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Abstract Process capability indices have been widely used to assess process performance to drive continuous improvement
in quality and productivity, with larger ones being better for life cycle performance indicators. In this paper, an overall process
capability index is proposed for multiple production lines. When the lifetime of units follows an exponential distribution and
differences in testing facilities are taken into account, the maximum likelihood estimation, uniformly minimum variance
unbiased estimation, and generalized estimation for the lifetime performance index were investigated. In order to investigate
the advantages of each method, extensive Monte Carlo simulations are carried out. Finally, practical applications of the
proposed methods are demonstrated through the analysis of two real-life data sets.
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1. Introduction

Product quality is a critical issue in both industrial production and economic management, significantly
influencing an enterprise’s market competitiveness and sustainability. From the consumer’s perspective, there is a
strong preference for high-quality products; from the viewpoint of the company’s production management, the focus
is on ensuring a continuous and stable production process, along with a reliable final product. To assess whether
the production process meets established quality standards, process capability indices (PCIs) have been developed.
These indices are widely used in traditional industries such as automotive manufacturing, semiconductors, and
integrated circuit assembly to evaluate whether product quality aligns with specified requirements.[36] In recent
years, there has been growing interest in simple numerical indicators that reflect the long-term performance of
a product. Thus, research on PCIs has seen a significant increase. Initially, researchers introduced two-sided
specification limits to ensure that the useful lifetimes of the product remain within the specified upper and lower
limits. If the actual lifetime of a product falls below the lower limit or exceeds the upper limit, the product is
deemed nonconforming. Such assessments can be carried out using the following indicators: 𝐶𝑝, 𝐶𝑝𝑚, 𝐶𝑝𝑘 , 𝐶𝑝𝑚𝑘

et al. For more details on two-sided specification limits PCIs, one may refer to some pioneers’ contributions of
Jaran et al.[1], Kane[2], Chen et al.[3], Pearn et al.[4], and others. However, for most products, both consumers
and companies generally prefer those with longer service lifetimes. Regarding quality characteristics where a larger
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388 EVALUATION OF PROCESS CAPABILITY INDEX

value is preferable, one-sided specification limits for PCI 𝐶𝐿 = (𝜇 − 𝐿)/𝜎 have been developed, here 𝜇, 𝜎, and 𝐿
represent the process mean, standard deviation and specification lower limit, respectively. The PCI 𝐶𝐿 has been
widely adopted due to its simplicity and alignment with practical quality characteristics. Numerous authors have
discussed it extensively in their studies, for example, Montgomery[5], Guo et al.[6], Wu et al.[18], among others.

In reliability life testing, censoring schemes (CSs) are frequently employed to facilitate the acquisition of failure
data. Among all CSs, Type-I and Type-II CSs are the most fundamental. Type-I censoring terminates the test when
a predetermined time is reached, while Type-II censoring stops the test when a specified number of failures occur.
These schemes are designed to balance the time and cost constraints of testing with the need for accurate and reliable
data, allowing the estimation of failure times and rates with relatively small sample sizes and shorter test durations.
To enhance test flexibility, progressive Type-I and progressive Type-II censoring schemes (PT-II CS) have been
further implemented in life testing and reliability analysis. These schemes permit the removal of the surviving test
units at various stages of the experiment, providing greater flexibility in experimental design. Interested readers may
refer to the monographs of Lawless[33], Balakrishnan and Cramer[34] as well as extensive references therein. In
practice, PT-II CS are most popular for their flexibility and efficiency. It has been implemented as follows: Suppose
𝑛 independent and identically distributed units are placed on the test with predefined CS 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑚), 𝑚 ≤ 𝑛
and

∑𝑚
𝑗=1(𝑟 𝑗 + 1) = 𝑛. When failure time 𝑥1 occurs, 𝑟1 units are randomly removed from the remaining surviving

items. When failure time 𝑥2 occurs, 𝑟2 units are randomly removed from the remaining surviving items. Others are
similar. When failure time 𝑥𝑚 occurs, all working units are removed and the experiment is stopped. As specifically
illustrated in Figure 1.

0 X1 X2 X3 Xm-1 Xm

r1 rmr2 r3 rm-1

…

Figure 1. The sketch of the PT-II scenario.

In general, the normal distribution is the most widely used, so quality fluctuation usually follows the normal
distribution by default when process stability is assumed. However, in the real production environment, due to the
interaction of many factors, the obtained process output data do not always conform to the normal distribution and
may sometimes present a skewed distribution. As a result, the calculated PCI may deviate. Unlike many PCIs that
assume a normal distribution. Keller et al.[10] point out that the life of electronic components tends to follow an
exponential, gamma, and Weibull distribution. EL-Sagheer et al.[12] researched PCI using the Pareto model. Lee
et al.[9] indicate that product lifetime distribution is mostly an exponential model. Therefore, to better align with
actual production needs, a flexible manufacturing process suitable for multiple production lines has been proposed.

With the advancement of manufacturing, companies are increasingly adopting multiple production lines to
produce identical or similar products in parallel. This strategy aims to improve production efficiency, meet market
demands, and address production uncertainties. In this context, focusing solely on the process capability of a
single production line is no longer sufficient to comprehensively reflect the performance of the entire production
system. Therefore, PCIs for multiple production lines have been proposed to provide a holistic assessment of
overall performance. From an application perspective, one potential benefit of multiple production lines is that
they address the challenge of inspecting all units simultaneously. Inspectors often face difficulties in testing all units
at once, making multiple production lines a flexible solution for real-world experimentation. In addition, practical
limitations, such as the lack of the equipment necessary to test all units simultaneously, make multiple production
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lines a more efficient method for testing units. In the study of PCIs, most scholars’ research has focused primarily
on single production lines. For example, the PCIs proposed by Akdoğan et al. [17] Ahmadi et al. [19] are based on
a single production line. Recently, Wu et al. [7] introduced the PCI for multiple production lines. This paper aims to
explore a novel approach to constructing a multi-production line PCI, distinct from those presented in other studies.
We will leverage the information from multiple production lines to build a comprehensive and robust PCI.

In practical experimental designs, multiple production lines are widely adopted for their efficiency in improving
the accuracy of the estimation by using stratification within each line. However, when extending a single production
line to multiple production lines in a setting for large-scale product evaluations, differences in different testing
facilities (DDTF) emerge as critical sources of bias due to inherent experimental limitations. Specifically, factors
such as instrument drift over time, technician-dependent sorting inconsistencies, or shifts in operational protocols
across cycles (e.g., modifications in subgroup ranking criteria or uneven allocation of sample units) can disrupt
the comparability of rankings and measurements between lines. Therefore, it’s necessary to take the DDTF into
account in data analysis, otherwise ignoring inter-group variability might lead to biased and inaccurate results. See,
for example, some resent contributions of Ahmadi et al.[29], Zhu[30], Wang et al.[22] and references therein.

Some of the potential contributions of this paper include the following: Firstly, based on the established theoretical
framework, this study examines the differential effects of PCI on different production lines. To our knowledge, there
is a relative paucity of research dedicated to evaluating PCI in the context of multiple production lines under the PT-II
CS framework. Secondly, to enrich parameter estimation methods, this paper introduces generalized estimation and
uniformly minimum variance unbiased estimation (UMVUE). These methods offer better performance compared
to maximum likelihood estimation (MLE), providing more accurate and reliable estimates.

The article is organized as follows. The model will be described by us in Section 2. In Section 3, we present the
maximum likelihood estimator and asymptotic confidence interval of unknown parameters and the PCI. Section
4 develops point and interval estimates for generalized estimation and UMVUE under the assumption of an
exponential distribution. Numerical studies are presented in Section 5. Finally, Section 6 provides some brief
concluding remarks.

2. Model description and likelihood function

In this part, the PCI data description is proposed under multiple production lines PT-II CS and the likelihood
function with compact expression is further established.

2.1. Testing strategy and data description
Suppose 𝑛 identical units are carried out under PT-II CS with 𝑘 production lines and each line has 𝑛𝑖 (𝑖 =

1, 2, · · · , 𝑘) units satisfying
∑𝑘

𝑖=1 𝑛𝑖 = 𝑛. For each production line, the predefined failure number 𝑚𝑖 and CS
𝑅𝑖 = (𝑟𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑚𝑖 ) are provided in advance for 𝑖 = 1, 2, . . . , 𝑘 . Let 𝑥𝑖 𝑗 be the failure time 𝑗-th in the 𝑖-th line.
In this paper, we assume that the lifetime of products follows the exponential distribution (Exp). Under the PT-
II censoring scheme, which arise from environmental factors, material resources, machinery, and experimental
conditions, cannot be ignored. These differences are referred to as DDTF. In addition, it is assumed that the
parameters of the model 𝜆 are different in the 𝑘 production lines. The same model reflects the common failure
mechanism of the production lines. A set of PT-II CS data could be observed as follows.

Lines Samples Distributions
1 (𝑥11, 𝑟11), (𝑥12, 𝑟12), . . . , (𝑥1𝑚1 , 𝑟1𝑚1) Exp(𝜆1)
2 (𝑥21, 𝑟21), (𝑥22, 𝑟22), . . . , (𝑥2𝑚2 , 𝑟2𝑚2) Exp(𝜆2)
...

...
...

...
...

𝑘 (𝑥𝑘1, 𝑟𝑘1), (𝑥𝑘2, 𝑟𝑘2), . . . , (𝑥𝑘𝑚𝑘 , 𝑟𝑘𝑚𝑘 ) Exp(𝜆𝑘)

(1)
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under the multiple production lines condition, the probability density function (PDF) and cumulative distribution
function (CDF) of the exponential distribution in 𝑖-th (𝑖 = 1, 2, . . . , 𝑘) line is

𝑓 (𝑥;𝜆𝑖) = 𝜆𝑖𝑒
−𝜆𝑖 𝑥 , 𝑥 > 0, 𝜆𝑖 > 0, (2)

𝐹 (𝑥;𝜆𝑖) = 1 − 𝑒−𝜆𝑖 𝑥 , 𝑥 > 0, 𝜆𝑖 > 0. (3)

The PCI is defined by

𝐶𝐿 = 1 − 𝐿𝜆. (4)

2.2. Likelihood function
Let 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚𝑖 ), 𝑖 = 1, 2, · · · , 𝑘 be PT-II CS data (1) from Exp(𝜆𝑖) under 𝑖-th production line, then

the likelihood function of 𝜆𝑖 can be written by

𝐿 (𝜆𝑖) = 𝑐𝑖

𝑚𝑖∏
𝑗=1

𝑓 (𝑥𝑖 𝑗 ) [1 − 𝐹 (𝑥𝑖 𝑗 )]𝑟𝑖 𝑗 ∝ 𝜆𝑖
𝑚𝑖 𝑒

−∑𝑚𝑖
𝑗=1𝜆𝑖 𝑥𝑖 𝑗 (1+𝑟𝑖 𝑗 ) , 𝑖 = 1, 2, . . . , 𝑘, (5)

where 𝑐𝑖 is the normalizing constant. Further, the full likelihood function of 𝜆 can be expressed as follows

𝐿 (𝜆) =
𝑘∏
𝑖=1

𝐿 (𝜆𝑖) =
𝑘∏
𝑖=1

𝑚𝑖∏
𝑗=1

𝜆𝑖𝑒
−𝜆𝑖 𝑥𝑖 𝑗 (1+𝑟𝑖 𝑗 ) . (6)

In addition, since the DDTF cannot be ignored and its equivalent cannot be explicitly obtained. Therefore, we
will present the weight coefficient in the following contexts.

