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Abstract Nowadays, cyber threats (CT) evolve rapidly, and this necessitates developing strong and intelligent prediction
models that are effective for the detection and classification of cyber security (CS). Hence, a new Elman Crayfish network
(ECFN) is proposed to predict and classify CT. In this study, a Kaggle CS threat dataset is trained with Python to develop
a more effective classification model. The dataset undergoes a data refinement stage, where noisy data is preprocessed
to improve precision. In order to effectively choose the features, a Crayfish Optimization Algorithm is applied in a
spatiotemporal feature analysis to select the relevant attributes that contribute to classification. The ECFN utilizes these
chosen features to predict CT more effectively. Finally, the detected attacks are classified, and the performance is measured
to obtain high accuracy and reliability in detecting CT. The developed method improves CS protection by optimizing the
selection process and improving the accuracy of classification. The model’s performance is evaluated with metrics like
F score, accuracy, recall, precision, and error rate, and the comparison of the results with existing approaches proves its
efficiency.
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1. Introduction

Cyber security (CS) is a crucial area in the modern digital age, which works towards protecting systems, networks,
and information against CA [1]. Organizations, businesses, governments, and countries are all at great risk of CA,
which is becoming more common, severe, complex, and diversified [2]. As technology continues to rely more on
machines, people and institutions are exposed to various types of security risks, such as data breaches, identity theft,
malware, and ransomware [3]. A prediction platform that can forecast risky behavior and attacks before they happen
is now imperative. Prevention of damage is hard with existing methods of attack detection, which inform security
administrators when an attack occurs [4]. CS employs various techniques, including encryption, firewalls, intrusion
detection systems, and security policy, for protection from risks and security of confidential information [5]. As
threats to cyberspace evolve, attackers exploit vulnerabilities in software, networks, and human actions in order to
access, manipulate, or delete information [6]. CA refers to malicious activities aiming to gain unauthorized access,
inflict damage, or interrupt computer systems and infrastructures. There are multiple types of threats: Phishing,
denial-of-service (DoS), malware, and advanced persistent threats [7]. Intruders might utilize highly sophisticated
methods like social engineering and zero-day exploits to infiltrate systems [8]. With an increase in the frequency of
CA, it becomes mandatory to implement intelligent and automated defensive strategies that will effectively detect
and respond to the threat [9].
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Machine Learning (ML) and Deep Learning (DL) have proved to be powerful tools in CS to identify and
neutralize cyber threats [10]. ML involves learning to detect abnormalities and patterns in huge data to provide
applications with the ability to identify potential threats through automation [11]. ML-based threat detection models
offer the capability of detecting anomalies and classification distinctions. DL is a sub-discipline of ML that employs
neural networks (NN) with multiple layers for processing intricate patterns in data [12]. DL models are particularly
beneficial in handling large-scale data sets of CA discovering complex threats [13]. The application of ML and DL
in CS first enhances threat detection with accuracy by analyzing vast amounts of data, reducing errors. It learns and
updates on a continuous basis from evolving threats, increasing the resilience against new forms of attacks [14].
Besides its advantages in identifying unknown or emerging threats by analyzing behavioral anomalies, it also has
disadvantages [15]. One of the most significant disadvantages is the high computational cost and resource usage of
training deep learning models.

Additionally, the ML models are controllable by malicious actors using adversarial attacks to modify training
data [16]. It strongly depends on training data quality [17]. If the training data is inferior or biased, the models
will yield inaccurate or unjust results. Also, it cannot fully replace human intelligence and requires security to
confirm and interpret alarms [18]. However, CS is imperative in protecting against evolving cyber threats. CA
keeps improving in complexity, and therefore, organizations need to implement advanced security measures [19].
While Artificial intelligence (AI) provides great promise for enhancing threat detection and response, these offer
much value but also present challenges that have to be implemented judiciously and monitored [20]. There are
several bio inspired optimization methods, such as Lion optimization (LO), particle swarm optimization (PSO),
grey wolf Optimization (GWO), genetic algorithm (GA), Whale Optimization (WO), and so on that exist for all
mathematical applications. Even though, the specific reason for selecting the crayfish optimization is due to the
unique fitness function, which is competitive for the best shelter location. In this present research work, this finest
behaviour is utilized to find the threat features in the trained data. The competitive best shelter location finding helps
to find the threat more accurately than other bio-inspired models. As cyber threats keep evolving, the interfacing
of AI-driven solutions is required to create robust and dynamic security frameworks. The key contribution of the
work is explained.

