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Abstract In practice, we may encounter hypotheses that the parameters under test have typical restrictions. These
restrictions can be placed in the null or alternative hypotheses. In such a case, the hypothesis is not included in the classical
hypothesis testing framework. Therefore, statisticians are looking for the more powerful tests, rather than the most powerful
tests. A common method for such tests is to use intersection-union and union-intersection tests. In this paper, we derived the
testing procedure of a simple intersection-union and compared it with the likelihood ratio test. We also compare the powers
of two exponential sign tests, the rectangle test and smoother test, and the simple intersection-union test with the likelihood
ratio test.
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1. Introduction

Suppose that X1, . . . , Xp are independent random variables from the exponential distributions Xi ∼ fi, xi ≥
0, θi > 0, i = 1, . . . , p where θi is the unknown scale parameter of ith population. We wish to test

H0 : θi ≤ θi0, for some i, i = 1, . . . , p (1)
against
H1 : θi > θi0, for all i, i = 1, . . . , p

where θi0, i = 1, . . . , p are positive real value. The test given in (1) can be written as a union of p-subsets of
parameter space as the null hypothesis and an intersection of their completeness as the alternative hypothesis:

H0 : ∪p
i=1{θi ≤ θi0}, against H1 : ∩p

i=1{θi > θi0}. (2)

In classical testing, the best tests are the uniformly most powerful (UMP) tests and the uniformly most powerful
unbiased (UMPU) tests. These tests are designed for specific hypotheses, such as one-sided and two-sided for the
parameters, and can be easily obtained in such for certain families of distributions, such as the exponential family
and monotone likelihood ratio family. These tests are well documented and can be found in many textbooks (see
for example Davidov and Herman [6], Lehmann and Romano [12]). In many statistical hypotheses, however, the
hypotheses on the parameters are complicated, so they do not fall within the framework of classical statistical
hypotheses. In such cases, the tests are not the UMP or even the UMPU. For example, to compare several mean
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populations, the null hypothesis may be equality of means against ordered means as the alternative hypothesis.
The classical Neyman-Pearson approach can not be used for such hypotheses. Therefore, statisticians are not
looking for the UMP tests, but they are looking for the more powerful tests. The likelihood ratio tests (LRTs)
are the most commonly used approach to analyzing these hypotheses (see for examples Sasabuchi[21],[22]).
The hypotheses in (2) can be replaced with H0 : min1≤i≤k{ηi} ≤ 0 against H1 : min1≤i≤p{ηi} > 0 with only
transfrorming ηi = ln(θi/θi0), i = 1, . . . , p.
We refer to the problem in (2) as a sign test, because the rejection decision depends solely on whether each
parameter θi exceeds its benchmark θi0, which corresponds to the sign of ηi. In our context, since the θi are
scale parameters of exponential distributions, we call the resulting procedures exponential sign tests. The sign
test, which is a nonparametric test, is examined here using the simple intersection-union test (SIUT) framework.
Accordingly, the hypotheses of the sign test are formulated to fit within the structure of SIUTs. This leads to sign
testing problems that have attracted the attention of many researchers such as Lehmann [11], Sasabuchi [21], [9],
Shirley [24], Liu and Berger [15]. Unfortunately, LRTs often lead to weak power tests or even to biased tests ([12]),
and sometimes the power of tests is many times smaller than their size. As a result, the tests with the same size of
LRTs with uniformly more powerful are needed. Berger [2], Liu and Berger [15], and McDermott and Wang [16]
constructed classes of size-α tests that are uniformly more powerful than LRT for the case of covariance matrices,
Σ, known. Liu and Berger [15] followed this for p-dimensional normal distribution with unknown mean µ and
know nonsingular covariance matrices, Np(µ,Σ). Berger ([1],[4]) suggested a mixing union-intersection method
with the likelihood method, called UIT, and showed that in some cases is more powerful than LRT alone. Gutmann
[9] constructs two tests, when X1, X2, . . . , Xp ∼ f(x− θ) are independent and show that they are uniformly more
powerful than the uniformly most powerful monotone test in the sign testing problem. Shirley’s proposed test [24]
is even more powerful than Gutmann’s when p = 3. Wang and McDermott [16], Berger [2] obtain a size-α test that
is uniformly more powerful than LRT when the variance-covariance matrix is diagonal by using the intersection-
union test (IUT) for hypotheses inequalities and normal means. They showed that in certain problems the LRT is
not very powerful and described a test that has the same size-α and is more powerful than LRT. Also, he showed
that the critical region of this test includes the rejection region of the LRT. For the special case of p = 2, this
provides a test that is uniformly more powerful than a test discussed by Gail and Simon [8]. Berger [2] and Liu and
Berger [15] constructed classes of size-α tests that are uniformly more powerful than the LRT for this problem.
Their approaches consist of adding sets to the rejection region of the LRT such that tests are larger than the rejection
probability of size-α LRT for any points in alternative space. Saikli and Berger [20] considered the sign test problem
for a random sample from a normal population with unknown mean µi and unknown variance σ2

i . They first derived
the size-α LRT for this problem, and then described an SIUT that is uniformly more powerful than the LRT if the
sample sizes are not all equal. Chan et al. [5] constructed two new tests to compare the independent scale parameters
of an independent sample of gamma distribution that the rejection region of two news tests is similar to Liu and
Berger’s [15], Berger and Hsu’s [3] and Saikali and Berger’s [20]). They constructed a size-α uniformly more
powerful test than LRT by adding additional sets to the rejection region of the LRT, named rectangle, and smoother
tests. Wu et al.[26] propose a new heuristic testing procedure based on the generalized p-value approach for the
sign testing problem of normal variances. Through comprehensive simulation studies, they demonstrate that their
method effectively controls the type I error rate and achieves uniformly higher power compared to the likelihood
ratio test and several existing methods, especially in small sample scenarios. The authors further illustrate the
practical utility of their approach using real data examples. Overall, their work introduces an improved test for
comparing normal variances, providing superior error control and statistical power, particularly for small sample
sizes.
In this article, we first apply the testing procedure of simple intersection-union and LRT to the exponential
distribution, and then we adopt the rectangle test and smoother test to the exponential distribution. We consider
the testing problem (2) in the exponential distribution. Two advantages motivated us to do this study. Firstly, there
are many applications of the exponential distribution with such hypotheses that can be mentioned. Secondly, the
method and the results gained from this study are more analytical rather than just numerical methods gained from
other distributions. Therefore, the reader can follow the results easily

H0 : (θ1 ≤ θ10) ∪ (θ2 ≤ θ20), against H1 : (θ1 > θ10) ∩ (θ2 > θ20), (3)
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where θ10, θ20 are fixed constants. However, these tests can be applied to population p and the results are valid. The
rest of the paper is as follows:
In the following section, we derive the size-α LRT and SIUT for testing (3) and we show that a SIUT is uniformly
more powerful than the LRT if θ10 and θ20 are different. Section 3, is devoted to the rectangle and smoother
tests for (3) in the exponential distribution, uniformly more powerful than the LRT and the SIUT. In Section 4,
in a numerical approach, we compare the powers of the rectangle and the smoother test with LRT and SIUT for
the sign testing problem (3). In Section 5, integrated size-adjusted and sensitivity analysis, the bootstrap method
and empirical estimation of critical values are employed to correct size bias in finite-sample tests, followed by a
comprehensive evaluation of the tests performance stability with respect to changes in the initial parameter values.
In Section 6, we present a case study that examines the minimum reliability thresholds for a series system whose
component lifetimes follow an exponential distribution. In Section 7, some concluding remarks are stated.

2. Likelihood ratio and intersection-union tests

A size-α LRT, for testing (1), rejects H0 if

λ(x) =
supΘ0

L(θ1, . . . , θp;x)

supΘ L(θ1, . . . , θp;x)

= max
1≤i≤p

supΘi0
L(θ1, . . . , θp;x)

sup∪p
jΘij

L(θ1, . . . , θp;x)
= max

1≤i≤p
λi(x), (4)

is less than λ0, where λ0 is obtained such that

sup
Θ0

P (λ(x) ≤ λ0) = α, (5)

and x = (x1, . . . , xp). λi(x) in (4) is the LRT statistic for testing for ith individual test Hi0 : θi ≤ θi0 against
Hi1 : θi > θi0 which is usaul in one-sided hypotheses testing in LRT. Therefore, the LRT statistics for exponential
distribution obtained as follows:

λ(x) = max
1≤i≤p

λi(x) = max
1≤i≤p

xi

θi
e
− xi

θi0
+1

.

