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Abstract Tensor completion is a crucial technique for filling in missing values in multi-dimensional data. It relies on the
assumption that such datasets have intrinsic low-rank properties, leveraging this to reconstitute the dataset using low-rank
decomposition or other strategies. Traditional approaches often lack computational efficiency, particularly with singular value
decomposition (SVD) for large-scale tensor. Furthermore, fixed-rank SVD methods struggle with determining a suitable
initial rank when data are incomplete. This paper introduces two novel randomized algorithms designed for low-rank tensor
completion in tensor train (TT) format, named TTrandPI and FPTT. The TTrandPI algorithm integrates randomized tensor
train (TT) decomposition with power iteration techniques, thereby enhancing computational efficiency and accuracy by
improving spectral decay and minimizing tail energy build-up. Meanwhile, the FPTT algorithm utilizes a fixed-precision
low-rank approximation approach that adaptively selects tensor ranks based on error tolerance levels, thus reducing the
dependence on a predetermined rank. By conducting numerical experiments on synthetic data, color images, and video
sequences, both algorithms exhibit superior performance compared to some existing methods.
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1. Introduction

Tensors, which are multidimensional generalizations of vectors and matrices, offer a suitable mathematical
framework for representing complex data structures. As a result, high-dimensional tensors find extensive
applications in various domains such as signal processing and machine learning[24, 26, 12]. One of the persistent
challenges in scientific data analysis is the occurrence of incomplete data due to reasons such as sensor
malfunctions, sampling limitations, or transmission errors. Tensor completion tackles this issue by reconstructing
missing elements from partial data, thus advancing the established low-rank matrix completion (LRMC)[4]
approach to encompass higher-dimensional structures through low-rank tensor completion (LRTC)[13]. The matrix
completion problem aims to reconstruct a matrix with the minimal possible rank that exactly matches the observed
entries from a partially sampled dataset, that is,

min
A

rank(A) s.t. AΩ = MΩ. (1)

where M is a matrix with missing entries, Ω is the set of indices for the known elements. For the rank minimization
issue in tensor completion, we can solve it through low rank decomposition. However, Problem 1 is an NP-hard
problem due to the combinational nature of the function rank(). A common approach is to use matrix decomposition
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to solve this problem. For any rank r matrix A ∈ Rm×n can be written into a matrix product from A = XY where
X ∈ Rm×r and Y ∈ Rr×n. Low-rank factorization model as following:

min
X,Y,A

1

2
∥XY −A∥2F s.t. AΩ = MΩ. (2)

Tensor completion faces fundamental complexities due to the non-uniqueness and computational intractability
of tensor rank definitions. There are many classic decomposition methods, such as CP decomposition[7], Tucker
decomposition[8], TT decomposition[16] and others. CP decomposition, which can decompose a tensor into a
linear combination of rank-1 tensors, is a popular method for solving low-rank tensor completion problems. Since
determining the CP rank is an NP-hard problem, this poses significant limitations for CP decomposition. Some
individuals have attempted to utilize Tucker decomposition to address LRTC. Liu et al.[13] employed the tensor
trace norm to generalize matrix completion to tensor completion in the Tucker form. Nevertheless, the Tucker rank
falls short in capturing the global correlations within tensors, rendering it less than ideal for LRTC. In contrast,
the TT rank, which is defined by the ranks of matrices derived from a balanced matricization scheme, proves
to be a highly effective tool. Bengua et al.[3] combined the matrix completion algorithm TMac and proposed
the tensor completion algorithm TT-TMac based on TT decomposition. Moreover, by utilizing KA augmentation,
they transformed low-order tensors into high-order tensors, thereby better utilizing local information. Yu et al.[20]
combined multi-modal TT decomposition with spatial spectral smoothing regularization to alleviate the block
effect.

Deterministic algorithms often struggle with large datasets due to substantial computational requirements and
lengthy execution durations. Randomized approaches offer a viable alternative. Huber et al.[11] significantly
enhanced the performance of TT decomposition by incorporating randomized techniques. Chen et al.[6]
introduced an innovative least-squares randomized approach for low-rank TT decomposition using TensorSketch.
Qin et al.[17] explored the robust high-order tensor completion (RHTC) issue through a randomized low-
rank approximation within the tensor singular value decomposition (T-SVD) framework. Ahmadi-Asl et al.[1]
examined both adaptive and non-adaptive stochastic algorithms applied to large-scale tensor data in a tensor ring
configuration. However, studies on randomized algorithms for tensor completion leveraging TT decomposition
remain relatively scarce.

