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Abstract Process capability indices have been widely used to assess process performance to drive continuous improvement
in quality and productivity, with larger ones being better for life cycle performance indicators. In this paper, an overall process
capability index is proposed for multiple production lines. When the lifetime of units follows an exponential distribution and
differences in testing facilities are taken into account, the maximum likelihood estimation, uniformly minimum variance
unbiased estimation, and generalized estimation for the lifetime performance index were investigated. In order to investigate
the advantages of each method, extensive Monte Carlo simulations are carried out. Finally, practical applications of the
proposed methods are demonstrated through the analysis of two real-life data sets.
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1. Introduction

Product quality is a critical issue in both industrial production and economic management, significantly
influencing an enterprise’s market competitiveness and sustainability. From the consumer’s perspective, there is a
strong preference for high-quality products; from the viewpoint of the company’s production management, the focus
is on ensuring a continuous and stable production process, along with a reliable final product. To assess whether
the production process meets established quality standards, process capability indices (PCIs) have been developed.
These indices are widely used in traditional industries such as automotive manufacturing, semiconductors, and
integrated circuit assembly to evaluate whether product quality aligns with specified requirements.[36] In recent
years, there has been growing interest in simple numerical indicators that reflect the long-term performance of
a product. Thus, research on PCIs has seen a significant increase. Initially, researchers introduced two-sided
specification limits to ensure that the useful lifetimes of the product remain within the specified upper and lower
limits. If the actual lifetime of a product falls below the lower limit or exceeds the upper limit, the product is
deemed nonconforming. Such assessments can be carried out using the following indicators: Cp, Cpm, Cpi, Cpmi
et al. For more details on two-sided specification limits PCIs, one may refer to some pioneers’ contributions of
Jaran et al.[1], Kane[2], Chen et al.[3], Pearn et al.[4], and others. However, for most products, both consumers
and companies generally prefer those with longer service lifetimes. Regarding quality characteristics where a larger
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388 EVALUATION OF PROCESS CAPABILITY INDEX

value is preferable, one-sided specification limits for PCI C;, = (u — L)/o have been developed, here u, o, and L
represent the process mean, standard deviation and specification lower limit, respectively. The PCI Cy, has been
widely adopted due to its simplicity and alignment with practical quality characteristics. Numerous authors have
discussed it extensively in their studies, for example, Montgomery[5], Guo et al.[6], Wu et al.[ 18], among others.

In reliability life testing, censoring schemes (CSs) are frequently employed to facilitate the acquisition of failure
data. Among all CSs, Type-I and Type-II CSs are the most fundamental. Type-I censoring terminates the test when
a predetermined time is reached, while Type-II censoring stops the test when a specified number of failures occur.
These schemes are designed to balance the time and cost constraints of testing with the need for accurate and reliable
data, allowing the estimation of failure times and rates with relatively small sample sizes and shorter test durations.
To enhance test flexibility, progressive Type-I and progressive Type-II censoring schemes (PT-II CS) have been
further implemented in life testing and reliability analysis. These schemes permit the removal of the surviving test
units at various stages of the experiment, providing greater flexibility in experimental design. Interested readers may
refer to the monographs of Lawless[33], Balakrishnan and Cramer[34] as well as extensive references therein. In
practice, PT-II CS are most popular for their flexibility and efficiency. It has been implemented as follows: Suppose
n independent and identically distributed units are placed on the test with predefined CSR = (r1,72,...,Fm),m < n
and ZT: (rj +1) = n. When failure time x; occurs, r1 units are randomly removed from the remaining surviving
items. When failure time x, occurs, 7, units are randomly removed from the remaining surviving items. Others are
similar. When failure time x,, occurs, all working units are removed and the experiment is stopped. As specifically
illustrated in Figure 1.
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Figure 1. The sketch of the PT-II scenario.

In general, the normal distribution is the most widely used, so quality fluctuation usually follows the normal
distribution by default when process stability is assumed. However, in the real production environment, due to the
interaction of many factors, the obtained process output data do not always conform to the normal distribution and
may sometimes present a skewed distribution. As a result, the calculated PCI may deviate. Unlike many PCIs that
assume a normal distribution. Keller et al.[10] point out that the life of electronic components tends to follow an
exponential, gamma, and Weibull distribution. EL-Sagheer et al.[12] researched PCI using the Pareto model. Lee
et al.[9] indicate that product lifetime distribution is mostly an exponential model. Therefore, to better align with
actual production needs, a flexible manufacturing process suitable for multiple production lines has been proposed.

With the advancement of manufacturing, companies are increasingly adopting multiple production lines to
produce identical or similar products in parallel. This strategy aims to improve production efficiency, meet market
demands, and address production uncertainties. In this context, focusing solely on the process capability of a
single production line is no longer sufficient to comprehensively reflect the performance of the entire production
system. Therefore, PCIs for multiple production lines have been proposed to provide a holistic assessment of
overall performance. From an application perspective, one potential benefit of multiple production lines is that
they address the challenge of inspecting all units simultaneously. Inspectors often face difficulties in testing all units
at once, making multiple production lines a flexible solution for real-world experimentation. In addition, practical
limitations, such as the lack of the equipment necessary to test all units simultaneously, make multiple production
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lines a more efficient method for testing units. In the study of PCIs, most scholars’ research has focused primarily
on single production lines. For example, the PCIs proposed by Akdogan et al. [17] Ahmadi et al. [19] are based on
a single production line. Recently, Wu et al. [7] introduced the PCI for multiple production lines. This paper aims to
explore a novel approach to constructing a multi-production line PCI, distinct from those presented in other studies.
We will leverage the information from multiple production lines to build a comprehensive and robust PCI.

In practical experimental designs, multiple production lines are widely adopted for their efficiency in improving
the accuracy of the estimation by using stratification within each line. However, when extending a single production
line to multiple production lines in a setting for large-scale product evaluations, differences in different testing
facilities (DDTF) emerge as critical sources of bias due to inherent experimental limitations. Specifically, factors
such as instrument drift over time, technician-dependent sorting inconsistencies, or shifts in operational protocols
across cycles (e.g., modifications in subgroup ranking criteria or uneven allocation of sample units) can disrupt
the comparability of rankings and measurements between lines. Therefore, it’s necessary to take the DDTF into
account in data analysis, otherwise ignoring inter-group variability might lead to biased and inaccurate results. See,
for example, some resent contributions of Ahmadi et al.[29], Zhu[30], Wang et al.[22] and references therein.

Some of the potential contributions of this paper include the following: Firstly, based on the established theoretical
framework, this study examines the differential effects of PCI on different production lines. To our knowledge, there
is arelative paucity of research dedicated to evaluating PCI in the context of multiple production lines under the PT-11
CS framework. Secondly, to enrich parameter estimation methods, this paper introduces generalized estimation and
uniformly minimum variance unbiased estimation (UMVUE). These methods offer better performance compared
to maximum likelihood estimation (MLE), providing more accurate and reliable estimates.

The article is organized as follows. The model will be described by us in Section 2. In Section 3, we present the
maximum likelihood estimator and asymptotic confidence interval of unknown parameters and the PCI. Section
4 develops point and interval estimates for generalized estimation and UMVUE under the assumption of an
exponential distribution. Numerical studies are presented in Section 5. Finally, Section 6 provides some brief
concluding remarks.

2. Model description and likelihood function

In this part, the PCI data description is proposed under multiple production lines PT-II CS and the likelihood
function with compact expression is further established.

2.1. Testing strategy and data description

Suppose 7 identical units are carried out under PT-II CS with k production lines and each line has n; (i =
1,2,---, k) units satisfying Zf;l n; = n. For each production line, the predefined failure number m; and CS
R; = (ri1,¥i2, . .., Tim;) are provided in advance fori = 1,2, ..., k. Let x;; be the failure time j-th in the i-th line.
In this paper, we assume that the lifetime of products follows the exponential distribution (Exp). Under the PT-
IT censoring scheme, which arise from environmental factors, material resources, machinery, and experimental
conditions, cannot be ignored. These differences are referred to as DDTF. In addition, it is assumed that the
parameters of the model A are different in the k production lines. The same model reflects the common failure
mechanism of the production lines. A set of PT-II CS data could be observed as follows.

Lines Samples Distributions
1 (11, 711)5 (12, 712)5 - s X1y P1my ) Exp(41)
2 (x21,721), (X22,722)5 -+ -5 (X200 T2my) Exp(42) (1)
ko (ki ren)s (2, 7k2)s - ooy (Xkmg > Tkemy,) EXp(Ag)
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under the multiple production lines condition, the probability density function (PDF) and cumulative distribution
function (CDF) of the exponential distribution in i-th (i = 1,2, ..., k) line is

flx; ;) = e~ x> 0,4; >0, (2)
Fx;)=1-e% x>0,4 > 0. 3)

The PCI is defined by
Cr=1-1LA. “4)

2.2. Likelihood function

Let X; = (xi1,%i2, .« -, Xim,; ), = 1,2, -+ , k be PT-II CS data (1) from Exp(4;) under i-th production line, then
the likelihood function of A; can be written by

mj m;
L) =i [ [ £Oi)[1 = F(xip)]™ o agmee” Zimtxi i) =0, g, (5)
J J
J=1

where c; is the normalizing constant. Further, the full likelihood function of A can be expressed as follows

k k m;
L(/l) = HL(/L) = 1_[ /lie—/lixij(l+r,-j). ©
i=1 1

i=1 j=

In addition, since the DDTF cannot be ignored and its equivalent cannot be explicitly obtained. Therefore, we
will present the weight coefficient in the following contexts.

