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Abstract In this paper, we introduce another generalization of semilocally convex functions over cones, called cone-
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Further, using its properties we establish a theorem of the alternatives for these functions. Then we investigate the optimal
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1. Introduction

The notion of semilocal convexity reduces the length of the line segment required for the convexity to hold to a
locally star-shaped set and expands the definition of convexity. These generalizations are used widely in various
fields such as optimization, economics, geometry, etc. In optimization, it allows one to find local and approximate
solutions. In the field of economics, the utility and cost functions exhibit semilocal convexity. In geometry, the
properties of curves and surfaces that are not convex are studied using locally star-shaped sets and semilocally
convex functions.

Ewing [1] introduced semilocally convex functions defined on locally starshaped sets. They are nonconvex
functions but satisfy some convex-type properties like non-negative linear combinations of semilocally convex
functions are also semilocally convex, and local minima convex functions are also global minima. Several authors
introduced various generalizations of semilocally convex functions. Kaur [2], Kaul and Kaur [3, 4] investigated
generalizations of these functions and their properties as well. Gupta et al. [5] have studied another generalization
of these functions called rho-semilocally preinvex functions over cones and found optimality and duality results
for semilocally preinvex mathematical programming problems.

We know that the generalized convex functions are studied in different kinds of manifolds, such as Riemannian
manifolds, etc. In 2018 Kılıçman and Saleh [6] defined geodesic semilocal E-preinvex functions on Riemannian
manifolds. These functions are the generalization of geodesic semilocal E-convex and geodesic semi-E-preinvex
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functions. Further, for a nonlinear fractional multiobjective programming problem, they obtained sufficient
optimality conditions, and finally, they formulated a dual and proved duality results using the above functions for
the same problem. Recently, Mayvan and Motallebi [7] studied various optimization problems for locally convex
cone-valued functions, and Rimpi and Lalitha [8] established various constraint qualifications by imposing an
additional assumption of semilocal convexity at a point on the active constraint.

1.1. Contributions

The theorem of alternatives is one of the fundamental results in mathematical programming problems, from which
optimality and duality results may be derived. In this paper, we establish an alternative theorem for semilocally
subconvex functions over cones, another generalization of semilocally convex functions is introduced by us to
derive optimality and duality results for semilocally subconvex mathematical programming problems over cones.

1.2. Organization

The paper consists of six sections, the first section is introductory. In the second section, we have given some
definitions and results, which we have used in the paper, from the literature. Apart from this, we have introduced
one generalization of semilocally convex functions known as semilocally subconvex functions over cones. We
have depicted its relation with generalizations and subconvex functions with the help of examples. In the third
section, we have derived the theorem of alternatives for these functions and proved the necessary Karush Kuhn
Tucker (KKT) conditions for the problem (MP). In Section four, sufficient optimality conditions are discussed for
a point to be a weak minimizer. Section five focuses on the duality results, and the last section concludes the paper,
followed by the references used.

2. Preliminaries and Definitions

Let E ⊆ Rn be a nonempty convex set and C ⊆ Rm be a closed, convex, pointed cone with nonempty interior.
The positive dual cone C+ of C is defined as

C+ = {y∗ ∈ Rm : yT y∗ ≥ 0,∀ y ∈ C}.

The strict positive dual C+s is given by

C+s = {y∗ ∈ Rm : yT y∗ > 0,∀ y ∈ C}.

Definition 1. [1] E ⊆ Rn is said to be a locally starshaped set at x̄ if ∀x ∈ E there exists a(x, x̄) ≤ 1 such that
tx+ (1− t)x̄ ∈ E, for 0 < t < a(x, x̄).

Remark 1
It is clear from the definition that every convex set is locally starshaped; however, a locally starshaped set need not
be convex.

Hu and Ling (2004)[9] discussed optimality results for a vector optimization problem using cone subconvex
functions.

Definition 2. ϕ : E ⊆ Rn −→ Rm is said to be C-subconvex at x̄ ∈ E if there exits v ∈ int C such that for any
t ∈ (0, 1), ϵ > 0, ϵv + t ϕ(x) + (1− t)ϕ(x̄)− ϕ(tx+ (1− t) x̄) ∈ C.

We now introduce semilocally subconvex functions over cones defined on locally starshaped sets.

Definition 3. ϕ : E ⊂ Rn −→ Rm is said to be C-semilocally subconvex (C-slsb) at x̄ ∈ E if corresponding to
each x ∈ E there exists a positive number d(x, x̄) ≤ a(x, x̄), v ∈ intC, such that ∀ϵ > 0,

ϵv + t ϕ(x) + (1− t)ϕ(x̄)− ϕ(tx+ (1− t) x̄) ∈ C, 0 < t < d(x, x̄)
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Figure 1. Relation between generalizations of Cone-semilocally convex functions

ϕ is said to be C-slsb on E if it is C-slsb at each x ∈ E.