On the other hand, in the face of large-scale data missing, the selection of target rank has always been a significant
challenge. Similar issues in matrix low-rank decomposition can be addressed using adaptive rank methods.
Martinsson et al.[14] proposed the randomized algorithm for partial decomposition of matrices, randQB b,
achieving fixed-precision low-rank approximation. Building on this, Yu et al.[22] introduced an adaptive rank
adjustment mechanism and single-pass data access optimization, significantly reducing computational complexity
and memory consumption. Feng et al.[9] further enhanced the computational efficiency and accuracy of large-
scale matrix low-rank approximation by replacing QR decomposition with matrix multiplication and inversion,
introducing a dynamic error evaluation mechanism, and shifted power iteration technique. In recent years, there
have also been some studies on completion related to adaptive rank. For example, Zhang et al.[25] redefined the
CP rank and proposed an adaptive low-rank representation model for tensor completion, which can automatically
determine the tensor rank. Xu et al.[19] used low-rank matrix decomposition to recover low-rank tensors and
adopted an adaptive rank adjustment strategy when the exact rank is unknown. Che et al.[5] explored the application
of fixed TT-rank and precision in randomized TT low-rank approximation. However, the research on applying
adaptive rank in the field of TT format tensor completion is still relatively limited.

This paper introduces two novel randomized algorithms for low-rank tensor completion in tensor train
(TT) format, namely TTrandPI and FPTT. By integration of power iteration schemes with randomized SVD,
the TTrandPI algorithm enhances completion, particularly effective under conditions of high data omission.
Conversely, the FPTT algorithm addresses inaccuracies from challenging initial rank selection by employing a
fixed-precision completion strategy. Numerical tests indicate that these algorithms outperform some existing TT
completion methods.

This paper is structured as follows: Section 2 discusses the essential background on tensor TT decomposition and
the notion of fixed-precision low-rank approximation. In Section 3, we introduce a randomized tensor completion
approach based on tensor-train (TT) decomposition, along with an analysis of the algorithm’s convergence. Section
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4 presents the fixed-precision tensor completion algorithm. Section 5 evaluates the results of numerical experiments
examining the completion effects. Finally, Section 6 summarizes the conclusions.

2. Background

Some common symbols used in this paper are shown in the following Table 1.

a Scalar
a Vector
A Matrix
A Tensor
A(i1, i2, · · · , id) the (i1, i2, · · · , id)− th element of dth order tensor A
×n Mode-n Product of tensor and matrix
In Identity matrix with size n× n
σi(A) the ith largest singular value of A
A⊤ Transpose of A
A† Pseudo-inverse of A

Table 1. Common symbols used in this paper

Suppose that two tensors A,B ∈ RI1×I2×···×IN , the Frobenius norm of a tensor A is given by ∥A∥F =
√

⟨A,A⟩
and the scalar product ⟨A,B⟩ is defined as [8],

⟨A,B⟩ =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

ai1i2···iN bi1i2···iN := A×1,2,...,N
1,2,...,N B.

The mode-α product of tensor A ∈ Rn1×n2×···×nd by a matrix B ∈ RM×nα is designated as A×α B = C ∈
Rn1×···×nα−1×M×nα+1×···×nd , with entries:

C(i1, · · · , iα−1,m, iα+1, · · · , id) =
iα∑

iu=1

A(i1, · · · , iα−1, iu, iα+1, · · · , id)B(M, iu). (3)

The tensor-tensor product of two tensors A ∈ Rn1×···×nd and B ∈ Rm1×···×me with equal modes nα = mβ

produces an (d+ e− 2)-th order tensor C, i.e.

C(i1, . . . , iα−1, iα+1, . . . , id, j1, . . . , jβ−1, jβ+1, . . . , je)

=

nα∑
iu=1

A(i1, . . . , iα−1, iu, iα+1, . . . , id) · B(j1, . . . , jβ−1, iu, jβ+1, . . . , je).
(4)

where C ∈ Rn1×···×nα−1×nα+1×···×nd×m1×···×mβ−1×mβ+1×···×me .

Definition 1
(Matricization [11]) Let A ∈ Rn1×n2×···×nd be a tensor of order d. The α-matricization is defined as M̂N (A) ∈
Rmα×mβ . The matrix dimensions are provided as mα =

∏N
j=1 nj and mβ =

∏d
j=N+1 nj .