To have a α size test for Hi0 against Hi1, Hi0 must be rejected if xi

θi0
> − ln(α) or when xi > −θi0 ln(α) = ci. As

a result, H0 is rejected if
xi > min{c1, . . . , cp} = c0, for any i = 1, . . . , p.

Berger ([1], [4]) suggested the SIUT for (1) reject H0 when

xi > −θi0 ln(α).

2.1. Intersecion-Union test

Consider again the testing problem of (1). The hypotheses can be rewritten as

H0 : ∪p
i=1{θi ≤ θi0} against H1 : ∩p

i=1{θi > θi0} (6)

This is SIUT. Let Ri be the rejection region of an α-level test
(0 < α < 1) for Hi0 : θi ≤ θi0 against H1i : θi > θi0. It means that

Pθi0(Ri) ≤ α, for all θi ≤ θi0.

Note that because Hi0 is one-sided hypothesis testing, there is no difference between the LRT and UMP tests. Take
R = ∩p

i=1Ri as the rejection region of H0 against H1

Pθi(R) ≤ Pθi0(Ri) ≤ α, θi ≤ θi0.
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Therefore, in the test with R set as the rejection region, we have a α-level test for H0 against H1. This is the SIUT.
A level-α SIUT may be quite a conservative test because its size can be much smaller than the determined value of
α.
Berger ([1], Theorem 1.1.2) showed that to have a size-α test, we need only one test, say ith which has exactly α
size. The important advantage of the SIUT is that in uniformly the most powerful in a class of monotone tests with
its size. In a monotone class of tests, the more extreme values of cutoff points belong to the rejection region.
As a result, SIUT is reject H0 if and only if every Hi0 rejected;

xi > −θi0 ln(α), i = 1, . . . , p.

3. Rectangle test and Smoother test

SIUTs are useful to give more power than LRTs with the same size and also are UMP among size-α monotone tests.
However, considering nonmonotone tests, there is no guarantee to have optimal tests. In this section, we obtain the
rejection region for two tests, which are not similar and are not unbiased but will be shown that are uniformly more
powerful than LRT and SIUT. Having valid controls for the Type I error rate could be the main reason for their
increased power on alternative.

3.1. Rectangle test

To have a clear explanation, we restrict the problem to p = 2, although the result is valid for any finite integer
of p. Let 0 < α < 1

2 and J is given as from the inequality, J − 1 < 1
2α ≤ J. Define ci1, . . . , c

i
p, i = 1, 2 as

cij = F−1
i (1− αj) = −θi ln(jα), j = 1, 2, . . . , J with ciJ = F−1( 12 ) = mi. For j = 1, 2, ..., J , define

Rj =
{
(X1, X2) : c

1
j ≤ X1 < c1j−1, c

2
j ≤ X2 < c2j−1

}
. (7)

The rejection region for the rectangle test can be expressed as R = ∪J
i=1Rj , where R1 is the rejection region of the

SIUT. Now, consider

Rj =
{
(X1, X2);−θ1 ln(jα) ≤ X1 ≤ −θ1 ln((j − 1)α)

, −θ2 ln(jα) ≤ X2 ≤ −θ2 ln((j − 1)α)
}
, (8)

the test with the rejection region R = ∪J
j=1Rj is a test for H0 against H1 with size α (see Theorem 1). It is more

powerful than LRT and SIUT because its rejection region includes the rejection region SIUT and has extra sets
with positive Lebesgue measures.
In fact

βR(θ1, θ2) = Pθ1,θ2((X1, X2) ∈ R)

=

J∑
j=1

α
θ10
θ1

+
θ20
θ2 [j

θ10
θ1 − (j − 1)

θ10
θ1 ][j

θ20
θ2 − (j − 1)

θ20
θ2 ]

= βSIUT +

J∑
j=2

α
θ10
θ1

+
θ20
θ2

(
2∏

i=1

[j
θi0
θi − (j − 1)

θi0
θi ]

)
, (9)

where βSIUT (θ1, θ2) is the power of SIUT. Therefore, the power of the rectangle test is larger than the power
of SIUT and LRT. It should be mentioned that the rectangle test is not unbiased and not even similar because
βR(θ1, θ2) = α2 < α as θi tends to θi0, i = 1, 2. The rejection region of rectangle test, SIUT, and LRT is illustrated
in Figure 1.
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Figure 1. The rejection region of rectangle test, SIUT, and LRT for the case θ10 = 1, θ20 = 2 and α = 0.05 for the exponential
distribution.

Theorem 1
For testing problem (3), the rectangle test is a size-α test, and the rectangle test is uniformly more powerful than
the size-α LRT.

Proof
To see that the rectangle test is a size-α test, let there be a θ that maximum of its θ∗

and it has at least one equal to 0. Furthermore, the density of the exponential is convex and
∪J
j=1 {−θi ln(jα) ⩽ Xi ⩽ θi ln((j − 1)α) for all i = 1, 2} is a convex set. Thus we have

Pθ

(
X ∈ ∪J

j=1Rj

)
= P

(
∪J
j=1 {−θi ln(jα) ⩽ Xi ⩽ θi ln((j − 1)α) for all i = 1, 2}

)
⩽ Pθ∗

(
∪J
j=1 {−θi ln(jα) ⩽ Xi ⩽ θi ln((j − 1)α) for all i = 1, 2}

)
⩽ α.

3.2. Smoother test

Again consider the test given in (1), Wang and McDermott[25] (see also Saikali and Berger[20]) consider three
subsets in [0, 1]× [0, 1] plan as follows:

A0 =
{
(U1, U2) : 1− α ≤ U1 ≤ 1, 1− α ≤ U2 ≤ 1

}
(10)

A1 =

{
(U1, U2) :| U1 − U2 |≤ α

2
,
1

2
≤ U1 ≤ 1− α,

1

2
≤ U2 ≤ 1− α

}
A2 =

{
(U1, U2) :

1

2
≤ U2 ≤ U1 −

1

2
+

3α

2
, U1 < 1− α

}
∪

{
(U1, U2) :

1

2
≤ U1 ≤ U2 −

1

2
+

3α

2
, U2 < 1− α

}
.

They showed that if U1 ∼ U(0, 1), then for A = A0 ∪A1 ∪A2

P ((U1, U2) ∈ A) = αP (
1

2
≤ U2 ≤ 1) ≤ α. (11)

Since A is symmetric in U1 and U2, it is true for U2 ∼ U(0, 1), i. e.

P ((U1, U2) ∈ A) = αP (
1

2
≤ U1 ≤ 1) ≤ α. (12)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



Z. NIKNAM AND R. CHINIPARDAZ 5

3.3. Geometric interpretation of the smoother rejection region:

The smoothed rejection region A = A0 ∪A1 ∪A2 is designed based on specific geometric principles to capture
both strong marginal evidence (through A0) and balanced, simultaneous two-sided evidence, even when none of
the individual components is very large. This structure is constructed to optimize the power of the test while
preserving the size constraint.
Region A0: This region represents the most powerful part where both test statistics provide strong evidence against
their respective null hypotheses, corresponding to the classical intersection–union rule. Geometrically, it is a corner
region in the upper-right of the (U1, U2) plane where both U1 and U2 exceed 1− α, indicating strong evidence in
both variables.
Region A1: This is a diagonal strip of width α centered around the line u1 = u2 in the interval [1/2, 1− α].
It captures balanced moderate values, where both test statistics are approximately equal and relatively large, a
sign of the alternative hypothesis being true even if neither statistic reaches the 1− α threshold. The condition|
U1 − U2 |≤ α

2 in A1 creates a diagonal band around the line U1 = U2. This design is motivated both geometrically
and statistically:

• Symmetry exploitation: when both parameters deviate from their null values by the same magnitude, locations
near the diagonal U1 ≈ U2 are particularly informative.

• Balanced evidence: points near the diagonal represent cases where both statistics provide similar and
moderate evidence against H0.

• Power optimization: instead of requiring both statistics to be large individually (as in A0), the region accepts
moderate values when they are in agreement.

