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Abstract In this paper, the optimization problems of the terminal wealth of two dependent insurance companies which
each of them tries to perform better relative to its competitor is presented. It is assumed that both insurers having the
compound Poisson process and they are allowed to purchase proportional reinsurance with a constant reinsurance premium
and invest in a financial market which consists of a risk-free asset, a defaultable coupon bond whose the price process of each
insurer is governed by a standard Brownian motion and dynamics of defaultable price process is modeled as a mixture of the
exponential stochastic differential equation of corporate coupon bonds. For the correlated competing insurance companies,
by applying the Girsanov’s theorem and compensated Poisson process, we formulate the wealth process of each insurer
based on the reinsurance and investment strategies. By solving the nonlinear Hamilton-Jacobi-Bellman equations related
to our optimal control problems with exponential utility functions, the optimal investment and reinsurance strategies are
derived for both insurers among all admissible policies. Finally, the influence of each model parameters on the optimal
portfolio strategies are discussed by numerical experiments.
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1. Introduction

The insurance companies are currently facing a variety of changes. On the one hand, the competition and
cooperation among them become more and more frequent due to the acceleration of financial globalization. The
risks they faced increasingly tend to be complex and diversified, which makes the connection among insurance
businesses more and more stronger. Optimal reinsurance and investment problems for insurance companies
(insurers) have attracted considerable attention from the fields of financial mathematics and actuarial science.
This is may be attributed to the fact that reinsurance is an effective approach to manage risk exposures and is
usually used to transfer and control risk because it allows insurance companies to provide more secure coverage
with higher limits, while the investment is an important way to gain profits from insurers’ surplus. Indeed,
purchasing reinsurance can protect insurers against adverse claim experience, while investment further allows
insurers to diversify their risks and enjoy a higher rate of return on the insurance portfolio’s cash flows. Proportional
reinsurance is one of the reinsurance arrangement, which means the insurer pays a proportion, say q, when the claim
occurs and the remaining proportion, 1− q, is paid by the reinsurer. If the proportion a can be changed according
to the risk position of the insurance company, this is the dynamic proportional reinsurance.
Deeply entrenched in the comprehensive body of literature on this research topic, the goal often consists in solving
for the optimal reinsurance arrangement and investment decision to achieve a clearly defined objective (e.g.,
minimizing ruin probability or maximizing expected utility).
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Recently, most insurance companies manage their business by means of reinsurance and investment, which are
effective way to spread risk and make profit. Therefore, these have inspired hundred researches. For instance,
[1], [2] and [3], investigated the optimal problems for an insurance company in the case of minimizing the
ruin probability. [4], [5], and [6] studied the optimal reinsurance and investment problems of expected utility
maximization. The latest researches on insurance and investment management problem can be referred to [7], [8],
[9], [10], [11], [12] and references therein.
[13] derived the explicit optimal investment and reinsurance policies for an insurer with the classical surplus
process, where the financial market is driven by a drifted Brownian motion with coefficients modulated by an
external Markov process. [14] considered the optimal investment and reinsurance strategies between an insurer
and a reinsurer to maximize the terminal expected utility, and explicit expressions of the optimal investment and
reinsurance strategies are derived. [15] obtained the robust equilibrium reinsurance and investment strategy for
the insurer and reinsurer under weighted mean-variance criterion when the insurer can purchase proportional
reinsurance from the reinsurer and both the insurer and reinsurer can invest in risk-free assets and risky assets,
where the risky asset price is described by the constant elasticity of variance model. [16], derived the optimal
reinsurance and investment problem between an insurer and a reinsurer where it is assumed that the insurer can
purchase proportional reinsurance and both the insurer and the reinsurer are allowed to invest in a risk-free asset
and a risky asset, in which the two risky assets are supposed to be correlated.
However, most of the literature mentioned above only considered one insurance company, while there are many
insurance companies in the market in reality and they compete with each other. Thus, two insurance companies, a
big one and a small one, are focused on in this paper.
[17] discussed the competition between two companies and contrasted a single payoff function which depended
on both surplus processes of insurance companies. [18] investigated stochastic differential games between two
insurance companies who employed the reinsurance to reduce risk exposure. [19] proposed a stochastic differential
reinsurance game between two insurers with quadratic risk control processes, where the objective function of each
insurer was to maximize the expected utility of its relative performance to his competitor. [20] defined an exit
probability game between two competitive insurance companies who had quadratic surplus processes, and the
value functions and Nash equilibrium strategies were obtained explicitly by solving Fleming-Bellman-Isaacs (FBI)
equations. The work of [21] is arguably to study a reinsurance game model in a continuous-time model in which
both insurers maximize the expected utility of their terminal surpluses.
[22] investigated stochastic differential reinsurance games between an insurer and a reinsurer, which allowed them
to consider the benefits of both parties in the reinsurance contracts, under the expected utility maximization
and mean-variance criteria, respectively. [23] obtained the optimal strategies for investment and reinsurance
games between two insurance companies, when both insurers are allowed to purchase a proportional reinsurance
contract and invest in risky and risk-free assets with nonlinear risk processes and Value-at-Risk constraints.
[24] derived the optimal reinsurance-investment strategy so as to maximize the expected terminal wealth while
minimizing the variance of the terminal wealth, when each insurer transfers part of the claims risk via reinsurance
and invests the surplus in a financial market. [25] derived the equilibrium strategies for the reinsurance game
between two competitive insurers Hamilton-Jacobi-Bellman (HJB) equations when each insurer is allowed to
purchase proportional reinsurance, invest in a financial market consisting of a risk-free asset and a risky asset.
[26] investigated two insurance companies who have a fixed amount of funds allocated as the initial surplus
with consideration of the reinsurance strategies together with capital injections simultaneously for a diffusion
approximation of classical Cramér-Lundberg model. The optimal capital injection strategies are studied based on
the argument of surplus difference of two insurance risk process.
As far as we know, there is few research investigating more than one insurance company under the purchasing
proportional reinsurance, a risk-free asset, and defaultable grade bond in a financial market. Therefore, in this
paper, we provide an innovative study on a stochastic differential game played between two insurance companies.
The objective function studied here is to maximize his expected utility of wealth process the difference between
his terminal surplus and that of his competitor at a fixed time horizon T .
Through this paper, we suppose that both insurers having the compound Poisson process and they are allowed to
purchase proportional reinsurance and invest in a financial market which consists of a risk-free asset, a defaultable
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2 OPTIMAL COMPETITIVE STRATEGIES ON THE PERFORMANCE OF TWO INSURANCE COMPANIES

grade bond whose the price process of each insurer is governed by a standard Brownian motion and dynamics
of defaultable bond price is represented as an exponential form of stochastic differential equation. Firstly, we
describe the optimization problems and a verification theorem is necessary to guarantee that the solutions to HJB
equation coincide with the objective functions. By solving the nonlinear HJB equations related to our optimal
control problems, the optimal investment and reinsurance strategies are derived for both insurers. Finally, numerical
examples are proposed to illustrate the impacts of model parameters on the strategies.
This paper proceeds as follows. In Section 2, we introduce the formulation of our risk insurance model. In addition
to giving the dynamics of financial securities, we present the wealth process of each insurer based on reinsurance
and investment strategies. Section 3 provides the optimization problem of each insurance company to maximize
the expected utility of wealth process of the difference between his terminal surplus and that of his competitor at
a fixed time horizon. In Section 4, the optimal reinsurance and investment strategies are derived for both insurers
by solving the nonlinear HJB equations related to our optimal control problems with exponential utility functions.
Section 5 gives a verification theorem which is necessary to guarantee that the solution to HJB equation coincide
with the objective functions. The numerical examples are presented in Section 6. The conclusions are provided in
Section 7.

2. Risk model setting and assumptions

In this paper, we suppose that all investments and assets are infinitely divisible and all assets are tradable
continuously over time, without considering transaction costs or taxes. In our diffusion approximation process,
both the insurers having the compound Poisson process and they are allowed to purchase proportional reinsurance.