Definition 2
(Tensor Train Format [16]) Let A ∈ Rn1×n2×···×nd be a tensor of order d. A factorization

A = G1 ×1
3 G2 ×1

3 · · · ×1
3 Gd (5)

of A, into core tensors Gi ∈ Rri−1×ni×ri(r0 = rd = 1), is called a tensor train(TT) decomposition of A. The array
of the dimensions r = (r1, · · · , rd−1) is the tensor train rank(TT-rank) of A defined as
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rankTT(A) = (rank(M̂1(A)), · · · , rank(M̂d−1(A))). (6)

Definition 3
(Tail Energy [10]). The j-th tail energy of matrix A is defined as

τ2j (A) = min
rank(B)<j

∥A−B∥2F =
∑
i≥j

σ2
i (A), (7)

where σi(A) is the i-th singular value of A.

3. A randomized algorithm for TT low-rank tensor completion

In practical tensor completion problems, high dimensional data is often low-rank. For the rank minimization issue
in tensor completion, we can solve it through low rank decomposition. Let M ∈ Rn1×n2×···×nd be a known
tensor with missing entries, where Ω is the index set for the observed data, Ω is the complementary set of Ω,
and MΩ represents the observed entries. Tensor decomposition is used to describe its low-rankness, and the tensor
completion model is as follows:

min
A

rank(A) s.t. AΩ = MΩ. (8)

We use TT low-rank approximation to characterize the low-rank part. The TT low-rank approximation model for
solving the tensor A can be expressed as[5]

min
G1,G2,··· ,Gd

∥A − G1 ×1
3 G2 ×1

3 · · · ×1
3 Gd∥F , (9)

where Gi ∈ Rri−1×ni×ri(r0 = rd = 1, i ∈ [1, d]) for i = 1, 2, · · · , d− 1, TT core Gi satisfy

G⊤
i Gi = Iri , Gi = reshape(Gi, [ri−1ni, ri]).

Assuming T1, T2, · · · , Td for a solution of (9). Let Ti = reshape(Ti, [ri−1ni, ri])(i = 1, 2, · · · , d− 1). Define
A0 = A,

A1 = T1 ×1
1 A0 ∈ Rr1×n2×···×nd ,

Ai = Ti ×1,2
1,2 Ai−1 ∈ Rri×ni+1×···×nd , i = 2, 3, · · · , d− 1,

A(i) = reshape(Ai, [ri−1ni, ni+1 · · ·nd]), i = 1, 2, · · · , d− 1.

We have

∥A − G1 ×1
3 G2 ×1

3 · · · ×1
3 Gd∥F ≤

d−1∑
i=1

∥∥∥A(i) − TiT
⊤
i A(i)

∥∥∥
F
. (10)

To derive an approximate result, consider addressing the subsequent d− 1 subproblem with ri ≤
min{ri−1ni, ni+1, · · · , nd}(r0 = 1) . The objective is to identify an orthogonal matrix Ti ∈ Rri−1ni×ri that fulfills

Ti = argmin
Qi

∥∥∥A(i) −QiQ
⊤
i A

(i)
∥∥∥
F
, for i = 1, 2, . . . , d− 1, (11)

wherein Qi ∈ Rri−1ni×ri maintains orthogonality.
Furthermore, solving the LRTC problem through TT decomposition, we have

min
A,G1,G2,··· ,Gd

∥G1 ×1
3 G2 ×1

3 · · · ×1
3 Gd −A∥F ,

s.t. AΩ = MΩ.
(12)
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As a fundamental subtask of LRTC, tensor low-rank decomposition aims to compress large scale tensor data
while preserving its essential structural information, thereby significantly reducing storage requirements and
computational overhead. A classic algorithm for TT decomposition is TT-SVD[16], which, however, involves the
SVD of large-scale matrices and thus has a high computational cost when applied to high-dimensional tensors. To
address this challenge, random methods can be leveraged to drastically reduce the time and memory complexity
of tensor decomposition. Furthermore, the integration of power iteration schemes accelerates the spectral decay
of singular values, which not only suppresses tail energy accumulation but also enhances approximation accuracy
through targeted rank truncation. Yu et al.[21] proposed the TT-rSI algorithm, which employs a random approach
to accelerate the SVD process of unfolded matrices in TT-SVD, and utilizes subspace power iteration techniques
to enhance the algorithm’s precision and reduce the impact of noise. The detailed is provided in Algorithm 1. Let
r = max(r1, · · · , rd−1), the arithmetic cost of Algorithm 1 is O(nd(r + s)q +

∑d−1
i=1 rnd−i(r + s)q).