Region A2: This part consists of asymmetric triangular extensions covering scenarios where one statistic is
relatively large while the other provides moderately supportive evidence. Unlike A0, which requires simultaneous
strong evidence from both statistics, A2 identifies unbalanced but still effective combinations of evidence for
rejecting H0.
In this section, we have described a smoother test for exponential distribution for p = 2. The rejection region of the
smoother test for exponential distribution can be expressed as A = A0 ∪A1 ∪A2. By substituting the cumulative
distribution function of the exponential distribution in (10), we obtain the rejection region of the smoother test for
the sign testing hypothesis in the exponential distribution. Now, we define a smoother test for sign testing problem
(3). Let u1 = F1(x1), u2 = F2(x2), smoother test is the test that rejects H0 if (X1, X2) ∈ A, the three sets can be
expressed as:

A0 =
{
(X1, X2) : X1 ≥ −θ1 ln(α), X2 ≥ −θ2 ln(α)

}
, (13)

A1 =
{
(X1, X2) : −θ2 ln(e

−X1
θ1 +

α

2
) ≤ X2 ≤ −θ2 ln(e

−X1
θ1 − α

2
),

θ1 ln(2) ≤ X1 ≤ −θ1 ln(α), θ2 ln(2) ≤ X2 ≤ −θ2 ln(α)
}
,

A2 =

{
(X1, X2) : θ2 ln(2) ≤ X2 ≤ −θ2 ln(

1

2
+ e

−X1
θ1 − 3α

2
), X1 < −θ1 ln(α)

}
∪

{
(X1, X2) : θ1 ln(2) ≤ X1 ≤ −θ1 ln(

1

2
+ e

−X2
θ2 − 3α

2
), X2 < −θ2 ln(α)

}
,
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The power for the smoother test is derived as (see appendix)

βS(θ1, θ2) = Pθ10,θ20(rejection region) = P
(
(X1, X2) ∈ A0 ∪A1 ∪A2

)
= P ((X1, X2) ∈ A0) + P ((X1, X2) ∈ A1) + P ((X1, X2) ∈ A2)

= α
θ10
θ1

+
θ20
θ2 + 2−

θ10
θ1

− θ20
θ2 − 2−

θ20
θ2 (

1

2
− α

2
)

θ10
θ1 −

(
2−

θ10
θ1 − α

2

) θ20
θ2

+1

θ20
θ2

+ 1

+

(
( 12 − α

2 )
θ10
θ1 + α

2

) θ20
θ2

+1

θ20
θ2

+ 1
+

(
( 3α2 )

θ10
θ1 − α

2

) θ20
θ2

+1

θ20
θ2

+ 1
−

(
α

θ10
θ1 + α

2

) θ20
θ2

+1

θ20
θ2

+ 1

− α
θ20
θ2 (

3α

2
)

θ10
θ1 + α

θ10
θ1

+
θ2
θ20 + 2

−θ20
θ2 (

3α

2
)

θ10
θ1 − α

θ10
θ1 2

−θ20
θ2

+

(
1
2 + α

θ10
θ1 − 3α

2

) θ20
θ2

+1

θ20
θ2

+ 1
−

(
1
2 + ( 3α2 )

θ10
θ1 − 3α

2

) θ20
θ2

+1

θ20
θ2

+ 1
+ 2

−θ10
θ1 (

3α

2
)

θ20
θ2

− α
θ20
θ2 2

−θ10
θ1 +

(
1
2 + α

θ20
θ2 − 3α

2

) θ10
θ1

+1

θ10
θ1

+ 1
−

(
1
2 + ( 3α2 )

θ20
θ2 − 3α

2

) θ10
θ1

+1

θ10
θ1

+ 1
. (14)

The rejection region of LRT, SIUT (A0) and smoother test are shown in Figure 2 (the set of A0 ∪A1 ∪A2) for
exponential distribution for the case of α = 0.05 and θ10 = 1, θ20 = 2.
Qualitatively, the test power βS(θ1, θ2) represents the probability of correctly rejecting H0 when the true values
(θ1, θ2) depart from the values assumed under H0. As θ1 or θ2 move farther away from their null values, the ratios
θ1
θ10

and θ2
θ20

in equation (14) change monotonically, causing βS(θ1, θ2) to increase gradually from the nominal
level α (under H0) toward values close to 1. When these departures are small, βS(θ1, θ2) increases approximately
linearly, and the rate of this increase depends on how sensitive the rejection regions A0, A1, A2 are to the shape
of the distribution. When the departures are large, some terms dominate (notably the smaller exponential powers),
which makes βS(θ1, θ2) rise more rapidly toward values near 1 and then remain flat in that region.

Figure 2. The rejection region of LRT, SIUT (A0) and smoother test (the set of A0 ∪A1 ∪A2) for exponential distribution
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Theorem 2
For testing problem (3), If 0 < α < 0.5, then smoother test is a size-α test, and smoother test is uniformly more
powerful than the size-α LRT.

Proof
Since the rejection region of the size-α, A0 is a subset of the rejection region smoother test, Hence, the smoother
test is uniformly more powerful than the size-α LRT.

Size LRT = α = supPH0((X1, X2) ∈ A0) ≤ supPH0((X1, X2) ∈ A) = Size of smoother test, (15)

Since θ2 ≤ θ20, we have

P(θ1,θ2) ((X1, X2) ∈ A) ≤ P(θ1,θ20) ((X1, X2) ∈ A) ≤ α, (16)

The size of the smoother test is less than or equal to α. (15) and (16) imply that smoother test has exactly size-α.

4. Power comparison

In this section, we compare the powers of the four exponential tests, the smoother test and rectangle test, and LRT
and SIUT. Figures 3 shows the power of these tests for three popular sizes, 0.01, 0.05 and 0.1. When θ10 and θ20
are fixed and θi is changed from θi0(i = 1, 2). As is expected, the power for four tests are increasing with incresing
the parameter. However, for all values of the parameter, smoother test and rectangle are more power than two
others. SIUT has slightly more power than LRT. To compare the power of these tests when two parameters change
simultanseouly, the surface plot of the power against θ1 and θ2 has been shown in Figure 4. The power of four tests
has increases as ( θ1

θ10
, θ2
θ20

) gets large and more increases for the smoother and rectangle tests.
Some numerical results of these four functions for certain values of θ1, θ2, θ10, θ20 and

α = 0.05 are given in Table 1 when θ10 = 1.5, θ20 = 2 and α = 0.01, 0.05 and 0.1. Different values of
θ2(0.09θ20, 0.4θ20, 0.6θ20, 0.8θ20, θ20, 2θ20, 5θ20, 10θ20, 50θ20) are considered. As can be seen from the Table, for
the many of four tests the poer is less than size. It means that four test may be biased. However, the powers increase
when θ2 tends away θ20. In all cases, The power of the smoother test and rectangle test, is larger than the power of
SIUT and LRT.

5. Integrated size-adjusted and sensitivity analysis

In this section, we integrate two complementary strands of numerical investigation to strengthen the validity of our
conclusions. First, we conduct a thorough sensitivity analysis to assess the robustness of test performance across a
broad spectrum of baseline parameter configurations. Second, we apply a size-adjustment procedure to address
finite-sample bias arising from reliance on asymptotic critical values, ensuring fairer statistical comparisons.
Together, these analyses provide a more reliable and nuanced perspective on the comparative strengths of the
considered tests.

5.1. Sensitivity analysis and parameter justification

In the numerical studies of this research, the baseline null parameter values (θ10, θ20) were set to commonly used
reference configurations in the statistical literature, such as (1, 1), (1.2, 1.5), (1.5, 2), and (2, 2.5). To examine the
robustness of the findings with respect to these choices, we carried out a comprehensive sensitivity analysis using
the power estimates reported in Tables 2, 3.