Remark 2
The following remarks and Figure1 relate the C-slb functions to other such functions available in the literature.

1. If ϵ = 0, then the C-slb function reduces to the C-semilocally convex functions defined by Weir [10].
2. If d(x, x̄) = a(x, x̄) = 1 or t ∈ [0, 1] then the above definition reduces to C-subconvex functions [9] over

cones, as discussed in Definition 2.
3. If ϵ = 0 and x− x̄ is replaced by η(x, x̄) where η : E × E −→ Rm is any vector-valued function, then

semilocally subconvex function over cones reduces to semilocally preinvex function over cones, introduced
by Suneja et.al.[11]

This example shows that there exist functions that are C-slsb but not C-semilocally convex.

Example 1
Let E = R\S where S = [−1

2 , 1
2 ] ∪ {2}. Then E becomes a locally starshaped set where,

a(x, x̄) =


x̄−2
x̄−x 2 < x̄, 1

2 < x < 2,

| 2−x̄
x−x̄ |

1
2 < x̄ < 2, 2 < x, or 1

2 < x̄ < 2, x < − 1
2 ,

1 + x elsewhere.
Let C = {(x, y) : y ≤ −x, y ≤ 0} be the convex, closed and pointed cone. Define the function ϕ : E → R2 by

ϕ(x) =

{
(0,−x), x < − 1

2 ,

(x, 0) 1
2 < x, x ̸= 2.

Then ϕ is C-slsb at x̄ = −1 as

ϵv + tϕ(x) + (1− t)ϕ(x̄)− ϕ(tx+ (1− t)x̄) ∈ C for 0 < t < d(x, x̄) where d(x, x̄) < a(x, x̄). However ϕ fails to
be C-semilocally convex at x̄ = −1 since corresponding to x = 7

3 there exists no positive number d(x, x̄) < a(x, x̄)
such that tϕ(x) + (1− t)ϕ(x̄)− ϕ(tx+ (1− t)x̄) ∈ C.

Note that the above function ϕ as in the example 1 which is C-slsb is also not semilocally preinvex over cones.

Example 2
Let η(x, x̄) = 1

2 (x− x̄)2, the function ϕ considered in example 1 fails to be C-semilocally preinvex at x̄ = −1
because for x = 11

3 , tϕ(x) + (1− t)ϕ(x̄)− ϕ(x̄+ tη(x, x̄)) /∈ C for any t lying between 0 and dη(x, x̄) ≤ aη(x, x̄),
where aη(x, x̄) = a(x, x̄) as considered in example 1.

The following function ξ fails to be cone- ρ semilocally preinvex and is C-slsb.

Example 3

Consider the function ξ : E → R given by ξ(x) =

{
(−x− 1

2 , 0), x < − 1
2 ,

(0, x− 1
2 )

1
2 < x, x ̸= 2.

Let D = {(x, y) : x ≥ 0, y ≥

0}, then ξ is D-slsb at x̄ = −1 but fails to be ρ−semilocally preinvex over cone D for η(x, x̄) = (x−x̄)2

2 , ρ =
1, θ(x, x̄) = x− x̄ with t = 1

2 and x = 3.

Definition 4. The function ϕ : E −→ Rm is said to be directionally differentiable at x̄ ∈ E in the direction d ∈ Rn

if

Stat., Optim. Inf. Comput. Vol. x, Month 202x



V. SHARMA, M. CHAUDHARY AND M. B. GROVER 3

ϕ
′
(x̄, d) = lim

t→0+

ϕ(x̄+ td)− ϕ(x̄)

t
, exists.

The following theorem reduces the definition of C-slsb in terms of directional derivative.

Theorem 1. Let ϕ be C-slsb on E then ϵv + ϕ(x)− ϕ(x̄)− ϕ
′
(x̄, x− x̄) ∈ C, for all x ∈ E.

Proof
Let ϕ be C-slsb on E then, there exist v ∈ int C, d(x, x̄) < a(x, x̄) such that for all ϵ > 0, ϵtv +
tϕ(x) + (1− t)ϕ(x̄)− ϕ(tx+ (1− t) x̄) ∈ C, 0 < t < d(x, x̄), which can be rewritten as ϵv + ϕ(x)− ϕ(x̄)−
ϕ(tx+(1−t)x̄)−ϕ(x̄)

t ∈ C or, ϵv + ϕ(x)− ϕ(x̄)− ϕ(x̄+t(x−x̄))−ϕ(x̄)
t ∈ C. Since C is a closed cone, therefore, taking

the limit as t −→ 0+ we get ϵv + ϕ(x)− ϕ(x̄)− ϕ
′
(x̄, x− x̄) ∈ C, for all x in E.

