 297.50
BFr 303.1 311.10 321.60 315.40 311.60

GEFr 304 312.0 332.40 316.20 312.40
Fr 344.3 348.30 353.50 350.40 348.40

TFr 344.5 350.50 358.30 353.60 350.70
MOFr 345.3 351.30 359.10 354.50 351.60

Table 8: MLEs and their standard errors (in parentheses) for 1st data
Model Estimates

EGFrP(α, β, λ, a, b) 1.29 1.204 −1.368 1.291 4.221
(0.000) (1.059) (0.000) (0.001) (0.002)

WFr(α, β, a, b) 2.2231 0.355 6.9721 4.9179
(11.409) (0.411) (113.811) (3.756)

KumFr(α, β, a, b) 2.0556 0.4654 6.2815 224.18
(0.071) (0.007) (0.063) (0.164)

BFr(α, β, a, b) 1.6097 0.4046 22.0143 29.762
(2.498) (0.108) (21.432) (17.48)

GEFr(α, β, a, b) 1.3692 0.4776 27.6452 17.458
(2.017) (0.133) (14.136) (14.82)

EFr(α, β, a) 69.1489 0.5019 145.328
(57.349) (0.08) (122.924)

TFr(α, β, a) 1.9315 1.7435 0.0819
(0.097) (0.076) (0.198)

MOFr(α, β, a) 2.3066 1.5796 0.599
(0.498) (0.16) (0.309)

Fr(α, β) 1.8705 1.777
(0.112) (0.113)

Table 9: −2ℓ̂(Ω), AIC , BIC , HQIC and CAIC for 2nd data.
Model Measures

−2ℓ̂(Ω) AIC BIC HQIC CAIC
EGFrP 39.16 49.16 58.07 52.37 50.20

BFr 60.60 68.60 77.20 72.00 69.30
GEFr 61.60 69.60 78.10 72.90 70.30

Fr 93.70 97.70 102.00 99.40 97.9
TFr 94.10 100.10 106.50 102.60 100.5

MOFr 95.70 101.70 108.20 104.20 102.1
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Figure 5. Estimated PDF, P-P plot, estimated CDF and Kaplan-Meier survival plot for 1st data set.

Table 10: MLEs and their standard errors for 2nd data.
Model Estimates

EGFrP(α, β, λ, a, b) 0.743 1.88 −3.54 1.05 8.16
(0.779) (1.81) (2.8) (0.191) (7.49)

BFr(α, β, a, b) 2.0518 0.6466 15.0756 36.9397
(0.986) (0.163) (12.057) (22.649)

GEFr(α, β, a, b) 1.6625 0.7421 32.112 13.269
(0.952) (0.197) (17.397) (9.967)

TFr(α, β, a) 1.3068 2.7898 0.1298
(0.034) (0.165) (0.208)

MOFr(α, β, a) 1.5441 2.3876 0.4816
(0.226) (0.253) (0.252)

Fr(α, β) 1.264 2.888
(0.059) (0.234)

10. Hill estimator under the breaking stress of carbon fibers

The Hill estimator as presented on (11) can provide a robust nonparametric method for estimating the tail index
(TIx) of heavy-tailed distributions, which is particularly valuable in analyzing the breaking stress of carbon fibers
where extreme values play a critical role in assessing material reliability. Using the breaking stress of carbon fibers
data, consisting of n = 63 observations, the data was first sorted in descending order to isolate the largest values
that dominate the tail behavior. By selecting ns = 63, representing the top 10 largest observations, logarithmic
ratios of these values relative to the 10th largest observation were computed, yielding a mean value Z ≈ 1.215.
The inverse of this mean
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Figure 6. Estimated PDF, P-P plot, estimated CDF and Kaplan-Meier survival plot for 2nd data set.