• Initially, the cyber-threat dataset was collected from Kaggle and trained in Python.
• Hence, a novel ECFN has been developed as a predictive and classification system.
• Consequently, the noisy elements in the data are filtered, and the Crayfish optimization selects the essential

attributes.
• Subsequently, as per the selected attributes, the Crayfish fitness function predicts the CT.
• Finally, the attack is classified by the ECFN, and the performance is evaluated.

The second part of this paper includes current relevant work, while the third part explains the system challenge.
The fourth portion develops the system challenge, and the fifth section discusses the case study and performance
validation. Finally, the sixth part concludes the work.

2. Related Work

Some recent related papers are described;
Albakri et al. [21] have developed an ML-based CT detection (CTD) and classification method by using a hybrid

metaheuristic with blockchain (HMB). The technique employs a hybrid enhanced glow-worm swarm system for
choosing features, a hunter-prey for optimum parameter selection, a quasi-recurrent model for CAP detection, and
an Ethereum Blockchain for assault detection. When tested, the system’s performance demonstrated the highest
accuracy of 99.74% but faced challenges in complexity.

Alzubi et al. [22] A Federated learning-based CTD (FLbCTD) system is developed. Black widow optimization
is used to hyper-parameter tune and takes characteristics out of binary input images in the MobileNetv2 model.
For malware detection and classification, a group of voting-based classifiers is created, along with long short-term
memory (LSTM) and gated recurrent unit (GRU) approaches. It performs well but faces challenges in capturing
complex behavior.
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Shahin et al. [23] have presented a CTD that uses Gradient Boosting in conjunction with Attention LSTM
(GBAL) and a fully connected network to identify irregularities. The model’s capacity to recognize various attack
types is demonstrated by the effective detection of CS risks in seven distinct devices. It has the potential to improve
cyber security risk identification. The limitation is it requires a large number of datasets.

Behiry et al. [24] have developed a hybrid K-means clustering with Singular Value Principal Component
(KCSVPC) approach. It employs methods such as enhanced K-means clustering information gain for attribute
extraction and Singular Value and Principal Component for feature reduction. Three datasets are used to assess
the feed-forward NN technique. It exhibits excellent accuracy and dependability but fails to capture temporal
dependencies and introduces noise.

Duraibi and Alashjaee [25] study proposes an Enhanced Mayfly (EMF) utilizing a Hybrid DL technique.
Data normalization, EMF-based feature selection, the dipper-throated optimization for optimum hyper parameter
selection, and LSTM-based Deep Stacked Sequence-to-Sequence Autoencoder model for Identification are
all employed. The analysis and comparisons demonstrate the developed technique’s superiority over current
approaches. It still faces limitations in information loss, impacting the model’s ability to detect sophisticated
attacks.

Table 1. summary of the literatures

Author Methods Advantages Disadvantages
Albakri et al. [21] HMB The model attained high accuracy rate Increases the complexity

Alzubi et al. [22] FLbCTD It performs well in prediction Face challenges in capturing
complex patterns

Shahin et al. [23] GBAL It improves CS risk identification Requires a large amount of
data

Behiry et al. [24] KCSVPC It exhibits excellent accuracy and This method fails to capture
dependability temporal dependencies and

introduces noise.