2.1. Surplus process

Let us start with a Cramér-Lundberg model, which is a classical actuarial model used to analyse the risk of an
insurance portfolio. The company experiences two opposing cash flows: incoming premiums from the policyholder
and outgoing claims. In the sequel, we will always work on the probability space (Ω,F , P ), which is endowed with
the information filtration F = {Ft}t≥0 which carries all stochastic quantities and right continuity and it is often
called an enlarged filtration given by Ft = Gt ∨Ht. In the probability space, P denotes the martingale probability
measure. The filteration Gt is assumed to be generated by the Winner process which shows the change of stock
price and the filteration Ht is shows a Poisson process that is used to denote the arrival of risks.
We assume that the insurance company, having an initial capital, cashes premiums continuously and pays claims
of random sizes at random times. According to the Cramér-Lundberg model (also known as compound Poisson
model or classical risk model), the surplus process dRk(t), k = 1, 2, of a homogeneous insurance portfolio can be
described by

dRk(t) = ckdt− dSk(t), t ≥ 0, (1)

with an initial deterministic surplus Rk(0) = u∗
k ≥ 0 is the initial surplus, the surplus process increases linearly due

to premiums that are collected continuously over time at a constant rate ck > 0, and

S1(t) =

M1(t)∑
i=1

Xi, S2(t) =

M2(t)∑
i=1

Yi,

are two compound Poisson processes with claim sizes Xi and Yi with
{
Xi : i ≥ 1

}
and

{
Yi : i ≥ 1

}
being the

sequences of positive and identically distributed random variables, where Mi(t) is the claim number process for
the insurance k, k = 1, 2 and these two claim processes are correlated in the way

M1(t) = N1(t) +N(t), and M2(t) = N2(t) +N(t).

The processes
{
N1(t), t ≥ 0

}
,

{
N2(t), t ≥ 0

}
and

{
N(t), t ≥ 0

}
are three mutually independent and

homogeneous Poisson processes denoting the number of claims up to time t with intensities λ1, λ2 and λ,
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respectively. In addition, the claim sizes
{
Xi : i ≥ 1

}
and

{
Yi : i ≥ 1

}
are two dependent classes of insurance

businesses of the processes N1(t) and N2(t). Let
{
Xi : i ≥ 1

}
are the claim size random variables for the first

company with a continuous distribution function FX and
{
Yi : i ≥ 1

}
are the claim size random variables for

the second company with a continuous distribution function FY . Their means are denoted by µ1 = E(Xi) and
µ2 = E(Yi), and the second moments are denoted by γ1 = E(X2

i ) and γ2 = E(Y 2
i ), respectively. This risk model

has been studied extensively in some literatures; see for example, [27] and [28].
Now, we approximate the compound Poisson risk processes in terms of reinsurance contract with the standard
Brownian motions and constant reinsurance premiums. To spread risk in the portfolio, each insurer purchases
proportional reinsurance.
More precisely, we allow the insurance company k to continuously reinsure a fraction of its claim with the retention
levels qk(t) ∈ [0, 1] at time t. Let the constant reinsurance premium rate at time t be ηqk(t). Then the corresponding
risk process (1) for insurer k, k = 1, 2, in term of dynamic proportional reinsurance becomes:

dRqk
k (t) =

(
ck − ηqk(t)

)
dt− qk(t)dSk(t), t ≥ 0. (2)

Since qk(t) ∈ [0, 1] is the proportional reinsurance for the insure k, therefore, 1− qk(t) is the proportional
reinsurance to the reinsurance company. Moreover, for each insurance company ηqk(t) will be calculated by the
variance principle.
From [29], the compound Poisson Sk(t), k = 1, 2, can be approximated by the following Brownian motion:

Sk(t) = akt− ζkBk(t), t ≥ 0, (3)

with a1 = (λ1 + λ)E(Xi), a2 = (λ2 + λ)E(Yi), ζ21 = (λ1 + λ)E(X2
i ) and ζ22 = (λ2 + λ)E(Y 2

i ). Moreover, the
insurer k should pay a reinsurance premium at the rate ηqk(t) =

(
1− qk(t)

)
ak + ν

(
1− qk(t)

)2
ζ2k , where ν > 0 is

a safety loading, B1(t) and B2(t) are standard Brownian motions with the correlation coefficient

ρ =
λE(Xi)E(Yi)√

(λ1 + λ)E(X2
i )
√

(λ2 + λ)E(Y 2
i )

=
λµ1µ2

ζ1ζ2
.

Therefore, E
(
B1(t)B2(t)

)
= ρt. From the compound Poisson Sk(t), k = 1, 2, given in (3), the dynamic

proportional reinsurance (2) can be written as

dRqk
k (t) =

(
ck − ηqk(t)− akqk(t)

)
dt+ ζkqk(t)dBk(t), t ≥ 0. (4)

2.2. Dynamics portfolio choice of financial securities

In this subsection, we assume that each insurance company has access to the risk-free asset, firstly we define the
price process as a mixture of the exponential stochastic differential equation of corporate coupon bonds, then by
applying the Girsanov’s theorem and compensated Poisson process, we give the dynamic of corporate coupon
bonds as the exponential form of stochastic differential equation.
Assume that the each insurance company is allowed to invest all its surplus in a risk-free asset with constant positive
interest rate r, i.e. the company has access to the risk-free asset Pt with

P0(t) = rP0(t)dt. (5)

Now, we consider the stock allocation in a stochastic volatility model. As Section 2 given in [30], we consider the
following stock price portfolio selection model:

dP (t) = P (t)
(
(r + ωY (t))dt+

√
Y (t)dW1(t)

)
,

where the volatility process Y (t) is a square-root process and it is given by

dY (t) = α(β − Y (t))dt+ κ
√

Y (t)dW2(t),
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4 OPTIMAL COMPETITIVE STRATEGIES ON THE PERFORMANCE OF TWO INSURANCE COMPANIES

r is a positive constant price of interest risk, W1(t) and W2(t) are standard Brownian motions with
E
(
dW1(t)dW2(t)

)
= ρ̂dt, P (0) = p > 0, Y (t) = y > 0, for 0 ≤ t ≤ T , ω > 0, β > 0 is the long-run average of

the variance process and κ > 0 is the specific time period which measures of that variance bounded and it is called
the volatility of variance. Moreover, to ensure that Y (t) is non-negative almost surely, we need 2αβ ≥ κ2.
Definition 2.1 (Default process). A nondecreasing right continuous process which makes discrete jumps at a
random time τ is called default process and denotes by H(t) = I{τ≤t}, where I represents the indicator function
which takes the value of one if there is a jump and zero otherwise.
Definition 2.2. The default process {H(t)}t≥0 is said to be a Poisson distribution with intensity h if the following
conditions hold:
i) H(0) = 0,
ii) {H(t)}t≥0 has the independent increments.
iii) The number of events in any interval of length t has a Poisson distribution with mean ht. That is, for all s, t ≥ 0,

P
(
H(t+ s)−H(s) = n

)
= e−ht (ht)

n

n!
, n ≥ 0.

Here, ht represents the intensity of the Poisson process, which measures the arrival rate of a default. The mean
arrival rate ht is called the compensator for the Poisson process. We now define a compensated Poisson process.
Definition 2.3. The martingale default process which is given by the equation:

C(t) = H(t− h)

∫ t

0

(1−H(z))dz,

is a compensated Poisson process. In addition, the stochastic differential equation of this compensated Poisson
process is defined by dC(t) = dH(t)− h(1−H(t))dt. We extensively use this equation to calculate the dynamics
of corporate coupon bonds.
We assume that there exists a corporate coupon bond with a maturity date T1 and the amount of defaultable bond
after default is considered zero. We will try to model the price process in terms of this coupon bond under the
real word probability measure P . We let τ denotes the first time of a Poisson process with constant jump intensity
hP under the martingale probability measure P . In the event of default, the investor recovers a fraction of the
market value of the prepaid bond immediately prior to default. We propose a new financial model called a mixture
of corporate coupon bonds, which has a constant loss rate of the corporate coupon bond and a credit spread.
Let δ ∈ (0, 1) denotes the constant loss rate of the corporate coupon bond, then we define the price process of
defaultable bond as a mixture of the exponential stochastic differential equation of corporate coupon bonds as

p(t, T1) = I{τ>t}e
−(r+θ)(T1−t) + I{τ≤t}(1− δ)e−(r+θ)(T1−τ)er(t−τ), (6)

where θ = δhP is the credit spread under the real word martingale probability measure.

Lemma 1
For the constant positive interest rate r, the price process of defaultable bond in (6) under the martingale probability
measure P is given by

dp(t, T1) = rp(t, T1)dt− δe−(r+θ)(T1−t)dCP
t , (7)

where CP (t) = H(t)− γhP
∫ t

0
(1−H(u))du is a compensated jump process and γ ∈ (0, 1) is the constant default

risk premium.

Proof
To prove this Lemma, use the Itô’s formula on equation (6).

Lemma 2
For the constant positive interest rate r, the price process of defaultable bond in equation (7) under the martingale
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probability measure P can be represented as the exponential stochastic differential equation as follows:

dp(t, T1) = p(t, T1)
(
rdt+ (1−H(t))θ(1− γ)dt− (1−H(t))δdCP (t)

)
, (8)

where we use

p(t, T1) =


e−(r+θ)(T1−t), if τ > t,

(1− δ)e−(r+θ)(T1−τ)er(t−τ), if τ ≤ t.

