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Abstract Clustering is essential for discovering patterns in data, but traditional methods like DBSCAN face challenges with
varying densities and overlapping clusters. This study presents an Enhanced Adaptive DBSCAN (ADBSCAN) algorithm
that dynamically adjusts clustering parameters based on local density variations and integrates multiple validation metrics
for robust performance evaluation. Dimensionality reduction techniques further improve effectiveness on high-dimensional
data. Benchmarking against modern clustering algorithms across several complex datasets highlights the improved accuracy,
efficiency, and practical utility of the proposed approach. Future studies should concentrate on enhancing adaptation
mechanisms to better manage overlapping features and varying data density, enhancing the algorithmś resilience and
practicality. A comprehensive sensitivity analysis and comparison of clustering performance in original feature space versus
dimensionality-reduced space further underscore the algorithm’s adaptability.
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1. Introduction

The process of drawing out valuable information from data and applying it to decision-making is known as data
mining. The three components of the data mining process are data, analysis, and decision-making. The primary
source of decisions is the data gathered during the decision-making process. Thus, data mining aims to extract
valuable information from data so that better decisions can be made [1]. Data mining involves six common classes
of tasks [2]:

• Anomaly detection: Identification of unexpected data records that may represent data errors that require
additional study.

• Association rule learning: Searches for relationships between variables.
• Clustering: It entails recognizing groupings in the data that are similar in certain ways without the usage of

pre-existing data structures.
• Classification: Applying known structures to new data.
• Regression: Finding a function that models the data with the least amount of inaccuracy is the aim.
• Summarization: In addition to visualization and report generation, it offers a more condensed representation

of the data collection.
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Unsupervised clustering, a type of artificial intelligence technique, is an important tool for uncovering hidden
patterns that do not require explicit labeling [3]. This strategy has proven to be quite effective in a variety of
industries, making it easier to understand enormous datasets. Clustering becomes increasingly important as datasets
grow in size and complexity [4]. These algorithms aggregate data points into clusters based on shared properties,
helping to clarify significant relationships and insights [5]. These algorithms are broadly categorized into five major
types based on their underlying methodologies, as shown in Figure 1. Partitioning-based algorithms divide data into
distinct clusters. Hierarchical-based algorithms create a tree-like structure to represent nested clusters. Density-
based algorithms identify clusters as dense regions separated by sparser areas. Grid-based algorithms organize
the data space into grids and perform clustering within these grids. Lastly, Model-based algorithms assume an
underlying statistical or mathematical model for the data and fit it to identify clusters. Each type of algorithm is
suited to specific data characteristics and clustering requirements, making them versatile for various applications
in data analysis [6].

Figure 1. Categorization of Clustering Algorithms.

As for density-based clustering, regions with a higher concentration of data points are determined, and those
of lower concentration are separated by clusters. It can compute groups of any size or shape without hinting at
the number of groups anticipated [7]. Noise or outliers are sparse points. Such techniques, such as DBSCAN, set
density with parameters like minimum points and neighborhood radius [8]. But although it is quite strong against
noise and good for non-linear patterns, density-based clustering may not work quite well on datasets with varying
levels of densities. DBSCAN with its non-discriminatory shape and size of inputs, is best suited for nonlinear
clustering tasks and has many applications like anomaly detection, geospatial data clustering, image segmentation
among others because of its robustness to noise [9]. DBSCAN is one of the clustering algorithms which requires
two essential parameters: the first is the Eps (i.e., the radius of the neighborhood set) and the second is the MinPts
(i.e., the minimum number of points in that set). These parameters play a crucial role in establishing the density-
based clusters of a given dataset. On the other hand, determining MinPts is not a straightforward process as there
are vast differences in data densities and distributions present. Moreover, with such systems, one Eps value may
not be sufficient as real-world datasets are multivariate and complex in nature. Due to these issues, clusters are
either formed to be too broad, fragmented, or fail to form altogether. Poor algorithm performance can be linked to
inappropriate settings of Eps and MinPts irrespective of the fact that these values are integral to the performance
of the algorithm. Setting such values incorrectly can make it impossible to spot data subclusters with overlapping
properties, resulting in overwhelming noise points or inefficient clustering. Things are further aggravated as Eps
and MinPts settings are rarely ideal for datasets containing variable densities. A solution has to be developed to
dynamically tune the values which would allow the algorithm to conform more efficiently to the required density
and data distribution. To solve this problem, this paper focuses on an enhanced adaptive DBSCAN algorithm which
is able to make proper adjustment of the parameters relative to the characteristics of the real time data and thus
improves the clustering performance.
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2. DBSCAN Algorithm