Duraibi and EMF It enhances the prediction superiority It leads to information loss
Alashjaee [25]

The summary of the discussed literature is exposed in table 1, the common drawbacks noted through the reviewed
literature are poor feature extraction and prediction accuracy. Hence, to address these issues, the hybrid model is
used based on the Elman and the crayfish optimal model. Here, the incorporation of the crayfish optimal features
in the Elman network provides the tuned outcome by extracting the features more accurately and affords the finest
prediction scores.

3. Problem Statement

In recent days, CTD has evolved as a major concern for CS. Hence, many DL techniques have been developed to
solve the issues. However, it faces challenges in overcoming the problems of the current techniques. Some methods,
even with high accuracy, are plagued by excessive computational complexity as a result of the incorporation of
multiple optimization and selection routines. Such complexity renders its scalability. Also, some models fail to
handle complex behavioural patterns, especially in dynamic attack cases, diminishing their ability to detect adaptive
CT. Some feature extraction models introduce noise and lose temporal dependencies, affecting the capacity to
analyze attack patterns effectively.
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Figure 1. System model with problem

Other methods have some major problems associated with information loss during feature selection and
reduction steps. Although optimization-based feature selection improves model performance, it removes
meaningful information, impacting the Identification of complex and dynamic CT. The Problem statement is
displayed in Figure 1.

4. Proposed Methodology

As CT is evolving as a major concern in CS, predicting and classifying it plays a crucial role. Hence, a novel Elman
Crayfish network (ECFN) has been developed with prediction and classification features. Initially, the dataset has
been collected from the kaggle. Hence, the data has been refined to improve its quality. Here, the noise elements are
removed, and this data is used for further processing. Moreover, the spatiotemporal feature analysis is performed to
select the necessary attributes using Crayfish optimization. Finally, the CT is predicted and classified. The proposed
architecture is displayed in Figure 2. The developed ECFN model is evaluated using some of the criteria, such as F
score, accuracy, recall, precision, and error rate, and compared with current approaches.

Figure 2. Proposed architecture
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4.1. ECFN process

The proposed model is developed by combining Cray fish optimization (CFO) [26] with the Elman neural network.
The optimization fine-tunes the network for improving the classification accuracy, layers of the proposed model is
exposed in Figure 3 and the hyperparameters variables are defined in table 2.

Figure 3. layers of proposed model

Table 2. Hyper-parameter variables

Parameter specification
Activation function ReLU

Optimizer Carry fish
Tuning model Fine tuning
Learning rate 0.001

Batch size 25
Hidden layers 3

Filters 4

4.1.1. Data refinement Data refinement is an important preprocessing technique within CS to enhance the quality
of gathered CT data by removing noise, inconsistency, and unwanted information. Raw data, in most cases,
comprises outliers, missing values, and redundant items, which refinement helps remove while keeping important
information intact to process it further. At first, data initialization is performed. The data initialization is executed
by Eqn. (1).

CTI = CT1, CT2, CT3...CTn (1)

The cyber threat dataset is denoted as CT , and the Initialization function is denoted as I . After the initialization
process, data refinement is performed. It is done by using the CFO. The data refinement is computed by Eqn. (2)

DR =
α(CT )− δ ∗ (CT − CTnoise)

CTi
(2)
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The data refinement variable is denoted as DR, α denotes the noise reduction function, δ denotes the
optimizations step size movement controlling variable, and CTnoise denotes the noise. For processing the data
refinement in more accurate way, min-max scalar with regularization concept was utilized. It can help in reducing
algorithm complexity and the occurrence of overfitting.

4.1.2. Spatiotemporal Analysis Spatiotemporal feature analyses are executed to identify patterns and correlations
in cyber data for predicting and classifying. This aids in more effective threat detection and prediction. The CFO
improves this process by efficiently discovering the most important spatiotemporal features, enhancing detection
accuracy, and reducing computational overhead. CFO behavior best searches for subsets of features by maintaining
exploration-exploitation to ensure the model pays attention to important threat indicators. This leads to an adaptive
and CT forecast system that is able to respond to changing patterns of attack. Feature analysis is executed in Eqn.
(3). Here, the spatiotemporal features were defined by analyzing the traffic patterns. In any smart application,
making traffic is the key syndrome for getting affected link, which is termed as harmful. So, it is considered
as the critical factor for cyber threat detection. To understand the attack occurrence at the specific time interval,
spatiotemporal analysis was performed. In addition, to view the exact attack occurrence time, time window strategy
[30] was utilized.

