
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 202x, pp 0–12.
Published online in International Academic Press (www.IAPress.org)

Numerical methods for evolutionary problems in partial differential
equations and control

Guillermo Villa Martı́nez 1,*, Carlos Alberto Ramı́rez Vanegas 1, Oscar Danilo Montoya Giraldo 2

1Department of Mathematics, Universidad Tecnológica de Pererira, Colombia
2Grupo de Compatibilidad e interferencia Electromagnética, Facultad de Ingenierı́a,

Universidad Distrital Francisco José de Caldas, Bogotá, 110231, Colombia

Abstract
In this paper we implement the finite element method for parabolic problems with dominant transport terms. The formulation
of the linear system of equations coming from a partial differential equation takes its form from the weakening of the problem.
Several numerical experiments are performed to know the convergence of the solution and an error analysis in a Sobolev
space for linear functions is implemented.

Keywords finite element method, finite element analysis, partial differential equation, Poission problem, weak formulation,
discretization, assembly, reference element, Gaussian quadrature.

AMS 2010 subject classifications ???, ???

DOI: 10.19139/soic-2310-5070-2489

1. Introduction

In this study, the strong and weak formulation for a class of partial differential equations is presented. We address
numerical approximation of this class of evolutionary problems combined with variational problems and their
applications in the modeling of the heat equation with dominant transport term is performed. The solution of the
problem is approached from the point of view of weak formulation and strong formulation to transform a partial
differential equation into a linear system of equations of constant terms via the finite element method. For the
solution of the proposed partial differential equation, the complete discretization in both time and spatial domains
is taken into account. Finally, initial and boundary conditions are considered. Several numerical experiments are
performed to know the interaction of the number of elements with the minimization of a functional in an arbitrary
subdomain. The numerical experiments show the effectiveness of the method and the proposed solution model.

1.1. Notation

• φ(x) test function.

•
∂u

∂t
partial derivative with respect to time.

•
∂u

∂x
partial derivative of the displacement.

• f(x, t) forcing term.
• γ; thermal diffusivity constant.
• β; transport term .
• ξi Gauss points.
• ωi Gauss weights.

∗Correspondence to: Guillermo Villa Martı́nez (Email: gvilla@utp.edu.co). Department of Department of Mathematics, Universidad
Tecnológica de Pererira, Carrera 27 #10-02 Barrio Alamos - Pereira - Risaralda - Colombia (660003).

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press

VILLA, G. RAMÍREZ, C. AND MONTOYA, D. 1

1.2. Organization

This paper is organized as follows: In the preliminaries section, the finite element method for a second order
differential equation is raised. The galerkin projection is expressed with linear elements. Then, some numerical
experiments with different interval partitions are performed to verify the convergence of the solution as well as,
the values that minimize the functional to find the transport term at different finite element values. Finally, it is
concluded for the parabolic problem in partial differential equations.

2. Basic algorithm and extensions

To begin with, the linear form functions are presented are introduced for discretizing the solution function of the
given differential equation. At the first level, the shape functions are defined globally. At the second level, the shape
functions are defined at the element level. Along the way, the concepts of assembly, integration by substitution and
Gaussian quadrature are explained.

2.1. Test functions

So far you have seen simple linear shape functions and elements that are defined over a 1D subdomain with two
nodes. This paper focuses on the implementation of linear elements for the 1D time dependent problem. In higher
dimensional space [1, 2], the same key concepts can be used. The central idea is that the solution space is reduced
with the introduction of shape functions.

φi(x) =

nx

L
− (i− 1),

(i− 1)L

n
≤ x ≤ iL

n
.

i = 0, 1, 2, · · · , n.

−nx

L
+ i,

iL

n
≤ x ≤ (i+ 1)L

n
.