Theorem 2. If ϕ is C-slsb on E then for every x1, x2 ∈ E there exist d(x1, x2) < a(x1, x2) such that for
0 < t < d(x1, x2), there exists v ∈ intC such that ∀ ϵ > 0, ϵ v + t ϕ(x1) + (1− t)ϕ(x2) ∈ ϕ(E) + C.

The proof of the above result holds trivially.

Theorem 3. ϕ is C-slsb on E if and only if ∀ v′ ∈ intC, x1, x2 ∈ E there exists d(x1, x2) < a(x1, x2) such that
for 0 < t < d(x1, x2), v

′
+ tϕ(x1) + (1− t)ϕ(x2) ∈ ϕ(E) + C.

Proof
Let ϕ be the C-slsb on E and let v

′ ∈ intC, x1, x2 ∈ E, there exist 0 < t < d(x1, x2) such that ∀ ϵ > 0, using
Theorem 2 ϵv + tϕ(x1) + (1− t)ϕ(x2) ∈ ϕ(E) + C. As v

′ ∈ intC, we can choose ϵ0 > 0, v0 ∈ intC such that
v

′ − ϵ0v = v0, which gives v
′
+ tϕ(x1) + (1− t)ϕ(x2) = ϵ0v + v0 + tϕ(x1) + (1− t)ϕ(x2) ∈ ϕ(E) + C + v0 ∈

ϕ(E) + C + intC ⊂ ϕ(E) + int C.
Conversely let v

′
+ tϕ(x1) + (1− t)ϕ(x2) ∈ ϕ(E) + C, 0 < t < d(x1, x2). As intC is nonempty, there exists

v ∈ intC. Let v̄ = ϵv, ϵ > 0, then v̄ ∈ intC and v̄ + tϕ(x1) + (1− t)ϕ(x2) ∈ ϕ(E) + C. In other words, ϵv +
tϕ(x1) + (1− t)ϕ(x2) ∈ ϕ(E) + C. Therefore, ϕ is a C-slsb on a locally starshaped set E.

The next result establishes a characterization for semilocally subconvex functions over cones.

Theorem 4. If ϕ is C-slsb on E, then ϕ(E) + intC is locally starshaped.

Proof
Let ϕ be C-slsb on E and y1, y2 ∈ ϕ(E) + intC. Then there exist x1, x2 ∈ E, c1, c2 ∈ intC, d(x1, x2) <
a(x1, x2), such that y1 = ϕ(x1) + c1, y2 = ϕ(x2) + c2. As intC is convex, c

′
= tc1 + (1− t)c2 ∈ intC for 0 <

t < d(x1, x2) < 1. Now using theorem 3 for c
′ ∈ intC, c

′
+ tϕ(x1) + (1− t)ϕ(x2) ∈ ϕ(E) + intC.

Now consider, ty1 + (1− t)y2 = t(ϕ(x1) + c1) + (1− t)(ϕ(x2) + c2) = tϕ(x1) + (1− t)ϕ(x2) + c
′ ∈ ϕ(E) +

intC, for 0 < t < d(x1, x2). Therefore, ϕ(E) + intC is a locally starshaped set.

3. Necessary Optimilaty Conditions

This section discusses the theorem of Alternatives and the KKT necessary optimality conditions for the vector
optimization problem.
(MP) C-min ϕ(x)

subject to −ξ(x) ∈ D,

where ϕ = (ϕ1, ϕ2, ....., ϕm)T : Rn → Rm, ξ = (ξ1, ξ2, ....., ξp)
T : Rn → Rp are directionally differentiable

functions on Rn. C and D are closed, convex, and pointed cones with nonempty interiors in Rm and Rp

respectively. Let Fp = {x ∈ Rn : −ξ(x) ∈ D} be the set of all feasible solutions of (VP).
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Definition 5. Let x̄ ∈ Fp, then

1. x̄ is called a weak minimizer of (MP) if for all x ∈ Fp, ϕ(x̄)− ϕ(x) /∈ intC.
2. x̄ is called a minimizer of (MP) if for all x ∈ Fp, ϕ(x̄)− ϕ(x) /∈ C\{0}.

Kaur [2] has established that every closed locally starshaped set is convex.
Let F = (ϕ, ξ) : E ⊆ Rn −→ Rm ×Rp and K = C ×D. If F is K-slsb on E, that is ϕ is C-slsb on E and ξ is
D-slsb on E, then by theorem 4, F (E) + intK is locally starshaped.

