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1. Introduction

In studying the relationships between MV-algebras and structures from commutative algebra, the concept of the
radical of an ideal in the former context holds significant importance as its study can lead to analogies with classical
algebraic geometry concepts. In [13], Dubuc and Zilber defined a notion of the radical of an ideal and presented
a version of the Nullstellensatz. This work was presented to us by the late Dr. Y. A. Poveda (who passed away in
2021), and he invited us to study this notion in the context of MV-algebras with product.

Several authors have considered a version of the radical of an ideal in the context of MV-algebras and lu-groups.
All these notions have the characteristic of being defined as the intersection of some ideals, and this notion allowed
them to prove a Nullstellensatz-like theorem. In [3], Belluce, Di Nola and Lenzi defined the point radical of an
ideal for the algebra A[x] freely generated by x in the variety VA, where A is an algebra of type F . In [4], the
same authors considered the A-point radical of a subset J ⊂ Fµ, where A is an MV-algebra and Fµ is the free
MV-algebra over µ generators. In [10], Di Nola, Lenzi and Vitale presented a version of the Nullstellensatz for the
Riesz MV-algebra of Riesz-McNaughton functions from [0, 1]n to [0, 1]. In [11], they also considered the l-radical
of an l-ideal of the free l-group over n generators FAl(n).

In this work, we recall the notions of the radical of an ideal in classical contexts. From the one in MV-algebras,
we present a natural notion in the context of lu-groups via the categorical equivalence between the categories of
MV-algebras and l-groups with strong unit given in [12, 8]. Then, we propose an interpretation of the radical of an
ideal in other non-classical contexts and establish some Hilbert’s Nullstellensatz-like Theorems there.

1.1. Some notation

Through this work, we accord the following: for a ring, we mean a commutative and associative ring with identity
1, such as R and C. If A and B are sets, the set of functions from B to A will be denoted as AB , and we will
consider 0 ∈ A. In this context, we define for S ⊂ AB the zero set generated by S as Z (S) := {b ∈ B | f(b) =
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0} =
⋂
f∈S

f−1(0), and for X ⊂ B, we define the set I (X) := {f ∈ AB | f(x) = 0,∀x ∈ B}. Thus, we have the

following functions:
Z : P(AB) // P(B) I : P(B) // P(AB)

When S = {f} and X = {a}, we will write Z (f) and I (a) = Ia, instead of Z ({f}) and I ({a}), respectively.
In classical algebraic geometry, these functions exhibit the relation between some algebraic structures and some
geometric objects, like the one-to-one correspondence between prime ideals in some rings of polynomials and
irreducible algebraic sets [17, §1.7, Corollary 2], and we will see this relation for new structures. Even without the
algebraic and geometric structures, these functions have some immediate properties, summarized in the following
lemma.

Lemma 1
The functions Z and I defined above satisfy the following:

1. If {Sα}α∈Γ ⊂ P(AB), then Z
( ⋃

α∈Γ

Sα

)
=

⋂
α∈Γ

Z (Sα).

2. Z (0) = B and for any constant function c ̸= 0 in AB , Z (c) = ∅.
3. I (∅) = AB and I (B) = 0.
4. If S ⊂ T ⊂ AB and X ⊂ Y ⊂ B, then Z (T ) ⊂ Z (S) and I (Y ) ⊂ I (X).
5. If S ⊂ AB and X ⊂ B, then S ⊂ I (Z (S)) and X ⊂ Z (I (X)).
6. If S ⊂ AB and X ⊂ B, then Z (S) = Z (I (Z (S))) and I (X) = I (Z (I (X))).

These properties show the following antitone Galois connection: S ⊂ I (X) if and only if X ⊂ Z (S).

1.2. Rings

The interpretation of certain notions in algebraic geometry within other contexts begins with the properties of
specific rings. The study of radical ideals in this context is of particular interest, and we examine it from two
perspectives: radicals and real radicals.

Example 1
For a ring R, consider the ring of polynomials in one variable R[x] or several variables R[x1, · · · , xn]. If R ⊂ C
and a ∈ R, then Ia denotes the ideal of polynomials p ∈ R[x] such that p(a) = 0; i.e. the maximal ideal generated
by x− a. Not all ideals are of this form in R[x], for instance, the ideal generated by x2 + 1 is a maximal ideal.

The notion of the radical of an ideal is intimately related to the operations of the algebraic structure where ideals
are defined [1, 17, 5]. We recall the definition of the radical of an ideal in a ring.

Definition 1
If I is an ideal of a ring R, then the radical of I is defined as:

Rad(I) := {x ∈ R | xn ∈ I, for some n ≥ 0} .

For rings, the real radical of an ideal also plays an important role in the context of real closed fields [5].

Definition 2
If I is an ideal of a ring R, then the real radical of I is defined as:

R
√
I :=

{
x ∈ R | x2n + b21 + · · ·+ b2p ∈ I, for some n ≥ 1 and b1, · · · , bp ∈ R

}
Remark 1
An ideal I of R is called real if for every sequence a1, · · · , ap ∈ R such that a21 + · · ·+ a2p ∈ I , then a1, · · · , ap ∈ I
[5, 4.1.3].