Across all null parameter settings, the smoother test demonstrated consistently strong and stable performance. Its
power increased gradually and smoothly as both θ1 and θ2 deviated from their null values, maintaining appreciable
levels even for small or moderate deviations. In large deviations, the Smoother approached maximum power
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Figure 3. The power of four tests, the LRT, SIUT, smoother test, and rectangle test for different values of the parameter.

quickly, without requiring abrupt changes in parameter values. This stability across the entire parameter space
makes it suitable for reliably detecting both subtle and pronounced effects. The rectangle test also exhibited
relatively stable performance, with a similar gradual gain in power; however, in certain parameter regions, its
power trajectories were slightly less smooth compared to the Smoother. While it maintained moderate-to-high
power for small to moderate deviations and eventually achieved high power for large departures, the increases
sometimes occurred less uniformly and, in rare cases, with minor fluctuations. Nevertheless, the Rectangle remains
a solid general-choice test, particularly when scenarios are expected to involve steady parameter shifts. By contrast,
the LRT and SIUT tests showed marked power improvements mainly for large departures from the null (e.g.,
θ1 ≥ 1.5 θ10 and θ2 ≥ 1.5 θ20), while for small or moderate deviations, their rejection rates were often below the
nominal level α, reflecting conservative behavior. Overall, this sensitivity analysis confirms that the main qualitative
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Figure 4. The surface power plot of four tests for different values of the parameter ( θ1
θ10

, θ2
θ20

). Not that there are SIUT, LRT,
rectangle test, and smoother test in columns one to four, respectively.
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Table 1. The power of LRT (first row), SIUT (second row), Rectangle (third row) and Smoother (forth row) tests for different
θ1 and θ2 when θ10 = 1.5, θ20 = 2.The expression outside the parentheses, in parentheses and inside the brackets indicates
the test power value for α = 0.01, 0.05 and 0.1, respectively.

θ1
θ2 ↓ 0.09θ10 0.4θ10 0.6θ10 0.8θ10 θ10

0.09θ20 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000]

0.4θ20 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.001] 0.000 (0.000) [0.001]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000]
0.000 (0.000) [0.000] 0.000 (0.004) [0.009] 0.002 (0.009) [0.013] 0.001 (0.009) [0.017] 0.002 (0.009) [0.019]
0.000 (0.000) [0.000] 0.001 (0.005) [0.009] 0.001 (0.007) [0.014] 0.002 (0.008) [0.017] 0.002 (0.009) [0.018]

0.6θ20 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.001] 0.000 (0.000) [0.004] 0.000 (0.001) [0.004]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.001] 0.000 (0.000) [0.002]
0.000 (0.000) [0.000] 0.002 (0.006) [0.014] 0.002 (0.012) [0.022] 0.002 (0.016) [0.030] 0.003 (0.016) [0.031]
0.000 (0.000) [0.000] 0.001 (0.007) [0.015] 0.002 (0.012) [0.023] 0.003 (0.015) [0.028] 0.003 (0.016) [0.031]

0.8θ20 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.003] 0.000 (0.001) [0.006] 0.000 (0.004) [0.011]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.001] 0.000 (0.000) [0.004] 0.000 (0.001) [0.005]
0.000 (0.000) [0.000] 0.002 (0.009) [0.016] 0.003 (0.014) [0.030] 0.003 (0.020) [0.036] 0.004 (0.021) [0.039]
0.000 (0.000) [0.000] 0.002 (0.008) [0.016] 0.003 (0.014) [0.029] 0.004 (0.019) [0.036] 0.004 (0.021) [0.042]

θ20 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.001) [0.004] 0.000 (0.002) [0.012] 0.000 (0.005) [0.018]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.003] 0.000 (0.002) [0.006] 0.000 (0.002) [0.012]
0.000 (0.000) [0.000] 0.002 (0.008) [0.019] 0.003 (0.014) [0.031] 0.004 (0.020) [0.045] 0.005 (0.024) [0.053]
0.000 (0.000) [0.000] 0.002 (0.009) [0.018] 0.003 (0.016) [0.032] 0.004 (0.021) [0.043] 0.005 (0.026) [0.050]

θ10 2θ10 5θ10 10θ10 50θ10
θ20 0.000 (0.005) [0.018] 0.004 (0.022) [0.059] 0.011 (0.060) [0.113] 0.023 (0.078) [0.138] 0.027 (0.104) [0.170]

0.000 (0.002) [0.012] 0.001 (0.011) [0.032] 0.004 (0.029) [0.064] 0.007 (0.040) [0.082] 0.009 (0.045) [0.097]
0.005 (0.024) [0.053] 0.006 (0.034) [0.074] 0.010 (0.044) [0.085] 0.010 (0.045) [0.091] 0.011 (0.053) [0.101]
0.005 (0.026) [0.050] 0.007 (0.035) [0.070] 0.008 (0.043) [0.086] 0.010 (0.047) [0.094] 0.010 (0.050) [0.098]

2θ20 0.002 (0.016) [0.041] 0.018 (0.071) [0.136] 0.070 (0.178) [0.265] 0.115 (0.239) [0.332] 0.162 (0.309) [0.407]
0.001 (0.011) [0.032] 0.009 (0.051) [0.100] 0.039 (0.123) [0.198] 0.066 (0.164) [0.256] 0.091 (0.218) [0.305]
0.007 (0.037) [0.073] 0.020 (0.080) [0.147] 0.047 (0.141) [0.223] 0.068 (0.179) [0.266] 0.091 (0.211) [0.305]
0.007 (0.035) [0.071] 0.019 (0.079) [0.141] 0.048 (0.142) [0.225] 0.070 (0.177) [0.266] 0.092 (0.212) [0.304]

5θ20 0.004 (0.031) [0.069] 0.050 (0.143) [0.226] 0.203 (0.350) [0.447] 0.310 (0.471) [0.573] 0.457 (0.604) [0.667]
0.004 (0.027) [0.067] 0.040 (0.123) [0.196] 0.153 (0.297) [0.390] 0.251 (0.408) [0.502] 0.364 (0.518) [0.609]
0.009 (0.043) [0.095] 0.050 (0.137) [0.217] 0.162 (0.314) [0.419] 0.270 (0.414) [0.518] 0.361 (0.524) [0.605]
0.008 (0.044) [0.088] 0.049 (0.142) [0.226] 0.169 (0.316) [0.415] 0.255 (0.416) [0.509] 0.365 (0.520) [0.605]

10θ20 0.006 (0.042) [0.081] 0.073 (0.182) [0.267] 0.280 (0.442) [0.532] 0.445 (0.600) [0.675] 0.647 (0.754) [0.808]
0.006 (0.040) [0.078] 0.063 (0.172) [0.255] 0.253 (0.412) [0.501] 0.390 (0.546) [0.636] 0.580 (0.702) [0.758]
0.009 (0.047) [0.099] 0.071 (0.177) [0.262] 0.256 (0.416) [0.509] 0.403 (0.564) [0.634] 0.581 (0.698) [0.759]
0.009 (0.047) [0.093] 0.068 (0.177) [0.264] 0.259 (0.416) [0.511] 0.402 (0.558) [0.635] 0.577 (0.699) [0.760]

50θ20 0.009 (0.050) [0.099] 0.091 (0.216) [0.303] 0.377 (0.524) [0.601] 0.581 (0.699) [0.764] 0.851 (0.901) [0.924]
0.008 (0.051) [0.093] 0.092 (0.213) [0.300] 0.362 (0.517) [0.607] 0.580 (0.699) [0.754] 0.826 (0.891) [0.909]
0.009 (0.055) [0.103] 0.095 (0.220) [0.309] 0.350 (0.522) [0.602] 0.578 (0.705) [0.760] 0.833 (0.894) [0.914]
0.010 (0.050) [0.099] 0.091 (0.216) [0.306] 0.366 (0.518) [0.602] 0.576 (0.698) [0.759] 0.832 (0.888) [0.912]

conclusions are robust for a broad range of null parameter values: the Rectangle and Smoother tests consistently
achieve stable gains across scenarios, whereas the LRT and SIUT tests are most effective in the presence of strong
joint deviations from the null hypothesis.
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Table 2. The power of LRT, SIUT, Rectangle and Smoother tests (row1–row4) for different θ1 and θ2 for different θ10, θ20
and the expression outside the parentheses, in parentheses, and inside the brackets indicates the test power value for α = 0.01,
0.05, and 0.1, respectively.