(1)

The solution is given by:

u(x) =

n∑
i=0

uiφi(x) = [φ(x)]TU (2)

Strong formulation: Given f(x), find u(x) sucha that:

u′′(x) = f(x)
for all 0 ≤ x ≤ 1

u(0) = 0, u′(1) = 0

Weak formulation: Given f(x), find u(x) such that:∫ 1

0

u′(x)v′(x)dx = −
∫ 1

0

f(x)v(x)dx (3)

for all v(x) with v(0) = 0, u(0) = 0
The derivative of the solution is:

u′(x) =

n∑
i=0

uiφ
′
i(x) = [φ′(x)]TU (4)

The test function:

v(x) =

n∑
i=0

viφi(x) = VT [φ(x)] (5)

Stat., Optim. Inf. Comput. Vol. x, Month 202x

2 NUMERICAL METHODS FOR EVOLUTIONARY PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS

The derivative of the test function:

v′(x) =

n∑
i=0

viφ
′
i(x) = VT [φ′(x)] (6)

Where:

U =

u0

u1

...
un

 (7) V =

v0
v1
...
vn

 (8) [φ(x)] =

φ0(x)
φ1(x)

...
φn(x)

 (9) [φ′(x)] =

φ′
0(x)

φ′
1(x)
...

φ′
n(x)

 (10)

Then equation (3) can be written matrixially as follows [1]:∫ 1

0

VT [φ′(x)][φ′(x)]TUdx = −
∫ 1

0

f(x)VT [φ(x)]dx. (11)

The following terms can be extracted from equation (10):

VT

∫ 1

0

[φ′(x)][φ′(x)]T dxU = VT

∫ 1

0

−f(x)[φ(x)]dx. (12)

Where:

K =

∫ 1

0

[φ′(x)][φ′(x)]T dx, (13)

and

F =

∫ 1

0

−f(x)[φ(x)]dx. (14)

This allows us to rewrite equation (3) in terms of a linear system of equations of the form [3]:

VTKU = VTF, (15)

∀V with v0 = 0 and u0 = 0

Afterwards, globally defined shape functions φi(x)(i = 0, 1, . . . , n), element wise defined shape functions
φe
j(x)(e = 1, 2, . . . n, j = 0, 1). Now the contribution of each element to the solution has the form:

ue(x) =

1∑
j=0

ue
jφ

e
j(x) = [φe]T (x)Ue (16)

therefore, the equation (12), written by the contribution of each element:

n∑
e=1

VeT

∫
Ωe

[φ′
e(x)][φ

′
e(x)]

T dxUe =

n∑
e=1

VeT

∫
Ωe

−f(x)[φe(x)]dx. (17)

In terms of each element the matrices (13) and (14) are given by:

Ke =

∫
Ωe

[φ′
e(x)][φ

′
e(x)]

T dx, (18)

and,

Stat., Optim. Inf. Comput. Vol. x, Month 202x

VILLA, G. RAMÍREZ, C. AND MONTOYA, D. 3

Fe =

∫
Ωe

−f(x)[φe(x)]dx. (19)

In the interval [a,b] the element Ωe. x in terms of a new variable ξ taking values between [−1, 1] as a reference
has the following expression:

x = ϕe(ξ) =
1

2
(1− ξ) a+

1

2
(1 + ξ) b. (20)

On the other hand, the inverse process is given by:

ξ = ϕ−1
e (x) =

1

2
(a+ b)− x

1

2
(a− b)

. (21)

Now, in terms of the contribution of each element:

φe
j(x) = φe

j (ϕe(ξ)) = φj(ξ) (22)

And the derivatives:

∂φe
j(x)

∂x
=

∂φj(ξ)

∂ξ

∂ξ

∂x
=

∂φj(ξ)

∂ξ

(
∂φe(ξ)

∂ξ

)−1

(23)

Using Gaussian quadrature, goven a polynomial P (ξ) and a set of Gauss points ξi and Gauss weights ωi, te
integral P (ξ) from ξ = −1 to ξ = 1 can be computed as:∫ 1

−1

P (ξ)dξ =
∑
i

P (ξi)ωi (24)

In this case, polynomial order 5 (or less), numeber od Gauss points: 3, Gauss point ξi :

(
−
√

3

3
, 0,

√
3

5

)
and

Gauss weights ωi =

(
5

9
,
8

9
,
5

9

)

3. PDE with time dynamics

In this section we consider the temporal dynamics of the following partial differential:

∂u

∂t
+ γ

∂u

∂x
− ∂

∂x

(
β
∂u

∂x

)
= f(x, t) (25)

Following the same methodology proposed in the previous section, it is multiplied by a test function v(x) and
integrated into x: ∫

∂u

∂t
vdx+

∫
γ
∂u

∂x
vdx−

∫
∂

∂x

(
β
∂u

∂x

)
vdx =

∫
f(x, t)vdx (26)