As we recall below, the real algebraic context provides an important feature in terms of an order relation. An
order relation is also considered for MV-algebras, and several results highlight its significance. This sense of order
is naturally defined for lu-groups and lu-rings, so the results over the real and MV-algebraic contexts allow us to
find analogous results on them.
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1.3. MV-algebras and Product MV-algebras

Many valued algebras (MV-algebras) were defined by Chang [6, 7] as the algebraic systems that correspond to
many valued propositional calculus. Many works have been done around the theory of MV-algebras and for us,
it will be of interest the theory of MV-algebras with a product (PMV-algebras) and its varieties. It is known the
categorical relation of MV-algebras and PMV-algebras with lu-groups and lu-rings, respectively, and that is why
we are interested in these structures and, in particular, in the notions of ideals on them.

We will recall the notions of MV-algebras that are of interest in this work, which can be found in several
references, from which we recommend [8, 19, 16].

Definition 3
An MV-algebra is a (0, 1, 2)-type algebra ⟨A, 0,∗ ,⊕⟩ such that:

1. a⊕ b = b⊕ a,
2. a⊕ (b⊕ c) = (a⊕ b)⊕ c,
3. a⊕ 0 = a,
4. (a∗)

∗
= a,

5. a⊕ 0∗ = 0∗,
6. (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

Additionally, the following auxiliary elements are defined in every MV-algebra:

1 := 0∗, a⊙ b := (a∗ ⊕ b∗)∗, a⊖ b := a⊙ b∗ = (a∗ ⊕ b)∗

In each MV-algebra A, a natural partial order is defined by the following relation:

a ≤ b if and only if a∗ ⊕ b = 1

When the order is total, we say the MV-algebra is an MV-chain.

Example 2 1. The real interval [0, 1] is the standard MV-algebra, where operations are defined as follows:
a∗ := 1− a and a⊕ b := min {1, a+ b}. The standard MV-algebra generates the variety of MV-algebras [8,
8.1.1].

2. For a non-empty set X , the set of functions from X to [0, 1], denoted by [0, 1]X , is an MV-algebra,
where operations are defined point-wise. For instance, [0, 1]R is an MV-algebra. Furthermore, the subset
Cont(R, [0, 1]) of functions from R to [0, 1] that are continuous with respect to the natural topology on [0, 1]
is a sub MV-algebra of [0, 1]R.

3. A McNaugthon fuction in one variable is a piecewise function from [0, 1] to [0, 1] that is continuous with
respect to the natural topology of [0, 1] and defined by finite linear polynomials with integer coefficients. The
collection of all McNaughton functions is denoted by M1 and is a sub MV-algebra of Cont([0, 1], [0, 1]).
This MV-algebra plays an important role since it is the Free MV-algebra over one generator [8, 9.1.5]. The
MV-algebra Mn of functions McNaughton functions from [0, 1]n to [0, 1] is defined similarly [8, 3.1.6].

Definition 4
Given A,B MV-algebras, a function h : A → B is an MV-algebra homomorphism if:

h(a⊕A b) = h(a)⊕B h(b), h(a∗A) = h(a)∗B

When operations and MV-algebras are clear, we just write ⊕ and ∗.

Definition 5
A subset I of an MV-algebra A is an ideal if:

1. 0 ∈ I ,
2. If a, b ∈ I , then a⊕ b ∈ I ,
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3. If a ∈ I, b ∈ A and b ≤ a, then b ∈ I .

An ideal I of A is called proper if I ̸= A. Proper ideals are prime if either a⊖ b ∈ I or b⊖ a ∈ I for each pair
a, b ∈ A. A proper ideal is called maximal if no proper ideal of A strictly contains I .

We denote by Id (A) ,Spec (A) and Max (A) the collections of all ideals, prime ideals, and maximal ideals of an
MV-algebra A, respectively. We will use the same notation for ideals in other structures. The standard MV-algebra
[0, 1] has only the ideals: {0} and itself. However, there are some non-trivial ideals in other MV-algebras, some of
which are trivial or have no sense for rings of polynomials.

Example 3
Consider the MV-algebras A = Cont([0, 1], [0, 1]) and M1:

1. If a ∈ [0, 1], then Ia is defined as before is a maximal ideal. If a ∈ [0, 1]\Q, functions from M1 have to equal
zero over an interval [a− ϵ, a+ ϵ] for some ϵ > 0.

2. For a ∈ [0, 1], the ideal Ia+ is defined to be the set of functions f such that for each one, there exists ϵf for
which f is zero on [a, a+ ϵf ). Similarly, the ideal Ia− is defined. Observe that if a ∈ [0, 1]\Q, then in M1

holds Ia = Ia+ = Ia− .
3. For a, b ∈ [0, 1] and a < b, the ideal I[a,b] is the set of functions that are equal to zero over [a, b].