STA =
CT (Fi) + γ(Fbest − Fi) + λ(F )

F t+1
i

(3)

The spatiotemporal feature analysis is denoted as STA the features denoted as Fi at each iteration i. The
exploration function is denoted as γ. The exploitation function is denoted as λ and the best features is defined
as Fbest. Here, the needed features were stored in the carry fish best shelter finding memory, while executing the
exploitation function, the needed features were retrieved and extracted by matching the stored features in the carry
fish [26]. This best shelter finding operation is given in the Elman network to tune the hyper parameters variables
and operations.

4.1.3. Threat Classification Cyber threat prediction and classification are the processes of examining the
spatiotemporal features to identify and predict CT. Prediction is the process of determining threats from past threat
patterns, whereas classification identifies threats as belonging to specific categories. The threat is predicted by
tracing the anomalies by the ECFN. It is computed by Eqn. (4).

P = W + b
At

η(STA)
(4)

Here, the prediction variable is denoted as P weights assigned is denoted as W , b denotes the bias term, At

denotes the anomaly types, and η denotes the tracing variable. The ENN is employed for categorization as it
handles temporal dependencies and improves classification accuracy. The classification is executed by Eqn. (5).

Qaa22C =



if(P = 0)Phishing

if(P = 1)DoS

if(P = 2)MitM

if(P = 3)SQLI

if(P = 4)CSS

if(P = 5)Ransomware

if(P = 6)Password

if(P = 7)ZDE

if(P = 8)DDoS

(5)

The classification variable is denoted as C. The classification is performed for 9 classes ranging from 0 to
8. DoS denotes the denial of service, MitM denotes the Man in the middle, SQLI denotes the Structured Query
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Language injection, CSS denotes the Cross-site scripting, ZDE denotes the Zero-day Exploits, and DDoS denotes
the Distributed DoS.

Start
Step 1: Dataset initialization()

int CTI ;
// Initializing the dataset by crayfish population initialization function in Eqn. (1)

Step 2: Data refinement()
int DR, α, δ

∗, CTnoise;
// Initializing the data refining variables
DR → |controlling(CT ) - noisy elements|
// Noisy elements are removed and data is refined

Step 3: Spatiotemporal Analysis ()
int STA, Fi, γ, λ, Fbest
// Fbest is the best search location of Caryfish in Eqn. (3) [28]
STA|DR(essentialattributes) → dense layer
// needed attributes are selected

Step 4: Classification()
int P,W, b,At, η, C;
// Initializing the cyber threat prediction functions
P → tracing(STA)× weights + bias
// Cyber threat is predicted
if (P = 0)

Phishing
if (P = 1)

DoS
if (P = 2)

MitM
if (P = 3)

SQLI
if (P = 4)

CSS
if (P = 5)

Ransom ware
if (P = 6)

Password
if (P = 7)

ZDE
if (P = 8)

DDoS
// Cyber threat is classified

End
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The algorithm for the work is provided in a pseudo-code format, and the entire workflow is displayed sequentially
in Figure 4.

Figure 4. ECFN Flowchart

5. Results and Discussion

The Python environment on Windows 10 is used to verify the ECFN. First, the CS Threat datasets are collected from
Kaggle. The proposed framework includes data collection and removing noisy elements, identifying informative
attributes, and detecting and classifying threats. The parameter specification used for implementing the proposed
framework is described in Table 3.