When multiplying by a test function φ(x) (1), the solution is given by:

u(x, t) = α1(t)φ1(x) + · · ·+ αn(t)φn(x) + αn+1(t)φn+1(x) =

n+1∑
i=1

αi(t)φi(x) (27)

Stat., Optim. Inf. Comput. Vol. x, Month 202x

4 NUMERICAL METHODS FOR EVOLUTIONARY PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS

The derivative with respect to time involves deriving the equation (27):

∂u(x, t)

∂t
= α′

1(t)φ1(x) + · · ·+ α′
n(t)φn(x) + α′

n+1(t)φn+1(x) =

n+1∑
i=1

α′
i(t)φi(x) (28)

The product
∫

∂u

∂t
vdx =

∫ n+1∑
i=1,j=1

αi(t)
′
φi(x)φj(x)dx and this in turn generates a matrix M = [mij] which

we will call the mass matrix [1, 2]:

M = [mij] =

∫ b

a

φi(x)φj(x)dx i, j = 1, 2, · · · , n+ 1 (29)

The diagonal entries i = j for the equation matrix (29):

[mii] =

∫ (i+1)L/n

iL/n

(nx
L

− i
)2

dx+

∫ (i+2)L/n

(i+1)L/n

(
−nx

L
+ (i+ 1)

)2
dx (30)

Now, for i ̸= j the off-diagonal terms are calculated with the integral:

[mij] =

∫ L

0

PiPjdx (31)

Where, Pi and Pj have the form of the equation (1). Then, the product defined by
∫

γ
∂u

∂x
vdx =

−γ

∫ n+1∑
i=1,j=1

αi(t)φ
′
i(x)φj(x)dx which generates a matrix S = [sij] that takes the name of stiffness matrix:

S = [sij] = −γ

∫ b

a

φ′
i(x)φj(x)dx i, j = 1, 2, · · · , n+ 1 (32)

For the diagonal terms i = j it is calculated with the integral:

[sii] = −γ

(∫ (i+1)L/n

iL/n

(n
L

)(nx
L

− i
)
dx+

∫ (i+2)L/n

(i+1)L/n

(
−n

L

)(
−nx

L
− (i+ 1)

)
dx

)
(33)

When i ̸= j you have the off-diagonal values:

[sij] = −γ

∫ (i+2)L/n

(i+1)L/n

(
−n

L

)(nx
L

− i
)
dx (34)

On the other hand, the product −β

∫
∂

∂x

(
∂u

∂x

)
v

generates −β

∫
∂

∂x

(
∂u

∂x

)
v = β

∫ b

a

n+1∑
i=1,j=1

αi(t)φ
′
i(x)φ

′
j(x)dx. That is, the recurrence equations (13,14) and

change the constants multiplying this matrix by −β:

A = [aij] = β

∫ b

a

φ′
i(x)φ

′
j(x)dx i, j = 1, 2, · · · , n+ 1 (35)

The diagonal terms are given by the following expression:

[aii] = β

(∫ (i+1)L/n

iL/n

(n
L

)2
dx+

∫ (i+2)L/n

(i+1)L/n

(
−n

L

)2
dx

)
(36)

Stat., Optim. Inf. Comput. Vol. x, Month 202x

VILLA, G. RAMÍREZ, C. AND MONTOYA, D. 5

The values outside the diagonal (the integration interval is constant) are calculated as follows:

[aij] = β

(∫ (i+1)L/n

iL/n

(n
L

)(
−n

L

))
dx (37)

Now,
∫

f(x)vdx =

∫ b

a

f(x)φi(x)dx allows to calculate the terms of the load matrix B = [bi] =∫ b

a

f(x)φi(x)dx

[bi] =

∫ b

a

f(x)φi(x)dx (38)

Finally, the linear system of differential equations is given by:

[M]
dα⃗

dt
− [S]α⃗+ [A]α⃗ = B (39)

Grouping terms:

[M]
dα⃗

dt
+ ([A]− [S]) α⃗ = B (40)

In a full discretization in time, consider the equation (41):

[C]
dU⃗

dt
+ [k]U⃗ = [Q] (41)

Where:

U⃗ =

U1

U2

...
UN

 (42)

N → for x (Spatial dimension). In the time discretization we will use the Backward Eueler or implicit Euler
algorithm (n for time), for all ∆t equally spaced:

d ⃗Un+1

dt
=

1

∆t

(
⃗Un+1 − U⃗n

)
(43)

Evaluating equation (43) in equation (42) we have:

1

∆t
[C]
(

⃗Un+1 − U⃗n

)
+ [K] ⃗Un+1 = [Q] (44)

By assuming U⃗n known, it is required to calculate ⃗Un+1. In the iteration k + 1 you have the approximation ⃗
U

(k)
n+1

for ⃗Un+1. We are looking for the approach ⃗
U

(k+1)
n+1 that satisfies [3]:

⃗
U

(k+1)
n+1 =

⃗
U

(k)
n+1 +

⃗
∆U

(k)
n+1 (45)

Returning to the equation (40),
dα⃗m

dt
=

1

∆t
(α⃗m − ⃗αm−1) and making [A]− [S] = [SA] it holds:

[M]
1

∆t
(α⃗m − ⃗αm−1) + [SA]α⃗m = B (46)

By factoring and grouping terms we obtain:

Stat., Optim. Inf. Comput. Vol. x, Month 202x

6 NUMERICAL METHODS FOR EVOLUTIONARY PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS

α⃗m

(
1

∆t
[M] + [SA]

)
= B + [M]

1

∆t
⃗αm−1 m = 1, 2, 3, · · · , n+ 1 (47)

Given the initial conditions α⃗0, the matrices [M], [S], [A] and B are the same as the previous problem. La solución

de la ecuación (47) can be realized by the inverse of
(

1

∆t
[M] + [SA]

)
or implementing the MatLab function

ode45.

Algorithm 1 Finite Element Method (FEM)

1: Define the problem domain and boundary conditions.
2: Discretize the domain: divide the domain into finite elements and define the mesh.
3: Select shape functions for each element to approximate the solution.
4: Formulate element matrices and vectors:
5: for each element do
6: Compute local Mass matrix 29.
7: Compute local stiffness matrix 32.
8: Compute local diffusion stiffness matrix 35.
9: Compute local load vector 38.

10: end for
11: Assemble global matrices and vectors:
12: for each element do
13: Map local matrices to global matrices.
14: end for
15: Apply boundary conditions to modify the global system.
16: Solve the global system of equations to obtain nodal values (Euler’s Method, ODE45).
17: Post-process the solution:
18: Apply Fminsearch: Use fminsearch (Matlab function) to find the minimun of (61) options =

optimset(’Display’,’iter’,’PlotFcns’,@optimplotfval);
19: Post-process the solution Visualize results, compute derived quantities, and check convergence (GCI).

4. Error estimation

This section shows the energy norm for determining the error in a linear function space. If u is the solution, v is
some function such that v(0) = 0 and without loss of generality it is denoted by S = P1(τh) y V = V h as a finite
dimensional subspace [4], such that:

us ∈ S | a(us, v) = (f, v) ∀v ∈ S (48)

It can be said that the solution u is characterized by:

u ∈ V | a(u, v) = (f, v) ∀v ∈ V (49)

To observe the orthogonality relationship between u and us, subtract the equations (49) and (48):

a(u− us, ω) = 0 ∀ω ∈ S (50)

Now, energy is defined as the norm:

||v||E =
√

a(v, v) ∀v ∈ V (51)

The relationship between the norm and the inner product is given by the Schwarz inequality:

Stat., Optim. Inf. Comput. Vol. x, Month 202x

VILLA, G. RAMÍREZ, C. AND MONTOYA, D. 7

|a(v, ω)| ≤ ||v||E ||ω||E ∀v, ω ∈ V (52)

Then, for some vS:

||u− uS ||2E = a(u− uS , u− uS)

(Here it is for the Schwarz inequality).

||u− uS ||2E = a(u− uS , u− v) + a(u− uS , v − uS)

From equation (50) it is known that a(u− us, ω) = 0 with ω = v − uS ,

||u− uS ||2E = a(u− uS , u− v)

Then, using Schwarz’s inequality (52),

||u− uS ||2E ≤ ||u− us||E ||u− v||E . (53)

If |||u− us||E ̸= 0, it can be divided by ||u− us||E to obtain ||u− us||E ̸= |||u− v||E for some v ∈ S.
Moreover, in the case ||u− us||| = 0, the inequality is satisfied since the obtained solution coincides with the
solution in S [4, 5]. Taking the infimum over v ∈ S:

||u− uS ||E ≤ inf{||u− v||E | v ∈ S}.

Since uSinS, one has:

inf{||u− v||E | v ∈ S} ≤ ||u− us||E .