3. Classical estimation

In this Section, the MLE and approximate confidence intervals (ACIs) of model parameters and PCI will be
presented.
3.1. Maximum likelihood estimation

From (5), the log-likelihood function of 4; can be rewritten by

mi
5(/11')=miln/li—Z/1ixij(1+rij), 7
=

moreover, the log-likelihood function of A can be represented as

k m;

k
é’(/l):Zmiln/li—Z /l,'xij(1+r,'j). (8)
i=1 1

i=l j=

Theorem 1. For a given CS R; and predefined failure number m; > 0, the MLE of parameter A; is obtained uniquely
as follows

M =1,2,.. .k 9)

A= —i=
Z;-nz'lxij(l‘i‘l’ij)

Proof. See Appendix A. O
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Furthermore, based on the maximum likelihood invariance, the PCI C, could be further estimated respectively
as Cr(4d) = Cp(1), where A is the maximum likelihood estimator of the population parameter A that is estimated as

kK A3

e Wid;
k ~
2,’:1 wj

where ; is the corresponding weight coefficient and &; = 1/var(4;). In addition, var(A;) is the observed variance
of estimator of A; under i-th production line that would be reported later.
Now, using (4), (9) and (10) the index Cy, of MLE can be obtained as

A= , 10)

k N
~ ATV
Cr=1- L#, (11)

Zl':] UA)i

where @, is the corresponding weight and the same as defined above.

3.2. Approximate confidence interval

In this subsection, the ACIs of unknown parameters are constructed by using asymptotic theory. Suppose

v=(1,Vv2,...,vg) Withv; = 4;, i =1,2,..., k, by differentiating from (6) twice with parameters 1y, Ay, ..., Ak,
the second derivative of £(v) = £(41, A2, ..., Ax) could be obtained. Thus, the expected Fisher information matrix
is given by
my
/’iZ
02 =
12
1) =E |- = & . (12)
8\11'6\)] =1 .
m
22

Theorem 2. Under mild regularity conditions, the asymptotic distribution of MLE 9 is 9 — v — N(0, 171 (9)), where
I7Y(D) is the inverse of the observed Fisher information matrix, i.e.

/’iZ
var(4y) cov(Ay,A2) -+ cov(dy, Ag) m_ll o
o cov(dy, A1) var(ly) -+ cov(dy, Ax) ”:1_2
() = . : . . = 2 : (13)
cov(Ag, A1) cov(dg,A2) -+ var(Ag) 3

mi

Proof. Using the multivariate asymptotic normality of the maximum likelihood estimation, the result could be
established directly. O

For arbitrary 0 < & < 1, 100(1 — €)% ACI of A; can be constructed as

(/ii — zf/zvvar(/ii),/ii +z§/2\Ivar(/ii)) Ji=1,2,...,k, (14)

where z¢ is upper 100€% percentile of standard normal distribution.
Furthermore, in order to determine confidence intervals for the population of g(v), delta technique and asymptotic
distribution theory are used here.

Theorem 3. Let g(v) be arbitrary continuous function of parameter v, §(v) = g(v) be the MLE of g(v), then the
approximate confidence interval of g(v) can be constructed as

() = 22 Vvar(g()). 0) + z¢ 2y var () (15)

. av -1 . N d d g\ "
where var(g(v)) = AgT (D) I~ (9)Ag (D) and Ag(D) = ( 5}(,”’ é‘}(?’“‘ ’ 5}(:)) |/li:/?,¢'
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Proof. Using Theorem 2 and applying the delta method, the asymptotic distribution of g(#) could be obtained
consequently, and the details are omitted for concision. O

Obviously, when the function g(v) refers to A and PCI, the relevant ACI can be established directly. Details are
omitted for simplicity and to save space.

4. Pivot quantities based on generalized inference

In this Section, we will inference the parameters 41, Ao, . . ., Ag, 4, Cr, using generalized estimation and UMVUE.

4.1. Generalized inference

Although classical estimation methods have long been established in the statistical domain, recent developments
have introduced generalized estimation. Generalized estimation offers several advantages over classical methods,
particularly in complex scenarios where standard techniques often fail to provide satisfactory results, necessitating
the use of asymptotic approximations. The robustness and flexibility of generalized pivot estimation (GPE) and
generalized confidence intervals (GCI) have been widely recognized and applied in various fields, including
regression analysis, analysis of variance, mixed models, and growth curve analyses. These applications demonstrate
the superiority of generalized estimation in handling complex statistical problems and ensuring reliable and
repeatable results. Recent research has further expanded the scope and applicability of generalized estimation.
Studies by Tsui and Weerahandi [32] and Weerahandi [ 14] have laid the foundational work, and subsequent research
has built upon these contributions to address a broader range of statistical challenges.

Theorem 4. The quantity

mj
Ui:Z/I[Zx,-j(l +rif) ~ X @my),i=1,2,.. k. (16)
Jj=1

Proof. See Appendix B. O

From Theorem 4, it follows that for a given u; ~ x>(2m;), the equation

4= &
! 22;.'1:[1xij(1+rij)

a7

has a unique solution with respect to 4;, denoted as A

By repeating the calculation of Equation (17) B times, then calculate their average to get A;, and var(;) can
be calculated based on the B values of ;. Therefore, the pivotal quantities based generalized estimator for A and
overall PCI Cy, can be expressed as

P

. Y wid;

R (18)
Zi=1 wj

C,=1-1L, (19)

where @; = 1/var(4;).

In Algorithm 1, the process of calculating GPE and GCI using generalized estimation is introduced in detail. It
is crucial to perform N iterations to verify the accuracy of the code and ensure its stability at different functional
levels. This iterative process helps establish the robustness of the estimators and ensures that the results are reliable
and repeatable.
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Algorithm 1 Generalized Estimation

Step lv Generate a sample u; from the y?(2m;) distribution, and obtain an observation of A; from the equation
A = m;: 1,2,...,k.

Step 2 Repeat Step 1 B times and obtain their average to get A;.

Step 3 Based on the B values of A;, calculate Var(/ii), and then use Equations (18) and (19) to compute A;and Cp.

Step 4 Repeat Steps 1-3 N times, obtaining N values of A;. Sort these values in ascending order, denoted by
A;(1),4;(2),...,A;(N). The mean of the above N values is A;. The calculation of A and C;, follows the
same procedure.

Step 5 Based on A;(1),1;(2),...,4;(N) and for 0 < & < 1, a series of 100(1 —&)% confidence intervals of
parameters can be expressed as

(plhl.plh+B—|B+1]]), h=12,... [N&

where | -| denotes the ceiling function, and p refers to A;, A, C.. The 100(1 — £)% confidence interval for p
can be selected as the 4*-th one satisfying

N
plh* + N - [N¢é+1]] - p[h*] = min (p[h+N = |N&+1]] - plh]).

4.2. Uniformly minimum variance unbiased estimation

UMVUE holds significant advantages over MLE due to its ability to be unbiased and have a minimum variance.
These properties ensure that in multiple independent replications, the UMVUE not only approaches the true value
of the parameter without systematic bias, but also has the smallest variance among all unbiased estimators, thereby
providing more stable and precise estimation results. Consequently, using UMVUE is driven by the pursuit of
accuracy and reliability of the estimation, especially in statistical analysis scenarios, where it is crucial to ensure
that the estimator is both unbiased and efficient. This subsection will introduce UMVUE and its confidence interval
(UCI) in multiple production lines.

Theorem 5. The UMVUE of A; denoted as A; can be expressed as

- m; — 1
= Z;rilxitj(l'*rij)' <0
Proof. See Appendix C. o

Using (20), we get the UMVUE of the 4 is

1= Lo 1)

e O

now, by (4) and (21), the index C;. can be obtained as

Cr=1-1L1, (22)

where ; is the corresponding weight coefficient and &; = 1/var(1;). In addition, var (1;) is the observed variance
of the estimate of A; in the i-th production line.
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~ From Theorem 4, we get P(Xé/2(2mi) < ZAiZ:.":il xij(1+r;) < X12_§/2(2mi))- Thus the 100(1 — ¢)% UCI of
A;,i=1,2,...,k is obtained that

( X2, (2mi) X (2mi) ) ’ (23)

2370 xij (riy) 2870 xij (L)

where Xé/z(Zmi) and )(fff/z(Zmi) are the upper 100(£/2)% and 100(1 — £/2)% percentile for the chi-square
distribution with the degree of freedom 2m; fori = 1,2, ..., k. y 3
Using Theorem 3, the 100(1 — ¢)% percent confidence intervals of A and C;, can be constructed as

(D) = zejpvrar D), () + zepvar (s (D) (24)

- - - - T
where var(g(1)) = AgT()I~1(1)Ag(1) and Ag(1) = (ag/(l/ll), ag/(l:), ey ag/(lf)) |/1:/i' Meanwhile, z¢ is upper

100&%% percentile of standard normal distribution.