T̂IxHill = Z
−1 ≈ 0.823,

A tail index of approximately 0.823 indicates that the breaking stress distribution exhibits very heavy tails. This
suggests a higher probability of extreme breaking stress values compared to light-tailed distributions like the
normal distribution. Such heavy-tailed behavior is critical in reliability analysis, as it implies a greater likelihood
of catastrophic failure under high stress conditions. The Hill estimator’s focus on extreme values ensures that this
heavy-tailed nature is accurately captured, providing valuable insights for designing safe and reliable structures
utilizing carbon fibers. The Hill plot, presented in Figure 6 , provides a visual representation of the Hill estimator’s
behavior as a function of the number of top-order statistics (n = 63) used in the estimation process. This plot is
crucial for assessing the stability of the tail index estimate (TIx Hill) across varying values of n. In the context of
the breaking stress of carbon fibers, the Hill plot helps identify an optimal range of n where the estimated tail index
stabilizes, indicating reliable convergence to a consistent value. A stable region in the Hill plot ensures that the tail
index estimate is not unduly influenced by the choice of n, which is particularly important given the variability and
potential heavy-tailed nature of the breaking stress data.

Complementing the Hill plot, the stability plot in Figure 8 offers additional insight into the robustness of the
tail index estimation. This plot typically displays the logarithm of the Hill estimates against the logarithm of n,
providing a clearer visualization of the asymptotic behavior of the tail index. For the breaking stress of carbon
fibers, the stability plot confirms the presence of heavy tails by revealing whether the log-log relationship follows
a linear trend, which is indicative of a power-law decay in the survival function. Together, these two plots serve
as essential diagnostic tools for validating the reliability of the Hill estimator. By examining both the Hill plot
and the stability plot, researchers can ensure that the estimated tail index accurately reflects the true tail behavior
of the breaking stress distribution, thereby enabling more informed decisions regarding material reliability, risk
assessment, and structural design in engineering applications involving carbon fibers.

This tail index suggests that the breaking stress distribution exhibits very heavy tails, implying a significantly
higher probability of extreme stress values compared to light-tailed distributions like the normal distribution.
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Such behavior is essential for reliability analysis, as it highlights the potential for catastrophic failures under
extreme stress conditions, necessitating conservative safety margins in material design. These findings significantly
contribute to the understanding of material reliability in structural applications, providing engineers with robust
statistical tools for evaluating risk, designing failure-resistant materials, and ensuring the safety of carbon fiber-
based components. Please let us know if further refinements are needed.

11. Case Study: Reliability analysis of composite materials for aerospace applications

Reliability analysis is crucial in engineering, medicine, and risk assessment, ensuring structures perform under
varying stresses. Strength-stress reliability analysis assesses whether a system’s strength surpasses the applied
stress. Ibrahim et al. [49] developed a novel test for right-censored validity under a new Chen extension.
Yousof et al. [97] proposed a modified Bagdonavičius-Nikulin test for censored distributions. Salem et al. [81]
introduced a Lomax extension for left-skewed reliability data, and Saber et al. [78] examined remained stress-
strength models under the generalized exponential distribution, later extending it to multicomponent stress-strength
models. Rasekhi et al. [105] estimated multicomponent stress-strength reliability under the Topp-Leone distribution
via Bayesian and non-Bayesian methods. Rasekhi et al. [77] compared Bayesian and classical inference in
multicomponent stress-strength reliability under the generalized logistic model, highlighting Bayesian advantages.
Bandar et al. [31] extended the Reduced-Kies family for reliability engineering data. Yousof et al. [105] explored a
new discrete generator for reliability, medicine, and biology. Abiad et al. [2] studied copula types for reliability
applications with a new Fisk probability model. These studies enhance reliability assessments in aerospace,
engineering, medicine, and finance. See also [28], [5], [47] and [79] for more relevant applications.

Here are two hypothetical datasets representing breaking strength (X1) of the carbon fiber-reinforced polymer
(CFRP) and applied operational stress ( X2) in megapascals (MPa), based on realistic engineering scenarios. These
values are inspired by existing literature on CFRP materials used in aerospace structures. Table 11 presents the
strength (X1) and applied stress (X2) data in megapascals (MPa) for 15 hypothetical aerospace structure samples.
The strength values represent the maximum load-bearing capacity of the materials used in these structures before
failure, while the stress values indicate the operational loads they experience during service. Examining the data, the
strength of the structures varies between 1785 MPa (sample 3) and 1,930 MPa (sample 14), while the applied stress
ranges from 1185 MPa (sample 3) to 1330 MPa (sample 14). The difference between strength and stress determines
the reliability margin, with larger differences indicating safer structural performance. In general, for all samples,
the strength (X1) exceeds the stress (X2), implying that the structures can sustain their applied loads without
immediate risk of failure. However, the margin of safety varies among samples. The lowest margin is observed in
sample 3 (Strength: 1,785 MPa, Stress: 1,185 MPa), while the highest margin occurs in sample 14 (Strength: 1930
MPa, Stress: 1330 MPa). This dataset provides a foundation for conducting a stress-strength reliability analysis,
where the probability that a structure’s strength exceeds its applied stress (R(X2 < X1)) can be determined. Such
analysis is crucial in aerospace engineering to assess the likelihood of failure and optimize material selection to
ensure structural integrity under operational conditions.