Therefore,

||u− us||E = inf{||u− v||E | v ∈ S}

This means that, there is an element (us) for which the infimum is reached. If the infimum is replaced by the
minimum it can be proved that the error estimate can be expressed as follows:

||u− us||E = min{||u− v||E | v ∈ S}.

That is, the error in the energy defined by the standard (53) is optimized.

5. Experimental results

In the following subsection the proposed differential equation is solved with the proposed conditions at different
interval partitions for a constant time delta. The following parameters were implemented to solve the differential
equation (25)

5.1. PDE time dependent

Parameters:

• n = [25, 50, 100]
• a = 0; a lower limit
• L = 1; b upper limit

• γ = 0.1; thermal diffusivity constant
• β = 1; transport term
• tf = 0.1; final Time

Stat., Optim. Inf. Comput. Vol. x, Month 202x

8 NUMERICAL METHODS FOR EVOLUTIONARY PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS

• Nt = [100, 1000]; time partition
• dt = tf/Nt; delta time
• Ts = 0 Boundary conditions

• Ta = Ts; Temperature at a T (x = a) = Ts
• Tb = Ts; Temperature at a T (x = b) = Ts

0 0.2 0.4 0.6 0.8 1

X

0

0.5

1

1.5

T
(x

)
ti

Heat 1D Time dependent

ODE45

Euler

(a) ∆t = 0.01s, n = 25

0 0.2 0.4 0.6 0.8 1

X

0

0.5

1

1.5

T
(x

)
ti

Heat 1D Time dependent

ODE45

Euler

(b) ∆t = 1.0000× 10−03s, n = 25

0 0.2 0.4 0.6 0.8 1

X

0

0.5

1

1.5

T
(x

)
ti

Heat 1D Time dependent

ODE45

Euler

(c) ∆t = 0.01s, n = 50

0 0.2 0.4 0.6 0.8 1

X

0

0.5

1

1.5

T
(x

)
ti

Heat 1D Time dependent

ODE45

Euler

(d) ∆t = 1.0000× 10−03s, n = 50

0 0.2 0.4 0.6 0.8 1

X

0

0.5

1

1.5

T
(x

)
ti

Heat 1D Time dependent

ODE45

Euler

(e) ∆t = 0.01s, n = 100

0 0.2 0.4 0.6 0.8 1

X

0

0.5

1

1.5

T
(x

)
ti

Heat 1D Time dependent

ODE45

Euler

(f) ∆t = 1.0000× 10−03s, n = 100

Figure 1. Solutions considering different scenarios. Column 1 figures (a), (c) and (e) for δt = 0.01 and n = 25, n = 50,
n = 100. Column 2 figures (b), (d) and (f) δt = 1× 10− 03 and n = 25, n = 50 and n = 100.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

VILLA, G. RAMÍREZ, C. AND MONTOYA, D. 9

The euler algorithm (red) is used to calculate the answers, with a runtime = 49.8124s and the ODE45 matlab
function (blue) is used to calculate the numerical solutions with runtime = 10.5213s.

5.2. Constant β

As shown in the previous section, we solved the problem posed by the equation (25) [6]. A value of γ ∈ R for the
calculation of the matrix S [7]:

Sii = β

∫ L

0

φ′
i(x)φj(x). (54)

Expanding the terms for n, the diagonal terms are given by the following expression:

Sii = β

∫
(i+ 1)L

n
iL

n

(n
L

)(nx
L

− i
)
dx+

∫ (i+ 2)L

n
(i+ 1)L

n

(
−n

L

)(
−nx

l
+ i+ 1

)
dx

 . (55)

The off-diagonal terms are given by:

Sij = β

∫ (i+ 2)L

n
(i+ 1)L

n

(
−n

L

)(nx
L

− i
)
dx. (56)

The formulation of the J(β) functional is presented below.

5.3. Grid Convergence Index

The grid convergence index (GCI) is an estimate of the discretisation error for the local [11] or global quantify we
are studying (e.g. potential/presure (stress/displacement)) at a point.

1. One way to compute the GCI is to perform the calculation using 3 separate meshes with successively
decreasing refinement (or corarsing) i.e the element size h1 for mesh 1, h2 for mesh 2 and h3 for mesh
3, h → 0, h1 > h2 > h3.