Algorithm 1 TT-rSI

Input: Tensor A ∈ Rn1×n2×···×nd , target rank r = (r1, · · · , rd−1), oversampling parameter s ≥ 2, and r0 = 1;
Output: cores G1, · · · ,Gd.

1: A(1) := reshape(A, [r0n1,
numel(A)

r0n1
]).

2: for i = 1 to d− 1 do
3: Create random Gaussian matrices Ψ(i) ∈ R(ni+1···nd)×(ri+s).
4: Y (i) = A(i)Ψ(i).
5: [Q

(i)
0 ,∽] = qr(Y (i), 0).

6: for j = 1 to q do
7: Ŷ

(i)
j = (A(i))

T
Q

(i)
j−1.

8: (Q̂
(i)
j ,∽) = qr(Ŷ

(i)
j ).

9: Y
(i)
j = A(i)Q̂

(i)
j .

10: (Q
(i)
j ,∽) = qr(Y

(i)
j ).

11: end for
12: Q(i) = Q

(i)
q % Q(i) = Q

(i)
0 when q = 0

13: Gi = reshape(Q(i), [ri−1, ni, ri]).
14: A(i) = reshape((Q(i))TA(i), [rini+1,

numel((Q(i))TA(i))
rini+1

]).
15: end for
16: Gd =reshape(A(i), [rd−1, nd, rd]).
17: return G1,G2, · · · ,Gd.

Lemma 1
([23], Theorem 2). Let s ≥ 2 be the oversampling parameter and Ψ ∈ Rri×n be a Gaussian random matrix. Suppose
Q(i) is obtained from Algorithm 1. Then we have

EΨ

∥∥∥A(i) −Q(i)Q(i)⊤A(i)
∥∥∥2

F
≤

(
1 +

ri
s− 1

ϖ4q
ri

)
· τ2ri+1(A

(i)),

where ϖk := σk+1/σk ≪ 1 is the singular value gap.

Combined (10) with Lemma 1, we have the following theorem.

Theorem 1
Let Â be the TT approximation of a tensor A ∈ Rn1×n2×···×nd by the Algorithm 1 with target TT-rank r =
(r1, · · · , rd−1), we have

E∥A − Â∥F ≤
d−1∑
i=1

(
1 +

ri
s− 1

ϖ4q
ri

)
· τ2ri+1(A

(i)). (13)
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Algorithm 2 TTrandPI

Input: Tensor M ∈ Rn1×n2×···×nd , index set Ω , tolerance ϵ, target rank r = (r1, · · · , rd−1), oversampling
parameter s ≥ 2 and integer q ≥ 0;

Output: Completed tensor Ak;
1: Initialization: k = 0, Â0 = MΩ.
2: while not convergent do
3: A = Âk.
4: (G1, · · · ,Gd) = TT-rSI(A) % (Algorithm1).
5: Âk = G1 ×1

3 · · · ×1
3 Gd.

6: Ak+1 = MΩ + (Âk)Ω.
7: k = k + 1.
8: end while

By combining random strategies with power iteration, we employ the TT low-rank approximation to address the
LRTC problem and introduce Algorithm 2. Through Algorithm 1, each step involves updating the TT low-rank
approximation Âk. The approximate results are then produced. If these do not satisfy the convergence conditions
and the iteration count has not yet reached its upper limit, the updating procedure is repeated.

When the estimated rank is reached to the exact rank and the precision error δ tends to 0 , by definition of the
tail energy, each τ2ri+1(A

(i)) will tend to 0, we have :

lim
δ→0

E∥Ak − Âk∥2F ≤ lim
δ→0

d−1∑
i=1

(
1 +

ri
s− 1

ϖ4q
ri

)
· τ2ri+1(A

(i)) = 0. (14)

Theorem 2
The sequence {Ak} generated by Algorithm 2 is convergent.

Proof. From step 6 of Algorithm 2, we have

Ak+1 = MΩ + (Âk)Ω. (15)

So,
Ak+1 −Ak = (Âk − Âk−1)Ω. (16)

Then, we obtain

E∥Ak+1 −Ak∥2F =E∥(Âk − Âk−1)Ω∥
2
F

≤E∥Âk − Âk−1∥2F
=E∥Âk −Ak +Ak −Ak−1 +Ak−1 − Âk−1∥2F
≤E∥Âk −Ak∥2F + E∥Ak −Ak−1∥2F + E∥Ak−1 − Âk−1∥2F .