5. Numerical illustration

In this Section, Monte Carlo simulations are performed to compare the performance of the proposed MLE,
generalized estimation and UMV UE. Meanwhile, we present two real data examples to illustrate the proposed model
for the exponential distribution.

5.1. Simulation Studies

To test the efficiency of different estimates, various criteria are used for comparison, such as the absolute bias
(AB) and mean square error (MSE) of the criteria, while the corresponding interval estimation results are evaluated
by the average length (AL) and the coverage probability (CP) in consequence. In the simulation study, different total
sample sizes n;, effective sample sizes m; and censoring schemes are considered for different test equipment for

i=1,2,---, k. The censoring schemes are presented below.
D ri=rn=...=rm-1=0,ry =n; —m;;
A ri=n;—miy,ra=r3=...=rp, =0;
dI) ry = (n; —my)/2],r2= ... =Fmye1 = 0,7, =0y —m; — [ (n; —m;)/2].

Note: There exist a variety of censoring schemes in practice; to maintain simplicity, this paper considers only the
three most commonly used methods.

Monte Carlo simulations are widely used to evaluate and compare the performance of different methods under
uncertainty. However, their reliability can be affected by several limitations. One key issue is computational intensity,
as accurate results often require a large number of iterations, leading to high time and resource costs. The validity of
the results also depends heavily on the accuracy of input assumptions and probability distributions; oversimplified
or incorrect inputs may yield misleading conclusions. Additionally, random sampling variability can introduce
instability, especially with fewer iterations, causing differences in results across simulation runs. To mitigate these
issues, we performed simulation runs N = 5000 for each comparison, ensuring sufficient stability and reliability in
the estimated performance differences among methods.

Furthermore, to account for the DDTF effect present among the i-th production line, each equipped with multiple
facilities, a stochastic component is introduced. Specifically, random noise &; is added to the PT-II CS data set
originating from the i-th testing facility. These noises are assumed to follow a normal distribution characterized by
amean is 0 and variance is 0.01, denoted as &; ~ N (0,0.01). In addition, it also uses the gamma model with the shape
parameter of 1 and the scale parameter of 0.1 as random noise to naturally capture line-to-line variability, denoted
as g; ~ Gamma(1,0.1). In this study, we use the three methods that are MLE, UMVUE and generalized estimation
for point and interval estimation of parameters and PCI. And the internal circulation of generalized estimation is
B = 10000 times. The criterion measures of point estimation including AB and MSE, interval estimation including
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AL and CP of the 95% confidence intervals have been calculated for both parameters and PCI. To keep the Monte
Carlo simulation simple, we take ny =ny = ... =ng,m;y =my =... =my and R| = Ry = ... = Ri. Moreover, we
suppose the specification lower limit L = 0.2. The corresponding outcomes are systematically presented in Tables
1-9. The random noise in Tables 1-6 and Table 9 follows normal distribution, while the random noise in Tables 7-8
follows gamma distribution. The number of lines in Tables 1-2, 7-8, 9 are k = 2, Tables 3-4 are k = 3, Tables 5-6
are k = 5, respectively.

From the results tabulated in Tables 1-9, following conclusions could be observed as:

* As the effective sample size n and the predefined failure number m increase in UMVUE, MLE and GPE, the
criteria quantities AB and MSE of the point estimation decrease. This indicates that these estimation methods
have consistent properties and are satisfactory in the designed scenarios.

* For fixed sample size n and predefined failure number m, the UMV UE has the lowest MSE and AB compared
to other methods, indicating its superior performance, with GPQ being the second best.

* In the context of interval estimation, the analysis of the experimental data shows that the CP of each method
is approximately 95%. Meanwhile, the GCI has the shortest AL. Therefore, GCI performs best for interval
estimation.

* The interval lengths of ACI, UCI and GCI decrease with increase in sample size n and predefined failure
number m.

In summary, when dealing with an exponential model under multiple production lines conditions where DDTF
are significant and cannot be overlooked. Meanwhile, UMVUE performs well in point estimation, while GCI shows
superior performance in interval estimation.

5.2. Data analysis

In this part, two real-life data sets are implemented to illustrate the applications of the proposed methods.

Example one (electrical insulation data sets) We utilize the data sets originally reported by Lawless [31] to
demonstrate the practical application of the proposed model. The original data set I included the failure times of
two types of electrical insulation subjected to increasing voltage stress. Data are provided in Table 10 with sample
sizes n; = ny = 12.

Before proceeding, we first verify whether the exponential model can adequately fit these data sets. Based on the
complete data presented in Table 10, the MLEs of 1 and A, were computed, resulting in Kolmogorov-Smirnov (KS)
distances with p-values of 0.6699 and 0.6921 for the electrical insulation datasets. From the test result, it can be
seen that the exponential distribution can be used as an appropriate model to adapt to these actual data. Additionally,
Figure 2 provides the empirical cumulative distribution obtained through theoretical distribution plots (CDF plots),
probability-probability plots (P-P plots), and quantile-quantile plots (Q-Q plots). These visual plots indicate that
the exponential distribution provides a reasonable fit for the real-life data. Thus, we could use Exp(4;) and Exp(41,)
to fit the electrical insulation datasets. In addition, the DDTF effect appears, which affects the inference results of
different estimates and is reflected in the different values of parameters 1| and A,. Two sets of production lines PT-1I
CS data with m| = m; = 8 in the electrical insulation data sets were generated based on the raw data presented in
Table 10 and similar CS provided in the simulation study, and detailed samples are provided in Table 11.

Using PT-II CS data presented in Table 11, the classical likelihood, minimum variance unbiased and generalized
estimates were calculated, considering the impact of variations in testing facilities. With the generalized estimation’s
inner loop set to B = 10000. The corresponding point estimates and the estimated standard error (ESE) are provided
in Table 12, while the interval estimates for AL, with a significance level of 95%, are given in Table 13. The trace
plots of the generalized method of A1, A5, 4, Cy, in the electrical insulation data sets are pretend in Figure 3. In these
figures, the solid green line represents the mean of the results obtained from B iterations of the generalized method,
while the dashed red lines indicate the upper and lower limits of the interval.

The tabular results presented in Table 12 demonstrate that, based on the correlation of ESE, UMV UE outperforms
both MLE and GPE in terms of model-related parameters and PCI of the point estimates. Examining the AL in Table
13, it is evident that GCI provides the most optimal intervals among the three methods. The results further indicate
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Table 1. ABs and MSEs for parameters A = 2 with k = 2.

MLE UMVUE GPE
n m CS par. MSE AB MSE AB MSE AB
20 14 1 A1 04054 04620 0.3340 04379 0.3899 0.4570
Ay 04142 04694 03604 04570 0.3925 0.4617
A 0.1555 0.3108 0.0807 0.1954 0.1549 0.3089
Cr 0.0062 0.0621 0.0032 0.0390 0.0061 0.0610
oI A 04457 04839 03619 04609 04107 04771
Ay 04269 04811 03329 04378 0.3922 0.4626
A 02469 03694 0.0811 0.1962 0.1514 0.3132
Cr 0.0098 0.0738 0.0032 0.0392 0.0060 0.0626
Im a; 04467 04814 0.3620 0.4539 0.3929 0.4600
Ay 04832 04997 03699 04661 0.4306 0.4929
A 01902 03296 0.0825 0.2082 0.1550 0.3094
Cr 0.0076 0.0659 0.0033 0.0416 0.0062 0.0618
18 1 A1 03257 04267 02772 04073 0.3054 0.4173
A2 03426 04384 0.2918 0.4151 0.3221 0.4252
A 0.1246 0.3061 0.0729 0.1953 0.1215 0.2713
Cr 0.0059 0.0612 0.0029 0.0384 0.0048 0.0542
o A 03720 04516 0.3053 0.4256 0.3390 0.4369
A 02891 0.4002 0.2401 0.3835 0.2849 0.3955
A 02076 0.3434 0.0701 0.1952 0.1195 0.2732
Cr 0.0083 0.0686 0.0028 0.0384 0.0047 0.0546
Im a; 03091 0.4099 0.2580 0.3882 0.2874 0.4055
A2 03568 0.4409 0.2815 0.4055 0.3155 0.4217
A 0.1475 0.2908 0.0644 0.1863 0.1219 0.2730
Crp  0.0059 0.0581 0.0025 0.0372 0.0048 0.0546
40 25 1 A1 01945 03345 0.1654 0.3215 0.1825 0.3287
Ay 01977 03408 0.1742 0.3254 0.1871 0.3301
A 0.1008 0.2459 0.0416 0.1412 0.0831 0.2328
Cr 0.0040 0.0491 0.0017 0.0280 0.0032 0.0431
oI A 01945 03335 0.1649 03168 0.1737 0.3254
A, 0.1854 03225 0.1689 0.3165 0.1727 0.3185
A 0.0942 0.2370 0.0423 0.1423 0.0804 0.2364
Cr 0.0037 0.0474 0.0016 0.0294 0.0033 0.0462
m a; 02114 03462 0.1759 0.3261 0.1963 0.3375
A 0.1891 0.3301 0.1673 0.3189 0.1759 0.3199
A 0.1010 0.2427 0.0431 0.1463 0.0855 0.2323
Cr  0.0040 0.0485 0.0017 0.0292 0.0034 0.0434
30 I A1 0.1581 0.3040 0.1397 0.2932 0.1524 0.2974
A2 0.1594 0.3060 0.1395 0.2932  0.1565 0.3022
A 0079 0.2206 0.0348 0.1315 0.0723 0.2169
Cr 0.0031 0.0441 0.0013 0.0263 0.0028 0.0430
o A  0.1428 0.2900 0.1355 0.2848 0.1402 0.2888
A 0.1631 03103 0.1563 0.3100 0.1578 0.3063
A 00772 0.2155 0.0362 0.1371 0.0704 0.2140
Cr 0.0030 0.0431 0.0014 0.0274 0.0028 0.0427
Im a; 0.1443 02905 0.1246 0.2754 0.1357 0.2840
Ay 0.1418 0.2883 0.1277 0.2800 0.1352 0.2814
A 00725 0.2157 0.0425 0.1394 0.0720 0.2251
Crp  0.0029 0.0431 0.0016 0.0278 0.0024 0.0420
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Table 2. Length and coverage probability for parameter A = 2 with 95% confidence intervals and k = 2.