Table 3. Operation specification

Metrics Parameters
Program Python
Version 3.7.14

Operating System Windows 10
Network Elman neural network

Optimization Crayfish
Dataset Cyber security threat

5.1. Case study

The dataset named as cyber threat for new malware data dataset has been collected from the Kaggle website
(https://www.kaggle.com/datasets/zunxhisamniea/cyber-threat-data-for-new-malware-attacks). Then, the proposed
ECFN is developed. The collected dataset has been divided into 70% for training and 30% for testing. The data
divided for testing is used to analyze the performance of the model in Identification. The description of the dataset
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is given in Table 4. In addition, while processing the class imbalance data, the stratified sampling [29] method was
utilized for making different subclasses.

Table 4. Dataset description

Attack types Total samples
100%=750

Training
70%=525

Testing
30%=225

Phishing 96 67 29
DoS 96 67 29
Man-in-the-Middle 90 63 27
SQL Injection 90 63 27
Cross-Site Scripting 90 63 27
Ransomware 90 63 27
Password Attacks 90 63 27
Zero-Day Exploits 90 63 27
DDoS 18 13 5

(A)

(B)

Figure 5. (A) Accuracy graph and (B) Loss graph
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The accuracy graph and loss graph for the developed model are displayed in Figure 5 (A) and (B), respectively.
In the prediction of CT, the accuracy and loss curves are key measures of model performance. The accuracy curve
is a measure of how accurately the model identifies threats correctly over training iterations, generally trending
upward as the model learns patterns out of the dataset. The loss graph measures the difference between expected
and actual results. A smooth drop in the loss graph indicates effective learning. For CT forecasting, a balance
between accuracy and loss is important for guaranteeing trustable detection, which is extremely critical in CS.

Figure 6. Confusion matrix

The confusion matrix for the developed framework is displayed in Figure 6. In this confusion matrix, the
miss classification value is 1, thus it can have scored the finest prediction outcome. Here, the model makes 9
classifications ranging from 0 to 8. 0, which denotes phishing. 1 denotes DoS, 2 denotes MitM, 3 denotes SQLI,
4 denotes CSS, 5 denotes ransomware, 6 denotes Password, 7 denotes ZDE, and 8 denotes DDoS. The ECFN
framework makes accurate predictions with a few misclassifications.

5.2. Performance Analysis

To evaluate the performance of the developed framework, the results are computed with metrics such as F score,
Accuracy, Recall, Precision, and error rate, and compared with a few current DL approaches such as Recurrent NN
(RNN), Artificial NN (ANN), GRU, and LSTM [27]

5.2.1. F Score and Accuracy The f score measures classification accuracy as it measures recall and precision. It
balances both metrics. However, accuracy is a measure of the model’s predictive effectiveness. Eqn computes the
F score and accuracy. (6) and (7), respectively.

F score = 2× X × Y

X + Y
(6)

Accuracy =
TCP + NTCP

TCP + NTCP +TICP +NTICP
(7)
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Here, X denotes the precision and Y denotes the recall. TCP denotes the threat correctly predicted, NTCP

denotes Non-threat CP , TICP denotes the threat incorrectly predicted, and NTICP denotes Non-threat ICP .

Figure 7. F score and Accuracy Comparison

The comparison results are shown in Figure 7. The existing RNN attained F score of 82.57% and an accuracy of
87.147%, ANN attained F score of 63.602% and an accuracy of 76.594%, the GRU attained F score of 83.175%
and an accuracy of 87.806%, and LSTM attained F score of 76.773% and accuracy of 83.418%. The developed
model overcomes this by achieving an F score of 97.67% and an accuracy of 97.89%.

5.2.2. Recall and Precision Recall quantifies the percentage of CT that the model correctly labels. It aims to
minimize false negatives. Precision is the proportion of true positives (correctly predicted cyber threats) to all
instances labeled as threats. Reducing false positives establishes the model’s CTD accuracy. Eqn. computes the
Recall and Precision in (8) and (9), respectively.