Proof
Using the Girsanov’s theorem for equation (7), the Lemma will be proved. The proof of this Lemma is standard,
and is thus omitted for simplicity.

2.3. Dynamics of wealth processes in a defaultable financial market

In this subsection, we consider a new defaultable financial market for both insurers. It is assumed that both insurers
are allowed to purchase proportional reinsurance with a constant reinsurance premium and invest in a financial
market which consists of a risk-free asset, and purchases reinsurance contracts from the same reinsurance company
in a fixed time horizon T , where we assume that T < T1. Under this new defaultable financial market, the dynamics
of wealth process of insurer k, k = 1, 2, is defined by

dDπk

k (t) =
Dπk

k (t)− sk(t)− ek(t)

P0(t)
dP0(t) +

sk(t)

P (t)
dP (t) +

ek(t)

p(t, T1)
dp(t, T1)

+
(
ck − ηqk(t)− qk(t)ak

)
dt+ ζkqk(t)dBk(t)

=
(
rDπk

k (t) +
(
ck − ηqk(t)− qk(t)ak

)
+ sk(t)ωY (t) + ek(t)(1−H(t))θ(1− γ)

)
dt

+sk(t)
(
Y (t)

) 1
2 dW1(t) + ζkqk(t)dBk(t)− ek(t)δ(1−H(t))dCP (t), (9)

where sk(t) and ek(t) represent the amounts of insurer k′s wealth process invested in the stock and corporate bond,
respectively. Let πk(t) =

(
qk(t), sk(t), ek(t)

)
be the investment and reinsurance strategy followed by insurance

company k, k = 1, 2.
Definition 2.4. For t ∈ [0, T ], the triple process πk(t), k = 1, 2, is an admissible strategy if the following conditions
hold:
i) πk(t) is a Ft-measurable process.
ii)

∫ T

0

(
ζ2kq

2
k(t) + s2k(t)Y (t)

)
dt < ∞,

iii) Under the triple process πk(t), the stochastic differential equation (9) has an unique solution.
Moreover, we assume that Πk denotes of all admissible strategies.

3. Optimization problems

In this section, we model the competition of two insurance companies based on the objective functions. We give
two objective functions based on the smooth utility functions for two insurers, default process and the dynamics
of wealth process to present the optimization problems under the given volatility process. Thus, the competition
between the two companies formulates a game with two players, each of which can adjust his reinsurance and
wealth process strategies based on his competitor’s scheme.
Assume that Dπk

k (t) = dk, k = 1, 2, Y (t) = y > 0, and H(t) = h, for h = {0, 1}, then we consider two objective
functions O(π1,π2)

1 (t, d1, d2, y, h) and O
(π1,π2)
2 (t, d1, d2, y, h) for the insurance companies 1 and 2, respectively, as
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follow:

O
(π1,π2)
1 (t, d1, d2, y, h)

= E
(
U1

(
(1− z1)D

π1
1 (T ) + z1(D

π1
1 (T )−Dπ2

2 (T ))
)∣∣(Dπ1

1 (t), Dπ2
2 (T ), Y (t), H(t)) = (d1, d2, y, h)

)
= E

(
U1

(
Dπ1

1 (T )− z1D
π2
2 (T )

)∣∣(Dπ1
1 (t), Dπ2

2 (T ), Y (t), H(t)) = (d1, d2, y, h)
)
, (10)

and

O
(π1,π2)
2 (t, d1, d2, y, h)

= E
(
U2

(
(1− z2)D

π2
2 (T ) + z2(D

π2
2 (T )−Dπ1

1 (T ))
)∣∣(Dπ2

2 (t), Dπ1
1 (T ), Y (t), H(t)) = (d1, d2, y, h)

)
= E

(
U2

(
Dπ2

2 (T )− z2D
π1
1 (T )

)∣∣(Dπ2
2 (t), Dπ1

1 (T ), Y (t), H(t)) = (d2, d1, y, h)
)
, (11)

where U1 and U2 are the strictly increasing and strictly concave smooth utility function for insurers 1 and 2,
respectively, (i.e., U ′

k > 0 and U ′′
k < 0, for k = 1, 2), the parameter zk ∈ [0, 1], k = 1, 2, denotes the performance

relative of insurer k to its competitor j, j ̸= k ∈ {1, 2}.
The optimization problems are to determine the optimal wealth process of each insurance companies which are
invested in the reinsurance strategies, stocks and corporate bonds. Reinsurance optimization problems have been
extensively studied under various criteria, such as minimizing risk measures in the static setting and minimizing
ruin probabilities in the dynamic setting, with a focus on maintaining company stability. However, in this study,
our objective is to explore reinsurance strategies together with stocks and corporate bonds simultaneously two
insurance companies according to the classical Cramér-Lundberg model. In our risk optimization problem, we find
the triple of estimator for reinsurance, stocks and corporate bonds.
Problem 3.1. Find a Nash equilibrium (π∗

1 , π
∗
2) =

(
q∗1(t), s

∗
1(t), e

∗
1(t); q

∗
2(t), s

∗
2(t), e

∗
2(t)

)
∈ Π1 ×Π2, such that the

inequalities

O
(π∗

1 ,π
∗
2 )

1 (t, d1, d2, y, h) ≥ O
(π1,π

∗
2 )

1 (t, d1, d2, y, h), (12)

and

O
(π∗

1 ,π
∗
2 )

2 (t, d1, d2, y, h) ≥ O
(π∗

1 ,π2)
2 (t, d1, d2, y, h), (13)

hold. When we have the inequalities (12) and (13), then the objective functions of insurer 1 and 2 can be defined
as follow:

O1(t, d1, d2, y, h) = O
(π∗

1 ,π
∗
2 )

1 (t, d1, d2, y, h) = sup
π1∈Π1

O
(π1,π

∗
2 )

1 (t, d1, d2, y, h),

and

O2(t, d1, d2, y, h) = O
(π∗

1 ,π
∗
2 )

2 (t, d1, d2, y, h) = sup
π2∈Π2

O
(π∗

1 ,π2)
2 (t, d1, d2, y, h).

According to the Problem 3.1, we will try to find the admissible strategies π∗
1 and π∗

2 as the competitively optimal
investment and reinsurance strategies.
To solve the Problem 3.1, first by defining the equality D̂πk

k (t) = Dπk

k (t)− zkD
πj

j (t), for j ̸= k ∈ {1, 2}, we have
the stochastic differential equation

dD̂πk

k (t) =
[
rD̂πk

k (t) + (ck − zkcj)−
(
ηqk(t)− zkηej(t)

)
−
(
qk(t)ak − zkej(t)aj

)
+
(
sk(t)− zksj(t)

)
ωY (t) +

(
ek(t)− zkej(t)

)(
1−H(t)

)
θ(1− γ)dt

]
+
(
sk(t)− zksj(t)

)√
Y (t)dW1(t) + ζkqk(t)dBk(t)− zkζjej(t)dBj(t)

−
(
ek(t)− zkej(t)

)
δ(1−H(t))dCP (t), (14)
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with D̂πk

k (t) = dk − zkwj , for 0 ≤ t ≤ T and k ̸= j ∈ {0, 1}. Moreover, for Y (t) = y and H(t) = h, let for
k = 1, 2,

Ok(t, d̂k, y, h) = sup
πk∈Πk

E
(
Uk

(
Dπk

k (T )− dkD
π∗
j

j (T )
)∣∣D̂πk

k (t) = d̂k, Y (t) = y,H(t) = h
)
,

be the objective function for insurer k.

4. Optimal investment and reinsurance strategies

In this section, the optimal reinsurance and investment strategies are derived for both insurers by solving
the nonlinear Hamilton-Jacobi-Bellman equations related to our optimal control problems with the following
exponential utility functions:

Uk(d̂k) = − 1

ek
exp

{
ekd̂k

}
, k = 1, 2,

where ek is a positive constant absolute risk aversion coefficient. Using the standard dynamic programming
techniques, the objective function Ok, k = 1, 2, satisfies the HJB equation: supπk∈Πk

Bπk

k Ok(t, d̂k, y, h) = 0,

Ok(T, d̂k, y, h) = Uk(d̂k),

(15)

for all t ∈ [0, T ], where Bπk

k is the following nonlinear HJB equation:

Bπk

k Ok(t, d̂k, y, h) =
∂Ok(t, d̂k, y, h)

∂t
+
{[

rd̂k + (ck − zkcj)−
(
ηqk(t)− zkηe

∗
j (t)

)
−
(
qk(t)ak − zkej(t)aj

)
+
(
sk(t)− zksj(t)

)
ωy +

(
ek(t)− zke

∗
j (t)

)(
1− h

)
θ
]∂Ok(t, d̂k, y, h)

∂d̂k

+
1

2

(
sk(t)− zks

∗
j (t)

)2
y + ζkq

2
k(t)− z2kζ

2
j e

∗
j (t)− 2ρzkζkζjqk(t)q

∗
j (t)

]∂2Ok(t, d̂k, y, h)

∂d̂2k

+α(β − y)
∂Ok(t, d̂k, y, h)

∂y
+

1

2
yκ2 ∂

2Ok(t, d̂k, y, h)

∂y2

+ρ̂
(
sk(t)− zks

∗
j (t)

)
κy

∂2Ok(t, d̂k, y, h)

∂d̂k∂y

+
(
Ok(t, d̂k −

(
ek(t)− zke

∗
j (t)

)
δ, y, h+ 1)−Ok(t, d̂k, y, h)

)
hP (1− h)

}
.