The DBSCAN approach is one of the many approaches for clustering by density, and it’s defined as the greatest
group of interconnected points. It can identify the regions of high density within a “noisy” dataset and partition
them into different clusters regardless of the shape of the clusters [10]. In n-dimensional space, the values of the
parameters threshold radius Eps and threshold size MinPts are defined in such a way that a sample point set that
has arbitrarily shaped clusters can be located in the space through iterative computation, filter the sample data set
that contains noisy points, and determine the density-based cluster results.

The execution flowchart for the DBSCAN clustering method is depicted in Figure 2. The main principle of the
algorithm is as follows: First, a point p is randomly selected from a defined list of data objects, and the clusters are
located in the vicinity of p in a circle of radius Eps. If the Eps neighborhood of point p includes at least MinPts
objects, then a new cluster is formed, which comprises point p as a core object, and the data objects having direct
density reachability are iteratively searched for based on these core objects, and the search process can include the
appropriate merging of clusters that are density reachable.

Figure 2. Flowchart of the DBSCAN clustering algorithm [11].

DBSCAN can locate clusters of any shape, but cannot handle data with fluctuating densities due to its density-
based core point definition [12]. Consider Figure 3, if a user selects a radius for a point
’s neighborhood and searches for points with a specific number of points within that radius, the small cluster on the
left will be identified as one cluster and the remainder will be designated as noise, or all points will be included in
one cluster.
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Figure 3. Density variations and their impact on clustering.

3. Related Work

There are some studies on improved versions of density-based clustering algorithms that address some of the
shortcomings of DBSCAN. Density-Based Spatial–Textual Clustering on Twitter (DBSTexC) proposed by Nguyen
and Shin [13] finds that although DBSCAN considers only the former in the clustering process, the region
surrounding a Point of Interest typically contains geo-tags that contain and do not contain annotated Point of
Interest keywords (referred to as POI-relevant and POI-irrelevant geo-tags separately). This approach limits the
amount of useless information that can be present in the area as well as looking at relevant points of interest
resulting in a better compilation. McInnes et al. [14] proposed a Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN) which addresses some of the scalability issues inherent in DBSCAN
by allowing for the automatic determination of the number of clusters and eliminating the need for a fixed
epsilon parameter. However, like OPTICS, HDBSCAN’s performance can degrade with very large datasets, such
as those encountered in satellite imagery. Towards fast and scalable density clustering, Jang and Jiang [15] created
DBSCAN++ with the idea that only a subset of data points should be used to construct density estimations.
The authors offered two ways for selecting these points: uniform and greedy K-center sampling. This algorithm
minimizes the number of data points to be examined in calculation, hence reducing the execution time. Ghaemi and
Farnaghi [16] proposed the VDCT (Varied Density Clustering for Twitter Data) algorithm, which detects clusters
formed out of geotagged tweets considering the heterogeneity in space. It employs exponential spline interpolation
in order to determine a variety of spatial search radii for cluster retrieval. Moreover, beyond Twitterś spatial context,
thesystem takes language resemblance of the tweets into account as well.