ACI UcCl GCI
n m CS par. Length CP Length CP Length CP
20 14 1 Ay 22247 09434 22226 0.9492  2.1686 0.9542
Ay 23028 0.9506 22990 0.9520 2.2445 0.9552
A 1.6151 09364 1.5122 0.9448 1.4836 0.9462
Cr 03230 09364 03024 0.9462 0.2967 0.9468
I A, 25063 09380 23361 09506 2.2929 0.9486
Ay 25224 09434 22585 0.9452 22200 0.9526
A 1.6761 0.9532 1.6521 0.9558 1.5154 0.9602
Cr 03352 09532 03304 09558 0.3030 0.9602
I A, 23239 09470 23193 0.9498 22728 0.9514
Az 24301 09468 24019 0.9550 2.3481 0.9552
A 1.6930 0.9586 1.5915 0.9622 1.5619 0.9642
Cr 03386 0.9586 03183 0.9622 0.3123 0.9642
18 1 A1 21662 09432 2.0582 09494 2.0272 0.9546
Az 22010 09386 2.0856 0.9420 2.0508 0.9426
A 1.5008 09454 1.4912 09626 1.3966 0.9704
Cr 03001 0.9454 02982 09626 0.2793 0.9704
I A 22982 09450 2.1555 09482 2.1164 0.9524
Ay 21105 09440 1.9448 0.9408 1.9102 0.9524
A 1.4795 09486 1.4779 09642 13793 0.9672
Cr  0.2959 0.9486 0.2955 0.9642 0.2758 0.9672
I a4, 20229 09586 1.9935 0.9502 1.9732 0.9500
Ay 2.1046  0.9476 2.0980 0.9514 2.0568 0.9552
A 1.4829 09578 1.3985 0.9654 1.3861 0.9688
Cr 02965 0.9578 0.2797 0.9654 0.2772 0.9688
40 25 1 A1 1.6897 0.9434 1.6451 09460 1.6038 0.9506
Ay L7183 09450 1.6280 0.9446 1.5938 0.9466
A 1.1840 09456 1.1663 09516 1.0205 0.9530
Cr 02368 0.9456 0.2326 0.9516 0.2141 0.9530
I A 16775 09424 1.5969 09472 1.5806 0.9496
Az 1.6073 09410 1.5809 0.9476 1.5522 0.9516
A 1.1529  0.9330 1.1413 0.9434 1.0940 0.9446
Cr 02305 0.9330 0.2282 09434 0.2188 0.9446
I 4, 1.8210 09464 1.6390 0.9466 1.6288 0.9456
A2 177080 0.9432 1.5931 0.9498 1.5635 0.9524
A 1.1747 0.9434 1.1603 0.9658 1.1080 0.9662
Cr 02349 0.9434 02320 0.9658 0.2216 0.9662
30 I A 1.5270 0.9464 1.4480 0.9464 1.4318 0.9488
A2 15876 0.9490 1.4791 0.9496 1.4690 0.9458
A 1.0659 09356 1.0515 0.9498 1.0126 0.9540
Cr 02131 09356 0.2103 0.9498 0.2025 0.9540
I A 14665 09446 1.4195 09456 1.4023 0.9508
Ay 15600 09490 1.5357 0.9502 1.5114 0.9528
A 1.0709 09422 1.0532 0.9526 1.0167 0.9558
Cr 02141 09422 0.2106 0.9526 0.2033 0.9558
I a4, 14659 09458 1.3977 09544 1.3786 0.9524
Ay 1.4508 0.9488 1.4014 0.9492 1.3854 0.9496
A 1.0155 0.8860 1.0015 0.9284 0.9703 0.9264
Cr 02031 0.8860 0.2003 0.9284 0.1940 0.9264
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Table 3. ABs and MSEs for parameter A = 1 with k = 3.

MLE UMVUE GPE

n m CS parameter MSE AB MSE AB MSE AB
15 8 I A1 0.9044 0.6579 0.6831 0.6034 0.8985 0.6484
A2 0.9747 0.6641 0.6594 0.5983 0.8690 0.6375

A3 1.1565 0.7332 0.7642 0.6453 0.9047 0.6683

A 0.4191 04764 0.0669 0.1887 0.2131 0.3889

CL 0.0167 0.0952 0.0026 0.0377 0.0085 0.0777

II A1 0.8766 0.6273 0.5731 0.5533 0.7646 0.6056
Ao 0.9397 0.6712 0.6930 0.5962 0.8729 0.6422

A3 1.0500 0.7135 0.7515 0.6306 0.9986 0.6780

A 0.3717 0.4430 0.0622 0.1816 0.2249 0.4049

CL 0.0148 0.0886 0.0024 0.0363 0.0089 0.0809

11 A 0.8219 0.6207 0.5681 0.5590 0.7584 0.6100
A2 0.8755 0.6487 0.6653 0.5974 0.8864 0.6399

A3 0.9057 0.6565 0.6559 0.5808 0.8058 0.6192

A 0.3080 0.4089 0.0768 0.2061 0.2589 0.3996

CL 0.0123 0.0817 0.0030 0.0412 0.0103 0.0079

15 12 1 A1 0.5313 0.5348 0.4429 0.4959 0.5287 0.5245
A2 0.5353 0.5198 0.4104 0.4783 0.4678 0.4953

A3 0.5386  0.5280 0.4083 0.4776 0.4356 0.4857

A 0.2164 0.3404 0.0409 0.1438 0.1387 0.3107

CL 0.0081 0.0600 0.0016 0.0287 0.0055 0.0621

II A1 0.5697 0.5389 0.4333 0.4922 0.4842 0.5011
A2 0.5075 0.5140 0.4037 0.4863 0.4400 0.4850

A3 0.5642 0.5400 0.4251 0.4886 0.4946 0.5187

A 0.2215 0.3524 0.0389 0.1411 0.1372 0.3074

CL 0.0088 0.0706 0.0015 0.0282 0.0054 0.0614

I 4 0.5667 0.5308 0.4078 0.4840 0.4845 0.5020
A2 0.5355 0.5414 0.4401 0.4805 0.4816 0.5033

A3 0.6234 0.5612 0.4503 0.5090 0.5281 0.5260

A 0.1853 0.3246 0.0444 0.1611 0.1226 0.2859

CL 0.0110 0.0653 0.0017 0.0322 0.0049 0.0535

30 12 1 A1 0.4477 0.4799 0.3345 0.4389 0.3969 0.4609
A2 0.5333 0.5100 0.4057 0.4686 0.4610 0.4940

A3 04639 0.4796 0.3695 0.4523 0.4123 0.4647

A 0.1761 0.3140 0.0402 0.1407 0.1372  0.3096

CL 0.0070  0.0599 0.0022 0.0261 0.0054 0.0599

II A1 0.5215 0.5199 0.3940 0.4689 0.4730 0.5002
A2 0.4925 0.5010 0.3638 0.4561 0.4353 0.4795

A3 0.5574 0.5329 0.4245 04796 0.4882 0.5128

A 0.1992  0.3359 0.0382 0.1405 0.1446 0.2981

CL 0.0079  0.0671 0.0014 0.0303 0.0053 0.0611

11 A 0.4350 0.4801 0.3810 0.4569 0.3977 0.4659
Ay 0.4981 0.5079 0.4049 04777 0.4666 0.4973

A3 0.4763 0.4921 0.3521 0.4508 0.4388 0.4882

A 0.1519 0.2975 0.0437 0.1606 0.1180 0.2811

CL 0.0060 0.0595 0.0016 0.0315 0.0048 0.0522
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Table 4. Length and coverage probability for parameter A = 1 with 95% confidence intervals and k = 3.