We will solve this nonlinear HJB equation based on the discrete jump values of default process H(t) which occur
at the random time τ until the finite time T .
To do this, we divide the time space into two parts t ∈ [τ ∧ T, T ] and t ∈ [0, τ ∧ T ], where τ ∧ T = min{τ, T}, and
consider the objective function Ok(t, d̂k, y, h), k = 1, 2, with the following form:

Ok(t, d̂k, y, h) =


Ok(t, d̂k, y, 1), if h = 1 and the first time is t ∈ [τ ∧ T, T ],

Ok(t, d̂k, y, 0), if h = 0 and the second time is t ∈ [0, τ ∧ T ].

4.1. Optimal reinsurance and investment strategies for the first space

In this subsection, we will obtain the optimal reinsurance and investment strategies for t ∈ [τ ∧ T, T ]. Theorem 4.1
describes these optimal strategies and it’s associated objective functions.
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8 OPTIMAL COMPETITIVE STRATEGIES ON THE PERFORMANCE OF TWO INSURANCE COMPANIES

Theorem 4.1
For the dynamics of wealth process of insurer (9), when t ∈ [τ ∧ T, T ], the optimal investment strategy of stock
asset for k = 1, 2, is given by

s∗k(t) =
ŝ∗k(t) + zkŝ

∗
j (t)

1− zkzj
, k ̸= j ∈ {1, 2}, (16)

where ŝ∗k(t) =
(

ω
ek

+ gk(t)ρ̂κ
ek

)
e−r(T−t). Then the optimal investment strategy of corporate bond for k = 1, 2, is

given by
e∗k(t) = 0.

To obtain the optimal reinsurance strategy q∗k(t), k = 1, 2, we define the equations

q̂∗1(t) =
y1(t) + x1(t)y2(t)

1− x1(t)x2(t)
and q̂∗2(t) =

y2(t) + x2(t)y1(t)

1− x1(t)x2(t)
, (17)

where x1(t) =
ωµ1µ2z1e1e

r(T−t)

e1ζ2
1e

r(T−t)+2ζ2
1ν

, x2(t) =
ωµ1µ2z2e2e

r(T−t)

e2ζ2
2e

r(T−t)+2ζ2
2ν

, y1(t) = 2ν
e1er(T−t)+2ν

and y2(t) =
2ν

e2er(T−t)+2ν
.

Then the optimal reinsurance strategy q∗k(t), k = 1, 2, is given by

q∗k(t) = q̂∗k(t) ∧ 1. (18)

Moreover, the objective function is given by

Ok(t, d̂k, y, 1) = − 1

ek
exp

{
− ekd̂ke

r(T−t) + lk(t) + ygk(t)
}
,

where

lk(t) =

∫ T

t

(
(−eke

r(T−u))
[
(ck − zkcj)− ηq∗k(u)− zkηq

∗
j (u)− akq

∗
k(u)− zkajq

∗
j (u)

]
+
1

2
e2ke

2r(T−u)
[
ζ21q

∗2
k (u) + z2kζ

2
j q

∗2
j (u)− 2ρzkζkζjq

∗
k(u)q

∗
j (u)

]
+ αβgk(u)

)
du,

and

gk(t) =



e(Λ1−Λ2)(T−t)

e(Λ1−Λ2)(T−t)−Λ2
Λ1

Λ2, ρ̂ ̸= ±1,

− ω2

2(α+κω)

(
1− e−(α+κω)(T−t)

)
, ρ̂ = 1,

− ω2

2(α−κω)

(
1− e−(α−κω)(T−t)

)
, ρ̂ = −1 and α ̸= κω,

−ω2

2 (T − t), ρ̂ = −1 and α = κω,

(19)

where

ω1 =
α+ ρ̂κω +

(
α2 + κ2ω2 + 2ρ̂κωα

) 1
2

2
,

and

ω2 =
α+ ρ̂κω −

(
α2 + κ2ω2 + 2ρ̂κωα

) 1
2

2
.

Proof
The proof of this theorem is similar to that in Theorem 4.2, therefore, we omit it. With the additional explanation
that in the defaultable financial market when t ∈ [τ ∧ T, T ], the optimal investment strategy of corporate bond is
not tradable, i.e., e∗k(t) = 0, k = 1, 2, and this completes the proof.
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4.2. Optimal reinsurance and investment strategies for the second space

In this subsection, we will obtain the optimal reinsurance and investment strategies for t ∈ [0, τ ∧ T ]. Using the first
order conditions for a regular interior monimizer, Theorem 4.2 describes these optimal strategies and it’s associated
objective functions.

Theorem 4.2
For the dynamics of wealth process of insurer (9), when t ∈ [0, τ ∧ T ], the optimal investment strategy of corporate
bond for k = 1, 2, is given by

e∗k(t) =
ê∗k(t) + zkê

∗
j (t)

1− zkzj
, k ̸= j ∈ {1, 2}, (20)

where ê∗k(t) =

(
ln 1

γ +γ−1
)
e−

θ
δ
(T−t)−γ+1

ekδ
er(T−t), k = 1, 2. The optimal investment strategy of stock asset and

reinsurance strategy are given in (16) and (18), respectively.
Moreover, the objective function is given by

Ok(t, d̂k, y, 0) = − 1

ek
exp

{
− ekd̂ke

r(T−t) + lk(t) + Vk(t) + ygk(t)
}
= Ok(t, d̂k, y, 1)e

Vk(t),

where

Vk(t) =
(
ln

1

γ
+ γ − 1

)
e−

θ
δ (T−t) − ln

1

γ
− γ + 1.

Proof
When h = 0, the HJB equation (15) becomes

0 =
∂Ok(t, d̂k, y, 0)

∂t
+
{[

rd̂k + (ck − zkcj)−
(
ηqk(t)− zkηe

∗
j (t)

)
−
(
qk(t)ak − zkej(t)aj

)
+
(
sk(t)− zksj(t)

)
ωy +

(
ek(t)− zke

∗
j (t)

)
θ
]∂Ok(t, d̂k, y, 0)

∂d̂k

+
1

2

(
sk(t)− zks

∗
j (t)

)2
y + ζkq

2
k(t)− z2kζ

2
j e

∗
j (t)− 2ρzkζkζjqk(t)q

∗
j (t)

]∂2Ok(t, d̂k, y, 0)

∂d̂2k

+α(β − y)
∂Ok(t, d̂k, y, 0)

∂y
+

1

2
yκ2 ∂

2Ok(t, d̂k, y, 0)

∂y2

+ρ̂
(
sk(t)− zks

∗
j (t)

)
κy

∂2Ok(t, d̂k, y, 0)

∂d̂k∂y

+
(
Ok(t, d̂k −

(
ek(t)− zke

∗
j (t)

)
δ, y, 1)−Ok(t, d̂k, y, 0)

)
hP

}
. (21)

To solve this equation, we guess that the objective function has the following form:

Ok(t, d̂k, y, 0) = − 1

ek
exp

{
− ekd̂ke

r(T−t) + l0k(t) + yg0k(t)
}
, (22)
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where l0k(t) and g0k(t) are two functions which will be determined later.
Using equation (22), then the equation (21) leads to the differential equation:

0 = l′0k(t) + g′0k(t) + α(β − y) +
1

2
yκ2g20kt) + inf

qk(t)

{(
− eke

r(T−t)
)[
(ck − zkcj)−

(
ηqk(t)− ηzkq

∗
j (t)

)
−
(
akqk(t)− zkaje

∗
j (t)

)]
+

1

2
e2ke

2r(T−t)
[
ζ2kq

2
k(t) + zkζ

2
j q

∗
j (t)− 2ρzkζkζjqk(t)q

∗
j (t)

]}
+ inf

sk(t)

{(
sk(t)− zks

∗
j (t)

)
ωy

(
− eke

r(T−t)
)
+

1

2

[(
sk(t)− zks

∗
k(t)