2. Calculate the order of accuracy p using the equation below, where f1 is the value for the quantity of interest
on the finest mesh (smallest elements), f2 is the value on the middle density mesf and f3 is the value on the
corasest mesh (largest elements). r es 2 in the case where the mesh sizing is halved each iteration:

p =

ln

(
f3 − f2
f2 − f1

)
ln(r)

(57)

3. Estimate the error on the finest mesh using the equation (57):

E1 =
f2 − f1
1− rp

(58)

4. Calculate the GCI using the equation:
GCI1 = Fs|E1| (59)

5. We can now say we are 95% confident that answer is:

ftrue = f1 ± Fs|E1| (60)

Stat., Optim. Inf. Comput. Vol. x, Month 202x

10 NUMERICAL METHODS FOR EVOLUTIONARY PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS

- Mesh spacing Refinement ratio (r) Aproximation
Coarsest mesh 0.04 − 1.3737

Medium mesh 0.02 2 1.3742

Finest mesh 0.01 2 1.3744
Table 1. Refinement ratio.

Coarsest mesh is the mesh with the largest element size, finest mesh is the mesh with the smallest element size.
Mesh spacing is the average element width. Refinement ratio is the ratio of the coarser mesh element size to the
finer mesh element size. Aproximation represents the predicted value of interest at t = 0.022 and x = 0.4, (e.g.
displacement or stress at a point, or the total force on a boundary, or total energy in the model).

Check refinement ratios OK
Order of accuracy (p) 1.321928095

Estimate of the finest mesh error 0.000133333

Fs 1.25
GCI 0.0001666666667

Estimate of the true solution 1.37

GCI 95% confidence interval min 1.37

GCI 95% confidence interval max 1.37
Table 2. Estimating discretisation error using the grid convergence index (GCI).

Check refinement ratios, if ”NOT OK” is displayed then you need to check that the refinement ratio between the
coarse mesh and medium mesh is the same as the refinement ratio between the medium mesh and the fine mesh.
Order of accuracy (p) if this is negative then the prediction is far from the mesh independent solution and the GCI
method cannot be used. Estimate of the finest mesh error has the same units as the prediction; this is the signed
error, i.e. it can be positive or negative. Fs, factor of safety used by the GCI method. GCI on the finest mesh. This
is a conservative estimate of the absolute value of the error on the finest mesh. The GCI method says with 95%
confidence that the true solution is between the min and the max

5.4. Functional J(β)

Due to optimal control, the objective is not only to find a solution to the PDE but also to control certain aspects of
the system. This leads to the introduction of a cost functional that quantifies the performance of a control input β.
The functional J(β) measures both the energy of the control and the deviation of the state u from desired behaviors.

This functional includes three main terms:

• The control cost, which penalizes the magnitude of the control β.
• The state cost, which measures the magnitude of the state variable u over the control horizon.
• The terminal cost, which penalizes deviations of the state u at the final time tf .

The minimization of J(β) under the dynamics imposed by the PDE aims to balance control effort and system
performance, providing an optimal control β that drives the state u towards a desired behavior while minimizing
costs. This subsection presents the formulation of a convex functional. The following is the formulation of the
functional J(β), with β ∈ [−1, 1] [8]. Consider |u|2L2 norm of L2 u.

J(β) =
1

2

∫
[a,b]×[0,tf]

|β|2dxdt+ 1

2

∫
R×[ti,tf]

|u|2dxdt+ 1

2

∫
Ω

|u(tf)|2dx. (61)

The above integrals can be calculated as follows:

Stat., Optim. Inf. Comput. Vol. x, Month 202x

VILLA, G. RAMÍREZ, C. AND MONTOYA, D. 11

1

2

∫
[0,1]×[0,tf]

|β|2dxdt = 1

2
β(b− a)tf . (62)

In the second integral, a part of the domain Ω is selected to match the mass matrix [9], i.e., αT
RMRαR with T

elements such that T ⊂ R.

1

2

∫
R×[ti,tf]

|u|2dxdt = 1

2

tu∑
l=0

(∫
R

u(x, tl)dx

)
∆t =

1

2

tu∑
l=0

(
αT
RMRαR

)
∆t. (63)

On the other hand α(tf) is taken as the last vector of α thus:

1

2

∫
Ω

|u(tf)|2dx =
1

2
αT (tf)Mα(tf) =

1

2
u(x, tf). (64)

This functional is in principle convex to guarantee the minimum [10]. The minimum value of the functional is at
one of the extremes or within the interval.