(17)

From (14), we know that
lim
δ→0

E∥Ak − Âk∥2F = lim
δ→0

E∥Ak−1 − Âk−1∥2F = 0. (18)

Since
E∥Ak+1 −Ak∥2F ≤ E∥Ak −Ak−1∥2F , (19)

then, the sequence {Ak} generated by Algorithm 2 is convergent.

Based on Theorem 2, the convergence condition for Algorithm 2 could be set to calculate the relative error of the
tensor A over consecutive iterations: res = ∥Ak −Ak−1∥F /∥Ak−1∥F ≤ ϵ. In our numerical tests, we set ϵ = 10−4

and restrict the maximum number of iterations to 50.
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4. Fixed-precision tensor completion approach based on TT decomposition

When addressing low-rank tensor completion issues, one frequently encounters challenges in choosing the initial
rank due to the absence of some original data. Typically, most publications opt to determine the rank directly from
either the complete original data or whatever incomplete data is accessible. Nevertheless, this method presents two
primary challenges. Firstly, the original data often cannot be directly observed, complicating our efforts to estimate
the initial rank. Secondly, incomplete datasets often result in a target rank that considerably diverges from reality.
The choice of initial rank critically affects the algorithm’s completion performance, leading researchers to invest
substantial time and resources in identifying the suitable rank. The farPCA algorithm proposed by Feng et al.[9] is
a fast adaptive random PCA algorithm designed to adaptively determine the rank (number of dimensions) of PCA
based on a preset error tolerance. The specific algorithm is presented in Algorithm 3. The flop count of Algorithm
3 is

FC = 2Cmul · nnz(A)k + Cmul(2m+ 2n)k2 + q

[
Cmul · nnz(A)

(
k +

k2

b

)
+ Cmul · n(k − b)2 + 2Cmul · nkb

]
(20)

where 2Cmul · nnz(A)k reflects the matrix-matrix multiplication on A in Step 11,
Cmul(2m+ 2n)k2 reflects the matrix-matrix multiplication in Steps 13 and 20, and
q
(
Cmul · nnz(A)

(
k + k2

b

)
+ Cmul · n(k − b)2 + 2Cmul · nkb

)
reflects the operations in power iteration in

Step 4 through 10.

Algorithm 3 farPCA

Input: A ∈ Rm×n, error tolerance ε, block size b, power parameter q ;
Output: U ∈ Rm×k, S ∈ Rk×k, V ∈ Rn×k such that ∥A−USV⊤∥F < ε .

1: Y ← [], W← [], E ← ∥A∥2F , tol← ε2

2: for i = 1, 2, · · · do
3: Ωi ← randn(n, b), α← 0
4: for j = 1, 2, · · · , q do
5: Wi ← A⊤AΩi −WZ−1W⊤Ωi − αΩi

6: [Ωi, Ŝ,∼]← eigSVD(Wi)

7: if (j > 1 and α < Ŝ(b, b)) then
8: α← (α+ Ŝ(b, b))/2
9: end if

10: end for
11: Yi ← AΩi, Wi ← A⊤Yi
12: Y ← [Y,Yi], W← [W,Wi]

13: Z← Y⊤Y, T←W⊤W
14: if E − tr(TZ−1) < tol then
15: break
16: end if
17: end for
18: [V̂, D̂]← eig(Z),P← V̂sqrt(D̂)−1

19: [Ṽ, D̃]← eig(P⊤TP),S← sqrt(D̃)

20: U← YPṼ, V←WPṼS−1

It generates an initial subspace through a random projection matrix and then expands the basis vectors step by
step. In each iteration, the orthogonal basis matrix Q and the coefficient matrix B are updated through matrix
multiplication and inversion. The current approximation error is dynamically calculated, and the iteration is
terminated if it meets the preset tolerance. A dynamic shift parameter is introduced in the power iteration to adjust
the direction of the subspace and improve accuracy. The final principal components are quickly obtained through
eigenvalue decomposition.
By integrating a fixed-precision low-rank approximation algorithm with a tensor completion algorithm, we
introduce the FPTT algorithm(Algorithm 4). This innovative approach adaptively determines the rank based on

Stat., Optim. Inf. Comput. Vol. 13, June 2025



YIHAO PAN, CONGYI YU, CHAOPING CHEN, GAOHANG YU 2567

Algorithm 4 Fixed-precision TT(FPTT)