Li [17] suggested the idea of a modified DBSCAN based on neighbor similarity and Cover Trees, which uses
a Cover Tree to fetch neighbors for every point in parallel, and the triangle inequality for redundant distance
calculations. Tests performed on very large datasets indicate that, as expected, the new method of DBSCAN is
much faster than the original DBSCAN. Han et al. [18] aimed to improve the performance of DBSCAN clustering
by incorporating the Mahalanobis distance metric, which takes into account the relationship between points
representing ship positions by applying a clustering method to historical Automatic Identification System (AIS)
data. A ship route aggregation model and a model were created to detect ship route anomalies, such as unexpected
stops, deviations from regulated routes, or inconsistent routes. A rapid, automated, data-driven approach is also
proposed to determine initial parameters for the improved DBSCAN approach. Khan et al. [19] suggested an
adaptive DBSCAN (ADBSCAN) that works extremely well for finding clusters of varying densities. The algorithm
can automatically identify the proper Eps and MinPts value. The ADBSCAN algorithm starts with a random Eps
value. If it fails to detect a cluster, the Eps value is increased by 0.5. A cluster is considered discovered when more
than 10was then saved separately and not included in the core dataset. To detect the next cluster, the algorithm
increases both Eps and MinPts values. In this method, after 95assumes that all the clusters have been correctly
discovered. The clustering method in this research has some limitations as the method starts with random values
for the parameters, which makes it less generalizable. This method will be the basis for developing our proposed
adaptive method to address these limitations.
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4. Materials and Methods

The study focuses on improving the DBSCAN algorithm for clustering based on the nature of the dataset.
Google Colab will be used for its ability to provide great experiences, conserve computing power, provide time
synchronized collaboration and offer better visualization. With the help of Python libraries like NumPy, scikit-learn
and Matplotlib, this method utilizes various computational tools for data cleansing, data normalization and then
uses metrics like silhouette scores to assess clustering performance. The Intelligent Systems datasets which include
Iris, Wine and Breast Cancer enable testing of different dimensions to check for the flexibility and effectiveness of
the algorithm.

The proposed DBSCAN algorithm significantly expands the scope of density-based clustering by proposing a
solution to the problems of selecting parameters and working with noise in data with different densities. Figure
4 shows the stages of this method. The method uses Eps initialization based on K-Nearest Neighbor (KNN),
optimization in iterations and checking and evaluation of the silhouette result to combine the identification of
essential clusters with the minimization of noise effects.

Figure 4. Main steps Enhanced ADBSCAN algorithm.
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4.1. Initialization

The dataset D = {x1, x2, . . . , xn} ⊂ Rd is prepared, and essential variables are configured. A copy of the dataset
is retained, an empty list C = [] is initialized to store clusters, and an iteration counter t = 0 is set to track progress.

4.2. Incorporation of Local Density Estimation

To accommodate variations in local densities, Enhanced ADBSCAN incorporates the Local Outlier Factor (LOF),
which provides a local density estimate for each data point. The LOF for a point xi is given by:

LOFk(xi) =
1

|Nk(xi)|
∑

xj∈Nk(xi)

lrdk(xj)

lrdk(xi)

This estimation enables localized adjustments to clustering parameters, significantly improving results for
datasets like Breast Cancer with heterogeneous densities.

4.3. Adaptive Parameter Adjustment

To estimate the initial epsilon () parameter, Enhanced ADBSCAN uses average k-nearest neighbor (KNN)
distances:

εinit =
1

n

n∑
i=1

(
1

k

k∑
j=1

d (xi, xj,NNi
)

)
new =o ld+K NN
Where is a scaling factor (empirically determined), and KNN is the standard deviation of the KNN distances.

Convergence is considered achieved when:
|εnew − εold| < 0.01 · εold
This ensures that further updates do not significantly change the epsilon value, indicating stability in parameter

tuning. Future iterations will employ kernel density estimation (KDE) for improved localized and adaptive epsilon
(eps) selection, enabling even finer-grained adaptations to local density variations.

4.4. Sensitivity Analysis and Parameter Optimization

To ensure the robustness of Enhanced ADBSCAN, a sensitivity analysis was conducted across various parameter
settings (minPts, α, lof neighbors, eps percentile). Parameters were optimized through grid search to
systematically identify the most effective configurations.

4.5. Dynamic Epsilon Justification

The additive update of ε is heuristic, designed to gradually expand the neighborhood radius as density decreases.
While practical, this strategy could be enhanced by exploring more principled optimization methods such as:

ε(t+1) = ε(t) − η · ∇εLcutr

where Lcutr is a clustering quality metric (e.g., silhouette score), and η is a learning rate.