In aerospace engineering, selecting materials that can withstand high stress while maintaining structural integrity
is crucial. One widely used material is Carbon Fiber-Reinforced Polymer (CFRP), known for its high strength-
to-weight ratio. The reliability of CFRP under operational stress is essential in ensuring safety and durability.
The stress-strength reliability model is used to evaluate whether a material can endure applied stress without
failure. Given two random variables: X1which refers to the breaking strength of CFRP and X2 which refers to
the operational stress applied to the material. A study was conducted on CFRP panels used in aircraft structures,
where X1 follows an EGFrP distribution with estimated parameters (α1, β1, λ1). Also, the X2 follows an EGFrP
distribution with parameters (α2, β2, λ2). Using real experimental data and the result in (20) CFRP specimens, the
estimated reliability index was found to be

R(X2 < X1) ≈ 0.92.
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Table 11: Strength and Stress data in MPa
for 15 hypothetical aerospace structures samples.

Sample X1 (Strength (MPa)) X2 (Stress (MPa))
1 1800 1200
2 1850 1250
3 1785 1185
4 1825 1225
5 1900 1300
6 1880 1280
7 1865 1265
8 1925 1325
9 1835 1235
10 1910 1310
11 1895 1295
12 1815 1215
13 1875 1275
14 1930 1330
15 1845 1245

A reliability index of 92% suggests CFRP is highly suitable for aerospace applications, minimizing the likelihood
of catastrophic failure. The Hill estimator was applied to assess the tail behavior of the breaking strength
distribution. Results showed a heavy-tailed nature, indicating rare but severe failures. Engineers must incorporate
safety factors to mitigate extreme cases. Alternative materials, such as Titanium alloys, could be compared using
R(X2 < X1) to balance performance, weight, and cost in aircraft design.

12. Conclusions, limitations and future points

In this work, a new compound extension of the Fréchet distribution is introduced and studied. Some of its properties
including moments, incomplete moments, quantile, random number generation, probability weighted moments,
moment generating function, stress strength reliability model, residual life and reversed residual life functions
are derived. 3-dimentional plots of skewness and kurtosis of the new model are presented for illustrating the
flexibility of the new model. We presented a comprehensive simulation study designed to evaluate and compare
the performance of certain five estimation methods under varying sample sizes. The primary objective is to assess
the accuracy and consistency of these methods in estimating parameters of a given distribution, as measured by
the mean squared error (MSE). The simulation is conducted for three different sample sizes: n =50, n =100, and
n =200, allowing us to examine how the performance of each method evolves with increasing data availability.
Two real applications are presented to compare estimation methods, using datasets on carbon fiber breaking stress
and glass fiber strengths. Additionally, two more applications evaluate competitive statistical models, focusing
on their ability to describe underlying distributions in reliability and extreme value analysis. Finally, the Hill
estimator is applied to estimate the tail index of the new exponentiated generalized G Poisson model using the
carbon fiber breaking stress data, providing insights into the dataset’s heavy-tailed behavior. This comprehensive
approach not only highlights the strengths and limitations of various methods and models but also offers practical
guidance for selecting appropriate techniques in real applications. The study underscores the importance of robust
statistical tools for accurate modeling and inference. Based on a reliability analysis of composite materials for
aerospace applications (case study), with a 92% reliability index, CFRP exhibits strong performance in aerospace
applications. However, engineers should consider additional safety margins to mitigate extreme stress scenarios,
particularly given the heavy-tailed behavior of the breaking strength distribution. The Hill estimator analysis
indicates a heavy-tailed nature in CFRP strength distribution, meaning that while failures are rare, they can be
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catastrophic. While CFRP offers an excellent strength-to-weight ratio, alternative materials such as Titanium alloys
or hybrid composites should be evaluated using the same stress-strength reliability approach.