ACI UCI GCI

n m CS parameter Length CP Length CP Length CP
15 8 I A1 35764 09384 3.1726 0.9456 3.0931 0.9458
A2 39633 09480 3.1379 0.9490 3.0386 0.9550

A3 39869 09380 3.3460 0.9486 3.2483 0.9554

A 22154 09116 1.9736 0.9574 1.8590 0.9790

CrL 0.4430 09116 0.3947 0.9574 03718 0.9790

I PR 34922 09406 2.9824 09510 2.8984 0.9512
Ay 3.5806 09368 3.2224 0.9520 3.0961 0.9532

A3 37981 09320 3.3121 09410 3.1971 0.9464

A 2.1804 0.8976 1.9200 0.9590 1.8145 0.9800

CL 0.4360 0.8976 0.3840 0.9590 0.3629 0.9800

I A 34585 09368 29581 09484 2.8879 0.9494
A2 3.4447 09320 3.1200 0.9460 3.0508 0.9514

A3 34719 09290 3.0113 0.9422 29332 0.9492

A 2.0661 0.8544 1.8495 0.9564 1.7555 0.9636

CL 04132 0.8544 0.3699 0.9564 0.3511 0.9636

15 12 1 PR 2.7430 09376 2.5700 0.9478 2.5147 0.9530
Ay 27563 09424 24215 09476 23746 0.9476

A3 27621 09360 24625 09440 2.3914 0.9486

A 1.7931 0.8832 1.4954 0.9534 1.4885 0.9740

CL 0.3586 0.8832 0.2990 0.9534 0.2977 0.9740

II A 29248 09374 25213 09432 24506 0.9532
A2 2.6851 09422 24241 09460 2.3634 0.9490

A3 2.8517 09406 2.5263 0.9474 2.4906 0.9500

A 1.8128 0.9228 1.5082 0.9462 1.4941 0.9864

CL 0.3625 09228 0.3016 0.9462 0.2988 0.9864

I A 277680 09414 2.5388 09518 2.4538 0.9526
A2 2.8585 0.9420 2.4857 09470 2.4081 0.9516

A3 29420 09476 2.5956 09478 2.5360 0.9474

A 1.8305 0.8588 1.5531 0.9578 1.5262 0.9758

CL 0.3661 0.8588 0.3106 0.9578 0.3106 0.9758

30 12 1 A1 24911 09334 22728 09472 2.2325 0.9474
A2 27410 09386 2.3964 0.9498 2.3396 0.9494

A3 2.5583 09396 22855 09518 2.2251 0.9536

A 1.7443  0.9244 1.4454 0.9480 1.4407 0.9882

CL 0.3488 0.9244 0.2890 0.9480 0.2881 0.9882

I PR 27158 09334 24662 09436 2.4123 0.9504
A2 2.6833 09386 2.3658 09424 2.2994 0.9496

A3 27698 09336 2.5080 0.9530 2.4592 0.9508

A 1.8002 09136 1.4840 0.9544 1.4846 0.9850

CL 0.3600 09136 0.2968 0.9544 0.2969 0.9850

I A 2.5554 09370 23167 09532 2.2560 0.9536
A2 27057 09406 2.4285 0.9470 2.3637 0.9528

A3 27187 09310 2.3416 0.9488 2.3083 0.9496

A 1.7219 09310 1.4160 0.9546 1.4144 0.9928

CL 0.3443 09310 0.2832 0.9546 0.2828  0.9928
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Table 5. ABs and MSEs for parameter A = 0.8 with k = 5.

MLE UMVUE GPE

n m CS parameter MSE AB MSE AB MSE AB
10 8 I A1 0.1477 0.2607 0.0922 0.2226 0.1342 0.2491
Ay 0.1658 0.2754 0.1107 0.2438 0.1475 0.2653
A3 0.1388 0.2595 0.1030 0.2381 0.1205 0.2422
A4 0.2197 0.3237 0.1561 0.2874 0.2055 0.3047
As 0.2319 0.3245 0.1499 0.2856 0.1915 0.2996
A 0.0597 0.1897 0.0079 0.0696 0.0296 0.1486
CL 0.0024 0.0379 0.0003 0.0139 0.0012 0.0297
I A1 0.1471 0.2623 0.1089 0.2410 0.1465 0.2653
A2 0.1694 0.2796 0.1144 0.2513 0.1545 0.2745
A3 0.1798 0.2910 0.1258 0.2610 0.1690 0.2796
A4 0.1476  0.2586 0.0947 0.2254 0.1207 0.2419
As 0.1636  0.2806 0.1175 0.2487 0.1443  0.2652
A 0.0481 0.1652 0.0047 0.0529 0.0362 0.1571
CL 0.0019 0.0330 0.0002 0.0106 0.0014 0.0334
I PR 0.1559 0.2708 0.1098 0.2426 0.1457 0.2637
A2 0.1316  0.2510 0.0924 0.2221 0.1213 0.2411
A3 0.1358 0.2508 0.1010 0.2292 0.1355 0.2477
A4 0.1376  0.2528 0.0961 0.2262 0.1169 0.2368
As 0.1153 0.2371 0.0819 0.2084 0.1122 0.2289
A 0.0280 0.1264 0.0088 0.0761 0.0542 0.2146
CL 0.0011 0.0253 0.0004 0.0152 0.0022 0.0429
40 30 I A1 0.0241 0.1193 0.0218 0.1150 0.0228 0.1163
A2 0.0199 0.1080 0.0177 0.1039 0.0187 0.1050
A3 0.0264 0.1250 0.0239 0.1211 0.0262 0.1250
A4 0.0163 0.0985 0.0147 0.0951 0.0161 0.0981
As 0.0165 0.1090 0.0162 0.0996 0.0163 0.1010
A 0.0379 0.1753 0.0101 0.0876 0.0216 0.1360
CL 0.0013 0.0351 0.0004 0.0175 0.0009 0.0272
I PR 0.0162 0.0975 0.0151 0.0940 0.0155 0.0958
A2 0.0229 0.1159 0.0189 0.1027 0.0220 0.1140
A3 0.0223  0.1160 0.0202 0.1112 0.0225 0.1159
A4 0.0347 0.1430 0.0306 0.1378 0.0322 0.1387
As 0.0288 0.1300 0.0266 0.1255 0.0269 0.1267
A 0.0147 0.0951 0.0067 0.0678 0.0117 0.0936
CL 0.0009 0.0210 0.0003 0.0136 0.0005 0.0187
1II A1 0.0416 0.1569 0.0382 0.1530 0.0408 0.1536
A2 0.0199 0.1065 0.0164 0.1000 0.0194 0.1059
A3 0.0232 0.1167 0.0212 0.1142 0.0230 0.1151
A4 0.0265 0.1243 0.0232 0.1193 0.0253 0.1218
As 0.0129 0.0865 0.0114 0.0836 0.0126 0.0863
A 0.0169 0.0693 0.0141 0.0957 0.0185 0.0524
CL 0.0008 0.0239 0.0006 0.0191 0.0007 0.0244
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Table 6. Length and coverage probability for parameter A = 0.8 with 95% confidence intervals and k = 5.

ACI UCI GCI

n m CS parameter Length Cp Length CP Length CP
10 8 I Ve 1.4224 09358 1.1902 0.9490 1.1599 0.9460
Ay 1.5523 09416 1.3027 0.9492 1.2599 0.9518

A3 1.3747 09282 1.2497 0.9498 1.1955 0.9542

Ay 1.7473 09390 1.5076 0.9452 1.4350 0.9456

As 1.7722  0.9332 1.4938 0.9466 1.4283 0.9496

A 0.7288 0.8858 0.6408 0.9046 0.6227 0.9912

CL 0.1458 0.8858 0.1282 0.9046 0.1245 0.9912

II Ve 1.4827 0.9392 1.2651 0.9436 1.2246 0.9506
A2 1.5593 09416 1.3209 09414 1.2753 0.9512