Input: Tensor M ∈ Rn1×n2×···×nd , index set Ω , tolerance ϵ, r0 = · · · = rd = 1 and integer q ≥ 0;
Output: Completed tensor Ak;

1: Initialization: k = 0,A0 = MΩ.
2: while not convergent do
3: A = Ak.
4: for i = 1 to d− 1 do
5: A(i) =reshape(A, [ri−1ni,

numel(A)
ri−1ni

]).
6: [U (i), S(i), V (i)] = farPCA(A(i)) % (Algorithm3).
7: Gi = reshape(U (i), [ri−1, ni, ri]).
8: A(i) =reshape(S(i)(V (i))T , [n1, ..., nd]).
9: end for

10: Gd = (U (d−1))TA(d−1).
11: Âk = G1 ×1

3 · · · ×1
3 Gd.

12: Ak+1 = MΩ + (Âk)Ω.
13: k = k + 1.
14: end while

the specified error tolerance, enhancing both accuracy and efficiency.
The low rank approximation error is assumed to be infinitely close to 0, that is, satisfied limδ→0 E∥Ak − Âk∥2F = 0.
Then the sequence {Ak} generated by Algorithm 4 is convergent. The proof process is the similar as Theorem 2.

5. Numerical Experiments

In this section, a diverse set of experiments has been carried out involving synthetic data, color images, and videos.
The performance of the proposed algorithm is compared with that of TMac-TT[3] and TMac-Square[15]. We set
the power iteration parameter q = 1 in the Algorithm 2 and 4. When Algorithm 2 has no power iteration, that is,
q = 0, we call it TTrand. The quality of the reconstructed tensor is measured by the peak signal-to-noise ratio
(PSNR). For tensor A ∈ Rn1×n2×n3 and its completed tensor Â, the PSNR is defined as

PSNR = 10 · log10 n1n2n3∥Â∥2
∞

∥A−Â∥2
F

.

The PSNR of color video (four-dimensional tensor) is defined as the average value of PSNR of each frame image,
i.e.

PSNRv = 1
F

∑F
k=1 10 log10

n1n2n3∥Â(:,:,:,k)∥2
∞

∥A(:,:,:,k)−Â(:,:,:,k)∥2
F

.

The relative error between the completion result and the original tensor is defined as

Relative error = ∥Ak −M∥F /∥M∥F

The mean structural similarity index(SSIM)[18] is defined as

SSIM(x, y) =
(2µxµy+C1)(2σxy+C2)

(µ2
x+µ2

y+C1)(σ2
x+σ2

y+C2)
.

where µx represents the mean of x, σx represents the standard deviation of x, and σxy represents the covariance
between x and y. We set C1 = (k1L)

2, where k1 = 0.01, and C2 = (k2L)
2, wherek2 = 0.03, with L = 255.

All experiments were run on a laptop with 2.4 GHz Intel Core i7-8700T CPU and 16GB of RAM. We utilized the
MATLAB Tensor Toolbox [2] to perform the experiments.
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5.1. TTrandPI

In this section, we first demonstrate the convergence of the proposed algorithm through experiments. The elements
of the random tensors with dimensions 10× 10× 10× 10× 10× 10, 20× 20× 20× 20× 20, 40× 40× 40× 40
follow a standard Gaussian distribution N (0, 1). The relative error of the tensor A between two successive
iterations: res = ∥Ak −Ak−1∥F /∥Ak−1∥F . Where Ak and Ak−1 denote the kth and k − 1th iterations of A. We
set missing rate to 0.9. The curves of relative error between two successive iterations are shown in Figure 1. The

Figure 1. res vs. number of iterations for different dimension random tensor with Algorithm 2.

findings suggest that after several iterations, the relative error of Algorithm 2 diminishes and eventually levels off,
illustrating its convergence.

Then, let us compare the recovery performance of TMacTT, TMacTT-Square and TTrandPI on color images.
Bengua et al.[3] introduced ket augmentation (KA), which represents a low-order tensor using a higher-order
one. This method can better utilize local information, thereby saving computational resources and making it more
efficient for TT decomposition. The details of KA augmentation are shown in the Figure 2.

Figure 2. A structured block addressing procedure is employed to transform an image into a higher - order tensor. (a) Example
of a 2× 2× 3 image. (b) Illustration for an image of size 22 × 22 × 3.