)2
ye2ke

2r(T−t)

−2g0k(t)
(
sk(t)− zks

∗
j (t)

)
ρ̂κyeke

r(T−t)
]}

+ inf
ek(t)

{(
− eke

r(T−t)
)(
ek(t)− zke

∗
j (t)

)
θ

+
(
exp

[
ek
(
ek(t)− zke

∗
j (t)

)
δer(T−t)

(
lk(t)− l0k(t)

)
+
(
gk(t)− g0k(t)

)
y
]
− 1

)
hP

}
. (23)

Using the first order conditions for a regular interior minimizer of equation (23), we get
q∗1(t) =

(
2ν

e1er(T−t)+2ν
+ ρz1ζ2e1e

r(T−t)

e1ζ1er(T−t)+2ζ1ν
q∗2(t)

)
∧ 1,

q∗2(t) =
(

2ν
e2er(T−t)+2ν

+ ρz2ζ1e2e
r(T−t)

e2ζ2er(T−t)+2ζ2ν
q∗1(t)

)
∧ 1,

(24)


s∗1(t) = er(T−t)

(
ω
e1

+ g01(t)ρ̂κ
e1

)
+ z1s

∗
2(t),

s∗2(t) = er(T−t)
(

ω
e2

+ g02(t)ρ̂κ
e2

)
+ z2s

∗
1(t),

and 
e∗1(t) = er(T−t) ln

1
γ +

(
l01(t)−l1(t)

)
+y

(
g01−g1(t)

)
e1δ

+ z1e
∗
2(t),

e∗2(t) = er(T−t) ln
1
γ +

(
l02(t)−l2(t)

)
+y

(
g02−g2(t)

)
e2δ

+ z2e
∗
1(t).

Therefore, the optimal investment strategy of stock asset and optimal investment strategy of corporate bond for
k = 1, 2, can be computed as given in relations (16) and (20). To obtain the optimal reinsurance strategy q∗k(t),
k = 1, 2, first we consider the equations (17), which are the solution of equations:

q̂∗1(t) =
2ν

e1er(T−t) + 2ν
+

ρz1ζ2e1e
r(T−t)

e1ζ1er(T−t) + 2ζ1ν
q̂∗2(t),

and

q̂∗2(t) =
2ν

e2er(T−t) + 2ν
+

ρz2ζ1e2e
r(T−t)

e2ζ2er(T−t) + 2ζ2ν
q̂∗1(t).

On the other hand, since 0 ≤ zk ≤ 1, ζ > 0, γ > 0, ek > 0 and −1 < ρ < 1, then we have

1− x1(t)x2(t) = 1− ρ2z1z2ζ1ζ2e1e2e
r(T−t)(

e1ζ1er(T−t) + 2ζ1ν
)(
e2ζ2er(T−t) + 2ζ2ν

) ≥ 0,

therefore, for k = 1, 2, q̂∗k(t) ≥ 0.
Then we consider the following four different cases for q̂∗k(t), k = 1, 2:
Case 1) If for k = 1, 2, q̂∗k(t) ≤ 1, then q∗k(t) = q̂∗k(t).
Case 2) If q̂∗1(t) ≤ 1 and q̂∗2(t) > 1, then q∗k(t) = 1, and from (24), we have the following equality

2ν

e1er(T−t) + 2ν
+

ρz1ζ2e1e
r(T−t)

e1ζ1er(T−t) + 2ζ1ν
=

2ν

e1er(T−t) + 2ν
+

ρ2µ1µ2z1e1e
r(T−t)

e1ζ21e
r(T−t) + 2ζ21ν

.
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Case 3) If q̂∗1(t) > 1 and q̂∗2(t) ≤ 1, then it is clear that

(
q∗1(t), q

∗
2(t)

)
=

(
1,

2ν

e2er(T−t) + 2ν
+

ωµ1µ2z2e2e
r(T−t)

e2ζ22e
r(T−t) + 2νζ22

)
.

Case 4) If for k = 1, 2, q̂∗k(t) > 1, then q∗1(t) = q∗2(t) = 1, and we conclude that

q∗k(t) = q̂∗k(t) ∧ 1, k = 1, 2.

Putting these optimal values in (23), we obtain

0 = l′0k(t)−
(
eke

r(T−t)
)[
(ck − zkcj)−

(
ηqk(t)− ηzkq

∗
j (t)

)
−
(
akqk(t)− zkaje

∗
j (t)

)]
+
1

2
e2ke

2r(T−t)
[
ζ2kq

2∗
k (t) + z2kζ

2
j q

2∗
j (t)− 2ρzkζkζjq

∗
k(t)q

∗
j (t)

]
+ αβg0k(t)

−θ

δ
ln

1

γ
+ hP

( 1
γ
− 1

)
+

θ
(
lk(t)− l0k(t)

)
δ

+ y
(
g′0k(t) +

1

2
κ2(1− ρ̂2)g20k(t)

−(ρ̂ωκ+ α)g0k(t) +
θ
(
gk(t)− g0k(t)

)
δ

− ω2

2

)
(25)

The equation (25) can divide into two differential equations as follow:

l′0k(t)−
θl0k(t)

δ
−
(
eke

r(T−t)
)[
(ck − zkcj)−

(
ηqk(t)− ηzkq

∗
j (t)

)
−
(
akqk(t)− zkaje

∗
j (t)

)]
+
1

2
e2ke

2r(T−t)
[
ζ2kq

2∗
k (t) + z2kζ

2
j q

2∗
j (t)− 2ρzkζkζjq

∗
k(t)q

∗
j (t)

]
+ αβg0k(t)

−θ

δ
ln

1

γ
+ hP

( 1
γ
− 1

)
+

θlk(t)

δ
= 0,

and

g′0k(t) +
1

2
κ2(1− ρ̂2)g20k(t)−

(
ρ̂ωκ+ α+

θ

δ

)
g0k(t) +

θ

δ
gk(t)−

ω2

2
= 0, (26)

with the condition l0k(T ) = g0k(T ) = 0.
For k = 1, 2, define Lk(t) = l0k(t)− g0k(t). It is clear that the function Lk(t) is differentiated with respect to t,
and we obtain

L′
k(t) = l′0k(t)− g′0k(t) =

θ

δ
Lk(t) +

θ

δ
ln

1

γ
− hP

( 1
γ
− 1

)
.

On the other hand, since Lk(T ) = l0k(T )− g0k(T ) = 0, then

Lk(t) = e−
θ
δ (T−t)

(
ln

1

γ
+ γ − 1

)
− ln

1

γ
− γ + 1.

Applying Lemma 3.1 given in [31] the solution for equation (26) is l0k(t) = lk(t), as represented in (19), and this
completes the proof.

Remark 1. According to the Theorems 4.1 and 4.2, the optimal investment strategy of stock asset s∗k(t) and
reinsurance strategy q∗k(t), k = 1, 2, for the first and second spaces do not change. This is due to the structure of
financial market for surplus process of each insurer that the price process is uncorrelated with corporate coupon
bonds.
Corollary 4. 1. If z1 > 0 and z2 = 0, i.e., there is no any competition between the two insurance companies, then
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the optimal investment and reinsurance strategies are given as follow: q∗1(t) =
(
y1(t) + x1(t)y2(t)

)
∧ 1, for t ∈ [0, T ],

q∗2(t) = y2(t), for t ∈ [0, T ],

 s∗1(t) = ŝ∗1(t) + z1ŝ
∗
2(t), for t ∈ [0, T ],

s∗2(t) = ŝ∗2(t), for t ∈ [0, T ],

e∗1(t) =


ê∗1(t) + z1ê

∗
2(t), for t ∈ [0, τ ∧ T ],

0, for t ∈ [τ ∧ T, T ],

and

e∗2(t) =


ê∗2(t), for t ∈ [0, τ ∧ T ],

0, for t ∈ [τ ∧ T, T ].

Corollary 4.1 shows that the optimal investment and reinsurance strategy π∗
2(t) =

(
q∗2(t), s

∗
2(t), e

∗
2(t)

)
is equal to

π̂∗
2(t) =

(
y∗2(t), ŝ

∗
2(t), ê

∗
2(t)

)
, whereas the optimal investment and reinsurance strategy for insurance company 1,

i.e., π∗
1(t) =

(
q∗1(t), s

∗
1(t), e

∗
1(t)

)
, can be divided into two parts.