As some MV-algebras are collections of functions, they are related to rings of polynomials over a ring or a field,
so there is a natural sense of developing an algebraic geometry theory for MV-algebras. To develop this idea, it is
important to have a sort of geometric relation between ideals and the sets where those functions are defined. We
recall the definition of the radical of an ideal in the context of MV-algebras. This definition will be extended to
other structures, like MV-algebras with product, following the idea of having a geometric relation with the ideals
on the structures.

Definition 6
If I is an ideal of an MV-algebra A, the radical of I is defined as:

√
I := {a ∈ A | na⊖ a ∈ I, for some n ≥ 0} .

Remark 2
The set

√
I is named the infradical of I , although it is known that it coincides with the intersection of maximal

ideals containing I , which is called the radical of I [13, 3.2, 3.7 and 3.12].

The class of MV-algebras with product was defined in [14]. Since then, different classes and relations among
them have been defined [15, 9]. The interest in these structures is their categorical relation with l-rings, as will
be recalled below. As usual, we will use the notation xy for the product x · y and consider this operation to be
commutative.

Definition 7
An MV-algebra with product ⟨P, 0,∗ ,⊕, ·⟩ is an MV-algebra ⟨P, 0,∗ ,⊕⟩ with a binary operation · such that (P, ·)
is a semigroup.

We consider products to be commutative.

Definition 8
Given P,Q MV-algebras with product, a function h : P → Q is an MV-algebra with product homomorphism if
h is an MV-algebra homomorphism of the subjacent MV-algebra and for all x, y ∈ P , it holds h(xy) = h(x)h(y).

Definition 9
A PMV-algebra P , is an MV-algebra with product P such that for all x, y, z ∈ P :

x⊙ y = 0 implies xz ⊙ yz = 0 and z(x⊕ y) = xz ⊕ yz

Definition 10
A PMVf -algebra is an MV-algebra with product P such that:
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1. x0 = 0,
2. (x(y ⊕ z))⊖ (xy ⊕ xz) = 0,
3. (xy ⊖ xz)⊖ (x(y ⊖ z)) = 0,
4. xy ≤ x ∧ y,
5. x(y ⊖ c) = xy ⊖ xz.

As we recall below, the category of PMVf -algebras is equivalent to the category of semi-low lu-rings, a class of
ordered rings where the product of elements is bounded by their infimum.

Example 4
The standard MV-algebra with the usual multiplication is a PMVf -algebra. So is the MV-algebra
Cont([0, 1]n, [0, 1]). In general, for a set X , the set [0, 1]X of functions from X to [0, 1] with operations defined
pointwise is a PMVf -algebra. A last example is the set F [x1, · · · , xn] of continuous functions from [0, 1]n to [0, 1]
defined piecewise by finite polynomials with integer coefficients [9, 5.4].

An MV-algebra with a product that satisfies 1. - 3. in Definition 10 is called an MVW-rig [15]. It is worth noticing
that all PMVf -algebras are PMV-algebras [9, 3.8].

As mentioned before, it is of interest to consider the notion of ideals in the structures we are discussing. The
following is the definition in the context of PMVf -algebras.

Definition 11
A subset I of a PMVf -algebra P is an ideal of P if it is an ideal of the subjacent MV-algebra P and it holds that
ab ∈ I for all a, b ∈ I .

1.4. l-groups and l-rings

l-groups and l-rings are algebraic structures equipped with a lattice structure. Some of their varieties are
categorically equivalent to certain classes of MV-algebras and product MV-algebras. This lattice structure will
allow us to characterize their ideals and adapt the definition of their radicals and, finally, establish a series of
Nullstellensatz theorems.

We are interested in the categorical equivalences described in [12, 9], for this we recall the definitions of lu-
groups, lu-rings and their varieties, as well as other basic elements. Of course, [2] is a suggested source for a
detailed treatment of l-groups and l-rings.

Definition 12
A group (G,+), is an l-group if it has a partial order ≤ for which (G,+,≤) is both a poset and a lattice, where the
order is compatible with the group operation. If there exists u ∈ G such that for any x ∈ G it holds |x| ≤ nu for
some integer n ≥ 1, then G is called an lu-group and u is called a strong unit. When the order is total, we say the
lu-group is a lu-chain.

Definition 13
Given (G, u) and (H, v) l-groups with strong units, a function f : G → H is an lu-group homomorphism if f is
a group homomorphism for the subjacent groups G and H , and h(u) = v.

For an element x in an l-group, its absolute value is defined as |x| = x ∨ (−x). This notion will be used in the
following definition and also plays a role in important proofs later on.

Definition 14
A normal subgroup I of an l-group G is called an l-ideal if x ∈ I, y ∈ G, |y| ≤ |x| implies y ∈ I .

Definition 15
A ring (R,+, ·) is a l-ring if it has a partial order ≤ such that (R,+,≤) is an l-group and 0 ≤ x, y implies 0 ≤ xy.