Stat., Optim. Inf. Comput. Vol. 13, June 2025



YIHAO PAN, CONGYI YU, CHAOPING CHEN, GAOHANG YU 2569

We take a color image of size 256× 256× 3 as the original data. By applying KA to the tensor, it is transformed
into a ninth-order tensor of size 4× 4× 4× 4× 4× 4× 4× 4× 3, and further perform tensor completion on it.
The relative error between the recovered image and the original image as well as the PSNR of the completed image
is compared when the missing rate varies from 0.1 to 0.9. The initial TT-rank is set to half the smallest size of the
unfolded matrix, and re-select the rank after one iteration of completion.

Figure 3. Numerical results for color image pepper.

Table 2. Numerical results of color image restoration by different methods at different sampling rates.

Color image MR 0.8 0.9 0.95
Method PSNR Relative error Time PSNR Relative error Time PSNR Relative error Time

Pepper
TMac-TT 19.72 0.3239 1.2947 16.97 0.4055 1.1139 15.19 0.4749 0.9601
TTrandPI 21.36 0.4173 1.3140 17.24 0.4213 1.0018 15.45 0.5478 0.7298

TMac-Square 16.87 0.3210 1.2656 15.72 0.4701 1.0537 14.21 0.5004 0.9640
TTrand 21.77 0.1966 0.8517 16.77 0.2893 0.6623 13.32 0.4476 0.5722

Baboon
TMac-TT 19.62 0.2666 1.1751 17.34 0.3407 1.0267 16.05 0.4073 0.9761
TTrandPI 19.81 0.2675 1.2747 18.01 0.3680 0.8927 15.21 0.4509 0.7764

TMac-Square 16.44 0.3595 1.2140 15.38 0.4044 1.0407 14.51 0.4336 0.9802
TTrand 19.09 0.2091 0.8589 15.45 0.3102 0.5994 14.10 0.3740 0.5381

Barbara
TMac-TT 20.64 0.2604 1.2603 17.84 0.3522 1.0628 15.62 0.4184 0.9910
TTrandPI 21.46 0.2570 1.2591 18.13 0.3826 0.9379 15.85 0.4598 0.7337

TMac-Square 17.48 0.3706 1.2498 14.73 0.4209 1.0271 14.21 0.4483 1.0111
TTrand 21.25 0.1934 0.8654 16.69 0.3073 0.6515 14.82 0.3771 0.5427

Burano
TMac-TT 18.06 0.3446 1.2834 15.91 0.4287 1.1672 14.12 0.4912 1.0141
TTrandPI 18.84 0.3543 1.3008 16.42 0.4498 1.0522 14.37 0.5452 0.8224

TMac-Square 15.39 0.4326 1.2347 14.41 0.4838 1.1114 13.55 0.5109 1.0219
TTrand 19.89 0.2350 0.8975 16.36 0.3333 0.7501 13.39 0.4684 0.6056

Sailboat
TMac-TT 17.13 0.3842 1.2166 15.58 0.4482 1.0739 14.24 0.5070 1.0895
TTrandPI 18.01 0.3811 1.2879 15.99 0.4708 0.9895 14.58 0.5398 0.8691

TMac-Square 14.29 0.4645 1.2208 13.60 0.5107 1.0964 12.85 0.5350 1.0131
TTrand 20.85 0.1833 0.9234 16.54 0.2890 0.7595 14.06 0.4065 0.5844

In Figure 3, the first, second, and third graphs from left to right illustrate the relative error between the
reconstructed and original images at various missing rates, the CPU time, and the PSNR between the reconstructed
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Figure 4. Low-rank completion for color image by different methods with MR=0.8. From left to right: the original image,
observed image, completed by TMac-TT, TTrandPI, TMac-Square and TTrand. From up to down: pepper, baoon, barbara,
burano and sailboat.

and original images, respectively. Figure 4 presents the completion effect diagrams for a missing rate of 0.8, and
Table 2 provides their PSNR, RES, and CPU time for three algorithms at missing rates of 0.8, 0.9, and 0.95. As
shown in Figures 3 and 4, the TTrand algorithm is faster and achieves the lowest relative error for MR ≥ 0.4.
The TTrandPI algorithm surpasses the others in PSNR values when the missing rate is high (MR ≥ 0.9), and it
consistently has a lower relative error, suggesting a superior completion effect.