3. Classical estimation

In this Section, the MLE and approximate confidence intervals (ACIs) of model parameters and PCI will be
presented.

3.1. Maximum likelihood estimation
From (5), the log-likelihood function of 𝜆𝑖 can be rewritten by

ℓ(𝜆𝑖) = 𝑚𝑖 ln𝜆𝑖 −
𝑚𝑖∑
𝑗=1

𝜆𝑖𝑥𝑖 𝑗 (1 + 𝑟𝑖 𝑗 ), (7)

moreover, the log-likelihood function of 𝜆 can be represented as

ℓ(𝜆) =
𝑘∑
𝑖=1

𝑚𝑖 ln𝜆𝑖 −
𝑘∑
𝑖=1

𝑚𝑖∑
𝑗=1

𝜆𝑖𝑥𝑖 𝑗 (1 + 𝑟𝑖 𝑗 ). (8)

Theorem 1. For a given CS 𝑅𝑖 and predefined failure number 𝑚𝑖 > 0, the MLE of parameter 𝜆𝑖 is obtained uniquely
as follows

�̂�𝑖 =
𝑚𝑖∑𝑚𝑖

𝑗=1 𝑥𝑖 𝑗 (1 + 𝑟𝑖 𝑗 )
, 𝑖 = 1, 2, . . . , 𝑘 . (9)

Proof. See Appendix A. □
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Furthermore, based on the maximum likelihood invariance, the PCI 𝐶𝐿 could be further estimated respectively
as �̂�𝐿 (𝜆) = 𝐶𝐿 (�̂�), where �̂� is the maximum likelihood estimator of the population parameter 𝜆 that is estimated as

�̂� =

∑𝑘
𝑖=1 �̂�𝑖�̂�𝑖∑𝑘
𝑖=1 �̂�𝑖

, (10)

where �̂�𝑖 is the corresponding weight coefficient and �̂�𝑖 = 1/𝑣𝑎𝑟 (�̂�𝑖). In addition, 𝑣𝑎𝑟 (�̂�𝑖) is the observed variance
of estimator of 𝜆𝑖 under 𝑖-th production line that would be reported later.

Now, using (4), (9) and (10) the index 𝐶𝐿 of MLE can be obtained as

�̂�𝐿 = 1 − 𝐿

∑𝑘
𝑖=1 �̂�𝑖�̂�𝑖∑𝑘
𝑖=1 �̂�𝑖

, (11)

where �̂�𝑖 is the corresponding weight and the same as defined above.

3.2. Approximate confidence interval
In this subsection, the ACIs of unknown parameters are constructed by using asymptotic theory. Suppose

v = (v1, v2, . . . , v𝑘) with v𝑖 = 𝜆𝑖 , 𝑖 = 1, 2, . . . , 𝑘 , by differentiating from (6) twice with parameters 𝜆1, 𝜆2, . . . , 𝜆𝑘 ,
the second derivative of ℓ(v) = ℓ(𝜆1, 𝜆2, . . . , 𝜆𝑘) could be obtained. Thus, the expected Fisher information matrix
is given by

𝐼 (v̂) = 𝐸

[
− 𝜕2ℓ

𝜕v𝑖𝜕v 𝑗

]
𝜆=�̂�

=

©­­­­­­«

𝑚1
�̂�2

1
𝑚2
�̂�2

2
. . .

𝑚𝑘

�̂�2
𝑘

ª®®®®®®¬
. (12)

Theorem 2. Under mild regularity conditions, the asymptotic distribution of MLE v̂ is v̂ − v → 𝑁 (0, 𝐼−1(v̂)), where
𝐼−1(v̂) is the inverse of the observed Fisher information matrix, i.e.

𝐼−1(v̂) =
©­­­­«

𝑣𝑎𝑟 (�̂�1) 𝑐𝑜𝑣(�̂�1, �̂�2) · · · 𝑐𝑜𝑣(�̂�1, �̂�𝑘)
𝑐𝑜𝑣(�̂�2, �̂�1) 𝑣𝑎𝑟 (�̂�2) · · · 𝑐𝑜𝑣(�̂�2, �̂�𝑘)

...
...

. . .
...

𝑐𝑜𝑣(�̂�𝑘 , �̂�1) 𝑐𝑜𝑣(�̂�𝑘 , �̂�2) · · · 𝑣𝑎𝑟 (�̂�𝑘)

ª®®®®¬
=

©­­­­­­«

�̂�2
1

𝑚1
�̂�2

2
𝑚2

. . .
�̂�2
𝑘

𝑚𝑘

ª®®®®®®¬
. (13)

Proof. Using the multivariate asymptotic normality of the maximum likelihood estimation, the result could be
established directly. □

For arbitrary 0 < 𝜉 < 1, 100(1 − 𝜉)% ACI of 𝜆𝑖 can be constructed as(
�̂�𝑖 − z𝜉/2

√
𝑣𝑎𝑟 (�̂�𝑖), �̂�𝑖 + z𝜉/2

√
𝑣𝑎𝑟 (�̂�𝑖)

)
, 𝑖 = 1, 2, . . . , 𝑘, (14)

where z𝜉 is upper 100𝜉% percentile of standard normal distribution.
Furthermore, in order to determine confidence intervals for the population of 𝑔(v), delta technique and asymptotic

distribution theory are used here.

Theorem 3. Let 𝑔(v) be arbitrary continuous function of parameter v, �̂�(v) = 𝑔(v̂) be the MLE of 𝑔(v), then the
approximate confidence interval of 𝑔(v) can be constructed as(

𝑔(v̂) − z𝜉/2
√
𝑣𝑎𝑟 (𝑔(v̂)), 𝑔(v̂) + z𝜉/2

√
𝑣𝑎𝑟 (𝑔(v̂))

)
, (15)

where 𝑣𝑎𝑟 (�̂�(v)) = Δ𝑔⊤(v̂)𝐼−1(v̂)Δ𝑔(v̂) and Δ𝑔(v̂) =
(
𝜕𝑔 (v)
𝜕𝜆1

, 𝜕𝑔 (v)𝜕𝜆2
, · · · , 𝜕𝑔 (v)𝜕𝜆𝑘

)⊤��
𝜆𝑖=�̂�𝑖

.
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Proof. Using Theorem 2 and applying the delta method, the asymptotic distribution of 𝑔(v̂) could be obtained
consequently, and the details are omitted for concision. □

Obviously, when the function 𝑔(v) refers to 𝜆 and PCI, the relevant ACI can be established directly. Details are
omitted for simplicity and to save space.

4. Pivot quantities based on generalized inference

In this Section, we will inference the parameters 𝜆1, 𝜆2, . . . , 𝜆𝑘 , 𝜆, 𝐶𝐿 using generalized estimation and UMVUE.

4.1. Generalized inference
Although classical estimation methods have long been established in the statistical domain, recent developments

have introduced generalized estimation. Generalized estimation offers several advantages over classical methods,
particularly in complex scenarios where standard techniques often fail to provide satisfactory results, necessitating
the use of asymptotic approximations. The robustness and flexibility of generalized pivot estimation (GPE) and
generalized confidence intervals (GCI) have been widely recognized and applied in various fields, including
regression analysis, analysis of variance, mixed models, and growth curve analyses. These applications demonstrate
the superiority of generalized estimation in handling complex statistical problems and ensuring reliable and
repeatable results. Recent research has further expanded the scope and applicability of generalized estimation.
Studies by Tsui and Weerahandi [32] and Weerahandi [14] have laid the foundational work, and subsequent research
has built upon these contributions to address a broader range of statistical challenges.

Theorem 4. The quantity

𝑈𝑖 = 2𝜆𝑖
𝑚𝑖∑
𝑗=1

𝑥𝑖 𝑗 (1 + 𝑟𝑖 𝑗 ) ∼ 𝜒2(2𝑚𝑖), 𝑖 = 1, 2, . . . , 𝑘 . (16)

Proof. See Appendix B. □

From Theorem 4, it follows that for a given u𝑖 ∼ 𝜒2(2𝑚𝑖), the equation

�̌�𝑖 =
u𝑖

2
∑𝑚𝑖

𝑗=1 𝑥𝑖 𝑗 (1 + 𝑟𝑖 𝑗 )
(17)

has a unique solution with respect to 𝜆𝑖 , denoted as �̌�𝑖 .
By repeating the calculation of Equation (17) B times, then calculate their average to get �̌�𝑖 , and 𝑣𝑎𝑟 (�̌�𝑖) can

be calculated based on the B values of �̌�𝑖 . Therefore, the pivotal quantities based generalized estimator for 𝜆 and
overall PCI 𝐶𝐿 can be expressed as

�̌� =

∑𝑘
𝑖=1 �̌�𝑖�̌�𝑖∑𝑘
𝑖=1 �̌�𝑖

, (18)

�̌�𝐿 = 1 − �̌�𝐿, (19)

where �̌�𝑖 = 1/𝑣𝑎𝑟 (�̌�𝑖).
In Algorithm 1, the process of calculating GPE and GCI using generalized estimation is introduced in detail. It

is crucial to perform 𝑁 iterations to verify the accuracy of the code and ensure its stability at different functional
levels. This iterative process helps establish the robustness of the estimators and ensures that the results are reliable
and repeatable.
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Algorithm 1 Generalized Estimation

Step 1 Generate a sample u𝑖 from the 𝜒2(2𝑚𝑖) distribution, and obtain an observation of �̌�𝑖 from the equation
�̌�𝑖 =

u𝑖
2
∑𝑚𝑖

𝑗=1 𝑥𝑖 𝑗 (1+𝑟𝑖 𝑗 )
, 𝑖 = 1, 2, . . . , 𝑘 .

Step 2 Repeat Step 1 𝐵 times and obtain their average to get �̌�𝑖 .

Step 3 Based on the 𝐵 values of �̌�𝑖 , calculate var(�̌�𝑖), and then use Equations (18) and (19) to compute �̌�𝑖 and �̌�𝐿 .

Step 4 Repeat Steps 1-3 𝑁 times, obtaining 𝑁 values of �̌�𝑖 . Sort these values in ascending order, denoted by
�̌�𝑖 (1), �̌�𝑖 (2), . . . , �̌�𝑖 (𝑁). The mean of the above 𝑁 values is �̌�𝑖 . The calculation of �̌� and �̌�𝐿 follows the
same procedure.