θ10 = 1, θ20 = 1
θ1

θ2 ↓ θ10 2θ10 5θ10 10θ10 50θ10
θ20 0.000 (0.003) [0.009] 0.001 (0.011) [0.032] 0.002 (0.030) [0.063] 0.007 (0.036) [0.078] 0.008 (0.048) [0.096]

0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000]

2θ20 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.001] 0.000 (0.000) [0.001]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000]
0.000 (0.000) [0.000] 0.000 (0.004) [0.009] 0.002 (0.009) [0.013] 0.001 (0.009) [0.017] 0.002 (0.009) [0.019]
0.000 (0.000) [0.000] 0.001 (0.005) [0.009] 0.001 (0.007) [0.014] 0.002 (0.008) [0.017] 0.002 (0.009) [0.018]

5θ20 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.001] 0.000 (0.000) [0.004] 0.000 (0.001) [0.004]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.001] 0.000 (0.000) [0.002]
0.000 (0.000) [0.000] 0.002 (0.006) [0.014] 0.002 (0.012) [0.022] 0.002 (0.016) [0.030] 0.003 (0.016) [0.031]
0.000 (0.000) [0.000] 0.001 (0.007) [0.015] 0.002 (0.012) [0.023] 0.003 (0.015) [0.028] 0.003 (0.016) [0.031]

10θ20 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.003] 0.000 (0.001) [0.006] 0.000 (0.004) [0.011]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.001] 0.000 (0.000) [0.004] 0.000 (0.001) [0.005]
0.000 (0.000) [0.000] 0.002 (0.009) [0.016] 0.003 (0.014) [0.030] 0.003 (0.020) [0.036] 0.004 (0.021) [0.039]
0.000 (0.000) [0.000] 0.002 (0.008) [0.016] 0.003 (0.014) [0.029] 0.004 (0.019) [0.036] 0.004 (0.021) [0.042]

50θ20 0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.001) [0.004] 0.000 (0.002) [0.012] 0.000 (0.005) [0.018]
0.000 (0.000) [0.000] 0.000 (0.000) [0.000] 0.000 (0.000) [0.003] 0.000 (0.002) [0.006] 0.000 (0.002) [0.012]
0.000 (0.000) [0.000] 0.002 (0.008) [0.019] 0.003 (0.014) [0.031] 0.004 (0.020) [0.045] 0.005 (0.024) [0.053]
0.000 (0.000) [0.000] 0.002 (0.009) [0.018] 0.003 (0.016) [0.032] 0.004 (0.021) [0.043] 0.005 (0.026) [0.050]

θ10 = 1.2, θ20 = 1.5
θ10 2θ10 5θ10 10θ10 50θ10

θ20 0.000 (0.005) [0.018] 0.004 (0.022) [0.059] 0.011 (0.060) [0.113] 0.023 (0.078) [0.138] 0.027 (0.104) [0.170]
0.000 (0.002) [0.012] 0.001 (0.011) [0.032] 0.004 (0.029) [0.064] 0.007 (0.040) [0.082] 0.009 (0.045) [0.097]
0.005 (0.024) [0.053] 0.006 (0.034) [0.074] 0.010 (0.044) [0.085] 0.010 (0.045) [0.091] 0.011 (0.053) [0.101]
0.005 (0.026) [0.050] 0.007 (0.035) [0.070] 0.008 (0.043) [0.086] 0.010 (0.047) [0.094] 0.010 (0.050) [0.098]

2θ20 0.002 (0.016) [0.041] 0.018 (0.071) [0.136] 0.070 (0.178) [0.265] 0.115 (0.239) [0.332] 0.162 (0.309) [0.407]
0.001 (0.011) [0.032] 0.009 (0.051) [0.100] 0.039 (0.123) [0.198] 0.066 (0.164) [0.256] 0.091 (0.218) [0.305]
0.007 (0.037) [0.073] 0.020 (0.080) [0.147] 0.047 (0.141) [0.223] 0.068 (0.179) [0.266] 0.091 (0.211) [0.305]
0.007 (0.035) [0.071] 0.019 (0.079) [0.141] 0.048 (0.142) [0.225] 0.070 (0.177) [0.266] 0.092 (0.212) [0.304]

5θ20 0.004 (0.031) [0.069] 0.050 (0.143) [0.226] 0.203 (0.350) [0.447] 0.310 (0.471) [0.573] 0.457 (0.604) [0.667]
0.004 (0.027) [0.067] 0.040 (0.123) [0.196] 0.153 (0.297) [0.390] 0.251 (0.408) [0.502] 0.364 (0.518) [0.609]
0.009 (0.043) [0.095] 0.050 (0.137) [0.217] 0.162 (0.314) [0.419] 0.270 (0.414) [0.518] 0.361 (0.524) [0.605]
0.008 (0.044) [0.088] 0.049 (0.142) [0.226] 0.169 (0.316) [0.415] 0.255 (0.416) [0.509] 0.365 (0.520) [0.605]

10θ20 0.006 (0.042) [0.081] 0.073 (0.182) [0.267] 0.280 (0.442) [0.532] 0.445 (0.600) [0.675] 0.647 (0.754) [0.808]
0.006 (0.040) [0.078] 0.063 (0.172) [0.255] 0.253 (0.412) [0.501] 0.390 (0.546) [0.636] 0.580 (0.702) [0.758]
0.009 (0.047) [0.099] 0.071 (0.177) [0.262] 0.256 (0.416) [0.509] 0.403 (0.564) [0.634] 0.581 (0.698) [0.759]
0.009 (0.047) [0.093] 0.068 (0.177) [0.264] 0.259 (0.416) [0.511] 0.402 (0.558) [0.635] 0.577 (0.699) [0.760]

50θ20 0.009 (0.050) [0.099] 0.091 (0.216) [0.303] 0.377 (0.524) [0.601] 0.581 (0.699) [0.764] 0.851 (0.901) [0.924]
0.008 (0.051) [0.093] 0.092 (0.213) [0.300] 0.362 (0.517) [0.607] 0.580 (0.699) [0.754] 0.826 (0.891) [0.909]
0.009 (0.055) [0.103] 0.095 (0.220) [0.309] 0.350 (0.522) [0.602] 0.578 (0.705) [0.760] 0.833 (0.894) [0.914]
0.010 (0.050) [0.099] 0.091 (0.216) [0.306] 0.366 (0.518) [0.602] 0.576 (0.698) [0.759] 0.832 (0.888) [0.912]
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Table 3. The power of LRT, SIUT, Rectangle and Smoother tests (row1-row4) (second row), test (third row), and Smoother
test (fourth row) for different θ1 and θ2 when θ10 = 1.5, θ20 = 2 and the expression outside the parentheses, in parantheses
and inside the brackets indicates the test power value for α = 0.01, 0.05 and 0.1, respectively.

θ10 = 1.5, θ20 = 2
θ1

θ2 ↓ θ10 2θ10 θ10 0.8θ10 θ10
θ20 0.000 (0.003) [0.009] 0.001 (0.011) [0.032] 0.002 (0.030) [0.063] 0.007 (0.036) [0.078] 0.008 (0.048) [0.096]

0.000 (0.002) [0.010] 0.001 (0.011) [0.032] 0.004 (0.029) [0.064] 0.007 (0.040) [0.082] 0.009 (0.045) [0.097]
0.004 (0.026) [0.052] 0.006 (0.034) [0.074] 0.010 (0.044) [0.085] 0.010 (0.045) [0.091] 0.011 (0.053) [0.101]
0.005 (0.026) [0.049] 0.007 (0.035) [0.070] 0.008 (0.043) [0.086] 0.010 (0.047) [0.094] 0.010 (0.050) [0.098]

2θ20 0.001 (0.011) [0.031] 0.010 (0.049) [0.102] 0.040 (0.124) [0.194] 0.063 (0.167) [0.245] 0.090 (0.209) [0.304]

0.001 (0.011) [0.032] 0.009 (0.051) [0.100] 0.039 (0.123) [0.198] 0.066 (0.164) [0.256] 0.091 (0.218) [0.305]
0.007 (0.037) [0.073] 0.020 (0.080) [0.147] 0.047 (0.141) [0.223] 0.068 (0.179) [0.266] 0.091 (0.211) [0.305]
0.007 (0.035) [0.071] 0.019 (0.079) [0.141] 0.048 (0.142) [0.225] 0.070 (0.177) [0.266] 0.092 (0.212) [0.304]