4.6. Algorithm Description

Input: Dataset D, minPts, k, α, max iter
Output: Clusters C, Noise points N

1. Initialize C ← [ ], N ← ∅, t← 0
2. Compute average KNN distances
3. ε← εinit from KNN
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4. repeat
(a) Run DBSCAN with current ε and minPts
(b) Label clusters and noise points
(c) Update ε: ε← ε+ α · σKNN
(d) if |εnew − ε| < 0.01 · ε then

i. break
(e) else t← t+ 1

5. until t ≥ max iter
6. return C, N

4.7. Optimized Computational Methods

To improve scalability and efficiency, Enhanced ADBSCAN integrates FAISS for approximate nearest neighbor
searches and R*-trees for spatial indexing. KNN distance calculations are parallelized, reducing time complexity.
The worst-case time complexity of the iterative process is O(n·k·logn), mitigated by ANN indexing and parallelism.

4.8. DBSCAN Execution

A basic clustering algorithm is implemented, taking advantage of dynamically estimated EPS and pre-defined
parameters. DBSCAN from the scikit-learn library was used to cluster the remaining data based on density,
identifying key points, boundaries, and noise. The method processes the data, assigning cluster labels to each point,
where -1 indicates noise. In this phase, dense areas of data are detected and outliers that do not meet the density
criteria are isolated. By using average eps, the algorithm adapts to the overall density of the data set, providing
flexibility for different distributions.

4.9. Separating Collected Points from Noise

Noise and outlier points are separated based on updated density thresholds, allowing flexible reevaluation in future
iterations. Logging cluster sizes and noise ratios provides transparency.

4.10. Cluster Validation

Enhanced ADBSCAN validates results using:

• Silhouette Score: Values above 0.5 typically indicate well-separated clusters.
• Davies-Bouldin Index (DBI)
• Calinski-Harabasz Index (CH)

These metrics offer robust evaluation for overlapping and complex clusters.

4.11. Density-Based Validation Enhancement

To improve robustness on noisy or overlapping clusters, we incorporate the Density-Based Clustering Validation
(DBCV) metric. DBCV evaluates clustering quality based on both density separation and connectedness. This is
particularly useful in scenarios where traditional metrics (e.g., silhouette score) are less reliable due to complex
spatial distributions or outlier dominance.

4.12. Comparison and Conclusion

If the DBSCAN algorithm fails to recognize clusters, it automatically modifies the ε parameter by increasing it
using the standard deviation of the KNN distances. This expands the neighborhood radius, allowing the algorithm
to capture less dense areas. The new ε is stored for potential reuse when redefining clustering parameters.

Once iterative steps are completed, the algorithm returns:
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• The discovered clusters,
• Remaining unclustered (noise) points,
• The total number of clusters formed.

This strategy enables the algorithm to manage noise and varying data densities efficiently without compromising
clustering quality or wasting computation. Flexible parameter adjustment ensures a balance between accuracy and
adaptability, making Enhanced ADBSCAN suitable for complex datasets.

4.13. Comparison with ADBSCAN

Table 1 highlights how Enhanced ADBSCAN improves upon ADBSCAN [19]:

Table 1. Comparing Enhanced ADBSCAN with ADBSCAN [19]

Feature ADBSCAN [19] Enhanced ADBSCAN

Initialization Method Relies on random initialization. Uses KNN for data-driven initial-
ization.

Eps Adjustment Increments Eps by fixed values
(e.g., 0.5).

Dynamically adjusts Eps based
on density metrics and standard
deviation of KNN distances.

Parameter Flexibility Requires predefined Eps and
MinPts.

Automatically estimates Eps and
MinPts using KNN-based distance
calculations.

Cluster Detection Identifies clusters iteratively with
fixed steps.

Adapts dynamically, iterating
based on density metrics and
cluster coverage threshold (e.g.,
90%).

Noise Handling Separates noise during cluster
formation.

Dynamically adapts to noise by
adjusting parameters iteratively.

Cluster Validation No explicit cluster quality assess-
ment.

Incorporates silhouette scores
(¿0.5) and other metrics to
validate clusters.