Step 5 Based on �̌�𝑖 (1), �̌�𝑖 (2), . . . , �̌�𝑖 (𝑁) and for 0 < 𝜉 < 1, a series of 100(1 − 𝜉)% confidence intervals of
parameters can be expressed as

(𝑝 [ℎ], 𝑝 [ℎ + 𝐵 − ⌊𝐵𝜉 + 1⌋]) , ℎ = 1, 2, . . . , ⌊𝑁𝜉⌋,

where ⌊·⌋ denotes the ceiling function, and 𝑝 refers to �̌�𝑖 , �̌�, �̌�𝐿 . The 100(1 − 𝜉)% confidence interval for 𝑝
can be selected as the ℎ★-th one satisfying

𝑝 [ℎ★ + 𝑁 − ⌊𝑁𝜉 + 1⌋] − 𝑝 [ℎ★] =
⌊𝑁 𝜉 ⌋
min
ℎ=1

(𝑝 [ℎ + 𝑁 − ⌊𝑁𝜉 + 1⌋] − 𝑝 [ℎ]) .

4.2. Uniformly minimum variance unbiased estimation
UMVUE holds significant advantages over MLE due to its ability to be unbiased and have a minimum variance.

These properties ensure that in multiple independent replications, the UMVUE not only approaches the true value
of the parameter without systematic bias, but also has the smallest variance among all unbiased estimators, thereby
providing more stable and precise estimation results. Consequently, using UMVUE is driven by the pursuit of
accuracy and reliability of the estimation, especially in statistical analysis scenarios, where it is crucial to ensure
that the estimator is both unbiased and efficient. This subsection will introduce UMVUE and its confidence interval
(UCI) in multiple production lines.

Theorem 5. The UMVUE of 𝜆𝑖 denoted as �̃�𝑖 can be expressed as

�̃�𝑖 =
𝑚𝑖 − 1∑𝑚𝑖

𝑗=1 𝑥𝑖 𝑗 (1 + 𝑟𝑖 𝑗 )
. (20)

Proof. See Appendix C. □

Using (20), we get the UMVUE of the 𝜆 is

�̃� =

∑𝑘
𝑖=1 �̃�𝑖�̃�𝑖∑𝑘
𝑖=1 �̃�𝑖

, (21)

now, by (4) and (21), the index �̃�𝐿 can be obtained as

𝐶𝐿 = 1 − 𝐿�̃�, (22)

where �̃�𝑖 is the corresponding weight coefficient and �̃�𝑖 = 1/𝑣𝑎𝑟 (�̃�𝑖). In addition, 𝑣𝑎𝑟 (�̃�𝑖) is the observed variance
of the estimate of �̃�𝑖 in the 𝑖-th production line.
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From Theorem 4, we get 𝑃(𝜒2
𝜉/2(2𝑚𝑖) < 2𝜆𝑖

∑𝑚𝑖

𝑗=1 𝑥𝑖 𝑗 (1 + 𝑟𝑖 𝑗 ) < 𝜒2
1−𝜉/2(2𝑚𝑖)). Thus the 100(1 − 𝜉)% UCI of

𝜆𝑖 , 𝑖 = 1, 2, . . . , 𝑘 is obtained that (
𝜒2
𝜉/2 (2𝑚𝑖 )

2
∑𝑚𝑖

𝑗=1 𝑥𝑖 𝑗 (1+𝑟𝑖 𝑗 )
,

𝜒2
1−𝜉/2 (2𝑚𝑖 )

2
∑𝑚𝑖

𝑗=1 𝑥𝑖 𝑗 (1+𝑟𝑖 𝑗 )

)
, (23)

where 𝜒2
𝜉/2(2𝑚𝑖) and 𝜒2

1−𝜉/2(2𝑚𝑖) are the upper 100(𝜉/2)% and 100(1 − 𝜉/2)% percentile for the chi-square
distribution with the degree of freedom 2𝑚𝑖 for 𝑖 = 1, 2, . . . , 𝑘 .

Using Theorem 3, the 100(1 − 𝜉)% percent confidence intervals of �̃� and �̃�𝐿 can be constructed as(
𝑔(�̃�) − z𝜉/2

√
𝑣𝑎𝑟 (𝑔(�̃�)), 𝑔(�̃�) + z𝜉/2

√
𝑣𝑎𝑟 (𝑔(𝜆))

)
, (24)

where 𝑣𝑎𝑟 (�̃�(𝜆)) = Δ𝑔⊤(�̃�)𝐼−1(�̃�)Δ𝑔(�̃�) and Δ𝑔(�̃�) =
(
𝜕𝑔 (𝜆)
𝜕𝜆1

, 𝜕𝑔 (𝜆)𝜕𝜆2
, . . . , 𝜕𝑔 (𝜆)𝜕𝜆𝑘

)⊤��
𝜆=�̃�. Meanwhile, z𝜉 is upper

100𝜉% percentile of standard normal distribution.

5. Numerical illustration

In this Section, Monte Carlo simulations are performed to compare the performance of the proposed MLE,
generalized estimation and UMVUE. Meanwhile, we present two real data examples to illustrate the proposed model
for the exponential distribution.

5.1. Simulation Studies
To test the efficiency of different estimates, various criteria are used for comparison, such as the absolute bias

(AB) and mean square error (MSE) of the criteria, while the corresponding interval estimation results are evaluated
by the average length (AL) and the coverage probability (CP) in consequence. In the simulation study, different total
sample sizes 𝑛𝑖 , effective sample sizes 𝑚𝑖 and censoring schemes are considered for different test equipment for
𝑖 = 1, 2, · · · , 𝑘 . The censoring schemes are presented below.

(I) 𝑟1 = 𝑟2 = . . . = 𝑟𝑚𝑖−1 = 0, 𝑟𝑚𝑖 = 𝑛𝑖 − 𝑚𝑖;
(II) 𝑟1 = 𝑛𝑖 − 𝑚𝑖 , 𝑟2 = 𝑟3 = . . . = 𝑟𝑚𝑖 = 0;

(III) 𝑟1 = ⌊(𝑛𝑖 − 𝑚𝑖)/2⌋, 𝑟2 = . . . = 𝑟𝑚𝑖−1 = 0, 𝑟𝑚𝑖 = 𝑛𝑖 − 𝑚𝑖 − ⌊(𝑛𝑖 − 𝑚𝑖)/2⌋.

Note: There exist a variety of censoring schemes in practice; to maintain simplicity, this paper considers only the
three most commonly used methods.

Monte Carlo simulations are widely used to evaluate and compare the performance of different methods under
uncertainty. However, their reliability can be affected by several limitations. One key issue is computational intensity,
as accurate results often require a large number of iterations, leading to high time and resource costs. The validity of
the results also depends heavily on the accuracy of input assumptions and probability distributions; oversimplified
or incorrect inputs may yield misleading conclusions. Additionally, random sampling variability can introduce
instability, especially with fewer iterations, causing differences in results across simulation runs. To mitigate these
issues, we performed simulation runs 𝑁 = 5000 for each comparison, ensuring sufficient stability and reliability in
the estimated performance differences among methods.

Furthermore, to account for the DDTF effect present among the 𝑖-th production line, each equipped with multiple
facilities, a stochastic component is introduced. Specifically, random noise 𝜀𝑖 is added to the PT-II CS data set
originating from the 𝑖-th testing facility. These noises are assumed to follow a normal distribution characterized by
a mean is 0 and variance is 0.01, denoted as 𝜀𝑖 ∼ 𝑁 (0, 0.01). In addition, it also uses the gamma model with the shape
parameter of 1 and the scale parameter of 0.1 as random noise to naturally capture line-to-line variability, denoted
as 𝜀𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎(1, 0.1). In this study, we use the three methods that are MLE, UMVUE and generalized estimation
for point and interval estimation of parameters and PCI. And the internal circulation of generalized estimation is
𝐵 = 10000 times. The criterion measures of point estimation including AB and MSE, interval estimation including

Stat., Optim. Inf. Comput. Vol. 14, July 2025



Z. CHU, L. WANG, Y. TRIPATHI AND S. DEY 395

AL and CP of the 95% confidence intervals have been calculated for both parameters and PCI. To keep the Monte
Carlo simulation simple, we take 𝑛1 = 𝑛2 = . . . = 𝑛𝑘 , 𝑚1 = 𝑚2 = . . . = 𝑚𝑘 and 𝑅1 = 𝑅2 = . . . = 𝑅𝑘 . Moreover, we
suppose the specification lower limit 𝐿 = 0.2. The corresponding outcomes are systematically presented in Tables
1-9. The random noise in Tables 1-6 and Table 9 follows normal distribution, while the random noise in Tables 7-8
follows gamma distribution. The number of lines in Tables 1-2, 7-8, 9 are 𝑘 = 2, Tables 3-4 are 𝑘 = 3, Tables 5-6
are 𝑘 = 5, respectively.

From the results tabulated in Tables 1-9, following conclusions could be observed as:

• As the effective sample size 𝑛 and the predefined failure number 𝑚 increase in UMVUE, MLE and GPE, the
criteria quantities AB and MSE of the point estimation decrease. This indicates that these estimation methods
have consistent properties and are satisfactory in the designed scenarios.

• For fixed sample size 𝑛 and predefined failure number 𝑚, the UMVUE has the lowest MSE and AB compared
to other methods, indicating its superior performance, with GPQ being the second best.

• In the context of interval estimation, the analysis of the experimental data shows that the CP of each method
is approximately 95%. Meanwhile, the GCI has the shortest AL. Therefore, GCI performs best for interval
estimation.

• The interval lengths of ACI, UCI and GCI decrease with increase in sample size 𝑛 and predefined failure
number 𝑚.

In summary, when dealing with an exponential model under multiple production lines conditions where DDTF
are significant and cannot be overlooked. Meanwhile, UMVUE performs well in point estimation, while GCI shows
superior performance in interval estimation.

5.2. Data analysis
In this part, two real-life data sets are implemented to illustrate the applications of the proposed methods.
Example one (electrical insulation data sets) We utilize the data sets originally reported by Lawless [31] to

demonstrate the practical application of the proposed model. The original data set I included the failure times of
two types of electrical insulation subjected to increasing voltage stress. Data are provided in Table 10 with sample
sizes 𝑛1 = 𝑛2 = 12.

Before proceeding, we first verify whether the exponential model can adequately fit these data sets. Based on the
complete data presented in Table 10, the MLEs of 𝜆1 and 𝜆2 were computed, resulting in Kolmogorov-Smirnov (KS)
distances with 𝑝-values of 0.6699 and 0.6921 for the electrical insulation datasets. From the test result, it can be
seen that the exponential distribution can be used as an appropriate model to adapt to these actual data. Additionally,
Figure 2 provides the empirical cumulative distribution obtained through theoretical distribution plots (CDF plots),
probability-probability plots (P-P plots), and quantile-quantile plots (Q-Q plots). These visual plots indicate that
the exponential distribution provides a reasonable fit for the real-life data. Thus, we could use Exp(𝜆1) and Exp(𝜆2)
to fit the electrical insulation datasets. In addition, the DDTF effect appears, which affects the inference results of
different estimates and is reflected in the different values of parameters 𝜆1 and 𝜆2. Two sets of production lines PT-II
CS data with 𝑚1 = 𝑚2 = 8 in the electrical insulation data sets were generated based on the raw data presented in
Table 10 and similar CS provided in the simulation study, and detailed samples are provided in Table 11.