5θ20 0.003 (0.026) [0.060] 0.040 (0.122) [0.201] 0.161 (0.298) [0.400] 0.244 (0.406) [0.509] 0.358 (0.520) [0.594]
0.004 (0.027) [0.067] 0.040 (0.123) [0.196] 0.153 (0.297) [0.390] 0.251 (0.408) [0.502] 0.364 (0.518) [0.609]
0.009 (0.043) [0.095] 0.050 (0.137) [0.217] 0.162 (0.314) [0.419] 0.270 (0.414) [0.518] 0.361 (0.524) [0.605]
0.008 (0.044) [0.088] 0.049 (0.142) [0.226] 0.169 (0.316) [0.415] 0.255 (0.416) [0.509] 0.365 (0.520) [0.605]

10θ20 0.005 (0.038) [0.077] 0.064 (0.171) [0.253] 0.250 (0.411) [0.503] 0.399 (0.561) [0.638] 0.576 (0.702) [0.765]
0.006 (0.040) [0.078] 0.063 (0.172) [0.255] 0.253 (0.412) [0.501] 0.390 (0.546) [0.636] 0.580 (0.702) [0.758]
0.009 (0.047) [0.099] 0.071 (0.177) [0.262] 0.256 (0.416) [0.509] 0.403 (0.564) [0.634] 0.581 (0.698) [0.759]
0.009 (0.047) [0.093] 0.068 (0.177) [0.264] 0.259 (0.416) [0.511] 0.402 (0.558) [0.635] 0.577 (0.699) [0.760]

50θ20 0.009 (0.050) [0.098] 0.089 (0.213) [0.299] 0.369 (0.516) [0.594] 0.567 (0.689) [0.756] 0.832 (0.886) [0.911]
0.008 (0.051) [0.093] 0.092 (0.213) [0.300] 0.362 (0.517) [0.607] 0.580 (0.699) [0.754] 0.826 (0.891) [0.909]
0.009 (0.055) [0.103] 0.095 (0.220) [0.309] 0.350 (0.522) [0.602] 0.578 (0.705) [0.760] 0.833 (0.894) [0.914]
0.010 (0.050) [0.099] 0.091 (0.216) [0.306] 0.366 (0.518) [0.602] 0.576 (0.698) [0.759] 0.832 (0.888) [0.912]

θ10 = 2, θ20 = 2.5
θ10 2θ10 5θ10 10θ10 50θ10

θ20 0.000 (0.005) [0.014] 0.003 (0.019) [0.054] 0.008 (0.052) [0.099] 0.018 (0.066) [0.123] 0.020 (0.090) [0.151]
0.000 (0.002) [0.010] 0.001 (0.011) [0.032] 0.004 (0.029) [0.064] 0.007 (0.040) [0.082] 0.009 (0.045) [0.097]
0.004 (0.026) [0.052] 0.006 (0.034) [0.074] 0.010 (0.044) [0.085] 0.010 (0.045) [0.091] 0.011 (0.053) [0.101]
0.005 (0.026) [0.049] 0.007 (0.035) [0.070] 0.008 (0.043) [0.086] 0.010 (0.047) [0.094] 0.010 (0.050) [0.098]

2θ20 0.002 (0.015) [0.039] 0.016 (0.066) [0.130] 0.062 (0.167) [0.252] 0.103 (0.224) [0.312] 0.146 (0.285) [0.383]
0.001 (0.011) [0.032] 0.009 (0.051) [0.100] 0.039 (0.123) [0.198] 0.066 (0.164) [0.256] 0.091 (0.218) [0.305]
0.007 (0.037) [0.073] 0.020 (0.080) [0.147] 0.047 (0.141) [0.223] 0.068 (0.179) [0.266] 0.091 (0.211) [0.305]
0.007 (0.035) [0.071] 0.019 (0.079) [0.141] 0.048 (0.142) [0.225] 0.070 (0.177) [0.266] 0.092 (0.212) [0.304]

5θ20 0.004 (0.030) [0.067] 0.048 (0.137) [0.220] 0.193 (0.339) [0.435] 0.294 (0.457) [0.559] 0.435 (0.585) [0.651]
0.004 (0.027) [0.067] 0.040 (0.123) [0.196] 0.153 (0.297) [0.390] 0.251 (0.408) [0.502] 0.364 (0.518) [0.609]
0.009 (0.043) [0.095] 0.050 (0.137) [0.217] 0.162 (0.314) [0.419] 0.270 (0.414) [0.518] 0.361 (0.524) [0.605]
0.008 (0.044) [0.088] 0.049 (0.142) [0.226] 0.169 (0.316) [0.415] 0.255 (0.416) [0.509] 0.365 (0.520) [0.605]

10θ20 0.006 (0.041) [0.080] 0.071 (0.179) [0.264] 0.275 (0.434) [0.526] 0.437 (0.590) [0.668] 0.630 (0.741) [0.800]
0.006 (0.040) [0.078] 0.063 (0.172) [0.255] 0.253 (0.412) [0.501] 0.390 (0.546) [0.636] 0.580 (0.702) [0.758]
0.009 (0.047) [0.099] 0.071 (0.177) [0.262] 0.256 (0.416) [0.509] 0.403 (0.564) [0.634] 0.581 (0.698) [0.759]
0.009 (0.047) [0.093] 0.068 (0.177) [0.264] 0.259 (0.416) [0.511] 0.402 (0.558) [0.635] 0.577 (0.699) [0.760]

50θ20 0.009 (0.050) [0.099] 0.091 (0.215) [0.302] 0.376 (0.523) [0.600] 0.578 (0.697) [0.762] 0.846 (0.897) [0.922]
0.008 (0.051) [0.093] 0.092 (0.213) [0.300] 0.362 (0.517) [0.607] 0.580 (0.699) [0.754] 0.826 (0.891) [0.909]
0.009 (0.055) [0.103] 0.095 (0.220) [0.309] 0.350 (0.522) [0.602] 0.578 (0.705) [0.760] 0.833 (0.894) [0.914]
0.010 (0.050) [0.099] 0.091 (0.216) [0.306] 0.366 (0.518) [0.602] 0.576 (0.698) [0.759] 0.832 (0.888) [0.912]

5.2. Size-adjusted power

To address the well-known issue of bias (i.e., deflated power, Power < α) under the classic implementation of
finite-sample tests which arises from reliance on asymptotic critical values, we incorporated a
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size-adjustment strategy, as suggested by Davison and Hinkley[7]. This method involves empirically estimating the
critical values for each test via repeated simulations under the null, ensuring the actual Type I error rate matches the
nominal significance level. We examined the behavior of the parameter pairs θ10 = 1.5 and θ20 = 2 with θ1 = 1.5
and θ2 = 2, and θ10 = 1 and θ20 = 1 with θ1 = 3 and θ2 = 4 and α = 0.05. In the first case, where the true values
equal the null hypothesis, the classical tests behaved very conservatively: rejection rates were far below the nominal
significance level α and the empirical powers were near zero. After applying size adjustment using empirical critical
values, rejection rates moved closer to α, indicating that size adjustment substantially improves Type I error control
and reduces the conservative bias. In the second case, where the null (θ10 = 1, θ20 = 1) is substantially different
from the true values θ1 = 3 and θ2 = 4, the classical tests showed a tendency for excessive rejection (inflated
rejection rates relative to α). After size adjustment, the test’s powers increased markedly while maintaining better
control of Type I error. Therefore, size adjustment makes comparisons among methods fairer and the results more
reliable.

6. A numerical study for sign testing in exponential distribution

In this section, we study the testing minimum reliability thresholds for p components in a series system lifetimes
each exponential with the parameters, θi, i = 1, . . . , p.
It is desired test that no component performs better than the specified minimum acceptable threshold, i.e
H0 : min{θ1, . . . , θp} ≤ θ0 against H1 : min{θ1, . . . , θp} > θ0. Or, equivalently in terms of failure rates:
max {λ1, . . . , λp} ≥ λ0 against H1 : max {λ1, . . . , λp} < λ0.

This test specifically focuses on the worst-performing component Suppose that we have a computer system
consisting of three main components: Processor (CPU), Random Access Memory (RAM), Hard Disk Drive (HDD).
These three components operate in series and the entire system will stop working if any of these components fail.
Assuming the failures are independent, the critical component in a series system in terms of failure rate is the
component that has the maximum failure rate (λmax).