The EGFrP model, while offering significant flexibility and improved fitting capabilities for heavy-tailed data,
has several limitations that must be considered. One primary concern is its applicability to light-tailed data,
where its structure may not provide the best fit compared to alternative models designed for such distributions.
Additionally, parameter identifiability issues can arise due to the complexity of the model, leading to multiple
parameter sets producing similar likelihood values, particularly in cases with limited data. The model is also
sensitive to initial parameter values, meaning improper starting points in estimation procedures like MLE can
result in convergence difficulties or suboptimal parameter estimates. Moreover, the added flexibility of the EGFrP
model comes at the cost of higher computational complexity, requiring substantial processing power, especially
for iterative estimation techniques such as bootstrapping or Bayesian approaches. Another potential concern is
overfitting, as the presence of multiple parameters increases the risk of capturing noise rather than true underlying
data patterns, particularly in small sample scenarios. To mitigate this, careful model selection criteria, such as AIC
and BIC, should be used. Finally, this paper assumes data suitability for the EGFrP model, but in real applications,
it is crucial to ensure that the dataset aligns well with the distribution’s assumptions before selecting it as the
optimal modeling choice.

Main Abbreviations
RV Random Variable.

PMF Probability mass function.
CDF Cumulative distribution function.

iid RV Independent and Identically Distributed Random Variables
Fr Fréchet distribution

PDF Probability Density Function
IE Inverse Exponential Distribution

WFr Weibull Fréchet
VaR Value at Risk
IR Inverse Rayleigh

EGGP Exponentiated Generalized G Poisson Class
EGP exponentiated G Poisson Class
Boot. Bootstrapping estimation

EGFrP exponentiated generalized Fréchet Poisson
KE Kolmogorov estimates method

CVME Cramér–von Mises estimation method
MSE The mean squared error
MLE maximum likelihood estimation method
KE Kolmogorov Estimation Method
TIx Tail Index

PWMs Probability Weighted Moments
MGF Moment Generating Function
CFRP carbon fiber-reinforced polymer

AD2LE Anderson–Darling left-tail of the second order estimation Method
AIC Akaike Information Criterion

HQIC Hannan-Quinn Information Criterion
CAIC Consistent Akaike Information Criterion)
BIC Bayesian information criterion
KDE Kernel Density Estimation
TTT Total Time on Test
P-P Probability-Probability
QQ quantile-quantile
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2378 A NOVEL FRÉCHET-POISSON MODEL

Acknowledgment

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and
Scientific Research, King Faisal University, Saudi Arabia [Grant No. KFU251445].

REFERENCES

1. Aarset, M. V. (1987). How to identify a bathtub hazard rate. IEEE Transactions on Reliability, 36, 106-108.
2. Abiad, M., Alsadat, N., Abd El-Raouf, M. M., Yousof, H. M., & Kumar, A. (2025). Different copula types and reliability applications

for a new fisk probability model. Alexandria Engineering Journal, 110, 512-526.
3. Abdelaziz, M. A., Nofal, Z. M., & Afify, A. Z. (2024). A Unified Family for Generating Probabilistic Models: Properties, Bayesian

and Non-Bayesian Inference with Real-Data Applications. Pakistan Journal of Statistics and Operation Research, 20(4), 633-660.
https://doi.org/10.18187/pjsor.v20i4.4741

4. Aboraya, M. (2021). Marshall-Olkin Lehmann Lomax distribution: theory, statistical properties, copulas and real data modeling.
Pakistan Journal of Statistics and Operation Research, 509-530.

5. Aboraya, M., Ali, M. M., Yousof, H. M., & Mohamed, M. I. (2022). A new flexible probability model: Theory, estimation and
modeling bimodal left skewed data. Pakistan Journal of Statistics and Operation Research, 437-463.

6. Afify, A. Z., Pescim, R. R., Cordeiro, G. M., & Mahran, H. A. (2023). A New Heavy-Tailed Exponential Distribution:
Inference, Regression Model and Applications. Pakistan Journal of Statistics and Operation Research, 19(3), 395-411.
https://doi.org/10.18187/pjsor.v19i3.4230

7. Aidi, K., Butt, N. S., Ali, M. M., Ibrahim, M., Yousof, H. M. and Shehata, W. A. M. (2021). A Modified Chi-square Type Test
Statistic for the Double Burr X Model with Applications to Right Censored Medical and Reliability Data. Pakistan Journal of
Statistics and Operation Research, 17(3), 615-623.