Definition 16
Given (R, u) and (S, v) l-rings with strong units, a function f : G → H is a lu-ring homomorphism if f
is an lu-group homomorphism between the subjacent lu-groups (R, u) and (S, v), and for all x, y ∈ R, then
f(xy) = f(x)f(y).
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Example 5 1. (R,+) with the usual addition is an lu-group for any u > 0, for instance u = 1. Even more,
(R,+, ·) with the usual multiplication is a lu-ring.

2. For a topological space X , the set Cont(X, [0, 1]) with pointwise addition is an lu-group and with pointwise
multiplication, it is also an lu-ring, where any positive function is a strong unit.

3. The set MRn of continuous functions from [0, 1]n to R defined piecewise by finite linear polynomials with
integer coefficients, the set FR[x1, · · · , xn] of continuous functions from [0, 1]n to R defined piecewise by
finite polynomials with integer coefficients and Cont([0, 1],R) with usual addition (and multiplication) are
lu-groups (and lu-rings), where any u > 0 is a strong unit.

Definition 17
An l-ideal I of the underlying l-group of an l-ring R is called an L-ideal if in addition x ∈ I, y ∈ R implies xy ∈ I .

An l-ring R is called low if for all x, y ≥ 0, then xy ≤ x ∧ y. The following definition captures the same idea for
elements in its positive segment bounded by u [9, 6.8].

Definition 18
An lu-ring R is called semi-low if for all x, y ∈ [0, u] it holds that xy ≤ x ∧ y.

Example 6
The lu-ring (R,+, ·) is semi-low for any 0 < u ≤ 1. Other semi-low lu-rings are MRn, FR[x1, · · · , xn] and
Cont([0, 1],R), for any strong unit 0 < u ≤ 1.

1.5. Categorical equivalences

The following categorical equivalences will allow us to identify some properties of the algebraic structures that lead
to establishing a natural notion of the radical of an ideal. Both of the cited equivalences follow the construction
of C.C. Chang in [7] where he relates each MV-chain A with an lu-chain A∗. In this work, we denote by
MV,PMVf ,LGu and LRu the categories of MV-algebras, PMVf -algebras, lu-groups and semi-low lu-rings,
respectively.

Theorem 1 ([12, 3.2 and 3.3])
The categories MV and LGu are equivalent.

Functors in the equivalence are defined as follows:

MV
(−)∗ // LGu

A
� // A∗

LGu
Γ //MV

G � // Γ(G, u)

Where A∗ is a sub lu-group of the subdirect product of the family of lu-chains {(A/P )∗P∈Spec(A)}. Γ(G, u) is
the segment [0, u] which is an MV-algebra with x⊕ y := u ∧ (x+ y) and x∗ = u− x. When A and G are totally
ordered, the functors are the ones defined in [7]. For instance, to the MV-algebra A = [0, 1] corresponds the lu-
group [0, 1]∗ = Z× [0, 1) ∼= R, where the order is given by (m,x) ≤ (n, y) if and only if either m < n or m = n
and x ≤ y [7, Lemma 5]. In the other direction, Γ(R, 1) = [0, 1] and Γ(MRn) = Mn.

Theorem 2 ([9, 8.20])
The categories PMVf and LRu are equivalent.

Functors in the equivalence are defined below:

PMVf

(−)# // LRu

P � // P#

LRu
Γ // PMVf

R
� // Γ(R, u)

Where P# is a sub lu-ring generated in the lu-ring {(P/Q)#Q∈Spec(P )}, where the latter is the product of a family
of (chain semi-low) lu-rings. Γ(R, u) is the segment [0, u] which is a PMVf -algebra with the inherited product. For
instance Γ(FR[x1, · · · , xn]) = F [x1, · · · , xn].
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These functors have an important application in terms of ideals. In Proposition 4, we recall this for the functor
(−)∗, which shows a one-to-one correspondence between the ideals of an MV-algebra and the l-ideals of its
associated lu-group. A similar result is obtained between ideals of PMVf -algebras and lu-rings. This application
is the key feature of this work; from this correspondence, we can transfer the notion of radical ideals from MV-
algebras to lu-groups.

2. The interpretations of the radical of an ideal

2.1. Notions of the radical in non-classical contexts

The notion of the radical of an ideal in the contexts of rings and MV-algebras is characterized by a similar property:
they are the intersection of some ideals of the algebra, as summarized below. These definitions are valid for proper
ideals. The new definitions of the radical of an ideal proposed here are also for proper ideals.

Proposition 1 ([1, 1.14])
If I is an ideal of a ring R, then Rad(I) is the intersection of the prime ideals that contain I .

Proposition 2 ([5, 4.1.7])
If I is an ideal of a ring R, then R

√
I is the intersection of all real prime ideals containing I .

Proposition 3 ([13, 3.12])
If I is an ideal of an MV-algebra A, then

√
I is the intersection of all maximal ideals containing I .

We want an interpretation for the radical of an ideal of an MV-algebra in the corresponding lu-group via the
categorical equivalence. The following proposition shows that it can be well described by a similar structure to that
defined in MV-algebras.