A3 1.6209 0.9392 1.3542 09414 1.3051 0.9440

A4 1.3931 09344 1.1875 0.9474 1.1505 0.9500

As 1.4700 09320 1.3146 0.9466 1.2555 0.9534

A 0.7024 0.8274 0.6158 0.9248 0.5983 0.9874

CL 0.1232  0.8274 0.1405 0.9248 0.1197 0.9874

I R 1.4948 09376 12781 09420 1.2286 0.9512
A2 1.3147 09288 1.1883 0.9500 1.1429 0.9526

A3 1.3927 0.9364 1.1915 0.9368 1.1509 0.9474

Ay 1.3974 09360 1.1788 0.9410 1.1224 0.9478

As 1.2456 09304 1.0964 09412 1.0547 0.9514

A 0.6463 0.9482 0.5658 0.9612 0.5475 0.9654

CL 0.1293 09482 0.1132 09612 0.1095 0.9654

40 30 I A1 0.6107 09472 0.5796 0.9510 0.5678 0.9536
A2 0.5489 09456 0.5229 0.9488 0.5083 0.9490

A3 0.6360 0.9398 0.6082 0.9466 0.5937 0.9504

A4 0.4912  0.9450 0.4781 0.9462 0.4706 0.9518

As 0.4953 09438 0.4914 0.9480 0.4810 0.9482

A 0.3263 0.8466 0.2559 0.8738 0.2408 0.8682

CL 0.0653 0.8466 0.0512 0.8738 0.0482 0.8682

II A 04970 0.9450 0.4720 0.9460 0.4618 0.9480
A2 0.5829 09396 0.5553 0.9420 0.5437 0.9572

A3 0.5746  0.9454 0.5607 0.9500 0.5524 0.9592

Ay 0.7319 09422 0.6881 0.9480 0.6755 0.9506

As 0.6518 09412 0.6320 0.9466 0.6160 0.9512
A 0.3508 0.9222 0.2799 0.9328 0.2588 0.9550
CL 0.0702 09222 0.0560 0.9328 0.0518 0.9550
I A1 0.7861 09452 0.7583 0.9458 0.7458 0.9530
A2 0.5486 0.9466 0.5111 0.9470 0.5030 0.9522

A3 0.6022 09414 0.5778 0.9436 0.5668 0.9482

A4 0.6520 0.9420 0.6052 0.9458 0.5939 0.9568

As 0.4373 09454 04222 09456 0.4151 0.9516

A 0.3397 0.8280 0.2791 0.8588 0.2480 0.9098

CL 0.0679 0.8280 0.0558 0.8588 0.0496  0.9098
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Table 7. ABs and MSEs for parameter A = 1.5 with k = 2.

MLE UMVUE GPE
n m CS parameter MSE AB MSE AB MSE AB
8 4 I A1 24944  0.8778 1.1598 0.6892 1.8160 0.7893
Ay 2.1756  0.8515 1.1213 0.6764 1.6983 0.7830
A 1.2781 0.7094 0.1833 0.2967 0.3201 0.4520
CL 0.0511 0.1419 0.0073 0.0593 0.0128 0.0904
II A1 2.9986 0.8967 1.2260 0.6898 2.0953 0.7994
Ao 24832 09012 09879 0.6916 2.1051 0.8532
A 1.5344 0.7631 0.1864 0.2936 0.3391 0.4544
CL 0.0614 0.1526 0.0075 0.0587 0.0136 0.0908
11 A 2.1923 0.8681 1.2254 0.6812 1.9678 0.8001
A2 24287 09018 1.3633 0.7167 1.7113 0.8006
A 1.3145 0.7415 0.1660 0.2937 0.3285 0.4592
CL 0.0526 0.1483 0.0066 0.0587 0.0131 0.0918
6 I A1 0.9266 0.6340 0.5932 0.5510 0.8850 0.6155
A2 1.0730 0.6613 0.6305 0.5667 0.9303 0.6291
A 0.6041 0.5393 0.1115 0.2325 0.2303 0.3773
CL 0.0242 0.1079 0.0045 0.0465 0.0092 0.0755
II A1 1.0161 0.6344 0.5917 0.5415 0.8191 0.5856
Ao 1.1777  0.6966 0.6775 0.6023 1.0975 0.6718
A 0.6768 0.5612 0.1234 0.2513 0.2292 0.3688
CL 0.0271 0.1122 0.0049 0.0503 0.0092 0.0738
III A1 0.9431 0.6283 0.6129 0.5538 0.8611 0.6072
A2 1.0559 0.6496 0.5452 0.5333 0.8158 0.5981
A 0.5725 0.5204 0.1091 0.2263 0.2178 0.3707
CL 0.0229 0.1041 0.0044 0.0453 0.0087 0.0741
18 10 1 PR 0.4409 0.4621 0.3130 0.4179 0.3680 0.4384
A2 0.4605 0.4744 0.3288 0.4296 0.4191 0.4547
A 0.2951 0.3955 0.0688 0.1903 0.1305 0.2792
CL 0.0118 0.0791 0.0028 0.0381 0.0052 0.0558
I Va 0.3850 0.4353 0.2826 0.4022 0.3440 0.4189
A2 0.4935 0.4497 0.3237 0.4201 0.4025 0.4461
A 0.2804 0.3506 0.0689 0.1836 0.1246 0.2784
CL 0.0592 0.0701 0.0028 0.0367 0.0050 0.0557
11 A 04380 0.4590 0.2994 04111 03694 0.4345
A2 0.5103 0.5006 0.3637 0.4568 0.4322 0.4745
A 0.3311 0.4183 0.0846 0.2142 0.1266 0.2742
CL 0.0132 0.0837 0.0034 0.0428 0.0051 0.0549
14 I A1 0.2285 0.3531 0.1780 0.3275 0.2138 0.3447
A2 0.2445 0.3644 0.1908 0.3350 0.2241 0.3502
A 0.1330 0.2732 0.0420 0.1440 0.0875 0.2392
CL 0.0053 0.0546 0.0017 0.0288 0.0035 0.0478
II A1 0.2691 0.3811 0.2257 0.3592 0.2461 0.3717
Ay 0.2741 0.3835 0.2204 0.3646 0.2736  0.3803
A 0.1930 0.3285 0.0619 0.1848 0.0959 0.2395
CL 0.0077  0.0657 0.0025 0.0370 0.0038 0.0479
1 A 0.2832 0.3824 0.2231 0.3566 0.2556 0.3765
A2 0.2851 0.3928 0.2378 0.3724 0.2853 0.3866
A 0.2066 0.3408 0.0647 0.1891 0.0978 0.2419
CL 0.0083 0.0682 0.0026 0.0378 0.0039 0.0484
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Table 8. Length and coverage probability for parameter A = 1.5 with 95% confidence intervals and k = 2.

ACI UCI GCI
n m CS parameter Length CP Length CP Length CP
8 4 I A 5.2631 09368 39114 09444 3.6529 0.9496
Ay 577206 09488 3.8198 09498 3.6512 0.9514
A 3.0163 0.8872 2.2895 0.9120 1.9434 0.9754
CL 0.6033 0.8872 0.4579 0.9120 0.3887 0.9754
II A 6.0902 09434 3.9432 0.9468 3.6775 0.9498
A2 5.8048 0.9430 3.9812 0.9452 3.8268 0.9512
A 3.1102 09016 2.3321 09210 2.0065 0.9796
CL 0.6220 0.9016 0.4664 0.9210 0.4013 0.9796
I A 56171 09426 3.9056 0.9458 3.6667 0.9512
A2 59253 09444 4.0386 09458 3.7008 0.9512
A 3.0778 0.9000 2.3043 09120 1.9888 0.9802
CL 0.6156 0.9000 0.4609 0.9120 0.3978 0.9802
6 I A1 3.5681 09332 29565 09464 2.8403 0.9474
A2 37691 09366 3.0478 09410 2.8844 0.9470
A 22549 09340 19537 09434 1.7278 0.9752
CL 0.4510 09340 0.3907 0.9434 0.3456 0.9752
I PR 3.5446 09330 29156 0.9422 2.7464 0.9462
Ay 43117 09436 3.2654 0.9444 3.1132 0.9534
A 2.3220 09472  1.9916 0.9498 1.7832 0.9760
CL 0.4644 0.9472 03983 0.9498 0.3566 0.9760
I A 3.5460 09384 29513 09412 2.8149 0.9492
A2 3.8953 09414 2.8857 09512 2.7917 0.9526
A 22253 09316 19105 09336 1.6827 0.9682
CL 0.4451 09316 0.3821 0.9336 0.3365 0.9682
18 10 1 A 24408 09342 2.1683 0.9486 2.0952 0.9508
Ay 2.5841 09406 2.2233 0.9410 2.1536 0.9484
A 1.6182 0.9562 1.5328 0.9618 1.3915 0.9634
CL 0.3236  0.9562 0.3066 0.9618 0.2783 0.9634
I Ve 23735 09418 2.0624 0.9490 2.0092 0.9542
A2 24742 09426 2.1802 0.9428 2.1074 0.9528
A 1.5536 09450 1.4830 0.9468 1.3425 0.9620
CL 0.3107 0.9450 0.2966 0.9468 0.2685 0.9620
11 A 25179 09416 2.1440 0.9438 2.0609 0.9494
A2 2.6546 09332 2.3830 0.9482 2.2698 0.9498
A 1.6493 09500 1.5557 0.9658 1.4384 0.9716
CL 0.3299 0.9500 0.3111 0.9658 0.2877 0.9716
14 1 A 1.8426 09434 1.6696 0.9480 1.6386 0.9500
A2 1.8605 09352 1.7082 0.9422 1.6672 0.9484
A 1.2392  0.9420 1.2109 0.9510 1.1087 0.9566
CL 0.2478 0.9420 0.2422 09510 0.2217 0.9566
I Vi 1.9684 09386 1.8133 0.9466 1.7502 0.9492
Ao 1.9870 0.9402 1.8414 0.9428 1.7989 0.9510
A 1.3247 09446 1.2992 0.9592 1.1991 0.9684
CL 0.2649 0.9446 0.2598 0.9592 0.2398 0.9684
I A 1.9691 09352 1.8189 0.9444 1.7603 0.9494
A2 2.0290 09380 1.8744 0.9486 1.8230 0.9492
A 1.3364 09418 1.3102 0.9662 1.2171 0.9734
CL 0.2673 09418 0.2620 0.9662 0.2434 0.9734
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Table 10. Electrical insulation data sets of the failure times.