4.3. More precise analysis of risk model coefficients

The first part is the strategy π∗
1(t), which is likely due to the partial objective of maximizing the terminal wealth;

the second part
(
x1(t)q

∗
2(t), z1s

∗
2(t), z1e

∗
2(t)

)
is induced by the relative performance concern. For the insurance

company 1, the reinsurance strategy q̂∗1(t) =
2ν

e1er(T−t)+2ν
decreases in the risk aversion parameter e1, or 1− q∗1(t)

increases in e1. This indicates that a more risk averse insurer will buy more reinsurance contracts. By contract, in a
competitive condition, the coefficient x1(t) increases in e1. Therefore, the optimal reinsurance strategy q∗1(t) may
increase in e1, which depends on the optimal reinsurance strategy q∗2(t) of insurance company 2. Furthermore, a
more risk averse insurer may buy less reinsurance contracts in the presence of competition. In this case, the optimal
reinsurance strategy of insurance company 1, is simply to mimic the optimal strategy q∗2(t) that is followed by the
insurance company 1; this reinsurance strategy decreases in the insurance company 2’s risk aversion parameter
e2. This point is further affirmed after we observe that the optimal strategies are actually riskier than the regular
strategies. Next, we will present a details analysis of the optimal reinsurance and investment strategy in a more
general competition when both insurance companies have relative concerns.
Corollary 4. 2. If wz > 0, k = 1, 2, then the optimal strategy π∗

k(t) =
(
q∗k(t), s

∗
k(t), e

∗
k(t)

)
has the following

properties:
(i) If the insurance company 1 increases its optimal reinsurance strategy q∗k(t) relative to the regular reinsurance
strategy q̂∗k(t), i.e., zk = 0, k = 1, 2, without competition. For this case, the sensitivity of insurance company 1’s
optimal reinsurance strategy with respect to the parameters are given in Table 1.

Table 1. Sensitivity of insurance company 1’s optimal reinsurance strategy q∗k(t)

∂q∗k(t)/∂zk ∂q∗k(t)/∂zj ∂q∗k(t)/∂µk ∂q∗k(t)/∂µj ∂q∗k(t)/∂ζk ∂q∗k(t)/∂ζj
+ + + + − −

(ii) If the insurance company k, k = 1, 2, holds a positive position of the stock and investment
(
s∗k(t)

)
will be larger

relative to the regular strategy without competition (i.e., zk = 0, k = 1, 2). For this case, the sensitivity of insurance
company 1’s optimal investment strategy s∗k(t) with respect to the parameters are given in Table 2.
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Table 2. Sensitivity of insurance company 1’s optimal investment strategy s∗k(t)

∂s∗k(t)/∂zk ∂s∗k(t)/∂zj ∂s∗k(t)/∂ek ∂s∗k(t)/∂ej ∂s∗k(t)/∂ρ̂ ∂s∗k(t)/∂α ∂s∗k(t)/∂ω
+ + − − − +(ρ̂ > 0) − (ρ̂ < 0) +

(iii) If each insurance companies choose their investment in the corporate bond relative to the case of no competition
(i.e., zk = 0, k = 1, 2), and each insurance company will always hold a positive position of the corporate bond
with a positive risk premium, whereas γ∗

k(t) = 0 and Ok(t, d̂k, y, 1) = Ok(t, d̂k, y, 0), if γ = 1. For this case, the
sensitivity of insurance company 1’s optimal investment strategy e∗k(t)with respect to the parameters are given in
Table 3.

Table 3. Sensitivity of insurance company 1’s optimal reinsurance strategy e∗k(t)

∂e∗k(t)/∂zk ∂e∗k(t)/∂zj ∂e∗k(t)/∂
1
γ

∂e∗k(t)/∂ζ ∂e∗k(t)/∂ek ∂e∗k(t)/∂ej
+ + + − − −

Proof
(i) From Theorems 4.1 and 4.2, we know that q∗k(t) =

q̂∗k(t)+xk(t)q̂
∗
j (t)

1−x1(t)x2(t)
, for k ̸= j = 1, 2. Since q̂∗k(t) > 0, xk(t) > 0

and 1 > 1− x1(t)x2(t), therefore, q∗k(t) ≥ q̂∗k(t). This shows that the insurance company buys fewer reinsurance
contracts. We can easily obtain the relationship between the optimal reinsurance strategy and model parameters,
and the details of this procedure are omitted here.
(ii) To prove the part (ii), we need to show that gk(t) ≤ 0. From Theorems 4.1 and 4.2, we have that gk(t) ≤
gk(T ) = 0.
Let κ0 = ρ̂κgk(t). Using the equation (26), we can show that the function κ0 satisfies the following equation:

κ′
0 +

κ

2ρ̂
(1− ρ̂2)κ2

0 − (ρ̂ωκ+ α)κ0 −
ω2κρ̂

2
= 0, (27)

where κ′
0 = ∂κ0

∂t . Now, differentiating from the equation (27) with respect to ρ̂, we obtain the following equation

∂κ′
0

∂ρ̂
− κ

2
(
1

ρ̂2
+ 1)κ2

0 +
κ

ρ̂
(1− ρ̂2)κ0

∂κ0

∂ρ̂
− (ρ̂ωκ+ α)

∂κ0

∂ρ̂
− ωκκ0 −

ω2κ

2
= 0. (28)

Let ∆ = κ
ρ̂ (1− ρ̂2)κ0 − (ρ̂ωκ+ α). Then the equation (28) becomes as follows:

(∂κ0

∂ρ̂

)′
+∆

∂κ0

∂ρ̂
− κ

2
κ2
0 −

κ

2
(κ0 + ω)2 = 0,

which the solution to this equation is given by

∂κ0

∂ρ̂
= − exp

( ∫ T

t

∆ds
) ∫ T

t

exp
(
−
∫ T

t

∆dκ
)[κ

2
κ2 +

κ

2
(κ0 + ω)2

]
ds < 0,

which shows that κ0 decreases as ρ̂ increases. On the other hand, the coefficient ŝ∗k(t) is a decreasing function of
ρ̂, moreover

ŝ∗k(t, ρ̂) ≥ ŝ∗k(t, 1
−) = lim

ρ̂→1

ω + κ0

ek
e−r(t−T ) =

1

ek

(
ω + lim

ρ̂→1
κgk(t)

)
e−r(t−T ).

From (19), we have limρ̂→1 κgk(t) = 0, and ŝ∗k(t, ρ̂) ≥ ŝ∗k(t, 1
−) = limρ̂→1

ω
ek
e−r(t−T ) > 0.

Let ρ̂ = 1, then

ŝ∗k(t, ρ̂)|ρ̂=1 =
1

ek

( 2α+ ωκ

2(α+ ωκ)
+

ωκ

2(α+ ωκ)
e−(α+ωκ)(T−t)

)
,
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14 OPTIMAL COMPETITIVE STRATEGIES ON THE PERFORMANCE OF TWO INSURANCE COMPANIES

which ŝ∗k(t, ρ̂)|ρ̂=1 > 0, since α > 0 and ω > 0. Based on these results, we can conclude that ŝ∗k(t, ρ̂) = ŝ∗k(t) > 0
for t ∈ [0, T ].
Differentiating equation (27) with respect to α, we can obtain the following equation for t:

∂κ0

∂α
+

κ

ρ̂
(1− ρ̂2)κ

∂κ

∂α
− (ρ̂ωκ+ α)

∂κ

∂α
− κ = 0,

which is equavalent to the equation
(
∂κ
∂α

)′
+∆κα − κ = 0. Then we have

∂κ

∂α
= − exp

( ∫ T

t

∆ds
) ∫ T

t

exp
(
−
∫ T

t

∆ds
)
κds,

for ρ̂ > 0, κα > 0 and κα < 0 if ρ̂ < 0. Therefore, the optimal investment strategy s∗k(t) inceases as α increases if
ρ̂ < 0. Consequently, we have ∂

∂αs
∗
k(t) > 0 and s∗t (t) > 0 if α > 0.

(iii) To prove the part (iii), consider that if 1
∆ = hQ

hP = 1, then the optimal result is ê∗k(t) = 0, k = 1, 2. thus the
optimal investment strategy is given by

e∗k(t) =
ê∗k(t) + zkê

∗
j (t)

1− zkzj
= 0. k ̸= j ∈ {1, 2},

Similarly, if 1
∆ = hQ

hP > 1, the optimal result is

ê∗k(t) =
ln 1

γ e
− δ

ζ (T−t) +
(
1− e−

δ
ζ (T−t)

)
(1− γ)

ζek
e−r(T−t),

which shows that ê∗k(t) > 0, and the optimal investment strategy is given by e∗k(t) > 0, and this completes the
proof.

5. Verification theorem

In this section, we prove a verification theorem for the optimization problem 3.1. We first present the following
Lemma.