Using PT-II CS data presented in Table 11, the classical likelihood, minimum variance unbiased and generalized
estimates were calculated, considering the impact of variations in testing facilities. With the generalized estimation’s
inner loop set to 𝐵 = 10000. The corresponding point estimates and the estimated standard error (ESE) are provided
in Table 12, while the interval estimates for AL, with a significance level of 95%, are given in Table 13. The trace
plots of the generalized method of 𝜆1, 𝜆2, 𝜆, 𝐶𝐿 in the electrical insulation data sets are pretend in Figure 3. In these
figures, the solid green line represents the mean of the results obtained from 𝐵 iterations of the generalized method,
while the dashed red lines indicate the upper and lower limits of the interval.

The tabular results presented in Table 12 demonstrate that, based on the correlation of ESE, UMVUE outperforms
both MLE and GPE in terms of model-related parameters and PCI of the point estimates. Examining the AL in Table
13, it is evident that GCI provides the most optimal intervals among the three methods. The results further indicate
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Table 1. ABs and MSEs for parameters 𝜆 = 2 with 𝑘 = 2.

MLE UMVUE GPE

𝑛 𝑚 CS par. MSE AB MSE AB MSE AB
20 14 I 𝜆1 0.4054 0.4620 0.3340 0.4379 0.3899 0.4570

𝜆2 0.4142 0.4694 0.3604 0.4570 0.3925 0.4617
𝜆 0.1555 0.3108 0.0807 0.1954 0.1549 0.3089
𝐶𝐿 0.0062 0.0621 0.0032 0.0390 0.0061 0.0610

II 𝜆1 0.4457 0.4839 0.3619 0.4609 0.4107 0.4771
𝜆2 0.4269 0.4811 0.3329 0.4378 0.3922 0.4626
𝜆 0.2469 0.3694 0.0811 0.1962 0.1514 0.3132
𝐶𝐿 0.0098 0.0738 0.0032 0.0392 0.0060 0.0626

III 𝜆1 0.4467 0.4814 0.3620 0.4539 0.3929 0.4600
𝜆2 0.4832 0.4997 0.3699 0.4661 0.4306 0.4929
𝜆 0.1902 0.3296 0.0825 0.2082 0.1550 0.3094
𝐶𝐿 0.0076 0.0659 0.0033 0.0416 0.0062 0.0618

18 I 𝜆1 0.3257 0.4267 0.2772 0.4073 0.3054 0.4173
𝜆2 0.3426 0.4384 0.2918 0.4151 0.3221 0.4252
𝜆 0.1246 0.3061 0.0729 0.1953 0.1215 0.2713
𝐶𝐿 0.0059 0.0612 0.0029 0.0384 0.0048 0.0542

II 𝜆1 0.3720 0.4516 0.3053 0.4256 0.3390 0.4369
𝜆2 0.2891 0.4002 0.2401 0.3835 0.2849 0.3955
𝜆 0.2076 0.3434 0.0701 0.1952 0.1195 0.2732
𝐶𝐿 0.0083 0.0686 0.0028 0.0384 0.0047 0.0546

III 𝜆1 0.3091 0.4099 0.2580 0.3882 0.2874 0.4055
𝜆2 0.3568 0.4409 0.2815 0.4055 0.3155 0.4217
𝜆 0.1475 0.2908 0.0644 0.1863 0.1219 0.2730
𝐶𝐿 0.0059 0.0581 0.0025 0.0372 0.0048 0.0546

40 25 I 𝜆1 0.1945 0.3345 0.1654 0.3215 0.1825 0.3287
𝜆2 0.1977 0.3408 0.1742 0.3254 0.1871 0.3301
𝜆 0.1008 0.2459 0.0416 0.1412 0.0831 0.2328
𝐶𝐿 0.0040 0.0491 0.0017 0.0280 0.0032 0.0431

II 𝜆1 0.1945 0.3335 0.1649 0.3168 0.1737 0.3254
𝜆2 0.1854 0.3225 0.1689 0.3165 0.1727 0.3185
𝜆 0.0942 0.2370 0.0423 0.1423 0.0804 0.2364
𝐶𝐿 0.0037 0.0474 0.0016 0.0294 0.0033 0.0462

III 𝜆1 0.2114 0.3462 0.1759 0.3261 0.1963 0.3375
𝜆2 0.1891 0.3301 0.1673 0.3189 0.1759 0.3199
𝜆 0.1010 0.2427 0.0431 0.1463 0.0855 0.2323
𝐶𝐿 0.0040 0.0485 0.0017 0.0292 0.0034 0.0434

30 I 𝜆1 0.1581 0.3040 0.1397 0.2932 0.1524 0.2974
𝜆2 0.1594 0.3060 0.1395 0.2932 0.1565 0.3022
𝜆 0.0796 0.2206 0.0348 0.1315 0.0723 0.2169
𝐶𝐿 0.0031 0.0441 0.0013 0.0263 0.0028 0.0430

II 𝜆1 0.1428 0.2900 0.1355 0.2848 0.1402 0.2888
𝜆2 0.1631 0.3103 0.1563 0.3100 0.1578 0.3063
𝜆 0.0772 0.2155 0.0362 0.1371 0.0704 0.2140
𝐶𝐿 0.0030 0.0431 0.0014 0.0274 0.0028 0.0427

III 𝜆1 0.1443 0.2905 0.1246 0.2754 0.1357 0.2840
𝜆2 0.1418 0.2883 0.1277 0.2800 0.1352 0.2814
𝜆 0.0725 0.2157 0.0425 0.1394 0.0720 0.2251
𝐶𝐿 0.0029 0.0431 0.0016 0.0278 0.0024 0.0420
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Table 2. Length and coverage probability for parameter 𝜆 = 2 with 95% confidence intervals and 𝑘 = 2.

ACI UCI GCI

𝑛 𝑚 CS par. Length CP Length CP Length CP
20 14 I 𝜆1 2.2247 0.9434 2.2226 0.9492 2.1686 0.9542

𝜆2 2.3028 0.9506 2.2990 0.9520 2.2445 0.9552
𝜆 1.6151 0.9364 1.5122 0.9448 1.4836 0.9462
𝐶𝐿 0.3230 0.9364 0.3024 0.9462 0.2967 0.9468

II 𝜆1 2.5063 0.9380 2.3361 0.9506 2.2929 0.9486
𝜆2 2.5224 0.9434 2.2585 0.9452 2.2200 0.9526
𝜆 1.6761 0.9532 1.6521 0.9558 1.5154 0.9602
𝐶𝐿 0.3352 0.9532 0.3304 0.9558 0.3030 0.9602

III 𝜆1 2.3239 0.9470 2.3193 0.9498 2.2728 0.9514
𝜆2 2.4301 0.9468 2.4019 0.9550 2.3481 0.9552
𝜆 1.6930 0.9586 1.5915 0.9622 1.5619 0.9642
𝐶𝐿 0.3386 0.9586 0.3183 0.9622 0.3123 0.9642

18 I 𝜆1 2.1662 0.9432 2.0582 0.9494 2.0272 0.9546
𝜆2 2.2010 0.9386 2.0856 0.9420 2.0508 0.9426
𝜆 1.5008 0.9454 1.4912 0.9626 1.3966 0.9704
𝐶𝐿 0.3001 0.9454 0.2982 0.9626 0.2793 0.9704

II 𝜆1 2.2982 0.9450 2.1555 0.9482 2.1164 0.9524
𝜆2 2.1105 0.9440 1.9448 0.9408 1.9102 0.9524
𝜆 1.4795 0.9486 1.4779 0.9642 1.3793 0.9672
𝐶𝐿 0.2959 0.9486 0.2955 0.9642 0.2758 0.9672

III 𝜆1 2.0229 0.9586 1.9935 0.9502 1.9732 0.9500
𝜆2 2.1046 0.9476 2.0980 0.9514 2.0568 0.9552
𝜆 1.4829 0.9578 1.3985 0.9654 1.3861 0.9688
𝐶𝐿 0.2965 0.9578 0.2797 0.9654 0.2772 0.9688

40 25 I 𝜆1 1.6897 0.9434 1.6451 0.9460 1.6038 0.9506
𝜆2 1.7183 0.9450 1.6280 0.9446 1.5938 0.9466
𝜆 1.1840 0.9456 1.1663 0.9516 1.0205 0.9530
𝐶𝐿 0.2368 0.9456 0.2326 0.9516 0.2141 0.9530

II 𝜆1 1.6775 0.9424 1.5969 0.9472 1.5806 0.9496
𝜆2 1.6073 0.9410 1.5809 0.9476 1.5522 0.9516
𝜆 1.1529 0.9330 1.1413 0.9434 1.0940 0.9446
𝐶𝐿 0.2305 0.9330 0.2282 0.9434 0.2188 0.9446

III 𝜆1 1.8210 0.9464 1.6390 0.9466 1.6288 0.9456
𝜆2 1.7080 0.9432 1.5931 0.9498 1.5635 0.9524
𝜆 1.1747 0.9434 1.1603 0.9658 1.1080 0.9662
𝐶𝐿 0.2349 0.9434 0.2320 0.9658 0.2216 0.9662

30 I 𝜆1 1.5270 0.9464 1.4480 0.9464 1.4318 0.9488
𝜆2 1.5876 0.9490 1.4791 0.9496 1.4690 0.9458
𝜆 1.0659 0.9356 1.0515 0.9498 1.0126 0.9540
𝐶𝐿 0.2131 0.9356 0.2103 0.9498 0.2025 0.9540

II 𝜆1 1.4665 0.9446 1.4195 0.9456 1.4023 0.9508
𝜆2 1.5600 0.9490 1.5357 0.9502 1.5114 0.9528
𝜆 1.0709 0.9422 1.0532 0.9526 1.0167 0.9558
𝐶𝐿 0.2141 0.9422 0.2106 0.9526 0.2033 0.9558

III 𝜆1 1.4659 0.9458 1.3977 0.9544 1.3786 0.9524
𝜆2 1.4508 0.9488 1.4014 0.9492 1.3854 0.9496
𝜆 1.0155 0.8860 1.0015 0.9284 0.9703 0.9264
𝐶𝐿 0.2031 0.8860 0.2003 0.9284 0.1940 0.9264
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Table 3. ABs and MSEs for parameter 𝜆 = 1 with 𝑘 = 3.