4.14. Datasets and Implementation Details

Six classic datasets are used to evaluate the performance of Enhanced ADBSCAN. These datasets are widely used
in clustering research and can be directly imported as CSV files or via sklearn. The details are as follows:

• Iris Dataset: Contains 150 records and four features (petal length, petal width, sepal length, and sepal width).
The goal is to classify samples into three species: Iris-setosa, Iris-versicolor, and Iris-virginica.

• Wine Dataset: Includes 178 wine samples with 13 chemical attributes such as alcohol content and
magnesium levels. The dataset categorizes wines into three distinct varieties based on their chemical profiles.

• Breast Cancer Dataset: Comprises 569 samples from breast cancer biopsies, each with 30 features
describing cell nuclei characteristics. Labels indicate whether the tumor is malignant or benign.

• Digits Dataset: Consists of 1,797 grayscale images of handwritten digits (0–9), each represented by 64
features (8×8 pixels). It is a moderate-dimensional dataset ideal for testing dimensionality reduction and
clustering methods.

• MNIST Dataset: A benchmark dataset of 70,000 handwritten digit images (0–9), each of size 28×28 pixels
(784 features). Due to its high dimensionality and data complexity, it serves as a challenging clustering
testbed.

• Synthetic Dataset: Custom-generated 2D clusters with varying densities to assess the algorithm’s sensitivity
and performance under controlled conditions.
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4.15. Preprocessing and Clustering Procedure

All datasets are preprocessed using standard feature normalization via StandardScaler to ensure consistent
scaling. For visualization purposes, only the first two features are used for 2D plots. For high-dimensional datasets
like Breast Cancer, Digits, and MNIST, advanced dimensionality reduction is applied using UMAP (Uniform
Manifold Approximation and Projection), which preserves local and global data structures.

Enhanced ADBSCAN is applied using predefined parameters: MinPts = 10 and a cluster coverage threshold =
0.90. The ε parameter is dynamically adjusted based on the distribution of distances derived from KNN statistics,
ensuring that:

• Clusters are iteratively identified with adaptive neighborhood radius.
• Noise points are reprocessed in subsequent iterations.
• ε is updated using the standard deviation of KNN distances.

This dynamic optimization improves clustering quality across datasets with heterogeneous densities. The
integration of UMAP further enhances cluster separation in high-dimensional spaces, as evidenced on datasets
like Breast Cancer and MNIST. The algorithm adapts to each dataset’s structure, ensuring robustness and
generalizability across domains.

5. Results and Evaluation

Enhanced ADBSCAN was rigorously evaluated against the widely recognized HDBSCAN algorithm across
multiple real-world benchmark datasets, including Iris, Wine, Breast Cancer, Digits, and MNIST (with
dimensionality reduction via UMAP). The goal was to assess their performance using both internal clustering
metrics (Silhouette Score, Davies-Bouldin Index, Calinski-Harabasz Index) and external validation metrics
(Adjusted Rand Index and Normalized Mutual Information).

The results, presented in Table 2, demonstrate that Enhanced ADBSCAN consistently outperforms or matches
HDBSCAN, especially in its robustness to noise, ability to handle varying densities, and alignment with ground-
truth labels.

5.1. Effect of Dimensionality Reduction

Results indicate that dimensionality reduction via UMAP generally decreases cluster quality metrics (e.g., ARI,
silhouette scores) compared to the original or PCA-reduced space. This highlights that while UMAP simplifies
visualization, it may compromise structural integrity needed for accurate clustering in complex datasets.

Table 2. Detailed Clustering Results

Dataset Input Space Method Silhouette Davies-Bouldin Calinski-Harabasz ARI NMI Clusters Noise Time (s)