Proposition 4
Let A be an MV-algebra, G = A∗ its associated lu-group and I an ideal of A. Then, the associated l-ideal in G of
the radical of I is the intersection of the maximal l-ideals of G containing I∗.

Proof
The functors Γ and (−)∗ between the categories LGu and MV define an order-isomorphism between the ideals
of an MV-algebra A and the l-ideals of the associated lu-group G as follows: if I is an ideal of A, then I∗ :=
{x ∈ G | |x| ∧ u ∈ I} is an l-ideal of G and the inverse is given by Γ(J) := J ∩ [0, u] [8, 7.2.2]. In particular, they
define a restricted bijection that preserves inclusion between Max (A) and Max (G). Thus, for each M ∈ Max (A),
I ⊂ M if and only if I∗ ⊂ M∗, where M∗ ∈ Max (G), so we have:

(Rad (I))∗ =

 ⋂
I⊂M∈Max(A)

M

∗

=
⋂

I∗⊂M∗∈Max(G)

M∗

From the last result, we justify the following natural interpretation of the radical of an l-ideal of an lu-group.

Definition 19
If G is an lu-group and J is an l-ideal of G, the l-radical of J is defined as the intersection of all maximal l-ideals
of G containing J .

Inspired by this definition and the equivalent notions of the radical of an ideal shown in this section, we extend
this definition to lu-rings.

Definition 20
If R is a lu-ring and J is an l-ideal of R, the L-radical of J is defined as the intersection of the maximal l-ideals
of R containing J .
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Remark 3
This is the definition of the L-radical of an ideal given in [2, XVII-§3], which shows that the application of the
functors in the equivalences has been adequate.

Now, we will define the radical of an ideal in PMVf -algebras and in semi-low-lu-rings. The lu-ring Cont(X,R)
is a semi-low lu-ring with 0 < u ≤ 1. In turn, the MV-algebra Cont(X, [0, 1]) is a PMVf algebra with the usual
product of [0, 1]. For this, we consider the categorical equivalence between the categories LRu and PMVf given
in [9]. For instance, the semi-low lu-ring Cont(X,R) is associated to the PMVf -algebra Cont(X, [0, 1]) [9, 8.11].
From the equivalence, we obtain a notion of the radical of an ideal in the context of PMVf -algebras. This is possible
since there is an order preserving bijection between maximal ideals of a semi-low lu-ring R and the PMVf -algebra
Γ(R, u), so the proof of the next Proposition is similar to the one given in Proposition 4.

Proposition 5
Let R be a semi-low lu-ring, P = Γ(R, u) its associated PMVf -algebra and J an l-ideal of R. The related ideal in
P of the l-radical of J is the intersection of all maximal ideals of P containing Γ(J).

The last definition is of the radical of an ideal in the context of PMVf -algebras.

Definition 21
If P is a PMVf -algebra and I is an ideal of A, the radical of I is defined as the intersection of all maximal ideals
of P containing I .

We will use the notation Rad (I) for the radical of an ideal in lu-groups, lu-rings, MV-algebras and PMVf -
algebras. Also, we will be careful when referring to the algebraic structure.

2.2. Properties of the radical of an ideal

The radical of an ideal satisfies some special properties both in classical and non-classical structures. We first prove
some of them for lu-groups.

Proposition 6
Consider G,G′ lu-groups, J an l-ideal of G and φ : G′ −→ G a surjective lu-group homomorphism, then:

1. J ⊂ Rad (J).
2. Rad (J) is an l-ideal.
3. Rad (J) is an l-radical ideal, i.e., Rad (Rad (J)) = Rad (J).
4. Rad (J) is the smallest l-radical ideal containing J .
5. φ−1 (Rad (J)) = Rad

(
φ−1(J)

)
.

Proof

1. By definition, J ⊂ M for all maximal l-ideals of G containing J , therefore J ⊂
⋂

J⊂M∈Max(G)

M = Rad (J).

2. Follows since the intersection of an arbitrary collection of l-ideals is an l-ideal.
3. If Rad (J) ⊂ M , then J ⊂ M from 1., therefore {M ∈ Max (G) | Rad (J) ⊂ M} ⊂ {M ∈ Max (G) | J ⊂

M}, from where Rad (Rad (J)) ⊂ Rad (J). The other inclusion follows from 1. and 2.
4. Follows from 3.
5. It is direct to see that if J and M are l-ideals of G, then J ⊂ M if and only if φ−1(J) ⊂ φ−1(M). Also,

M ∈ Max (G) if and only if φ−1(M) ∈ Max (G′). Indeed, if M ∈ Max (G) and φ−1(M) ⊂ K for some l-
ideal K of G′, then M ⊂ φ(K), so either φ(K) = M or φ(K) = G, which implies either K = φ−1(M) or
K = G′. In the other direction, if φ−1(M) ∈ Max (G′) and M ⊂ K for some l-ideal K of G, then φ−1(M) ⊂
φ−1(K), thus either φ−1(K) = φ−1(M) or φ−1(K) = G′, therefore either K = M or K = G, since φ is
surjective. Finally, x ∈ φ−1(Rad (J)) means φ(x) ∈ Rad (J), which is equivalent to say that φ(x) ∈ M for
all M ∈ Max (G) such that J ⊂ M , which in turn means x ∈ φ−1(M) for all φ−1(M) ∈ Max (G′) such that
φ−1(J) ⊂ φ−1(M), that is, x ∈ Rad