MLE UMVUE GPE

𝑛 𝑚 CS parameter MSE AB MSE AB MSE AB
15 8 I 𝜆1 0.9044 0.6579 0.6831 0.6034 0.8985 0.6484

𝜆2 0.9747 0.6641 0.6594 0.5983 0.8690 0.6375
𝜆3 1.1565 0.7332 0.7642 0.6453 0.9047 0.6683
𝜆 0.4191 0.4764 0.0669 0.1887 0.2131 0.3889
𝐶𝐿 0.0167 0.0952 0.0026 0.0377 0.0085 0.0777

II 𝜆1 0.8766 0.6273 0.5731 0.5533 0.7646 0.6056
𝜆2 0.9397 0.6712 0.6930 0.5962 0.8729 0.6422
𝜆3 1.0500 0.7135 0.7515 0.6306 0.9986 0.6780
𝜆 0.3717 0.4430 0.0622 0.1816 0.2249 0.4049
𝐶𝐿 0.0148 0.0886 0.0024 0.0363 0.0089 0.0809

III 𝜆1 0.8219 0.6207 0.5681 0.5590 0.7584 0.6100
𝜆2 0.8755 0.6487 0.6653 0.5974 0.8864 0.6399
𝜆3 0.9057 0.6565 0.6559 0.5808 0.8058 0.6192
𝜆 0.3080 0.4089 0.0768 0.2061 0.2589 0.3996
𝐶𝐿 0.0123 0.0817 0.0030 0.0412 0.0103 0.0079

15 12 I 𝜆1 0.5313 0.5348 0.4429 0.4959 0.5287 0.5245
𝜆2 0.5353 0.5198 0.4104 0.4783 0.4678 0.4953
𝜆3 0.5386 0.5280 0.4083 0.4776 0.4356 0.4857
𝜆 0.2164 0.3404 0.0409 0.1438 0.1387 0.3107
𝐶𝐿 0.0081 0.0600 0.0016 0.0287 0.0055 0.0621

II 𝜆1 0.5697 0.5389 0.4333 0.4922 0.4842 0.5011
𝜆2 0.5075 0.5140 0.4037 0.4863 0.4400 0.4850
𝜆3 0.5642 0.5400 0.4251 0.4886 0.4946 0.5187
𝜆 0.2215 0.3524 0.0389 0.1411 0.1372 0.3074
𝐶𝐿 0.0088 0.0706 0.0015 0.0282 0.0054 0.0614

III 𝜆1 0.5667 0.5308 0.4078 0.4840 0.4845 0.5020
𝜆2 0.5355 0.5414 0.4401 0.4805 0.4816 0.5033
𝜆3 0.6234 0.5612 0.4503 0.5090 0.5281 0.5260
𝜆 0.1853 0.3246 0.0444 0.1611 0.1226 0.2859
𝐶𝐿 0.0110 0.0653 0.0017 0.0322 0.0049 0.0535

30 12 I 𝜆1 0.4477 0.4799 0.3345 0.4389 0.3969 0.4609
𝜆2 0.5333 0.5100 0.4057 0.4686 0.4610 0.4940
𝜆3 0.4639 0.4796 0.3695 0.4523 0.4123 0.4647
𝜆 0.1761 0.3140 0.0402 0.1407 0.1372 0.3096
𝐶𝐿 0.0070 0.0599 0.0022 0.0261 0.0054 0.0599

II 𝜆1 0.5215 0.5199 0.3940 0.4689 0.4730 0.5002
𝜆2 0.4925 0.5010 0.3638 0.4561 0.4353 0.4795
𝜆3 0.5574 0.5329 0.4245 0.4796 0.4882 0.5128
𝜆 0.1992 0.3359 0.0382 0.1405 0.1446 0.2981
𝐶𝐿 0.0079 0.0671 0.0014 0.0303 0.0053 0.0611

III 𝜆1 0.4350 0.4801 0.3810 0.4569 0.3977 0.4659
𝜆2 0.4981 0.5079 0.4049 0.4777 0.4666 0.4973
𝜆3 0.4763 0.4921 0.3521 0.4508 0.4388 0.4882
𝜆 0.1519 0.2975 0.0437 0.1606 0.1180 0.2811
𝐶𝐿 0.0060 0.0595 0.0016 0.0315 0.0048 0.0522
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Table 4. Length and coverage probability for parameter 𝜆 = 1 with 95% confidence intervals and 𝑘 = 3.

ACI UCI GCI

𝑛 𝑚 CS parameter Length CP Length CP Length CP
15 8 I 𝜆1 3.5764 0.9384 3.1726 0.9456 3.0931 0.9458

𝜆2 3.9633 0.9480 3.1379 0.9490 3.0386 0.9550
𝜆3 3.9869 0.9380 3.3460 0.9486 3.2483 0.9554
𝜆 2.2154 0.9116 1.9736 0.9574 1.8590 0.9790
𝐶𝐿 0.4430 0.9116 0.3947 0.9574 0.3718 0.9790

II 𝜆1 3.4922 0.9406 2.9824 0.9510 2.8984 0.9512
𝜆2 3.5806 0.9368 3.2224 0.9520 3.0961 0.9532
𝜆3 3.7981 0.9320 3.3121 0.9410 3.1971 0.9464
𝜆 2.1804 0.8976 1.9200 0.9590 1.8145 0.9800
𝐶𝐿 0.4360 0.8976 0.3840 0.9590 0.3629 0.9800

III 𝜆1 3.4585 0.9368 2.9581 0.9484 2.8879 0.9494
𝜆2 3.4447 0.9320 3.1200 0.9460 3.0508 0.9514
𝜆3 3.4719 0.9290 3.0113 0.9422 2.9332 0.9492
𝜆 2.0661 0.8544 1.8495 0.9564 1.7555 0.9636
𝐶𝐿 0.4132 0.8544 0.3699 0.9564 0.3511 0.9636

15 12 I 𝜆1 2.7430 0.9376 2.5700 0.9478 2.5147 0.9530
𝜆2 2.7563 0.9424 2.4215 0.9476 2.3746 0.9476
𝜆3 2.7621 0.9360 2.4625 0.9440 2.3914 0.9486
𝜆 1.7931 0.8832 1.4954 0.9534 1.4885 0.9740
𝐶𝐿 0.3586 0.8832 0.2990 0.9534 0.2977 0.9740

II 𝜆1 2.9248 0.9374 2.5213 0.9432 2.4506 0.9532
𝜆2 2.6851 0.9422 2.4241 0.9460 2.3634 0.9490
𝜆3 2.8517 0.9406 2.5263 0.9474 2.4906 0.9500
𝜆 1.8128 0.9228 1.5082 0.9462 1.4941 0.9864
𝐶𝐿 0.3625 0.9228 0.3016 0.9462 0.2988 0.9864

III 𝜆1 2.7680 0.9414 2.5388 0.9518 2.4538 0.9526
𝜆2 2.8585 0.9420 2.4857 0.9470 2.4081 0.9516
𝜆3 2.9420 0.9476 2.5956 0.9478 2.5360 0.9474
𝜆 1.8305 0.8588 1.5531 0.9578 1.5262 0.9758
𝐶𝐿 0.3661 0.8588 0.3106 0.9578 0.3106 0.9758

30 12 I 𝜆1 2.4911 0.9334 2.2728 0.9472 2.2325 0.9474
𝜆2 2.7410 0.9386 2.3964 0.9498 2.3396 0.9494
𝜆3 2.5583 0.9396 2.2855 0.9518 2.2251 0.9536
𝜆 1.7443 0.9244 1.4454 0.9480 1.4407 0.9882
𝐶𝐿 0.3488 0.9244 0.2890 0.9480 0.2881 0.9882

II 𝜆1 2.7158 0.9334 2.4662 0.9436 2.4123 0.9504
𝜆2 2.6833 0.9386 2.3658 0.9424 2.2994 0.9496
𝜆3 2.7698 0.9336 2.5080 0.9530 2.4592 0.9508
𝜆 1.8002 0.9136 1.4840 0.9544 1.4846 0.9850
𝐶𝐿 0.3600 0.9136 0.2968 0.9544 0.2969 0.9850

III 𝜆1 2.5554 0.9370 2.3167 0.9532 2.2560 0.9536
𝜆2 2.7057 0.9406 2.4285 0.9470 2.3637 0.9528
𝜆3 2.7187 0.9310 2.3416 0.9488 2.3083 0.9496
𝜆 1.7219 0.9310 1.4160 0.9546 1.4144 0.9928
𝐶𝐿 0.3443 0.9310 0.2832 0.9546 0.2828 0.9928

Stat., Optim. Inf. Comput. Vol. 14, July 2025



400 EVALUATION OF PROCESS CAPABILITY INDEX

Table 5. ABs and MSEs for parameter 𝜆 = 0.8 with 𝑘 = 5.

MLE UMVUE GPE

𝑛 𝑚 CS parameter MSE AB MSE AB MSE AB
10 8 I 𝜆1 0.1477 0.2607 0.0922 0.2226 0.1342 0.2491

𝜆2 0.1658 0.2754 0.1107 0.2438 0.1475 0.2653
𝜆3 0.1388 0.2595 0.1030 0.2381 0.1205 0.2422
𝜆4 0.2197 0.3237 0.1561 0.2874 0.2055 0.3047
𝜆5 0.2319 0.3245 0.1499 0.2856 0.1915 0.2996
𝜆 0.0597 0.1897 0.0079 0.0696 0.0296 0.1486
𝐶𝐿 0.0024 0.0379 0.0003 0.0139 0.0012 0.0297

II 𝜆1 0.1471 0.2623 0.1089 0.2410 0.1465 0.2653
𝜆2 0.1694 0.2796 0.1144 0.2513 0.1545 0.2745
𝜆3 0.1798 0.2910 0.1258 0.2610 0.1690 0.2796
𝜆4 0.1476 0.2586 0.0947 0.2254 0.1207 0.2419
𝜆5 0.1636 0.2806 0.1175 0.2487 0.1443 0.2652
𝜆 0.0481 0.1652 0.0047 0.0529 0.0362 0.1571
𝐶𝐿 0.0019 0.0330 0.0002 0.0106 0.0014 0.0334

III 𝜆1 0.1559 0.2708 0.1098 0.2426 0.1457 0.2637
𝜆2 0.1316 0.2510 0.0924 0.2221 0.1213 0.2411
𝜆3 0.1358 0.2508 0.1010 0.2292 0.1355 0.2477
𝜆4 0.1376 0.2528 0.0961 0.2262 0.1169 0.2368
𝜆5 0.1153 0.2371 0.0819 0.2084 0.1122 0.2289
𝜆 0.0280 0.1264 0.0088 0.0761 0.0542 0.2146
𝐶𝐿 0.0011 0.0253 0.0004 0.0152 0.0022 0.0429

40 30 I 𝜆1 0.0241 0.1193 0.0218 0.1150 0.0228 0.1163
𝜆2 0.0199 0.1080 0.0177 0.1039 0.0187 0.1050
𝜆3 0.0264 0.1250 0.0239 0.1211 0.0262 0.1250
𝜆4 0.0163 0.0985 0.0147 0.0951 0.0161 0.0981
𝜆5 0.0165 0.1090 0.0162 0.0996 0.0163 0.1010
𝜆 0.0379 0.1753 0.0101 0.0876 0.0216 0.1360
𝐶𝐿 0.0013 0.0351 0.0004 0.0175 0.0009 0.0272

II 𝜆1 0.0162 0.0975 0.0151 0.0940 0.0155 0.0958
𝜆2 0.0229 0.1159 0.0189 0.1027 0.0220 0.1140
𝜆3 0.0223 0.1160 0.0202 0.1112 0.0225 0.1159
𝜆4 0.0347 0.1430 0.0306 0.1378 0.0322 0.1387
𝜆5 0.0288 0.1300 0.0266 0.1255 0.0269 0.1267
𝜆 0.0147 0.0951 0.0067 0.0678 0.0117 0.0936
𝐶𝐿 0.0009 0.0210 0.0003 0.0136 0.0005 0.0187

III 𝜆1 0.0416 0.1569 0.0382 0.1530 0.0408 0.1536
𝜆2 0.0199 0.1065 0.0164 0.1000 0.0194 0.1059
𝜆3 0.0232 0.1167 0.0212 0.1142 0.0230 0.1151
𝜆4 0.0265 0.1243 0.0232 0.1193 0.0253 0.1218
𝜆5 0.0129 0.0865 0.0114 0.0836 0.0126 0.0863
𝜆 0.0169 0.0693 0.0141 0.0957 0.0185 0.0524
𝐶𝐿 0.0008 0.0239 0.0006 0.0191 0.0007 0.0244
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Table 6. Length and coverage probability for parameter 𝜆 = 0.8 with 95% confidence intervals and 𝑘 = 5.