Recall =
TCP

TCP +TICP
(8)

Precision =
TCP

TCP +NTICP
(9)

The recall and precision results are evaluated, and a comparison is provided in Figure 8. The current RNN
attained a recall of 94.066% and precision of 77.572%, the ANN achieved a recall of 89.682% and precision of
61.794%, the GRU attained a recall of 93.476% and a precision of 78.463%, and the LSTM attained a recall of
92.699% and precision of 75.511%. Moreover, the developed model achieved 97.81% recall and 98.01% precision.
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Figure 8. Recall and Precision Comparison

5.2.3. Error rate Error rate refers to the rate of incorrect predictions made by a developed model in the detection
of CT. It measures how frequently the model gets an instance wrongly classified. The error rate is computed by
Eqn. (10).

Error rate =
TICP +NTICP

TCP +NTCP +TICP +NTICP
(10)

The Error-rate results are evaluated, and a comparison is provided in Figure 9.

Figure 9. Error Rate Comparison

The error rate for the current RNN was 12.853%, the ANN obtained 23.406%, the GRU obtained 12.194%,
the LSTM obtained 16.582%, and the developed ECFN obtained 2.11%, which is comparatively very less. The
comparison of the proposed framework with the current approaches is depicted in Table 5.
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Table 5. Entire comparison

F score Accuracy Recall Precision Error
rate

Computa-
tional
time
(ms)

Resource/
memory

usage
(%)

Training
time
(ms)

Scalability
(%)

RNN 82.57 87.147 94.066 77.572 12.853 89 68 234 62
ANN 63.602 76.594 89.682 61.794 23.406 42 45 183 73
GRU 83.175 87.806 93.476 78.463 12.194 73 76 165 70
LSTM 76.773 83.418 92.699 75.511 16.582 56 39 134 84
Proposed 97.67 97.89 97.81 98.01 2.11 26 23 60 97

5.3. Ethical considerations and limitations

The proposed ECFN model demonstrates a better performance. The hybrid of Crayfish optimization with the
Elman neural network tunes the networks and improves the prediction accuracy by removing noise and selecting
the necessary attributes. In addition, by changing and setting the required features in the caryfish algorithm memory,
it is suitable for real-time large-scale applications like Kaspersky cloud edge data to check and justify the working
performance of the proposed algorithm the real-time large network data is adopted from DATA SOURCES —
Kaspersky Cyberthreat live map and testing was made. It contains a data poisoning attack and an adversarial attack.
The outcome of those processes is mentioned in Table 6. Here, a few different hybridizations were considered, and
the comparison was made in both the simulation and real-time environments. Here, the overfitting issues are not
raised due to the proper implementation of regularization in the preprocessing layer. All the compared models were
executed in the same proposed platform, and the comparison was performed with each other.

Table 6. ECFN Performance in Kaggle data and Real-time data

Methods CICIDS Real-time data
F

score
Acc-
uracy

Recall Prec-
ision

Error
rate

F
score

Acc-
uracy

Recall Prec-
ision

Error
rate

P-
value

GWO-LSTM 83 83.1 83 83 16.9 63 63.1 63 63 36.9 0.008
PSO-ANN 78.2 76 77 79.4 24 68.2 68 67 68.4 24 0.03
GA-Elman 92.3 92.3 92.3 92.3 7.7 82.3 80 84.6 — 20 0.01
WO-Elman 92.8 93 91 92.4 7 78.9 78 78.9 — 21.1 0.07
CNN-LSTM 82.3 86 82 82.6 14 65.7 65 64 66.9 35 0.08
LO-Deep belief 77.2 77.2 77 77.4 12.8 57 57 57 — 43 0.005
Transformer model 92 90 91 93 10 84 84 84 — 16 0.005
Capsule Networks 90.5 90.5 90.5 90.5 9.5 81.3 81.3 81.3 — 18.7 0.009
Elman neural network 79.5 79.5 79.5 79.5 10.5 60.1 60 60.2 — 40 0.05
Caryfish optimization 90.5 83.4 90 91 16.6 70.5 73.4 70 71 26.6 0.09
Proposed 97.67 97.89 97.81 98.01 2.11 95 95 95 — — 0.003