Lemma 3
Let V = R×R+ × {0, 1} and consider the open sets V1, V2, V3, . . . , with the condition Vi ⊂ Vi+1 ⊂ V , i =
1, 2, . . . and V =

⋃∞
i=1 Vi. If τi be the the existing time from the open set Vi, then for any ϵ > 1 and i = 1, 2, . . . ,

we have

sup
i

E
{∣∣Ok

(
τi ∧ T, D̂

π∗
k

k (τi ∧ T ), Y (τi ∧ T ), H(τi ∧ T )
)∣∣ϵ} < ∞.

Proof
First, consider that

Qk

(
t, D̂

π∗
k

k (t), Y (t), H(t)
)

=
(
1−H(t)

)
Qk

(
t, D̂

π∗
k

k (t), Y (t), 0
)

+H(t)Qk

(
t, D̂

π∗
k

k (t), Y (t), 1
)
.

For H(t) = 0, 1, we only need to verify that

sup
i

E
{∣∣Ok

(
τi ∧ T, D̂

π∗
k

k (τi ∧ T ), Y (τi ∧ T ), j
)∣∣ϵ} < ∞, (29)
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for j = 0, 1. Therefore, two separate cases are considered as follow.
Case (i) Let H(t) = 0. Using the equation (14), we obtain

Qk

(
t, D̂

π∗
k

k (t), Y (t), 0
)

= − 1

ek
exp

{
− ekD̂

π∗
k

k (t)er(T−t) + l0k(t) + g0k(t)Y (t)
}

= − 1

ek
exp

{
− ekd̂ke

r(T−t) − ek

∫ t

0

er(T−s)
[
(ck − zkcj)− ηq∗k(s)− zkηq

∗
j (s)

−
(
akq

∗
k(s)− zkajq

∗
j (s)

)
+
(
s∗k(s)− zks

∗
j (s)

)
ωY (s) +

(
e∗k(s)− zke

∗
j (s)

)
δ(1− γ)

]
−ekρ̂

∫ t

0

er(T−s)
(
s∗k(s)− zks

∗
j (s)

)(
Y (s)

) 1
2 dW2(s)

−ek

∫ t

0

er(T−s)
√

1− ρ̂2
(
e∗k(s)− zke

∗
j (s)

)(
Y (s)

) 1
2 dW̄ (s)

+ek

∫ t

0

er(T−s)
(
e∗k(s)− zke

∗
j (s)

)
θdCP

s − ek

∫ t

0

er(T−s)ζkq
∗
k(s)dBk(s)

+ek

∫ t

0

er(T−s)zkζjq
∗
j (s)dBj(s) + l0k(t) + f0k(t)Y (t)

}
,

where we assume that W1(t) = ρ̂+
√

1− ρ̂2Ŵ (t), and Ŵ (t) is a standard Brownian motion independent of W2(t).
Define

P1k(t) = −ekω
(
s∗k(t)− zks

∗
j (t)

)
er(T−t) +

e2k(1− ρ̂2)

2

(
s∗k(t)− zks

∗
j (t)

)2
e2r(T−t),

P2k(t) = −ekρ̂
(
s∗k(t)− zks

∗
j (t)

)
er(T−t),

and P3k(t) = g0k(t). From Corollary 4.1, the function g0k(t) satisfies the following differential equation:

g′0k(t) +
1

2
κ2(1− ρ̂2)g20k(t)− (ρ̂ωκ+ α)g0k(t)−

ω2

2
= 0.

With some calculations, we have

P1k(t) + P ′
3k(t)− αP3k(t) +

1

2

(
κP3k(t) + P2k(t)

)2
= 0.

On the other hand, since κ, ω, g0k(t) and π∗
k(t), k = 1, 2, are bounded, therefore there exist positive constants Ω,

Θ, ∆, and 0 ≤ b ≤ 1, such that

∆2 −∆

2

(
er(T−t)e2kb

2(1− ρ̂2)s∗2k +
(
bP3k(t) + P2k(t)

)2
< Ω,

and

ωbρ̂∆+ b2
(
1 + ρ̂2

)
g0k(t) < Θ.

Let

A+
k =

−Θ+
√

Θ2 + 2(Ω + 1)∆

2
, A−

k =
−Θ−

√
Θ2 + 2(Ω + 1)∆

2
,

and A(t) =
A+

k exp
(
tA+

k

)
−A−

k exp
(
tA−

k

)
exp

(
tA+

k

)
−exp

(
tA−

k

) . Then A(t) > 0 and A′(t) + ΘA(t) + A2(t)
2 = −(Ω + 1). Now, define

Q1k(t) = ∆P1k(t) + e2r(T−t)∆
2 −∆

2
e2kb

2(1− ρ̂2)s∗2k , Q2k(t) = ∆P2k(t),
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and

Q3k(t) = ∆
(
P3k(t) +A(t)

)
.

Then the inequalities

E
∣∣Ok

(
τi ∧ T, D̂

π∗
k

k (τi ∧ T ), Y (τi ∧ T ), 0
)∣∣ϵ

≤ e−∆
k exp

{
ek∆d̂ke

rT − ek∆

∫ t

0

er(T−s)
[
(ck − zkcj)− ηq∗k(s)− zkηq

∗
j (s)

−
(
akq

∗
k(s)− zkajq

∗
j (s)

)
+
(
e∗k(s)− zke

∗
j (s)

)
θ(1− γ)

]
ds− ek

∫ t

0

er(T−s)∆ζkq
∗
k(s)dBk(s)

+ek

∫ t

0

er(T−s)∆ζkq
∗
j (s)dBj(s) + ∆f0k(t) + ek

∫ t

0

er(T−s)∆
(
e∗k(s)− zke

∗
j (s)

)
θdCP (t)

}
× exp

{
ek

∫ t

0

er(T−s)∆
√

1− ρ̂2
(
e∗k(s)− zke

∗
j (s)

)(
Y (s)

) 1
2 dW̄ (s)

−e2k(1− ρ̂2)

2
∆2

∫ t

0

e2r(T−s)
(
s∗k(s)− zks

∗
j (s)

)2
Y (s)ds

}
× exp

{∫ t

0

Q1k(s)Y (s)ds+

∫ t

0

Q2k(s)
(
Y (s)

) 1
2 dW2(s) +Q3k(t)Y (t)

}
,

and

Q1k(t) +Q′
3k(t)− αQ3k(t) +

(
bQ3k(t) +Q2k(t)

)2
2

= ∆
(
A′(t)− αA(t) + ωbρ̂∆+∆A(t)

(
bρ̂∆+ b2

)
g0k(t) +

b∆A2(t)

2

)
+
∆2 −∆

2

(
e2r(T−s)b2e2k(1− ρ̂2)s∗2k +

(
bQ3k(t) +Q2k(t)

)2)
≤ ∆

(
A′(t) + ΘA(t) +

∆b2A2(t)

2
+ Θ

)
= ∆

(
−Θ− 1 + Θ

)
= −∆ < 0,

hold. Moreover, we have the inequality

E
[
exp

( ∫ t

0

Q1k(s)Y (s)ds+

∫ t

0

Q2k(s)
(
Y (s)

) 1
2 dW2(s) +Q3k(t)Y (t)

]
≤ exp

(
αβQ3k(t)

)
,

and

E
(
exp

{
− ek∆

∫ t

0

er(T−s)
(
e∗k(s)− zke

∗
j (s)

)
θ(1− γ)ds

+∆ek

∫ t

0

er(T−s)
(
e∗k(s)− zke

∗
j (s)

)
θdCP (t)

})
< ∞.

Therefore, for i = 1, 2, . . . , we have

E
{∣∣Ok

(
τi ∧ T, D̂

π∗
k

k (τi ∧ T ), Y (τi ∧ T ), 0
)∣∣ϵ} < ∞. (30)

Case (ii) Let H(t) = 1. Using the same method in case (i), for i = 1, 2, . . . , we have

E
{∣∣Ok

(
τi ∧ T, D̂

π∗
k

k (τi ∧ T ), Y (τi ∧ T ), 1
)∣∣ϵ} < ∞. (31)

Therefore, the relations (30) and (31) complete the proof.
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Theorem 5.1
Let the integrable function Qk, k = 1, 2, on the time [0, T ] is a solution to the equation (15). Then the investment and
reinsurance strategies π∗(t) given in Theorems 4.1 and 4.2 are the optimal strategies and Qk is the corresponding
objective function.