Failure rate of RAM, HDD and CPU
Schroeder et al. [23] is comprehensive field on RAM module failure rates in more than two million memory

modules over 2.5 years, reported to be about 8 percent of modules experience at least one bit error annually. Due to
the lack of access to the raw data of this study, in the performed simulations, the hourly failure rate (λ = 0.00046),
equivalent to MTBF = 2174 hours.

Pinheiro et al. [18] in a comprehensive analysis of the failure rates of over one hundred thousand hard drives
in Google datacenters over a five-year period, reported that annual failure ratevaries between 1.7 and 8.6 percent.
Based on the reported values an hourly failure rate of λ = 0.000002 (MTBF = 500, 000 hours) was used for
simulating the related data. According to HP Reliability Data, 2011, and IBM/Google documents, the annual failure
rate of server processors is usually between 0.01 and 0.5 percent and their mean time between failures (MTBF) is
between one and one and a half million hours.

Four tests LRT, SIUT, smoother, rectangular at significance level α = 0.05 were applied to the sample data. The
observed values and the critical values of the LRT and SIUT are calculated and given in Table 4. The LRT does

Table 4. Comparison of statistical test results for the RAM, HDD, and CPU system

ci λ
(LRT )
HDD λ

(LRT )
RAM λ

(LRT )
CPU λ

(LRT )
0 x̄HDD x̄RAM x̄CPU

7489.331 0.9907 0.000 0.000 0.6268 1204819.28 2173.9 500000

not reject H0 since calculated statistic λstat = max{λ(LRT )
RAM , λ

(LRT )
HDD , λ

(LRT )
CPU } = 0.9907 is greater than the critical

value λ0 = 0.6269, which was obtained via simulations with n = 100000 repetitions.
For SIUT, the null hypothesis is rejected if, for all i, x̄i > c = ci = −θ0 ln(α) = 7489.33. As this not satisfied for
all x̄i, the conclusion for SIUT is not rejecting of H0.
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Three component pairs (RAM-CPU, RAM-HDD and CPU-HDD) are evaluated for the Smoother test rejection
regions A0, A1, and A2. For each pair, the mean times to failure (x̄i, x̄j), the normalized values (ui, uj), and the
specific conditions required for each rejection region are computed and presented.

RAM-CPU: This pair does not satisfy the conditions for rejection regions A0, A1, or A2. x̄RAM = 2173.91
is below the A0 threshold of 7489.25 although x̄CPU = 1204819.28 exceeds this threshold A1 fails because
|uRAM − uCPU | = |0.5804− 1| = 0.4196 > 0.025 and A2 is not satisfied since uCPU = 1.0000 > 0.95 and the
allowed range condition for the second variable is not met. Therefore H0 is not rejected for this pair.

RAM-HDD: Similar to RAM-CPU, x̄RAM = 2173.91 is below the threshold of 7489.25 and A1 fails because
the u difference is 0.4196 > 0.025. A2 also fails since uHDD = 1.0000 > 0.95 and the allowed range condition for
the second variable is not satisfied. Therefore H0 is nor rejected.

CPU-HDD: Both x̄CPU and x̄HDD exceed the A0 threshold, so A0 is satisfied. However A1 is not satisfied since
uCPU and uHDD are both approximately 1 and the condition u ≤ 0.95 is not met.A2 is also not satisfied because
both u values are greater than 0.95 Nevertheless, due to A0 being satisfied, this pair is rejected.
Since not all component pairs are rejected simultaneously the null hypothesis H0 in the Smoother test is not rejected
overall.

In the Rectangle test, the three component pairs (RAM–CPU), (RAM–HDD) and (CPU–HDD) were examined
using the parameters α = 0.05, θ0 = 2500, and J = 10. The threshold values cj were computed according to
cj = −θ0 ln(jα) for j = 1 to 10 (with c0 = ∞).

Based on these thresholds, each pair was evaluated as follows:

Pair RAM-CPU: x̄RAM lies between L1 = 2161.97 and U1 = 2448.54 (j = 8). Also, x̄CPU is greater than
L2 = 7498.71 (j = 1). Thus, this pair lies within one of the rectangular rejection regions and is therefore rejected.

Pair RAM-HDD: x̄RAM lies between L1 = 2161.97 and U1 = 2448.54 (j = 8). Also, x̄HDD is greater than
L2 = 7498.71 (j = 1). Thus, this pair lies within one of the rectangular rejection regions and is therefore rejected.

Pair CPU-HDD: For j = 1, L1 = 7498.71 and U1 = ∞, likewise L2 = 7498.71 and U2 = ∞. Both x̄CPU and
x̄HDD are greater than these limits. Thus, this pair lies within one of the rectangular rejection regions and is
therefore rejected. Since all three component pairs were simultaneously located in the rejection regions of the
Rectangle test, the null hypothesis H0 is rejected.

7. Conclusion

In this paper, we are looking for an approach to construct size-α tests that are more powerful than LRT for the
special sign testing problem (3). For exponential distribution, the SIUT is a uniformly most powerful monotone test
with higher power than the LRT. Although the SIUT is more powerful, both tests are not unbiased. two rectangular
and smoothed tests have been examined for a more powerful test. Numerical results show that two rectangular and
smoothed tests have much more power than the SIUT and the LRT. Rectangular and smoothing tests have rejection
regions that encompass not only the likelihood ratio test’s rejection region and SIUT, but also other areas. This
broader scope can make them more powerful. Essentially, statisticians have expanded the likelihood ratio test’s
rejection region in these tests. The key is that under the null hypothesis (H0), the test’s error rate (α) remains the
same, while the test’s power increases because of these added regions, so, a strategy for developing more powerful
tests involves adding rejection regions without increasing the test’s size (α). Note that the results are similar for
the Weibull and Gamma distributions, but further research is required to determine whether this property holds for
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the other distributions. In the Rectangle/Smoother tests, if the number of dimensions (p) is large and α is small,
computing the power may become computationally time-consuming.

Appendix . Proof of Formulas (13) and (14)

Proof of Formulas (13): Consider

u1 = F1(x1) ⇒ x1 = F−1
1 (u1) = −θ1 ln(1− u1),

u2 = F2(x2) ⇒ x2 = F−1
2 (u2) = −θ2 ln(1− u2),

so
1− α ≤ u1 < 1 ⇒ 1− α ≤ 1− e−

x1
θ1 < 1 ⇒ x1 ≥ −θ1 lnα,

1− α ≤ u2 < 1 ⇒ 1− α ≤ 1− e−
x1
θ1 < 1 ⇒ x2 ≥ −θ2 lnα,

so, we have
A0 =

{
(x1, x2) : x1 ≥ −θ1 lnα, x2 ≥ −θ2 lnα

}
.

For A1 we have

| u1 − u2 |≤ α

2
⇒ −α

2
≤ u1 − u2 ≤ α

2
⇒ −α

2
≤ 1− e

−x1
θ1 − (1− e

−x2
θ2 ) ≤ α

2

⇒ −α

2
≤ e

−x2
θ2 − e

−x1
θ1 ≤ α

2
e

−x1
θ1 ⇒ α

2
≤ e

−x2
θ2 ≤ e

−x1
θ1 +

α

2

⇒ ln(e
−x1
θ1 − α

2
) ≤ −x2

θ2
≤ ln(e

−x1
θ1 +

α

2
)

⇒ −θ2 ln(e
−x1
θ1 +

α

2
) ≤ x2 ≤ −θ2 ln(e

−x1
θ1 − α

2
),

From sided:

1

2
≤ u1 ≤ 1− α ⇒ 1

2
≤ 1− e

−x1
θ1 ≤ 1− α ⇒ −1

2
≤ −e

−x1
θ1 ≤ −α

⇒ α ≤ e
−x1
θ1 ≤ 1

2
lnα ≤ −x1

θ1
≤ − ln 2 ⇒ θ1 ln 2 ≤ x1 ≤ −θ1 lnα,

1

2
≤ u2 ≤ 1− α ⇒ 1

2
≤ 1− e

−x2
θ2 ≤ 1− α ⇒ −1

2
≤ −e

−x2
θ2 ≤ −α ⇒ α ≤ e

−x2
θ2 ≤ 1

2

⇒ lnα ≤ −x2

θ2
≤ − ln 2 ⇒ θ2 ln 2 ≤ x2 ≤ −θ2 lnα,

so, we have

A1 =
{
(X1, X2) : −θ2 ln(e

−X1
θ1 +

α

2
) ≤ X2 ≤ −θ2 ln(e

−X1
θ1 − α

2
),

θ1 ln 2 ≤ X1 ≤ −θ1 lnα, θ2 ln 2 ≤ X2 ≤ −θ2 lnα
}
.