(
φ−1(J)

)
.
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Remark 4
For a family of lu-groups {Gl | l ∈ L}, the radical of l-ideals of their product lu-group G =

∏
l∈L

Gl cannot be

characterized by a property like Rad (I) =
∏
l∈L

Rad (Il). Although it is possible to show that if M ∈ Max (G), then

Ml ∈ Max (Gl), where Ml denotes the image of M under the projection map πl : G −→ Gl, the converse is not
always true. In the latter case, if for each l ∈ L, Ml is a maximal l-ideal of each Gl and M =

∏
l∈L

Ml ⊂ J for some

l-ideal J of G, then Ml ⊂ Jl for each l ∈ L, which implies either Jl = Ml or Jl = Gl for each l ∈ L, from which
it cannot be concluded that J = M or J = G.

Without major differences in the last proof, we have the following.

Proposition 7
Properties in Proposition 6 are satisfied by L-ideals and ideals of lu-rings, MV-algebras and PMVf -algebras.

3. Nullstellensatz - like theorems

3.1. Nullstellensatz in non-classical contexts

In the following, we will consider algebraic structures whose elements are functions. The notions of ideal in these
structures have been already defined. Moreover, the functions Z and I defined at the beginning of the paper have
a significant role here. If S is a subset of the algebraic structure, then the ideal generated by S is defined as the
smallest ideal of the structure containing S and it is denoted by ⟨S⟩. For ideals in lu-groups, lu-rings, MV-algebras,
and PMFf -algebras, the following result follows from definitions.

Lemma 2
If I = ⟨S⟩, then I satisfies the same properties as S in Lemma 1.

Hilbert’s Nullstellensatz is stated in terms of the radical of an ideal: it is equal to the generated ideal of the zero
set of the ideal, for ideals in the ring of polynomials with coefficients in a field. We recall the classical version for
algebraically closed fields.

Theorem 3 ([17, §1.7])
Let k be an algebraically closed field and I an ideal of the ring k[x1, · · · , xn], then Rad(I) = I (Z (I)).

A version of this theorem is known in the context of real fields. A field F is called real if it can be ordered [5,
1.1.9]. A real field F is called real closed if it has no non-trivial real algebraic extensions [5, 1.2.1]. As should be
expected, the field R is an example of a real closed field.

Theorem 4 ([5, 4.1.4 and 4.1.8])
If I is an ideal of the ring R[x1, · · · , xn], where R is a real closed field, then R

√
I = I (Z (I)).

Remark 5
Theorem 4 is stated as “I = I (Z (I)) if and only if I is real”, which is equivalent to the presented version.

In the real algebraic context, there is a lack of the classical sense of a closed field, but the order of the field leads
to establishing a version of the Nullstellensatz, i.e., to characterize the ideals generated by their zero sets. In the
context of MV-algebras, there is also a lack of sense of closed fields, but again, the lattice structure of the algebra
plays an important role to characterize ideals generated by their zero sets. In this context, the Theorem is stated in
terms of Cont(X, [0, 1]), the MV-algebra of continuous functions from a topological space X to [0, 1].

Theorem 5 ([13, 3.10])
Let X be a compact topological space, A a subalgebra of Cont(X, [0, 1]) and I an ideal of A. Then, Rad(I) =
I (Z (I)).
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The following corollary highlights the role of free MV-algebras in this context.

Corollary 1 ([13, 3.11])
If I is an ideal of the free MV-algebra Mn, then

√
I = I (Z (I)).

We present a version of Hilbert’s Nullstellensatz Theorem in three different contexts, each of which has a similar
statement as the original theorem. To start, the following proposition is a version of the Weak Nullstellensatz, which
states that the zero set of a proper ideal in a structure of functions is non-empty. Proving this in the proposed context
is easier than the proof of the classical version for the ring of polynomials with coefficients in an algebraically
closed field, since the functions are continuous over a compact topological space. From now on, consider X a
compact topological space and denote by Cont(X,R) the subset of continuous functions of RX .

Proposition 8
For the lu-group Cont(X,R) and J a proper l-ideal, then, Z(J) ̸= ∅.

Proof
First, observe that if f ∈ J , then Z(f) ̸= ∅, since otherwise u ≤ m|f | ∈ J for some m ≥ 1, so J would not be
proper. Now, by contradiction, suppose

⋂
f∈J

Z(f) = Z(J) = ∅. Taking the complement leads to X =
⋃
f∈J

Z (f)
′

and using the fact that functions in J are continuous over the compact set X , then the open cover contains a

finite subcover such that X =
n⋃

i=1

Z (fi)
′, from which

n⋂
i=1

Z (fi) = ∅. Now, define f = |f1|+ · · ·+ |fn| ∈ J , so

Z(f) = ∅, which is a contradiction.