ACI UCI GCI

𝑛 𝑚 CS parameter Length CP Length CP Length CP
10 8 I 𝜆1 1.4224 0.9358 1.1902 0.9490 1.1599 0.9460

𝜆2 1.5523 0.9416 1.3027 0.9492 1.2599 0.9518
𝜆3 1.3747 0.9282 1.2497 0.9498 1.1955 0.9542
𝜆4 1.7473 0.9390 1.5076 0.9452 1.4350 0.9456
𝜆5 1.7722 0.9332 1.4938 0.9466 1.4283 0.9496
𝜆 0.7288 0.8858 0.6408 0.9046 0.6227 0.9912
𝐶𝐿 0.1458 0.8858 0.1282 0.9046 0.1245 0.9912

II 𝜆1 1.4827 0.9392 1.2651 0.9436 1.2246 0.9506
𝜆2 1.5593 0.9416 1.3209 0.9414 1.2753 0.9512
𝜆3 1.6209 0.9392 1.3542 0.9414 1.3051 0.9440
𝜆4 1.3931 0.9344 1.1875 0.9474 1.1505 0.9500
𝜆5 1.4700 0.9320 1.3146 0.9466 1.2555 0.9534
𝜆 0.7024 0.8274 0.6158 0.9248 0.5983 0.9874
𝐶𝐿 0.1232 0.8274 0.1405 0.9248 0.1197 0.9874

III 𝜆1 1.4948 0.9376 1.2781 0.9420 1.2286 0.9512
𝜆2 1.3147 0.9288 1.1883 0.9500 1.1429 0.9526
𝜆3 1.3927 0.9364 1.1915 0.9368 1.1509 0.9474
𝜆4 1.3974 0.9360 1.1788 0.9410 1.1224 0.9478
𝜆5 1.2456 0.9304 1.0964 0.9412 1.0547 0.9514
𝜆 0.6463 0.9482 0.5658 0.9612 0.5475 0.9654
𝐶𝐿 0.1293 0.9482 0.1132 0.9612 0.1095 0.9654

40 30 I 𝜆1 0.6107 0.9472 0.5796 0.9510 0.5678 0.9536
𝜆2 0.5489 0.9456 0.5229 0.9488 0.5083 0.9490
𝜆3 0.6360 0.9398 0.6082 0.9466 0.5937 0.9504
𝜆4 0.4912 0.9450 0.4781 0.9462 0.4706 0.9518
𝜆5 0.4953 0.9438 0.4914 0.9480 0.4810 0.9482
𝜆 0.3263 0.8466 0.2559 0.8738 0.2408 0.8682
𝐶𝐿 0.0653 0.8466 0.0512 0.8738 0.0482 0.8682

II 𝜆1 0.4970 0.9450 0.4720 0.9460 0.4618 0.9480
𝜆2 0.5829 0.9396 0.5553 0.9420 0.5437 0.9572
𝜆3 0.5746 0.9454 0.5607 0.9500 0.5524 0.9592
𝜆4 0.7319 0.9422 0.6881 0.9480 0.6755 0.9506
𝜆5 0.6518 0.9412 0.6320 0.9466 0.6160 0.9512
𝜆 0.3508 0.9222 0.2799 0.9328 0.2588 0.9550
𝐶𝐿 0.0702 0.9222 0.0560 0.9328 0.0518 0.9550

III 𝜆1 0.7861 0.9452 0.7583 0.9458 0.7458 0.9530
𝜆2 0.5486 0.9466 0.5111 0.9470 0.5030 0.9522
𝜆3 0.6022 0.9414 0.5778 0.9436 0.5668 0.9482
𝜆4 0.6520 0.9420 0.6052 0.9458 0.5939 0.9568
𝜆5 0.4373 0.9454 0.4222 0.9456 0.4151 0.9516
𝜆 0.3397 0.8280 0.2791 0.8588 0.2480 0.9098
𝐶𝐿 0.0679 0.8280 0.0558 0.8588 0.0496 0.9098
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Table 7. ABs and MSEs for parameter 𝜆 = 1.5 with 𝑘 = 2.

MLE UMVUE GPE

𝑛 𝑚 CS parameter MSE AB MSE AB MSE AB
8 4 I 𝜆1 2.4944 0.8778 1.1598 0.6892 1.8160 0.7893

𝜆2 2.1756 0.8515 1.1213 0.6764 1.6983 0.7830
𝜆 1.2781 0.7094 0.1833 0.2967 0.3201 0.4520
𝐶𝐿 0.0511 0.1419 0.0073 0.0593 0.0128 0.0904

II 𝜆1 2.9986 0.8967 1.2260 0.6898 2.0953 0.7994
𝜆2 2.4832 0.9012 0.9879 0.6916 2.1051 0.8532
𝜆 1.5344 0.7631 0.1864 0.2936 0.3391 0.4544
𝐶𝐿 0.0614 0.1526 0.0075 0.0587 0.0136 0.0908

III 𝜆1 2.1923 0.8681 1.2254 0.6812 1.9678 0.8001
𝜆2 2.4287 0.9018 1.3633 0.7167 1.7113 0.8006
𝜆 1.3145 0.7415 0.1660 0.2937 0.3285 0.4592
𝐶𝐿 0.0526 0.1483 0.0066 0.0587 0.0131 0.0918

6 I 𝜆1 0.9266 0.6340 0.5932 0.5510 0.8850 0.6155
𝜆2 1.0730 0.6613 0.6305 0.5667 0.9303 0.6291
𝜆 0.6041 0.5393 0.1115 0.2325 0.2303 0.3773
𝐶𝐿 0.0242 0.1079 0.0045 0.0465 0.0092 0.0755

II 𝜆1 1.0161 0.6344 0.5917 0.5415 0.8191 0.5856
𝜆2 1.1777 0.6966 0.6775 0.6023 1.0975 0.6718
𝜆 0.6768 0.5612 0.1234 0.2513 0.2292 0.3688
𝐶𝐿 0.0271 0.1122 0.0049 0.0503 0.0092 0.0738

III 𝜆1 0.9431 0.6283 0.6129 0.5538 0.8611 0.6072
𝜆2 1.0559 0.6496 0.5452 0.5333 0.8158 0.5981
𝜆 0.5725 0.5204 0.1091 0.2263 0.2178 0.3707
𝐶𝐿 0.0229 0.1041 0.0044 0.0453 0.0087 0.0741

18 10 I 𝜆1 0.4409 0.4621 0.3130 0.4179 0.3680 0.4384
𝜆2 0.4605 0.4744 0.3288 0.4296 0.4191 0.4547
𝜆 0.2951 0.3955 0.0688 0.1903 0.1305 0.2792
𝐶𝐿 0.0118 0.0791 0.0028 0.0381 0.0052 0.0558

II 𝜆1 0.3850 0.4353 0.2826 0.4022 0.3440 0.4189
𝜆2 0.4935 0.4497 0.3237 0.4201 0.4025 0.4461
𝜆 0.2804 0.3506 0.0689 0.1836 0.1246 0.2784
𝐶𝐿 0.0592 0.0701 0.0028 0.0367 0.0050 0.0557

III 𝜆1 0.4380 0.4590 0.2994 0.4111 0.3694 0.4345
𝜆2 0.5103 0.5006 0.3637 0.4568 0.4322 0.4745
𝜆 0.3311 0.4183 0.0846 0.2142 0.1266 0.2742
𝐶𝐿 0.0132 0.0837 0.0034 0.0428 0.0051 0.0549

14 I 𝜆1 0.2285 0.3531 0.1780 0.3275 0.2138 0.3447
𝜆2 0.2445 0.3644 0.1908 0.3350 0.2241 0.3502
𝜆 0.1330 0.2732 0.0420 0.1440 0.0875 0.2392
𝐶𝐿 0.0053 0.0546 0.0017 0.0288 0.0035 0.0478

II 𝜆1 0.2691 0.3811 0.2257 0.3592 0.2461 0.3717
𝜆2 0.2741 0.3835 0.2204 0.3646 0.2736 0.3803
𝜆 0.1930 0.3285 0.0619 0.1848 0.0959 0.2395
𝐶𝐿 0.0077 0.0657 0.0025 0.0370 0.0038 0.0479

III 𝜆1 0.2832 0.3824 0.2231 0.3566 0.2556 0.3765
𝜆2 0.2851 0.3928 0.2378 0.3724 0.2853 0.3866
𝜆 0.2066 0.3408 0.0647 0.1891 0.0978 0.2419
𝐶𝐿 0.0083 0.0682 0.0026 0.0378 0.0039 0.0484
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Table 8. Length and coverage probability for parameter 𝜆 = 1.5 with 95% confidence intervals and 𝑘 = 2.