Table 3. Numerical results of color image restoration under different structure damage

Color image pepper barbara
Method PSNR Relative error Time PSNR Relative error Time

TMac-TT 25.73 0.1342 1.0614 23.04 0.1711 0.9547
TTrandPI 27.62 0.0985 1.2143 25.84 0.1266 1.0771

TMac-Square 23.59 0.1718 0.9856 21.97 0.2123 0.9281
TTrand 26.69 0.0970 0.8133 25.40 0.1144 0.8180
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Figure 5. Structural missing color image restoration results. From left to right: the original image, observed image, completed
by TMac-TT, TTrandPI, TMac-Square and TTrand. From up to down: pepper and barbara.

Furthermore, we performed tests on various deletion patterns, with findings presented in Figure 5 and Table
3. The TTrand algorithm is efficient with time and produces satisfactory completion results. TTrandPI achieves
optimal performance with a higher PSNR compared to other algorithms and offers notably improved visual quality.

5.2. FPTT

In this section, similarly, we demonstrate the convergence of the proposed FPTT algorithm for tensor completion
on random tensors with i.i.d standard Gaussian entries. We set the missing rate to 0.9. The curves of relative error
between two successive iterations are shown in Figure 6.

Figure 6. res vs. number of iterations for different dimension random tensor with Algorithm 4.

The results indicate that the relative error of Algorithm 4 remains essentially stable after multiple iterations,
demonstrating its convergence.
As for color video completion, we measure TMacTT, TMacTT-Square and FPTT against data named
book† ,bird‡ and forest§. Resize the video to a tensor of size 480× 640× 50× 3(image row × image

†https://pixabay.com/videos/book-pages-literature-beach-ocean-185096/
‡https://pixabay.com/videos/robin-bird-forest-nature-spring-21723/
§https://pixabay.com/videos/background-clouds-forest-9584/
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colum× frame×RGB). The image row mode is merged with the image column mode to form a third-order
tensor. Therefore, by integrating the information from the frequency domain, we have performed completion for
the entire video, directly applying the tensor completion algorithm to the 3rd-order tensor.

Figure 7. Numerical results for color video book.

Figure 8. Low-rank completion for the 20-th frame of color video by different methods with MR=0.7. From left to right: the
original video, observed video, completed by TMac-TT, FPTT and TMac-Square. From up to down: book ,bird and forest.
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Table 4. Numerical results of color videos restoration by different methods at different sampling rates.

Color video MR 0.7 0.9
Method PSNRv SSIM Time PSNRv SSIM Time

book
TMac-TT 27.55 0.9858 55.44 25.31 0.9763 55.03

FPTT 31.10 0.9881 43.96 28.03 0.9731 48.91
TMac-Square 30.20 0.9867 54.84 27.93 0.9712 54.82

bird
TMac-TT 28.12 0.9736 67.48 26.66 0.9583 59.91

FPTT 35.42 0.9775 46.81 32.01 0.9584 48.47
TMac-Square 34.72 0.9763 55.07 30.47 0.9509 60.26

forest
TMac-TT 31.15 0.9926 38.80 29.56 0.9894 59.94

FPTT 36.84 0.9979 47.89 33.35 0.9949 43.56
TMac-Square 32.81 0.9950 28.90 31.30 0.9928 60.94

Figure 9. PSNR curve at frames 30-40 of color video with a miss rate of 0.9. From left to right: book, bird and forest

In Figure 7, the three graphs, arranged from left to right, illustrate the relative error, SSIM, and PSNR between the
filled-in image and the original one across various missing rates. Figure 8 depicts the effect of image completion
when the missing rate is 0.7, while Table 4 presents their PSNR, SSIM, and CPU time for three algorithms at
missing rates of 0.7 and 0.9. Figure 9 displays the PSNR for frames 30 to 40 of a color video. As shown in Figures
7, 8, and 9, FPTT surpasses other algorithms in PSNR and generally demonstrates lower CPU time and SSIM,
suggesting enhanced completion performance.

6. Conclusion

This study introduces the TTrandPI algorithm, designed for tensor completion utilizing TT decomposition
alongside random power iteration. Experimental results indicate that it converges effectively and surpasses some
existing algorithms in terms of completion performance, particularly at high rates of missing data. Additionally,
to tackle the challenge of rank selection in tensor completion, we integrate a fixed precision matrix approximation
technique, presenting the fixed precision TT tensor completion algorithm (FPTT). This approach alleviates
the complexity of choosing an initial rank. Experiments demonstrate that FPTT offers superior computational
efficiency and improved completion results.
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