Since Cont(X,R) is also an lu-ring, the following is immediate.

Corollary 2
Consider Cont(X,R) as a lu-ring with u a strong unit and J a proper l-ideal. Then, Z(J) ̸= ∅.

It is worth noticing that for Cont(X,R), both as an lu-group and an lu-ring, maximal l-ideals and L-ideals are of
the form Ja := {f ∈ Cont(X,R) | f(a) = 0}.

Lemma 3
Let J be a maximal l-ideal of the lu-group Cont(X,R). Then, J = Ja for some a ∈ X .

Proof
It is direct to see that ideals of the form Ja are maximal. Now, if J is a maximal ideal and a, b ∈ Z(J), then
J ⊂ Ja ∩ Jb, so Ja = Jb = J .

In the below Proposition and Corollaries, we present the announced version of Hilbert’s Nullstellensatz theorems
for lu-groups, lu-rings and PMVf -algebras.

Proposition 9 (lu-groups Nullstellensatz)
Let J be a proper ideal of the lu-group Cont(X,R). Then, Rad (J) = I (Z (J)).

Proof
Observe that J ⊂ Ja if and only if a ∈ Z(J). Indeed, if J ⊂ Ja, by Lemmas 1 and 2, a ∈ Z (J). On the other hand,
if a ∈ Z (J), then f ∈ Ja for all f ∈ J , so J ⊂ Ja. Then, the following holds:

Rad (J) =
⋂

J⊂Ja

Ja =
⋂

a∈Z(J)

Ja = I (Z (J))

Corollary 3 (lu-rings Nullstellensatz)
Let J be a proper ideal of the lu-ring Cont(X,R). Then, Rad (J) = I (Z (J)).
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It also holds that maximal ideals of the PMVf -algebra Cont(X, [0, 1]) are of the form Ja, for some a ∈ X . Then,
we get the following version of the Nullstellensatz in the context of PMVf -algebras.

Proposition 10 (PMVf -algebras Nullstellensatz)
Let I be a proper ideal of the PMVf -algebra Cont(X, [0, 1]), then Rad (I) = I (Z (I)).

Example 7 1. Consider X = [0, 1], the lu-group G = Cont(X,R), the lu-ring R = Cont(X,R) and the PMVf -
algebra P = Cont(X, [0, 1]). For a ∈ [0, 1], the radical of maximal l-ideals of G of the form Ja (or L-ideals
Ja of R, or ideals Ia of P ) are the same ideals, i.e. Rad(Ja) = Ja (similar in R and P ), so these ideals should
be called radical ideals, as in classical definitions.

2. Similar results as the presented could be obtained for the lu-groups, lu-rings and PMVf -algebras of
continuous functions defined piecewise by polynomials with integer coefficients, namely: the free MV-
algebra Mn, the lu-group M∗

n = MRn, the lu-ring F [x1, · · · , xn]
# = FR[x1, · · · , xn] and the PMVf -

algebra F [x1, · · · , xn]. These are the structures we aim to study from an algebraic-geometric perspective,
starting from classical concepts, as their elements are those most closely related to traditional contexts.

All the notions presented regarding radical ideals, even in classical contexts, are characterized by the
Nullstellensatz theorems through a common feature: they are ideals that are also generated by their zero sets.
This property reveals a deeper interpretation from a geometric perspective, although it is not explored in this work.
However, the properties that are lost from classical and real algebraic geometry are compensated for by the lattice
structure underlying the four algebraic structures presented here. This also opens avenues for further exploration
of adaptations of concepts from classical contexts to these non-classical algebraic structures.

3.2. A comparison among the theorems

Consider the function f(x) = x2 + 1, for which Z (f) = {−i, i} over the polynomial ring C[x] and Z (f) = ∅ over
the polynomial ring R[x]. In the polynomial ring C[x], I (Z (f)) = ⟨(x+ i)(x− i)⟩ = Ii ∩ I−i. If f ′ ∈ C[x] and
f ′ ∈ ⟨f⟩, then it is possible to show that both x− i and x+ i are factors of f ′, which implies ⟨(x+ i)(x− i)⟩ = ⟨f⟩
and from Theorem 3, we have that ⟨f⟩ is a radical ideal although not a maximal ideal.

In R[x], ⟨f⟩ is a maximal ideal, then it is also a radical ideal. Observe that I (Z (f)) = R[x] ̸= ⟨f⟩, however
Theorem 3 does not apply since R is not algebraically closed. Additionally, Theorem 4 implies ⟨f⟩ is not a real
radical ideal.

In the lu-group G = Cont([0, 1],R), I (Z (f)) = G and ⟨f⟩ = G since 1 ≤ f , so Theorem 9 implies that ⟨f⟩ is
an l-radical ideal. The same follows from Corollary 3 in the lu-ring R = Cont(X,R).