8. Aldahlan, M. A., Rabie, A. M., Abdelhamid, M., Ahmed, A. H. N., & Afify, A. Z. (2023). The Marshall–Olkin Pareto Type-I
Distribution: Properties, Inference under Complete and Censored Samples with Application to Breast Cancer Data. Pakistan Journal
of Statistics and Operation Research, 19(4), 603-622. https://doi.org/10.18187/pjsor.v19i4.4317

9. Algamal, Z. Y., & Basheer, G. (2021). Reliability Estimation of Three Parameters Weibull Distribution based on Particle Swarm
Optimization. Pakistan Journal of Statistics and Operation Research, 17(1), 35-42. https://doi.org/10.18187/pjsor.v17i1.2354

10. Aljadani, A., Mansour, M. M., & Yousof, H. M. (2024). A Novel Model for Finance and Reliability Applications: Theory, Practices
and Financial Peaks Over a Random Threshold Value-at-Risk Analysis. Pakistan Journal of Statistics and Operation Research, 20(3),
489-515. https://doi.org/10.18187/pjsor.v20i3.4439

11. Aljuhani, W., Klakattawi, H. S., & Baharith, L. A. (2022). Alpha Power Exponentiated New Weibull-Pareto Dis-
tribution: Its Properties and Applications. Pakistan Journal of Statistics and Operation Research, 18(3), 703-720.
https://doi.org/10.18187/pjsor.v18i3.3937

12. Alkhayyat, S. L., Mohamed, H. S., Butt, N. S., Yousof, H. M., & Ali, E. I. (2023). Modeling the Asymmetric Reinsurance Revenues
Data using the Partially Autoregressive Time Series Model: Statistical Forecasting and Residuals Analysis. Pakistan Journal of
Statistics and Operation Research, 425-446.

13. Ali, M. M., Ali, I., Yousof, H. M. and Ibrahim, M. (2022). G Families of Probability Distributions: Theory and Practices. CRC Press,
Taylor & Francis Group.

14. Ali, M. M., Imon, R., Ali, I. and Yousof, H. M. (2025). Statistical Outliers and Related Topics. CRC Press, Taylor & Francis Group.
15. Almazah, M.M.A., Almuqrin, M.A., Eliwa, M.S., El-Morshedy, M., Yousof, H.M. (2023). Modeling Extreme Values Utilizing an

Asymmetric Probability Function. Symmetry 2021, 13, 1730. https://doi.org/10.3390/sym13091730
16. Almetwally, E. M., Afify, A. Z., & Hamedani, G. G. (2021). Marshall-Olkin Alpha Power Rayleigh Distribution: Properties,

Characterizations, Estimation and Engineering applications. Pakistan Journal of Statistics and Operation Research, 17(3), 745-760.
https://doi.org/10.18187/pjsor.v17i3.3473

17. Almongy , H. M., Almetwally, E. M., & Mubarak, A. E. (2021). Marshall-Olkin Alpha Power Lomax Distribution: Estimation
Methods, Applications on Physics and Economics. Pakistan Journal of Statistics and Operation Research, 17(1), 137-153.
https://doi.org/10.18187/pjsor.v17i1.3402

18. Alsultan, R. (2023). The Marshall-Olkin Pranav distribution: Theory and applications. Pakistan Journal of Statistics and Operation
Research, 19(1), 155-166. https://doi.org/10.18187/pjsor.v19i1.4058

19. Aboraya, M. (2021). Marshall-Olkin Lehmann Lomax distribution: theory, statistical properties, copulas and real data modeling.
Pakistan Journal of Statistics and Operation Research, 509-530.

20. Aboraya, M., Ali, M. M., Yousof, H. M. and Ibrahim, M. (2022). A New Flexible Probability Model: Theory, Estimation
and Modeling Bimodal Left Skewed Data. Pakistan Journal of Statistics and Operation Research, 18(2), 437-463.
https://doi.org/10.18187/pjsor.v18i2.3938

21. Ahmed, B., Chesneau, C. Ali, M. M. and Yousof, H. M. (2022). Amputated Life Testing for Weibull Reciprocal Weibull Percentiles:
Single, Double and Multiple Group Sampling Inspection Plans with Applications, Pakistan Journal of Statistics and Operation
Research, 18(4), 995-1013.