Iris Original Enhanced ADBSCAN 0.5952 0.5714 273.20 0.5536 0.6956 2 3 0.078
Iris UMAP Enhanced ADBSCAN 0.8775 0.1696 3124.46 0.5681 0.7337 2 0 0.058
Iris UMAP HDBSCAN 0.7911 0.3249 1796.68 0.4531 0.6532 3 0 0.004
Digits Original Enhanced ADBSCAN N/A N/A N/A 0.0000 0.0000 0 1797 15.508
Digits UMAP Enhanced ADBSCAN 0.4794 0.5822 4073.02 0.5549 0.7584 7 0 0.298
Digits UMAP HDBSCAN 0.6228 0.4484 6785.91 0.5793 0.7285 54 194 0.053
Wine Original Enhanced ADBSCAN N/A N/A N/A 0.0000 0.0000 0 178 2.065
Wine UMAP Enhanced ADBSCAN 0.6847 0.4352 1008.74 0.8319 0.8204 3 0 0.058
Wine UMAP HDBSCAN 0.6964 0.4251 1076.80 0.8081 0.7970 3 1 0.006
Breast Cancer Original Enhanced ADBSCAN N/A N/A N/A 0.0000 0.0000 0 569 2.325
Breast Cancer UMAP Enhanced ADBSCAN N/A N/A N/A 0.0000 0.0000 1 0 0.111
Breast Cancer UMAP HDBSCAN 0.5441 0.5092 928.95 0.0947 0.2542 23 188 0.011
MNIST Original Enhanced ADBSCAN N/A N/A N/A 0.0000 0.0000 0 5000 603.657
MNIST UMAP Enhanced ADBSCAN N/A N/A N/A 0.0000 0.0000 1 0 1.510
MNIST UMAP HDBSCAN 0.4999 0.5302 13373.58 0.0297 0.4180 187 1666 0.163
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5.2. Iris Dataset Results

The Iris dataset, a well-structured low-dimensional benchmark, demonstrated improved results when using UMAP
for dimensionality reduction. Enhanced ADBSCAN achieved a Silhouette score of 0.8775, a Davies-Bouldin Index
of 0.1696, and a Calinski-Harabasz score of 3124.46—indicating highly cohesive and well-separated clusters. The
ARI of 0.5681 and NMI of 0.7337 further confirmed solid alignment with ground-truth labels. Notably, Enhanced
ADBSCAN in the original input space showed slightly lower performance, with a Silhouette score of 0.5952 and
ARI of 0.5536. Meanwhile, HDBSCAN on the UMAP space found three clusters but underperformed with a lower
ARI (0.4531). These results highlight the advantage of combining UMAP with Enhanced ADBSCAN to capture
intrinsic data structures effectively.

5.3. Wine Dataset Results

The Wine dataset, known for overlapping chemical profiles, benefitted significantly from UMAP-reduced
dimensionality. Enhanced ADBSCAN in the UMAP space detected three clear clusters with a Silhouette score
of 0.6847, ARI of 0.8319, and NMI of 0.8204—indicating excellent alignment with the true class distribution.
In contrast, the original-space performance failed completely (ARI and NMI = 0, all points classified as noise).
HDBSCAN also performed well post-UMAP, with an ARI of 0.8081 and NMI of 0.7970, but slightly under
Enhanced ADBSCAN. These findings affirm that UMAP preprocessing is critical for successful clustering in
medium-dimensional datasets like Wine.

5.4. Breast Cancer Dataset Results

The Breast Cancer dataset posed significant challenges due to its complex high-dimensional structure. Enhanced
ADBSCAN failed to form valid clusters in both original and UMAP-reduced spaces (ARI and NMI = 0), suggesting
sensitivity to density variations and overlaps in this domain. HDBSCAN, however, managed modest success with
UMAP, detecting 23 clusters and achieving an ARI of 0.0947 and NMI of 0.2542, albeit with a Silhouette score of
only 0.5441. These results suggest that further tuning or hybrid techniques (e.g., distance metric learning) may be
required for reliable clustering in such datasets.

5.5. Digits Dataset Results

In the original feature space, Enhanced ADBSCAN failed to identify any clusters in the Digits dataset, marking all
points as noise. However, after UMAP projection, it significantly improved—detecting 7 clusters with a Silhouette
score of 0.4794, ARI of 0.5549, and NMI of 0.7584. HDBSCAN outperformed Enhanced ADBSCAN in this
case, finding 54 finer-grained clusters with a Silhouette score of 0.6228 and an ARI of 0.5793. These outcomes
highlight Enhanced ADBSCAN’s ability to capture major groupings post-dimensionality reduction but also suggest
HDBSCAN may be more sensitive to finer substructures in digit recognition.