405

Lines Data
linel 0.185 0.217 0.351 0405 0423 0487 0.794 0860 1.219 1471 1502 2.193
lineIll 0.123 0.218 0.244 0.286 0.432 0469 0.707 0.753 0955 00981 1386 1.519
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Figure 2. Empirical distribution and fitted Exp models, P-P and Q-Q plots for X; and X, under the electrical insulation data

sets.
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Table 11. PT-II CS of electrical insulation data sets with designed censoring scenarios.

CS Types Data
I X 0.185 0217 0.351 0405 0423 0487 0.794 0.860
.¢) 0.123 0.218 0.244 0.286 0.432 0469 0.707 0.753
I X 0423 0487 0.794 0.860 1.219 1471 1502 2.193
X> 0432 0469 0.707 0.753 0955 0981 1386 1.519
111 X 0.351 0405 0423 0487 0.794 0860 1219 1471
X 0.244 0.286 0.432 0469 0.707 0.753 0.955 0.981

Table 12. Point estimates on L = 0.3 under the electrical insulation data sets.

CS par. MLE ESE UMVUE ESE GPE ESE
I A1 1.1170 0.1560 09774  0.1194 1.0751 0.1476
Ay 1.2812  0.2052 1.1211 0.1571 1.2380 0.2005
a4 1.1879  0.0886 1.0394  0.0678 1.1513 0.0733
Cr 0.6436 0.0080 0.6882  0.0061 0.6846 0.0074
I a4 17929 0.4018 1.5688  0.3076 1.7323  0.3922
Ay 2.1482  0.5769 1.8797  0.4417 2.0653 0.5689
A 1.9388 0.2368 1.6964  0.1813 1.8173 0.2232
Cr 04184 0.0213  0.4911 0.0163 0.4848 0.0208
mor A, 1.3765 0.2368 1.2044  0.1813 1.3224 0.2297
A 1.6051 0.3221 1.4045  0.2466 1.5476 0.3163
a 1.4734  0.1365 1.2892  0.1045 1.3994 0.1299
Cp 05580 0.0123  0.6132  0.0094 0.6101 0.0115

Table 13. Interval estimates on L = 0.3 under the electrical insulation data sets.

CS par. AClI[length] UClI[length] GCl[length]
I A1 (0.3430, 1.8910)[1.5481] (0.4822,2.0138)[1.5315] (0.4284, 1.9123)[1.4840]
Ay (0.3934,2.1691)[1.7757]  (0.5531, 2.3098)[1.7567]  (0.4938, 2.1662)[1.6724]
A (0.6045,1.7714)[1.1669]  (0.5110, 1.5679)[1.0569] (0.6457, 1.6906)[1.0450]
C;. (04686, 0.8187)[0.3501] (0.4796, 0.8167)[0.3371] (0.4928, 0.8253)[0.3325]
I A1 (0.5505, 3.0353)[2.4848] (0.7741, 3.2323)[2.4583] (0.6893, 3.0696)[2.3803]
Ay (0.6596, 3.6368)[2.9772] (0.9275, 3.8729)[2.9454]  (0.7825, 3.6322)[2.8497]
Pl (0.9850, 2.8926)[1.9077]  (0.9960, 2.8769)[1.8809]  (0.8510, 2.6856)[1.8346]
Cr  (0.1322,0.7045)[0.5723] (0.1509, 0.7012)[0.5503] (0.1643, 0.7047)[0.5404]
I Ay (0.4226,2.3303)[1.9076] (0.5943,2.4815)[1.8873] (0.5013, 2.3496)[1.8483]
Ay (0.4929,2.7174)[2.2246]  (0.6930, 2.8938)[2.2008]  (0.6381, 2.7819)[2.1439

[
A (0.7493,2.1974)[1.4481]
[

[ ]
(0.7575, 2.0209)[1.2634]
Cr  (0.3408, 0.7752)[0.4344] [ ]

[ ]
(0.7010, 1.8973)[1.1964]
(0.3573, 0.7727)[0.4154 [ ]

(0.3708, 0.7797)[0.4089

that the performance of generalized estimation is satisfactory, surpassing both MLE and UMVUE in the context of
interval estimation.

Example two (steel specimen data sets) The data sets contains the observed lifetimes of steel specimens tested
at kinds of subtly different stress levels[27]. To validate the theoretical findings, we conducted tests using three lines
of samples subjected to similarly high stress levels. These lines were designated as X;, X» and X3. The failure data
for these lines comprised n; = 24, n, = n3 = 20 observations each, as detailed in Table 14. The p-value with the KS
test of the steel specimen data sets are calculated as 0.7096, 0.6067 and 0.5776. Furthermore, Figure 4 illustrates
the empirical distribution in conjunction with the fitted exponential distribution, as well as CDF plots, P-P plots,
and Q-Q plots. These graphical representations suggest a strong alignment between the exponential distribution and
the empirical data. Thus, Exp(4), Exp(4,) and Exp(43) could fit the lifetimes of the steel specimens tested in Table
14, respectively.

Based on the original data presented in Table 14 and the analogous CS employed in the simulation studies, three
lines of PT-1I data were generated, each comprising m| = m, = m3 = 16 observations. The detailed samples are
subsequently provided in Table 15.
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Figure 3. Trace plots of generalized method with 95% credible intervals of A1, A2, 4, Cr, under the electrical insulation data

sets.

Table 14. Steel specimen data sets of the failure times.

Lines Data
linel 0.206 0231 0.283 0.370 0413 0474 0523 0.597 0.605 0.619 0.727 0.815
0935 1.056 1.144 1336 1.580 1.786 1.826 1943 2.214 3.107 4.510 6.297
linell 0.196 0.227 0.250 0.271 0.308 0.347 0.393 0475 0.548 0.669 0.799 0.879
0975 1.154 1388 1.705 2.073 2211 2.925 4257
lineIlI  0.166 0.184 0.241 0.251 0.273 0312 0.371 0418 0.493 0.562 0.683 0.760
0.830 0.981 1306 1.463 1.842 1867 2.220 2978

According to Table 15, the corresponding point estimates and the ESE are provided in Table 16, while the interval
estimates for AL with a confidence interval level of 95% are given in Table 17. Figure 5 displays a generalized
estimation trace plot in the steel specimen data sets.

6. Conclusions

The PCI is widely used in practice to measure the stability of production processes and the consistency of
product quality. For companies, a low PCI usually means that the production process has large variations and
the product quality is not yet at the desired level. In this case, companies should strengthen quality control and
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Table 15. PT-II CS of steel specimen data sets with designed censoring scenarios.

CS Types Data
I X 0.206 0.231 0.283 0370 0413 0474 0.523 0.597
0.605 0.619 0.727 0.815 0935 1.056 1.144 1.336
X 0.196 0.227 0.250 0.271 0308 0.347 0.393 0475
0.548 0.669 0.799 0.879 0975 1.154 1.388 1.705
X3 0.166 0.184 0.241 0.251 0273 0312 0371 0418
0493 0.562 0.683 0.760 0.830 0981 1306 1.463
I X 0.605 0.619 0.727 0.815 0.935 1.056 1.144 1.336
1.580 1.786 1.826 1943 2214 3.107 4.510 6.297
X5 0.308 0.347 0.393 0475 0548 0.669 0.799 0.879
0.975 1.154 1388 1.705 2.073 2211 2925 4.257
X3 0.273 0.312 0371 0418 0.493 0.562 0.683 0.760
0.830 0.981 1306 1463 1.842 1.867 2.220 2978
1II X 0413 0474 0523 0597 0.605 0.619 0.727 0.815
0935 1.056 1.144 1336 1.580 1.786 1.826 1.943
X 0.250 0271 0.308 0.347 0.393 0475 0.548 0.669
0.799 0.879 0975 1.154 1388 1.705 2.073 2211
X3 0.241 0251 0273 0312 0371 0418 0.493 0.562
0.683 0.760 0.830 0981 1306 1463 1.842 1.867

Table 16. Point estimates on L = 0.2 under the steel specimen data sets.