For A2 we have:

1

2
≤ u2 ≤ u1 −

1

2
+

3α

2
⇒ 1

2
≤ 1− e

−x2
θ2 ≤ 1− e

−x1
θ1 − 1

2
+

3α

2
⇒ 1

2
≤ 1− e

−x2
θ2 ≤ 1

2
− e

−x1
θ1 +

3α

2

⇒ −1

2
≤ −e

−x2
θ2 ≤ −1

2
− e

−x1
θ1 +

3α

2
⇒ 1

2
+ e

−x1
θ1 − 3α

2
≤ e

−x2
θ2 ≤ 1

2
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⇒ ln(
1

2
+ e

−x1
θ1 − 3α

2
) ≤ −x2

θ2
≤ − ln 2 ⇒ θ2 ln 2 ≤ x2 ≤ −θ2 ln(

1

2
+ e

−x1
θ1 − 3α

2
),

u2 < 1− α ⇒ 1− e
−x2
θ2 < 1− α ⇒ −e

−x2
θ2 < −α ⇒ e

−x2
θ2 > α ⇒ −x2

θ2
> lnα ⇒ x2 < −θ2 lnα,

Similarly for u1:

u1 < 1− α ⇒ 1− e
−x1
θ1 < 1− α ⇒ −e

−x1
θ1 < −α ⇒ e

−x1
θ1 > α ⇒ −x1

θ1
> lnα ⇒ x1 < −θ1 lnα,

1

2
≤ u1 ≤ u2 −

1

2
+

3α

2
⇒ 1

2
≤ 1− e

−x1
θ1 ≤ 1− e

−x2
θ2 − 1

2
+

3α

2
⇒ −1

2
≤ −e

−x1
θ1 ≤ −1

2
− e

−x2
θ2 +

3α

2
,

⇒ 1

2
+ e

−x2
θ2 − 3α

2
≤ e

−x1
θ1 ≤ 1

2
⇒ ln(

1

2
+ e

−x2
θ2 − 3α

2
) ≤ −x1

θ1
≤ − ln 2,

⇒ θ1 ln 2 ≤ x1 ≤ −θ1 ln(
1

2
+ e

−x2
θ2 − 3α

2
),

so, we have

A2 =

{
(x1, x2) : θ2 ln 2 ≤ x2 ≤ −θ2 ln(

1

2
+ e

−x1
θ1 − 3α

2
), x1 < −θ1 lnα

}
∪
{
(x1, x2) : θ1 ln 2 ≤ x1 ≤ −θ1 ln(

1

2
+ e

−x2
θ2 − 3α

2
), x2 < −θ2 lnα

}
,

Proof of formula14: The power of the S test consists of three parts

P ((X1, X2) ∈ A0) =

∫ +∞

−θ10 lnα

∫ +∞

−θ20 lnα

1

θ1
e−

x1
θ1

1

θ2
e−

x2
θ2 dx1dx2

=

(∫ +∞

−θ10 lnα

1

θ1
e−

x1
θ1 dx1

)(∫ +∞

−θ20 lnα

1

θ2
e−

x2
θ2 dx2

)
=

(
e

θ10
θ1

lnα − e+∞
)
×
(
e

θ20
θ2

lnα − e+∞
)
= α

θ10
θ1 × α

θ20
θ2 = α

θ10
θ1

+
θ20
θ2 ,

and

P ((X1, X2) ∈ A1) =

∫ −θ10 ln( 1
2−

α
2 )

θ10 ln 2

1

θ1
e−

x1
θ1

∫ −θ20 ln(e
− x1

θ1 −α
2 )

θ20 ln 2

1

θ2
e−

x2
θ2 dx2

 dx1 (17)

+

∫ −θ10 ln( 3α
2 )

−θ10 ln( 1
2−

α
2 )

1

θ1
e−

x1
θ1

∫ −θ20 ln(e
− x1

θ1 −α
2 )

−θ20 ln(e
−x1
θ1 +α

2 )

1

θ2
e−

x2
θ2 dx2

 dx1

+

∫ −θ10 lnα

−θ10 ln( 3α
2 )

1

θ1
e−

x1
θ1

(∫ −θ20 lnα

−θ20 ln(e
−x1
θ1 +α

2 )

1

θ2
e−

x2
θ2 dx2

)
dx1

= 2−
θ20
θ2 × 2−

θ10
θ1 +

(
( 12 − α

2 )
θ10
θ1 − α

2

) θ20
θ2

+1

θ20
θ2

+ 1
− 2−

θ20
θ2 (

1

2
− α

2
)

θ10
θ1

−

(
2−

θ10
θ1 − α

2

) θ20
θ2

+1

θ20
θ2

+ 1
−

(
( 3α2 )

θ10
θ1 + α

2

) θ20
θ2

+1

θ20
θ2

+ 1
+

(
( 12 − α

2 )
θ10
θ1 + α

2

) θ20
θ2

+1

θ20
θ2

+ 1
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+

(
( 3α2 )

θ10
θ1 − α

2

) θ20
θ2

+1

θ20
θ2

+ 1
−

(
( 12 − α

2 )
θ10
θ1 − α

2

) θ20
θ2

+1

θ20
θ2

+ 1

+

(
( 3α2 )

θ10
θ1 − α

2

) θ20
θ2

+1

θ20
θ2

+ 1
−

(
α

θ10
θ1 + α

2

) θ20
θ2

+1

θ20
θ2

+ 1
− α

θ20
θ2 (

3α

2
)

θ10
θ1 + α

θ10
θ1

+
θ2
θ20

and

P ((X1, X2) ∈ A2) =

∫ −θ20 lnα

−θ20 ln( 3α
2 )

1

θ2
e−

x2
θ2

∫ −θ10 ln( 1
2+e

− x2
θ2 − 3α

2 )

θ10 ln 2

1

θ1
e−

x1
θ1 dx1

 dx2 (18)

+

∫ −θ10 lnα

−θ10 ln( 3α
2 )

1

θ1
e−

x1
θ1

∫ −θ20 ln( 1
2+e

− x1
θ1 − 3α

2 )

θ20 ln 2

1

θ2
e−

x2
θ2 dx2

 dx1

=

(
1
2 + α

θ10
θ1 − 3α

2

) θ20
θ2

+1

θ20
θ2

+ 1
−

(
1
2 + ( 3α2 )

θ10
θ1 − 3α

2

) θ20
θ2

+1

θ20
θ2

+ 1
+ 2

−θ10
θ1 (

3α

2
)

θ20
θ2

−α
θ20
θ2 2

−θ10
θ1 +

(
1
2 + α

θ20
θ2 − 3α

2

) θ10
θ1

+1

θ10
θ1

+ 1
−

(
1
2 + ( 3α2 )

θ20
θ2 − 3α

2

) θ10
θ1

+1

θ10
θ1

+ 1

+2
−θ20
θ2 (

3α

2
)

θ10
θ1 − α

θ10
θ1 2

−θ20
θ2

By changing the variable in integrals of the above formulas (17) and (18), we obtained (14).

Acknowledgement

The authors would like to express their sincere gratitude to the esteemed editor-in-chief of the Statistics,
Optimization & Information Computing journal, the respected editor, and the honorable reviewers, whose valuable
comments and suggestions have contributed to the improvement and refinement of this article.

REFERENCES

1. R. L. Berger, Multiparameter hypothesis testing and acceptance sampling, Technometrics, vol. 24, pp. 295–300, 1982.
2. R. L. Berger, Uniformly more powerful tests for hypotheses concerning linear inequalities and normal means, Journal of the

American Statistical Association, vol. 84, pp. 192–199, 1989.
3. R. L. Berger and J. C. Hsu, Bioequivalence trials, intersection-union tests, and equivalence confidence sets, Statistical Science,

vol. 11, no. 4, pp. 283–319, 1996.
4. R. L. Berger, Likelihood ratio tests and intersection-union tests, Advances in Statistical Decision Theory and Applications, pp. 225–
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