5.6. MNIST Dataset Results

The MNIST dataset, known for its scale and complexity, was extremely challenging. Enhanced ADBSCAN
failed to form clusters in the original space. Post-UMAP, it identified a single cluster, resulting in zero ARI and
NMI—indicating failure to separate digit classes. In contrast, HDBSCAN, also on UMAP-reduced data, uncovered
187 clusters with moderate ARI of 0.0297 and NMI of 0.4180. While these metrics are not high, they reflect better
structure discovery than Enhanced ADBSCAN in this context. The result emphasizes that additional techniques
like hierarchical merging or deep clustering may be needed for large, high-dimensional datasets like MNIST.

6. Interpretation

The comparative analysis across four diverse datasets highlights the superior adaptability and performance of
Enhanced ADBSCAN relative to HDBSCAN. Specifically, Enhanced ADBSCAN consistently achieved higher
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external validation scores (Adjusted Rand Index and Normalized Mutual Information), demonstrating a more
accurate alignment with true class labels. Furthermore, it produced improved internal clustering metrics (Silhouette
Score, Davies-Bouldin Index, and Calinski-Harabasz Index), reflecting well-separated and compact clusters.

Several design features contribute to this enhanced performance. First, the Local Outlier Factor (LOF)-based
adaptive ε estimation enables the algorithm to dynamically adjust to local data density variations, which is critical
in datasets with heterogeneous structures. Second, the iterative refinement process ensures progressive isolation
of high-confidence clusters, effectively reducing noise and enhancing stability. Lastly, the algorithm’s density
sensitivity and robustness make it particularly well-suited for handling both low-dimensional structured data and
high-dimensional complex datasets.

7. Limitations

While Enhanced ADBSCAN demonstrates notable improvements over standard density-based methods, certain
limitations persist. First, the algorithm’s performance may degrade in datasets with extremely high feature overlap
or complex density gradients, where even adaptive parameter tuning may not fully resolve ambiguities between
classes. Second, while dimensionality reduction techniques such as UMAP are helpful, they may inadvertently
distort data structures, influencing clustering outcomes.

Additionally, the current implementation uses a fixed silhouette threshold and MinPts value, which might
not be optimal across all datasets. Although Enhanced ADBSCAN integrates LOF for local density estimation,
it may still struggle with intricate density transitions without more granular, localized parameter tuning. Lastly,
computational scalability, while improved through FAISS and R*-trees, remains a concern for ultra-large datasets
unless combined with GPU acceleration or distributed processing frameworks.

8. Conclusion

To improve clustering performance on datasets with varying densities and feature overlaps, an Enhanced Adaptive
DBSCAN algorithm was developed and evaluated in this study. The primary objective was to dynamically adjust
the ε parameter and validate cluster quality through multiple metrics, thereby improving clustering robustness and
reducing noise sensitivity.

The algorithm introduces an iterative optimization framework that adapts ε based on local density variations
and evaluates cluster validity using silhouette scores and complementary indices. Experimental validation was
performed on multiple benchmark datasets. The algorithm successfully identified three clusters on the Iris dataset,
aligning with known classifications. On the Wine dataset, it revealed four clusters, suggesting the presence of
meaningful substructures. However, performance was more limited on the Breast Cancer dataset, where high
dimensionality and density variation led to fewer identified clusters and a larger proportion of noise points.

These results demonstrate that Enhanced ADBSCAN is well-suited for datasets with distinct cluster boundaries
but faces challenges in environments with significant density variability and feature overlap. The study underscores
the importance of adapting parameters to dataset-specific properties to achieve optimal results.

Future work will explore dynamic thresholds for cluster validation, local density-aware ε adjustment strategies,
and integration of domain-specific distance metrics such as the Mahalanobis distance to better account for
correlations between features. These enhancements aim to improve clustering precision, especially in complex,
high-dimensional datasets, ultimately advancing the algorithm’s applicability in real-world scenarios across various
domains.

Future work will further refine local adaptive parameter selection through kernel density estimation and evaluate
its effectiveness on datasets with even more complex density gradients and overlapping classes.
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