ACI UCI GCI

𝑛 𝑚 CS parameter Length CP Length CP Length CP
8 4 I 𝜆1 5.2631 0.9368 3.9114 0.9444 3.6529 0.9496

𝜆2 5.7206 0.9488 3.8198 0.9498 3.6512 0.9514
𝜆 3.0163 0.8872 2.2895 0.9120 1.9434 0.9754
𝐶𝐿 0.6033 0.8872 0.4579 0.9120 0.3887 0.9754

II 𝜆1 6.0902 0.9434 3.9432 0.9468 3.6775 0.9498
𝜆2 5.8048 0.9430 3.9812 0.9452 3.8268 0.9512
𝜆 3.1102 0.9016 2.3321 0.9210 2.0065 0.9796
𝐶𝐿 0.6220 0.9016 0.4664 0.9210 0.4013 0.9796

III 𝜆1 5.6171 0.9426 3.9056 0.9458 3.6667 0.9512
𝜆2 5.9253 0.9444 4.0386 0.9458 3.7008 0.9512
𝜆 3.0778 0.9000 2.3043 0.9120 1.9888 0.9802
𝐶𝐿 0.6156 0.9000 0.4609 0.9120 0.3978 0.9802

6 I 𝜆1 3.5681 0.9332 2.9565 0.9464 2.8403 0.9474
𝜆2 3.7691 0.9366 3.0478 0.9410 2.8844 0.9470
𝜆 2.2549 0.9340 1.9537 0.9434 1.7278 0.9752
𝐶𝐿 0.4510 0.9340 0.3907 0.9434 0.3456 0.9752

II 𝜆1 3.5446 0.9330 2.9156 0.9422 2.7464 0.9462
𝜆2 4.3117 0.9436 3.2654 0.9444 3.1132 0.9534
𝜆 2.3220 0.9472 1.9916 0.9498 1.7832 0.9760
𝐶𝐿 0.4644 0.9472 0.3983 0.9498 0.3566 0.9760

III 𝜆1 3.5460 0.9384 2.9513 0.9412 2.8149 0.9492
𝜆2 3.8953 0.9414 2.8857 0.9512 2.7917 0.9526
𝜆 2.2253 0.9316 1.9105 0.9336 1.6827 0.9682
𝐶𝐿 0.4451 0.9316 0.3821 0.9336 0.3365 0.9682

18 10 I 𝜆1 2.4408 0.9342 2.1683 0.9486 2.0952 0.9508
𝜆2 2.5841 0.9406 2.2233 0.9410 2.1536 0.9484
𝜆 1.6182 0.9562 1.5328 0.9618 1.3915 0.9634
𝐶𝐿 0.3236 0.9562 0.3066 0.9618 0.2783 0.9634

II 𝜆1 2.3735 0.9418 2.0624 0.9490 2.0092 0.9542
𝜆2 2.4742 0.9426 2.1802 0.9428 2.1074 0.9528
𝜆 1.5536 0.9450 1.4830 0.9468 1.3425 0.9620
𝐶𝐿 0.3107 0.9450 0.2966 0.9468 0.2685 0.9620

III 𝜆1 2.5179 0.9416 2.1440 0.9438 2.0609 0.9494
𝜆2 2.6546 0.9332 2.3830 0.9482 2.2698 0.9498
𝜆 1.6493 0.9500 1.5557 0.9658 1.4384 0.9716
𝐶𝐿 0.3299 0.9500 0.3111 0.9658 0.2877 0.9716

14 I 𝜆1 1.8426 0.9434 1.6696 0.9480 1.6386 0.9500
𝜆2 1.8605 0.9352 1.7082 0.9422 1.6672 0.9484
𝜆 1.2392 0.9420 1.2109 0.9510 1.1087 0.9566
𝐶𝐿 0.2478 0.9420 0.2422 0.9510 0.2217 0.9566

II 𝜆1 1.9684 0.9386 1.8133 0.9466 1.7502 0.9492
𝜆2 1.9870 0.9402 1.8414 0.9428 1.7989 0.9510
𝜆 1.3247 0.9446 1.2992 0.9592 1.1991 0.9684
𝐶𝐿 0.2649 0.9446 0.2598 0.9592 0.2398 0.9684

III 𝜆1 1.9691 0.9352 1.8189 0.9444 1.7603 0.9494
𝜆2 2.0290 0.9380 1.8744 0.9486 1.8230 0.9492
𝜆 1.3364 0.9418 1.3102 0.9662 1.2171 0.9734
𝐶𝐿 0.2673 0.9418 0.2620 0.9662 0.2434 0.9734
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Table 10. Electrical insulation data sets of the failure times.

Lines Data
line I 0.185 0.217 0.351 0.405 0.423 0.487 0.794 0.860 1.219 1.471 1.502 2.193
line II 0.123 0.218 0.244 0.286 0.432 0.469 0.707 0.753 0.955 0.981 1.386 1.519
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Figure 2. Empirical distribution and fitted Exp models, P-P and Q-Q plots for 𝑋1 and 𝑋2 under the electrical insulation data
sets.
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Table 11. PT-II CS of electrical insulation data sets with designed censoring scenarios.

CS Types Data
I 𝑋1 0.185 0.217 0.351 0.405 0.423 0.487 0.794 0.860

𝑋2 0.123 0.218 0.244 0.286 0.432 0.469 0.707 0.753
II 𝑋1 0.423 0.487 0.794 0.860 1.219 1.471 1.502 2.193

𝑋2 0.432 0.469 0.707 0.753 0.955 0.981 1.386 1.519
III 𝑋1 0.351 0.405 0.423 0.487 0.794 0.860 1.219 1.471

𝑋2 0.244 0.286 0.432 0.469 0.707 0.753 0.955 0.981

Table 12. Point estimates on 𝐿 = 0.3 under the electrical insulation data sets.

CS par. MLE ESE UMVUE ESE GPE ESE
I 𝜆1 1.1170 0.1560 0.9774 0.1194 1.0751 0.1476

𝜆2 1.2812 0.2052 1.1211 0.1571 1.2380 0.2005
𝜆 1.1879 0.0886 1.0394 0.0678 1.1513 0.0733
𝐶𝐿 0.6436 0.0080 0.6882 0.0061 0.6846 0.0074

II 𝜆1 1.7929 0.4018 1.5688 0.3076 1.7323 0.3922
𝜆2 2.1482 0.5769 1.8797 0.4417 2.0653 0.5689
𝜆 1.9388 0.2368 1.6964 0.1813 1.8173 0.2232
𝐶𝐿 0.4184 0.0213 0.4911 0.0163 0.4848 0.0208

III 𝜆1 1.3765 0.2368 1.2044 0.1813 1.3224 0.2297
𝜆2 1.6051 0.3221 1.4045 0.2466 1.5476 0.3163
𝜆 1.4734 0.1365 1.2892 0.1045 1.3994 0.1299
𝐶𝐿 0.5580 0.0123 0.6132 0.0094 0.6101 0.0115

Table 13. Interval estimates on 𝐿 = 0.3 under the electrical insulation data sets.

CS par. ACI[length] UCI[length] GCI[length]
I 𝜆1 (0.3430, 1.8910)[1.5481] (0.4822, 2.0138)[1.5315] (0.4284, 1.9123)[1.4840]

𝜆2 (0.3934, 2.1691)[1.7757] (0.5531, 2.3098)[1.7567] (0.4938, 2.1662)[1.6724]
𝜆 (0.6045, 1.7714)[1.1669] (0.5110, 1.5679)[1.0569] (0.6457, 1.6906)[1.0450]
𝐶𝐿 (0.4686, 0.8187)[0.3501] (0.4796, 0.8167)[0.3371] (0.4928, 0.8253)[0.3325]

II 𝜆1 (0.5505, 3.0353)[2.4848] (0.7741, 3.2323)[2.4583] (0.6893, 3.0696)[2.3803]
𝜆2 (0.6596, 3.6368)[2.9772] (0.9275, 3.8729)[2.9454] (0.7825, 3.6322)[2.8497]
𝜆 (0.9850, 2.8926)[1.9077] (0.9960, 2.8769)[1.8809] (0.8510, 2.6856)[1.8346]
𝐶𝐿 (0.1322, 0.7045)[0.5723] (0.1509, 0.7012)[0.5503] (0.1643, 0.7047)[0.5404]

III 𝜆1 (0.4226, 2.3303)[1.9076] (0.5943, 2.4815)[1.8873] (0.5013, 2.3496)[1.8483]
𝜆2 (0.4929, 2.7174)[2.2246] (0.6930, 2.8938)[2.2008] (0.6381, 2.7819)[2.1439]
𝜆 (0.7493, 2.1974)[1.4481] (0.7575, 2.0209)[1.2634] (0.7010, 1.8973)[1.1964]
𝐶𝐿 (0.3408, 0.7752)[0.4344] (0.3573, 0.7727)[0.4154] (0.3708, 0.7797)[0.4089]

that the performance of generalized estimation is satisfactory, surpassing both MLE and UMVUE in the context of
interval estimation.

Example two (steel specimen data sets) The data sets contains the observed lifetimes of steel specimens tested
at kinds of subtly different stress levels[27]. To validate the theoretical findings, we conducted tests using three lines
of samples subjected to similarly high stress levels. These lines were designated as 𝑋1, 𝑋2 and 𝑋3. The failure data
for these lines comprised 𝑛1 = 24, 𝑛2 = 𝑛3 = 20 observations each, as detailed in Table 14. The 𝑝-value with the KS
test of the steel specimen data sets are calculated as 0.7096, 0.6067 and 0.5776. Furthermore, Figure 4 illustrates
the empirical distribution in conjunction with the fitted exponential distribution, as well as CDF plots, P-P plots,
and Q-Q plots. These graphical representations suggest a strong alignment between the exponential distribution and
the empirical data. Thus, Exp(𝜆1), Exp(𝜆2) and Exp(𝜆3) could fit the lifetimes of the steel specimens tested in Table
14, respectively.

Based on the original data presented in Table 14 and the analogous CS employed in the simulation studies, three
lines of PT-II data were generated, each comprising 𝑚1 = 𝑚2 = 𝑚3 = 16 observations. The detailed samples are
subsequently provided in Table 15.
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Figure 3. Trace plots of generalized method with 95% credible intervals of 𝜆1, 𝜆2, 𝜆, 𝐶𝐿 under the electrical insulation data
sets.

Table 14. Steel specimen data sets of the failure times.

Lines Data
line I 0.206 0.231 0.283 0.370 0.413 0.474 0.523 0.597 0.605 0.619 0.727 0.815

0.935 1.056 1.144 1.336 1.580 1.786 1.826 1.943 2.214 3.107 4.510 6.297
line II 0.196 0.227 0.250 0.271 0.308 0.347 0.393 0.475 0.548 0.669 0.799 0.879

0.975 1.154 1.388 1.705 2.073 2.211 2.925 4.257
line III 0.166 0.184 0.241 0.251 0.273 0.312 0.371 0.418 0.493 0.562 0.683 0.760

0.830 0.981 1.306 1.463 1.842 1.867 2.220 2.978

According to Table 15, the corresponding point estimates and the ESE are provided in Table 16, while the interval
estimates for AL with a confidence interval level of 95% are given in Table 17. Figure 5 displays a generalized
estimation trace plot in the steel specimen data sets.

6. Conclusions

The PCI is widely used in practice to measure the stability of production processes and the consistency of
product quality. For companies, a low PCI usually means that the production process has large variations and
the product quality is not yet at the desired level. In this case, companies should strengthen quality control and
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Table 15. PT-II CS of steel specimen data sets with designed censoring scenarios.