In the MV-algebra A = Cont([0, 1], [0, 1]), f = 1, then ⟨f⟩ = A and I (Z (f)) = A, therefore by Theorem 5, ⟨f⟩
is a radical ideal, although not a maximal ideal. The same holds in the PMVf -algebra P = Cont([0, 1], [0, 1]) from
Proposition 10.

Consider the function g(x) = (x− 1)2, for which Z (g) = {1} and in every structure I (Z (g)) = I1. Denote by
I = ⟨g⟩ the ideal generated in each of the following structures. In C[x], I (Z (I)) = ⟨x− 1⟩ ⫌ I , so from Theorem
3, I is not a radical ideal. From Theorem 4, it is neither a real radical ideal. In the lu-group G, since there is no
integer n ≥ 1 such that 1− x ≤ ng, we have that I ⫋ I1 and from Theorem 9, I is not an l-radical ideal. With a
similar argument and Theorem 5, we conclude that I is not a radical ideal in the MV-algebra A.

Now, consider h(x) = sin(x) restricted to X = [0, 1]. Its zero set is Z (h) = {0}, so I (Z (I)) = I0, for I = ⟨h⟩.
In the lu-group G we have that h ≤ x and that x ≤ 2h, therefore I = ⟨x⟩, and from Theorem 9 we have that I is an
l-radical ideal. The same can be obtained for the MV-algebra A.

The examples above illustrate that the search for radical ideals in different structures yields similar
approximations, such as the characterization of their zero sets. However, they also reveal algebraic aspects that
differentiate them significantly, including order properties and natural bounds within the structures.
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4. Conclusions

The study of the notion of radical ideals can be interpreted in various contexts beyond traditional ring theory, where
algebraically closed fields may not be well defined. Analogous results in classical algebraic geometry have been
established in real algebraic geometry and algebraic structures like MV-algebras, where the order of the structure
plays an important role. Inspired by some results in terms of ideals in ordered structures, we showed that a natural
definition of radical ideals for product MV-algebras, lu-groups and lu-rings can be formulated in terms of the
intersection of maximal ideals.

Building on this foundational understanding of the radical of an ideal, we proposed and proved several theorems
reminiscent of the Nullstellensatz in various contexts. These results indicate that the study of algebraic geometry
is significant for MV-algebras, both with and without a product. Furthermore, the connection with the connection
with lu-groups and lu-rings offers an insightful perspective, allowing certain problems from one structure in terms
of the other. This interchangeability may provide opportunities to solve those problems and subsequently translate
the solutions back into their original context.

The results presented in this work represent the initial steps toward future research. From one perspective, we
could investigate the concept of radical ideals in contexts where the domain of the functions has weaker properties,
like being non-compact. This exploration would broaden the study of algebraic geometry concerning MV-algebras
and their varieties, allowing for the examination of other examples, such as free MV-algebras, finite MV-algebras,
and perfect MV-algebras. Other characterizations for radical ideals can be explored, in particular, some in terms
of the elements and not in terms of the maximal spectrum of the algebras, such as the known ones in classical
contexts.

Additionally, while developing this work, it is essential to explore the geometric connections of the theory in
terms of algebraic sets and irreducible algebraic sets. Some results related to this idea for MV-algebras can be
found in works like [3].

Finally, the study of concepts from algebraic geometry could be further pursued within the structures presented
here, thereby strengthening the current theory. This investigation should focus on coordinate rings and polynomial
maps. Relevant studies of this for MV-algebras can also be found in works like [3].
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14. Dvurečenskij, A. and Di Nola, A., Product MV-algebras Multiple-Valued Logic, vol. 6, pp. 193–215, 2001
15. Estrada, A. and Poveda, Y. A., MVW-rigs and product MV-algebras Journal of Applied Non-Classical Logics, vol. 29, no. 1, pp.

78–96, 2019
16. Estrada, A. and Poveda, Y. A. and Serrano, H., Introducción a las MV-álgebras Universidad Tecnológica de Pereira, 2024
17. Fulton, W., Algebraic Curves: An Introduction to Algebraic Geometry Addison-Wesley Publishing Company, 2008
18. Mundici, D., Interpretation of AF C∗-algebras in Łukasiewicz sentential calculus Journal of Functional Analysis, vol. 65, no. 1, pp.

15–63, 1986
19. Mundici, D., Recent Developments of Many-valued Logic IX Congreso Dr. Antonio Monteiro, 2007

Stat., Optim. Inf. Comput. Vol. x, Month 202x


	1 Introduction
	1.1 Some notation
	1.2 Rings
	1.3 MV-algebras and Product MV-algebras
	1.4 l-groups and l-rings
	1.5 Categorical equivalences

	2 The interpretations of the radical of an ideal
	2.1 Notions of the radical in non-classical contexts
	2.2 Properties of the radical of an ideal

	3 Nullstellensatz - like theorems
	3.1 Nullstellensatz in non-classical contexts
	3.2 A comparison among the theorems

	4 Conclusions