Hence, the proposed system is suitable for real-time application by fixing the desired features in the crayfish
optimization. Hence, the efficiency of the validation algorithm is presented in Table 7. Here, the proposed model
has shown a few variations between the software analysis and real-time data that maximize the scalability score
and justify the applicability of the proposed model in the real-time domain.
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Table 7. Validation algorithm efficiency

Methods Computational
time (ms)

Resource/
memory usage

(%)

Training time
(ms)

Scalability (%)

GWO-LSTM 49 45 101 67
PSO-ANN 33 67 82 73
GA-Elman 68 54 184 81
WO-Elman 43 89 193 83

Caryfish-LSTM 48 63 209 77
LO-Deep belief 34 39 254 90

Transformer model 51 29 261 56
Federated learning 36 31 99 82

Elman neural network 59 28 133 87
Caryfish optimization 83 43 167 64

Proposed 23 20 60 97

To justify the performance of the carry fish optimization, different bio-inspired models like Lion Optimization
(LO), Ant Lion Optimization (ALO), Fruit Fly Optimization (FFO), Owl Optimization (OO), GA, PSO, African
Buffalo Optimization (ABO), and Chimp optimization Algorithm (COA) were considered and implement in the
same platform and the outcomes were compared with carry fish optimization and proposed model in table 8. Here,
the optimization performance was measured by performing the zero-day attack detection from the kaggle zero day
attack detection data (Zero-Day Attack Detection in Logistics Networks).

Table 8. Performance of optimization algorithms

Optimization Performance Assessment
Methods Computational

time (ms)
Resource/

memory usage
(%)

Training time
(ms)

Scalability (%)

LO 184 75 254 34
ALO 193 97 261 53
FFO 209 64 276 60
OO 254 51 193 57
GA 261 53 209 60
PSO 101 49 254 59
ABO 174 63 217 62
COA 290 64 222 58
Caryfish optimization 83 42 167 64
Proposed 23 20 60 97

The software and hardware requirements for implementing this proposed model is Python, version 3.10, windows
10 operating system, intel core i5 processor CPU, large database, algorithm for attack detection and security model
training. Moreover, the hardware requirements are GPU, cloud-edge device, data transmission service, monitoring
IoT gadget for attack detection. The code sources with preprocessing details are available in the following link.
GitHub - stephenkung/elman network: elman network by tensorflow, a undergraduate final project.

Limitation: The limitation that was noted while processing the proposed model in the real-time framework is the
variation of attack features (zero-day attacks) and increasing the computational complexity. In real-time, capturing
the live attacks features takes more time because of this internal processing model. The reason for preserving
more computation time is due to the continuous resource usage scenarios because there is no option for fixing
the optimal resources in the validation of real-time live attacks. In the future, implementing the future prediction
intelligent concept along with the hybrid deep learning and defensive distillation will be the optimal solution.
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6. Conclusions

In this research, an ECFN was suggested for the prediction and classification of CT. With the CS threat dataset
from Kaggle, the model training was done using Python to improve detection efficiency. A data refining step was
employed to eliminate noisy elements and provide high-quality input for the classification process. The Crayfish
Optimization Algorithm was also used for spatiotemporal attribute analysis to determine the most crucial attributes
for predicting CT. The Crayfish Fitness Function also demonstrated the ability to predict future CT, resulting in an
efficient and accurate detection process. Hence, the ECFN model classifies threats efficiently, and its performance
was examined. The model attained an F score of 97.67%, an accuracy of 97.89%, a recall of 97.81%, a precision of
98.01%, and an error rate of 2.11%, which demonstrates its efficiency. Therefore, securing the data is essential for
security applications. However, the resource usage is not estimated for the real-time live cyber threat data, due to
the dynamic variation of threat features and actions. In the future, implementing the future prediction bio-inspired
model along with a hybrid deep network will provide the best and optimized resource prediction outcome.
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