CS Types Data
I 𝑋1 0.206 0.231 0.283 0.370 0.413 0.474 0.523 0.597

0.605 0.619 0.727 0.815 0.935 1.056 1.144 1.336
𝑋2 0.196 0.227 0.250 0.271 0.308 0.347 0.393 0.475

0.548 0.669 0.799 0.879 0.975 1.154 1.388 1.705
𝑋3 0.166 0.184 0.241 0.251 0.273 0.312 0.371 0.418

0.493 0.562 0.683 0.760 0.830 0.981 1.306 1.463
II 𝑋1 0.605 0.619 0.727 0.815 0.935 1.056 1.144 1.336

1.580 1.786 1.826 1.943 2.214 3.107 4.510 6.297
𝑋2 0.308 0.347 0.393 0.475 0.548 0.669 0.799 0.879

0.975 1.154 1.388 1.705 2.073 2.211 2.925 4.257
𝑋3 0.273 0.312 0.371 0.418 0.493 0.562 0.683 0.760

0.830 0.981 1.306 1.463 1.842 1.867 2.220 2.978
III 𝑋1 0.413 0.474 0.523 0.597 0.605 0.619 0.727 0.815

0.935 1.056 1.144 1.336 1.580 1.786 1.826 1.943
𝑋2 0.250 0.271 0.308 0.347 0.393 0.475 0.548 0.669

0.799 0.879 0.975 1.154 1.388 1.705 2.073 2.211
𝑋3 0.241 0.251 0.273 0.312 0.371 0.418 0.493 0.562

0.683 0.760 0.830 0.981 1.306 1.463 1.842 1.867

Table 16. Point estimates on 𝐿 = 0.2 under the steel specimen data sets.

CS par. MLE ESE UMVUE ESE GPQ ESE
I 𝜆1 0.5565 0.0794 1.0088 0.0636 0.6458 0.0756

𝜆2 1.0038 0.0630 0.8500 0.0452 0.9651 0.0607
𝜆3 1.0790 0.0728 1.0023 0.0628 1.0592 0.0724
𝜆 0.7322 0.2036 0.9415 0.0186 0.7650 0.0196
𝐶𝐿 0.8536 0.0010 0.8117 0.0007 0.8470 0.0008

II 𝜆1 0.6253 0.0274 0.4964 0.0154 0.6359 0.0265
𝜆2 1.1221 0.0787 0.9380 0.0550 0.6991 0.0611
𝜆3 0.8186 0.0419 1.0760 0.0324 0.7371 0.0360
𝜆 0.7663 0.0244 0.6619 0.0103 0.6420 0.0114
𝐶𝐿 0.8467 0.0005 0.8676 0.0004 0.8716 0.0005

III 𝜆1 0.8043 0.0404 0.9202 0.0339 0.7259 0.0348
𝜆2 0.7510 0.0852 1.1487 0.0525 1.0854 0.0750
𝜆3 0.7725 0.0873 0.9051 0.0512 1.1409 0.0843
𝜆 0.7747 0.0404 0.9692 0.0198 0.8555 0.0242
𝐶𝐿 0.8451 0.0010 0.8062 0.0008 0.8289 0.0009

Table 17. Interval estimates on 𝐿 = 0.2 under the steel specimen data sets.

CS par. ACI[length] UCI[length] GCI[length]
I 𝜆1 (0.2182, 0.8592)[0.6410] (0.2151, 0.8464)[0.6313] (0.3410, 0.9707)[0.6296]

𝜆2 (0.5119, 1.4956)[0.9837] (0.5182, 1.4719)[0.9537] (0.5430, 1.4878)[0.9447]
𝜆3 (0.5503, 1.6077)[1.0574] (0.6111, 1.6531)[1.0420] (0.5835, 1.6110)[1.0275]
𝜆 (0.4891, 1.0417)[0.5527] (0.6743, 1.2087)[0.5345] (0.5148, 0.9496)[0.4348]
𝐶𝐿 (0.7917, 0.9022)[0.1105] (0.7583, 0.8651)[0.1069] (0.8101, 0.8970)[0.0870]

II 𝜆1 (0.2889, 0.9317)[0.6428] (0.2927, 0.9288)[0.6361] (0.3488, 0.9725)[0.6237]
𝜆2 (0.5723, 1.6718)[1.0996] (0.5719, 1.5471)[0.9752] (0.3787, 1.0527)[0.6740]
𝜆3 (0.4175, 1.2196)[0.8022] (0.6561, 1.4048)[0.7487] (0.4003, 1.1265)[0.7262]
𝜆 (0.3952, 0.8613)[0.4661] (0.4028, 0.8610)[0.4581] (0.5437, 0.9889)[0.4452]
𝐶𝐿 (0.8077, 0.9110)[0.1032] (0.8078, 0.9074)[0.0996] (0.8022, 0.8913)[0.0890]

III 𝜆1 (0.4102, 1.1984)[0.7882] (0.5610, 1.3177)[0.7567] (0.3876, 1.1084)[0.7208]
𝜆2 (0.5830, 1.7189)[1.1359] (0.6004, 1.7147)[1.1143] (0.5978, 1.6490)[1.0512]
𝜆3 (0.3840, 1.5097)[1.1258] (0.5518, 1.5928)[1.0410] (0.6307, 1.6503)[1.0196]
𝜆 (0.5537, 1.1626)[0.6089] (0.6935, 1.2448)[0.5513] (0.5554, 0.9939)[0.4385]
𝐶𝐿 (0.7675, 0.8893)[0.1218] (0.7510, 0.8613)[0.1103] (0.8012, 0.8889)[0.0877]
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Figure 4. Empirical distribution and fitted Exp models, P-P and Q-Q plots for 𝑋1, 𝑋2 and 𝑋3 under the steel specimen data
sets.

improve production methods to enhance overall product quality. However, if the PCI is too high, it can mean that
the quality of the product exceeds the actual needs or design requirements. This can lead to wasted resources and
slower production. In such cases, companies can consider slightly relaxing quality control standards while still
meeting customer needs—to speed up production and reduce costs. By adjusting quality management strategies
with care, companies can improve efficiency while maintaining acceptable quality levels.

Building upon this practical context, this paper proposes a product life performance index for multiple production
lines under the PT-II CS condition, assuming that product lifetimes follow an exponential distribution. Comparison
parameter and index estimations using MLE, GPE, and UMVUE. The simulation results show that UMVUE excels
in point estimation, GCI is superior in interval estimation, and MLE performs least favorably among the methods
evaluated. Although GPE achieves higher estimation accuracy, especially in interval inference, it comes at the
cost of increased computational time. Therefore, investigating the trade-off between accuracy and computational
efficiency, particularly in large-scale applications, remains an important direction for both theoretical research and
practical implementation. This study is based on the assumption of exponentially distributed data. However, in
practical applications, there are datasets that do not fit the exponential distribution well. Conducting simulations
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Figure 5. Trace plots of generalized method with 95% credible intervals of 𝜆1, 𝜆2, 𝜆3, 𝜆, 𝐶𝐿 under the steel specimen data
sets.

under misspecified distributions (e.g. Weibull or log-normal distributions) to evaluate the robustness of the method
could be a promising direction for future research. Although estimation issues are discussed within the context of the
exponential model in multiple production lines PT-II CS, the findings can be extended to other distributions, such as
Burr XII, Pareto and Lomax, with appropriate adjustments. For future research, considering the influence of varying
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effects across multiple product lines, it will be of interest to address the optimal design problem of synthesizing a
single product line PCI into an overall PCI, a topic that will be explored in forthcoming studies.

Appendix

A. Proof of Theorem 1
By taking derivatives of ℓ(𝜆𝑖) with respect to parameter 𝜆𝑖 in (7), the maximum likelihood estimator of 𝜆𝑖 , 𝑖 =

1, 2, . . . , 𝑘 could be obtained via following likelihood equation as

𝜕ℓ(𝜆1)
𝜕𝜆1

= 0,
𝜕ℓ(𝜆2)
𝜕𝜆2

= 0, . . . ,
𝜕ℓ(𝜆𝑘)
𝜕𝜆𝑘

= 0,

then the maximum likelihood estimator of 𝜆𝑖 denoted by �̂�𝑖 can be derived. Taking the second derivative of (7) then
we get

𝜕ℓ2(𝜆𝑖)
𝜕𝜆2

𝑖

= −𝑚𝑖

𝜆2
𝑖

< 0, 𝑖 = 1, 2, · · · , 𝑘,

it can be shown that the log-likelihood function is strictly concave with respect to 𝜆𝑖 , as its second derivative is less
than zero. This implies that the log-likelihood function has at most one maximum point. Therefore, �̂�𝑖 is unique.

B. Proof of Theorem 4
Let 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑛𝑖 ) be the multiple production lines sample from 𝐸𝑥𝑝(𝜆𝑖) with sample size 𝑛𝑖 , 𝑚𝑖 and

CS 𝑅𝑖 = (𝑟𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑚𝑖 ). Let 𝑇𝑖1 be the total failure time of all products in the first time period, 𝑇𝑖2 for the second
time period, so on and so forth, 𝑇𝑖𝑚𝑖 for the last time period. The total test time is 𝑇𝑖 =

∑𝑚𝑖

𝑗=1 𝑇𝑖 𝑗 =
∑𝑚𝑖

𝑗=1 𝑥𝑖 𝑗 (1 + 𝑟𝑖 𝑗 ).
It is observed that

𝑇𝑖1 = 𝑛𝑖𝑥𝑖1
𝑇𝑖2 = (𝑛𝑖 − 𝑟𝑖1 − 1)(𝑥𝑖2 − 𝑥𝑖1)
...

𝑇𝑖𝑚𝑖 = [𝑛𝑖 −
∑𝑚𝑖−1

𝑗=1 (𝑟𝑖𝑚𝑖 + 1)] (𝑥𝑖𝑚1 − 𝑥𝑖𝑚𝑖−1).

Thus, we find that 𝑇𝑖1, 𝑇𝑖2, . . . , 𝑇𝑖𝑚𝑖 are independent and identically distributed as the standard exponential
distribution. Therefore, it is directly conducted that the quantities

𝑈𝑖 = 2�̌�𝑖𝑇𝑖 ∼ 𝜒2(2𝑚𝑖), 𝑖 = 1, 2, . . . , 𝑘,

further, it is found that
�̌�𝑖 =

𝑈𝑖

2𝑇𝑖
, 𝑖 = 1, 2, . . . , 𝑘 .

Therefore, the assertion is shown.

C. Proof of Theorem 5
Known by the invariance of maximum likelihood, we have �̂�𝐿 (𝑖) = 1 − 𝑚𝑖𝐿

𝑇𝑖
. From (4), (9) and Theorem 4, we

get
𝐸 (�̂�𝑖) =

𝑚𝑖

𝑚𝑖 − 1
𝜆𝑖 ≠ �̂�𝑖 ,

so 𝜆𝑖 is biased estimators of 𝜆𝑖 . Therefore, it is modified as

�̃�𝑖 =
𝑚𝑖 − 1
𝑇𝑖

,
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moreover,
𝐸 (�̃�𝑖) = 𝜆𝑖 .

Therefore, �̃�𝑖 is the unbiased and uniform estimate of 𝜆𝑖 . We easily show that �̃�𝑖 is the UMVUE of 𝜆𝑖 .
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