22. Afify, A. Z., Yousof, H. M., Cordeiro, G. M., Ortega, E. M. M. and Nofal, Z. M. (2016). The Weibull Fréchet distribution and its
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Modified Bagdonavičius–Nikulin Goodness-of-Fit Test for Censored Validation, Properties, Applications, and Different Estimation
Methods. Entropy, 22(5), 592.

67. Mansour, M., Yousof, H. M., Shehata, W. A. M., & Ibrahim, M. (2020). A new two parameter Burr XII distribution: properties,
copula, different estimation methods and modeling acute bone cancer data. Journal of Nonlinear Science and Applications, 13(5),
223-238.

68. Mansour, M. M., Butt, N. S., Yousof, H. M., Ansari, S. I., & Ibrahim, M. (2020). A Generalization of Reciprocal Exponential
Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets. Pakistan Journal of Statistics
and Operation Research, 16(2), 373-386.

69. Minkah, R., de Wet, T., Ghosh, A., & Yousof, H. M. (2023). Robust extreme quantile estimation for Pareto-type tails through an
exponential regression model. Communications for Statistical Applications and Methods, 30(6), 531-550.

70. Nichols, M. D, Padgett, W. J. (2006). A Bootstrap control chart for Weibull percentiles. Quality and Reliability Engineering
International, 22, 141-151.

71. Oluyede, B., Peter, P. O., Ndwapi, N., & Bindele, H. (2022). The Exponentiated Half-logistic Odd Burr III-G: Model, Properties and
Applications: The Exponentiated Half-logistic Odd Burr III-G. Pakistan Journal of Statistics and Operation Research, 18(1), 33-57.
https://doi.org/10.18187/pjsor.v18i1.3668

72. Rana, M. S., Shahbaz, S. H., Shahbaz, M. Q., & Rahman, M. M. (2022). Pareto-weibull distribution with properties and applications:
a member of pareto-X family. Pakistan Journal of Statistics and Operation Research, 121-132.

73. Refaie, M. K., & Ali, E. I. (2023). A New Reciprocal System of Burr Type X Densities with Applications in Engineering, Reliability,
Economy, and Medicine. Pakistan Journal of Statistics and Operation Research, 373-394.

74. Refaie, M. K., Butt, N. S., & Ali, E. I. (2023). A new probability distribution: properties, copulas and applications in medicine and
engineering. Pakistan Journal of Statistics & Operation Research, 19(2).

75. Refaie, M. K., Yaqoob, A. A., Selim, M. A., & Ali, E. I. (2023). A Novel Version of the Exponentiated Weibull Distribution: Copulas,
Mathematical Properties and Statistical Modeling. Pakistan Journal of Statistics and Operation Research, 491-519.

76. Rasekhi, M., Saber, M. M., & Yousof, H. M. (2020). Bayesian and classical inference of reliability in multicomponent stress-strength
under the generalized logistic model. Communications in Statistics-Theory and Methods, 50(21), 5114-5125.

77. Rasekhi, M., Saber, M., Yousof, H. M., & Ali, E. I. (2024). Estimation of the Multicomponent Stress-Strength Reliability Model
Under the Topp-Leone Distribution: Applications, Bayesian and Non-Bayesian Assessment. Statistics, Optimization & Information
Computing, 12(1), 133-152.

78. Saber, M. M. Marwa M. Mohie El-Din and Yousof, H. M. (2022). Reliability estimation for the remained stress-strength model
under the generalized exponential lifetime distribution, Journal of Probability and Statistics, 2021, 1-10.

79. Saber, M. M., Rasekhi, M. and Yousof, H. M. (2022). Generalized Stress-Strength and Generalized Multicomponent Stress-Strength
Models. Statistics, Optimization & Information Computing, forthcoming.

80. Salah, M. M., El-Morshedy, M.; Eliwa, M. S. and Yousof, H. M. (2020). Expanded Fréchet model: mathematical properties, copula,
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