CS par. MLE ESE  UMVUE ESE GPQ ESE
I A1 0.5565  0.0794 1.0088  0.0636 0.6458 0.0756
A2 1.0038 0.0630 0.8500 0.0452 0.9651 0.0607
A3 1.0790 0.0728 1.0023  0.0628 1.0592 0.0724
A 07322 02036 09415 0.0186 0.7650 0.0196
Cr 0.8536 0.0010 0.8117 0.0007 0.8470 0.0008
Ir A 06253 0.0274 04964  0.0154 0.6359 0.0265
A 11221 0.0787  0.9380  0.0550 0.6991 0.0611
A3 0.8186 0.0419 1.0760  0.0324 0.7371 0.0360
A 07663 0.0244  0.6619  0.0103 0.6420 0.0114
Cr 0.8467 0.0005 0.8676  0.0004 0.8716 0.0005
o A, 0.8043 0.0404 09202  0.0339 0.7259 0.0348
Ay 0.7510 0.0852 1.1487  0.0525 1.0854 0.0750
A3 07725 0.0873  0.9051 0.0512 1.1409 0.0843
A 07747 0.0404 09692  0.0198 0.8555 0.0242
Cr 0.8451 0.0010 0.8062  0.0008 0.8289 0.0009

Table 17. Interval estimates on L = 0.2 under the steel specimen data sets.

CS

AClI[length]

UClI[length]

GCl[length]

(0.2182, 0.8592)[0.6410]
(0.5119, 1.4956)[0.9837]
(0.5503, 1.6077)[1.0574]
(0.4891, 1.0417)[0.5527]
(0.7917, 0.9022)[0.1105]

(0.2151, 0.8464)[0.6313]
(0.5182, 1.4719)[0.9537]
(0.6111, 1.6531)[1.0420]
(0.6743, 1.2087)[0.5345]
(0.7583, 0.8651)[0.1069]

(0.3410, 0.9707)[0.6296]
(0.5430, 1.4878)[0.9447]
(0.5835, 1.6110)[1.0275]
(0.5148, 0.9496)[0.4348]
(0.8101, 0.8970)[0.0870]

I

(0.2889, 0.9317)[0.6428]
(0.5723, 1.6718)[1.0996]
(0.4175, 1.2196)[0.8022]
(0.3952, 0.8613)[0.4661]
(0.8077, 0.9110)[0.1032]

(0.2927, 0.9288)[0.6361]
(0.5719, 1.5471)[0.9752]
(0.6561, 1.4048)[0.7487]
(0.4028, 0.8610)[0.4581]
(0.8078, 0.9074)[0.0996]

(0.3488, 0.9725)[0.6237]
(0.3787, 1.0527)[0.6740]
(0.4003, 1.1265)[0.7262]
(0.5437, 0.9889)[0.4452]
(0.8022, 0.8913)[0.0890]

I

(0.4102, 1.1984)[0.7882]
(0.5830, 1.7189)[1.1359]
(0.3840, 1.5097)[1.1258]
(0.5537, 1.1626)[0.6089]
(0.7675, 0.8893)[0.1218]

(0.5610, 1.3177)[0.7567]
(0.6004, 1.7147)[1.1143]
(0.5518, 1.5928)[1.0410]
(0.6935, 1.2448)[0.5513]
(0.7510, 0.8613)[0.1103]

(0.3876, 1.1084)[0.7208]
(0.5978, 1.6490)[1.0512]
(0.6307, 1.6503)[1.0196]
(0.5554, 0.9939)[0.4385]
(0.8012, 0.8889)[0.0877]

Stat., Optim. Inf. Comput.

Vol. 14, July 2025



Z.CHU, L. WANG, Y. TRIPATHI AND S. DEY 409

CDF Plot ( X1) P-P Plot ( X1) Q-Q Plot ( Xy)
|
1.00 o 6
Distribution . ~
Empirical e
— Theoreticat *
0.75 .
0.75 .’ .
o
=4
5 N £
« S " g
a 3 . °
g o080 £080 8
=3 2
£ ®. a
. .
B . & <
o 2 <
025 025 . ’!
.
. B
o
. g
0.00 f
0. . : . . . 0 . . .
2 4 6 0.00 0.25 0.50 075 1.00 2 4 6
X4 Fitted CDF Fitted quantile
CDF Plot ( Xz) P-P Plot (Xz) Q-Q Plot (Xz)
1 . .
1.00 . 4
Distribution .
Empirical '-( .
— Theoretical ’
075 B i
- 3
" . 2
a .o,
S g .
8os0 ., ] . 7
< o g2
£ B 5
i . £
w -
. »
025 . <
- 1 <l
o A
. o
. o
0004 ,* poer”
T T T v T o i v v
2 3 4 0.00 025 0.50 075 1.00 1 2 3 4
Xz Fitted CDF Fitted quantile
CDF Plot ( X3) P-P Plot ( X3) Q-Q Plot ( X3)
1
1.00 3
Distribution & 3
Empirical /:’
— Theoretical o
0.75 o .
.,
w o 2 :
a ., c2
o o S oo
= - £ .
8050 =
=1 S .
£ o, 5 o
i o E
o’ 1 ,
0.25 o -
“ K
. .
. ,.’.
. .’,."
0.00 |l
2 0.00 0.25 0.50 0.75 1.00 1 2 3
Fitted CDF Fitted quantile

Figure 4. Empirical distribution and fitted Exp models, P-P and Q-Q plots for X;, X, and X3 under the steel specimen data
sets.

improve production methods to enhance overall product quality. However, if the PCI is too high, it can mean that
the quality of the product exceeds the actual needs or design requirements. This can lead to wasted resources and
slower production. In such cases, companies can consider slightly relaxing quality control standards while still
meeting customer needs—to speed up production and reduce costs. By adjusting quality management strategies
with care, companies can improve efficiency while maintaining acceptable quality levels.

Building upon this practical context, this paper proposes a product life performance index for multiple production
lines under the PT-II CS condition, assuming that product lifetimes follow an exponential distribution. Comparison
parameter and index estimations using MLE, GPE, and UMVUE. The simulation results show that UMVUE excels
in point estimation, GCI is superior in interval estimation, and MLE performs least favorably among the methods
evaluated. Although GPE achieves higher estimation accuracy, especially in interval inference, it comes at the
cost of increased computational time. Therefore, investigating the trade-off between accuracy and computational
efficiency, particularly in large-scale applications, remains an important direction for both theoretical research and
practical implementation. This study is based on the assumption of exponentially distributed data. However, in
practical applications, there are datasets that do not fit the exponential distribution well. Conducting simulations
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Figure 5. Trace plots of generalized method with 95% credible intervals of A1, A5, 43, 4, Cr under the steel specimen data
sets.

under misspecified distributions (e.g. Weibull or log-normal distributions) to evaluate the robustness of the method
could be a promising direction for future research. Although estimation issues are discussed within the context of the
exponential model in multiple production lines PT-II CS, the findings can be extended to other distributions, such as
Burr XII, Pareto and Lomax, with appropriate adjustments. For future research, considering the influence of varying
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effects across multiple product lines, it will be of interest to address the optimal design problem of synthesizing a
single product line PCI into an overall PCI, a topic that will be explored in forthcoming studies.
Appendix

A. Proof of Theorem 1

By taking derivatives of £(A;) with respect to parameter A; in (7), the maximum likelihood estimator of A;,i =

1,2,..., k could be obtained via following likelihood equation as
0t(A A A
(1) :0’65( 2) =O,...,M=O,
3/11 (9/12 3/lk

then the maximum likelihood estimator of A; denoted by /ii can be derived. Taking the second derivative of (7) then
we get
2(7. .
O _ _mi iy k.
042 A2

4

it can be shown that the log-likelihood function is strictly concave with respect to 4;, as its second derivative is less
than zero. This implies that the log-likelihood function has at most one maximum point. Therefore, A; is unique.

B. Proof of Theorem 4

Let X; = (X;1, Xi2, . . ., Xin,;) be the multiple production lines sample from Exp(A;) with sample size n;, m; and
CSR; = (ri1,Fi2, - - - » Tim; ) - Let T;; be the total failure time of all products in the first time period, T}, for the second

time period, so on and so forth, Tj,,, for the last time period. The total test time is 7; = Z;’.Zl Tij = ZTzil xi;j(1+7ij).
It is observed that
T = nix;
Tio = (ni —rip — 1) (xi2 = xi1)
Timg = [ni = 2050 iy + 1] Ky = iy,
Thus, we find that T;,T;2,...,T;,, are independent and identically distributed as the standard exponential
distribution. Therefore, it is directly conducted that the quantities
U; = 24T ~ ¥*2my),i=1,2,.. .k,
further, it is found that
y U;
Adi=—,i=1,2,...,k
i 2T, l
Therefore, the assertion is shown.
C. Proof of Theorem 5
Known by the invariance of maximum likelihood, we have ¢ Ly =1- ’%L From (4), (9) and Theorem 4, we

get
E() = A
m; — 1
so A; is biased estimators of ;. Therefore, it is modified as

g=mit
T;
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moreover, y
E(1;) = A;.
Therefore, A; is the unbiased and uniform estimate of 1;. We easily show that A; is the UMVUE of A;.
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