Proof
Consider the conditions given in Lemma 5.1. For (d̂k, y, h) ∈ V , let τi be the exit time of

(
D̂πk

k (t), Y (t), H(t)
)

from Vi. Then τi ∧ T → T , a.s., as i → ∞. Applying Itô’s formula to the function Qk, we have

Qk

(
τi ∧ T, D̂πk

k (τi ∧ T ), Y (τi ∧ T ), H(τi ∧ T )
)

= Qk(t, d̂k, y, h) +

∫ τi∧T

0

Bπk

k Qk

(
u, D̂πk

k (u), Y (u), H(u)
)
du

+

∫ τi∧T

t

ζkq
∗
k(u)

∂Qk

∂d̂k
dBk(u)−

∫ τi∧T

t

zkζjq
∗
j (u)

∂Qk

∂d̂k
dBj(u)

+

∫ τi∧T

t

(
s∗k(u)− zks

∗
j (u)

)
Qk

y

(
Y (u)

) 1
2 dW1(u)

+

∫ τi∧T

t

[
Qk

(
u, D̂πk

k (u)−
(
e∗k(u)− zke

∗
j (u)

)
θD̂πk

k (u), Y (u), 1
)

−Qk

(
u, D̂πk

k (u), Y (u), 0
)]
dCP

u .

Taking conditional expectation given (t, d̂, y, h) on both sides of the equation (27) and using (15), we get

Qk

(
τi ∧ T, D̂πk

k (τi ∧ T ), Y (τi ∧ T ), H(τi ∧ T )
)∣∣D̂πk

k (t) = d̂k, Y (t) = y,H(t) = h
)

= E
[ ∫ τi∧T

0

Bπk

k Qk

(
u, D̂πk

k (u), Y (u), H(u)
)
du

∣∣D̂πk

k (t) = d̂k, Y (t) = y,H(t) = h
]

+Qk(t, d̂k, y, h)

≤ Qk(t, d̂k, y, h).

From Lemma 5.1, since for any i = 1, 2, . . . , Qk

(
τi ∧ T, D̂πk

k (τi ∧ T ), Y (τi ∧ T ), H(τi ∧ T )
)
, is uniformly

integrable, we have

Ok(t, d̂k, y, h) = sup
πk∈Πk

E
[
Uk

(
D̂πk

k (t)
)∣∣D̂πk

k (t) = d̂k, Y (t) = y,H(t) = h
]

= lim
i→∞

E
[
Ok

(
τi ∧ T, D̂πk

k (τi ∧ T ), Y (τi ∧ T ), H(τi ∧ T )
)∣∣D̂πk

k (t) = d̂k, Y (t) = y,H(t) = h
)

+Qk(t, d̂k, y, h),

when πk(t) = π∗
k(t), then the above inequality becomes an equality, and Ok(t, d̂k, y, h) = Qk(t, d̂k, y, h).

Therefore, the proof is complete.

6. Numerical experiments: effects of model parameters

In this section, we conduct the numerical examples to investigate the effects of risk model parameters on the optimal
strategies. We set the default risk model parameters of each insurance companies as given in Table 1. In addition,
the base parameters are presented in Table 2.

6.1. Optimal investment strategy for corporate bond

In this subsection, we analyze the effect of parameters γ and δ on the optimal investment strategy for corporate
bond. These parameters change within the reasonable intervals. Figures 1 and 2 show the effect of parameter γ
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Table 4. Default risk model parameters

Insurance company 1 Insurance company 2
Notation Value Notation Value

µ1 0.8 µ2 1
ζ1 (0, 5) ζ2 (0, 5)
e1 2 e2 3
z1 (0, 1) z2 (0, 1)

Table 5. Base parameters

r ν T γ δ κ ω α ρ̂ λ
0.08 2 10 (0, 1) (0, 1) 2.5 0.5 (1, 4) (−1, 1) 1

Figure 1. The effect of parameter 1
γ on the optimal investment strategy e∗1(0)

on the optimal investment strategies e∗1(0) and e∗2(0). We can see that there is a positive correlation between the
optimal strategies e∗1(0) and e∗2(0) and parameter γ. The slope of both graphs decreases with increasing the value
of parameter. Figures 3 and 4 show the effect of loss rate of the corporate coupon bond parameter δ on the optimal
investment strategies e∗1(0) and e∗2(0). We can see that there is a negative correlation between the optimal strategies
e∗1(0) and e∗2(0) and parameter δ. According to the Figures 3 and 4, the insurance company k, k = 1, 2, reduces
their value of investment in the corporate coupon bond as the loss rate increases. Figures 5 and 6 show the effect of
parameters z1 and z2 on the optimal investment strategies e∗1(0) and e∗2(0), respectively. It is clear that the optimal
investment strategy e∗k(0), increases as the parameter zk, k = 1, 2, increases, respectively. In this case, the insurance
company can maximize the probability of generating greater terminal wealth against its competitor at the finite time
T .

6.2. Optimal reinsurance strategy

Figures 7 and 8 show the effect of parameters ζ1 and ζ2 on the optimal reinsurance strategies q∗1(0) and q∗2(0) when
z1 > 0 and z2 > 0, respectively. According to the figures, the optimal reinsurance strategies q∗k(0) of insurance
company k decreases as ζk, k = 1, 2, increases. In these figures, the optimal reinsurance strategies q∗k(0) is constant
when zk = 0, k = 1, 2. These results are completely consistent with Theorems 4.1 and 4.2. Figures 9 and 10, show
the effect of parameters z1 and z2 on the optimal reinsurance strategies q∗1(0) and q∗2(0), respectively. According to
these figures, the optimal reinsurance strategies q∗k(0) of insurance company k increases as zk, k = 1, 2, increases.
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Figure 2. The effect of parameter 1
γ on the optimal investment strategy e∗2(0)

Figure 3. The effect of parameter δ on the optimal investment strategy e∗1(0)

Figure 4. The effect of parameter δ on the optimal investment strategy e∗2(0)

6.3. Optimal investment strategy

Figures 11 and 12 show the effect of correlation coefficient ρ̂ on the optimal reinsurance strategies s∗1(0) and s∗2(0)
for different values of z1 and z2, respectively. It can be seen that in each figure with increasing the correlation
coefficient, the optimal reinsurance strategy decreases and this result is completely consistent with economic
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Figure 5. The effect of parameter z1 on the optimal investment strategy e∗1(0)

Figure 6. The effect of parameter z2 on the optimal investment strategy e∗2(0)

Figure 7. The effect of parameter ζ1 on the optimal reinsurance strategy q∗1(0)

conditions. Moreover, the figures 13-16 show the effect of parameter α on the optimal reinsurance strategies s∗1(0)
and s∗2(0) for different values of z1 and z2. According to these figures, the optimal reinsurance strategy s∗k(0),
k = 1, 2, increases as the parameter α increase for positive correlation coefficient and the strategy decreases as the
parameter α increase for negative correlation coefficient.
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Figure 8. The effect of parameter ζ2 on the optimal reinsurance strategy q∗2(0)

Figure 9. The effect of parameter z1 on the optimal reinsurance strategy q∗1(0)

Figure 10. The effect of parameter z2 on the optimal reinsurance strategy q∗2(0)

7. Conclusions

In this paper, we considered two insurance companies under the purchasing proportional reinsurance, a risk-free
asset, and defaultable grade bond in a financial market and studied the objective function to maximize his expected
utility of wealth process the difference between his terminal surplus and that of his competitor. We supposed that
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Figure 11. The effect of correlation coefficient ρ̂ on the optimal reinsurance strategy s∗1(0)

Figure 12. The effect of correlation coefficient ρ̂ on the optimal reinsurance strategy s∗2(0)

Figure 13. The effect of parameter α on the optimal reinsurance strategy s∗1(0) when ρ̂ = −0.7

both insurers having the compound Poisson process and they are allowed to purchase proportional reinsurance and
invest in a financial market which consists of a risk-free asset, a defaultable grade bond whose the price process of
each insurer is governed by a standard Brownian motion and dynamics of defaultable bond price is represented as
an exponential form of stochastic differential equation. The optimization problems are presented and we solved the
nonlinear HJB equations related to our optimal control problems, the optimal investment and reinsurance strategies
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Figure 14. The effect of parameter α on the optimal reinsurance strategy s∗2(0) when ρ̂ = −0.7

Figure 15. The effect of parameter α on the optimal reinsurance strategy s∗1(0) when ρ̂ = 0.7

Figure 16. The effect of parameter α on the optimal reinsurance strategy s∗2(0) when ρ̂ = 0.7

are derived for both insurers. Finally, numerical examples proposed to illustrate the impacts of model parameters
on the optimal strategies. In these examples, we set different values for risk model parameters. In Subsection 6.1,
we investigated the effect of parameters γ, loss rate of the corporate coupon bond parameter and z1 and z2 on the
optimal investment strategies e∗1(0) and e∗2(0). In Subsection 6.2, we investigated the effect of parameters ζ1, ζ2, z1
and z2 on the optimal reinsurance strategies q∗1(0) and q∗2(0), separately. In addition, in Subsection 6.3, the effects
of correlation coefficient ρ̂ and parameter α on the optimal reinsurance strategies are studied.
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