-1 -0.5 0 0.5 1
0.016

0.017

0.018

0.019

0.02

0.021

0.022

J
(

)

J()vs

Constant

Figure 2. Functional J(β). (Graph created in MATLAB, authors).

The table calculates the values of β and the functional for different values of elements in the domain partition.

Table 3. β values for different domain partitions.

n β J(β)

4 -0.037792 0.64783
10 -0.12632 0.81218
100 -0.14703 0.81459
102 -0.12635 0.81218

6. Conclusion

We successfully implemented the finite element method for parabolic problems with dominant transport terms,
providing a robust approach to address the numerical approximation of such evolutionary problems. By leveraging
both the strong and weak formulations, we transformed the governing partial differential equations into a linear

Stat., Optim. Inf. Comput. Vol. x, Month 202x

12 NUMERICAL METHODS FOR EVOLUTIONARY PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS

system of equations. The numerical experiments conducted validated the effectiveness of the proposed method,
demonstrating convergence of the solution and the influence of element discretization on the minimization of
the functional. Finally, Runtime was compared in both methods: Euler and ODE45; the Euler’s method was
Throughput-focused: Use lower-order fixed-step or inexact implicit methods for massive ensembles and ODE45
was fast startup, small memory overhead.

Acknowledgement

This work was supported by master in mathematic program at Universidad Tecnológica de Pereira.

REFERENCES

1. Justin Mouyedo Loufouilou, Joseph Bonazebi Yindoula, Gabriel Bissanga, A new approach for pseudo hyperbolic partial differential
equations with nonLocal conditions using Laplace Adomian decomposition method, International Journal of Applied Mathematics
and Theoretical Physics, 7(1), 28–39 2024.

2. Xiu Ye, Shangyou Zhang Two-Order Superconvergent CDG Finite Element Method for the Heat Equation on Triangular and
Tetrahedral Meshes, Communications on Applied Mathematics and Computation, 2024.

3. Markus Merkel, Andreas Öchsner, One-Dimensional Finite Elements An Introduction To The Method, Book, Springer, 2023.
4. Eduardo Casas, Karl Kunisch, Infinite Horizon Optimal Control for a General Class of Semilinear Parabolic Equations, Applied

Mathematics Optimization, vol. 88, article 47, 2023.
5. Bhagyashree Prabhune, Krishnan Suresh, An isoparametric tangled finite element method for handling higher-order elements with

negative Jacobian, Springer, Computational Mechanics, vol. 73, pp. 159-176, 2024.
6. Li Chen, Veniamin Gvozdik, Yue Li, Rigorous derivation of the degenerate parabolic-elliptic Keller-Segel system from a moderately

interacting stochastic particle system. Part I Partial differential equation, Journal of Differential Equations, Volume 375, pp. 567-617,
2023.

7. Hongliang Liu, Yilin You, Haodong Li, Shoufu Li, Canonical Euler splitting method for parabolic partial functional differential
algebraic equations, Applied Numerical Mathematics, vol. 190, pp. 65-83, 2023.

8. Markus Bachmayr, Manfred Faldum, A space-time adaptive low-rank method for high-dimensional parabolic partial differential
equations, Journal of Complexity, Volume 82, 2024.

9. N.N. Nefedov, Development of methods of asymptotic analysis of transition layers in reaction–diffusion–advection equations: Theory
and applications, Differential Equations, vol. 57, no. 12, pp. 1701–1721, 2021.

10. Yan-ping Chen, Jian-wei Zhou and Tian-liang Hou , Two-grid Method of Expanded Mixed Finite Element Approximations for
Parabolic Integro-differential Optimal Control Problems, Acta Mathematicae Applicatae Sinica, English Series, 2024.

11. E. Siva Prasad and K. Phaneendra, A Computational Scheme for 1D Time-Dependent Singularly Perturbed Parabolic Differential-
Difference Equations, Computational Mathematics and Mathematical Physics,Volume 65, pages 236–251, 2025.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

	1 Introduction
	1.1 Notation
	1.2 Organization

	2 Basic algorithm and extensions
	2.1 Test functions

	3 PDE with time dynamics
	4 Error estimation
	5 Experimental results
	5.1 PDE time dependent
	5.2 Constant
	5.3 Grid Convergence Index
	5.4 Functional J()

	6 Conclusion