Remark 3
Suppose that we assume F (E) + intK is closed then using C-semilocally subconvex functions, F (E) + intK
becomes convex and the following theorem of alternatives is proved on the lines of Illes and Kassay [12].

Theorem 5. Let F be K-slsb on E, such that F (E) + intK is closed with a nonempty interior, then exactly one of
the following holds:

(i) there exists x ∈ E such that −ϕ(x) ∈ intC and −ξ(x) ∈ intD,
(ii) there exist α ∈ C+, β ∈ D+ such that

αTϕ(x) + βT ξ(x) ≥ 0,
(α, β) ̸= (0, 0), for all x ∈ E.

Definition 6. The constraint function ξ is said to satisfy the generalized Slater-type constraint qualification at x̄ if
there exists x∗ ∈ E such that −ξ(x∗) ∈ intD

Theorem 6. Let F (x) = (ϕ(x)− ϕ(x̄), ξ(x)),∀x ∈ E and F (E) + int (C ×D) be closed with nonempty interior.
Let x̄ ∈ Fp be a weak minimizer of (MP), ϕ be C-slsb and ξ be D-slsb on E. Suppose that ξ satisfies the generalized
Slater-type constraint qualification, then there exist 0 ̸= ᾱ ∈ C+, β̄ ∈ D+ such that

ᾱTϕ
′
(x̄, x− x̄) + β̄T ξ

′
(x̄, x− x̄) ≥ 0,∀x ∈ E, (1)

and,
β̄T ξ(x̄) = 0. (2)

Proof
Let x̄ be a weak minimizer of (MP), then there does not exist any x ∈ E such that F (x) ∈ (C ×D), or

−[ϕ(x)− ϕ(x̄), ξ(x)] ∈ int (C ×D).

Using Theorem of Alternative (Theorem 5), there exist ᾱ ∈ C+, β̄ ∈ D+, (ᾱ, β̄) ̸= (0, 0) such that ᾱT (ϕ(x)−
ϕ(x̄)) + β̄T ξ(x) ≥ 0,∀x ∈ E which implies,

ᾱTϕ(x) + β̄T ξ(x) ≥ ᾱTϕ(x̄),∀x ∈ E. (3)

Since β̄ ∈ D+,−ξ(x̄) ∈ D therefore, β̄T ξ(x̄) ≤ 0. Consider x = x̄ in (3) we have β̄T ξ(x) ≥ 0 ∀x ∈ E. Therefore,

β̄T ξ(x̄) = 0. (4)

Using (2) and (3) we get,
(ᾱTϕ+ β̄T ξ)(x)− (ᾱTϕ+ β̄T ξ)(x̄) ≥ 0,∀x ∈ E.

As E is a locally starshaped set, tx̄+ (1− t)x ∈ E, 0 < t < a(x, x̄), which gives, (ᾱTϕ+ β̄T ξ)(tx̄+ (1−
t)x)− (ᾱTϕ+ β̄T ξ)(x̄) ≥ 0, implies, ᾱT (ϕ(tx̄+ (1− t)x)− ϕ(x̄)) + β̄T (ξ(tx̄+ (1− t)x)− ξ(x̄) ≥ 0. Dividing
the above by t > 0 and taking lim t −→ 0+, we obtain

ᾱTϕ
′
(x̄, x− x̄) + β̄T ξ

′
(x̄, x− x̄) ≥ 0,∀x ∈ E. (5)
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Next, let if possible ᾱ = 0, then β̄ ̸= 0 and (5) reduces to,

β̄T ξ
′
(x̄, x− x̄) ≥ 0,∀x ∈ E. (6)

Since ξ is D-slsb at x̄, for every x ∈ S, ϵv + ξ(x)− ξ(x̄)− ξ
′
(x̄, x− x̄) ∈ D, as β̄T ∈ D+,

β̄T ϵv + β̄T ξ(x)− β̄T ξ(x̄)− β̄T ξ
′
(x̄, x− x̄) ≥ 0. (7)

Adding (6) and (7) and using β̄T ϵv > 0 we have, β̄T ξ(x)− β̄T ξ(x̄) ≥ 0,∀x ∈ E. Using (4) we get,

β̄T ξ(x) ≥ 0,∀x ∈ E. (8)

In view of the generalized Slater-type constraint qualification, there exists x∗ ∈ E such that −ξ(x∗) ∈ intD
resulting in, β̄T ξ(x∗) < 0, which contradicts (8), hence ᾱ ̸= 0.

4. Sufficient Optimality Conditions

Theorem 7. Let x̄ be a feasible point of (MP) and ϕ be C-slsb and ξ be D-slsb at x̄. If there exist 0 ̸= ᾱ ∈ C+ and
β̄ ∈ D+ such that

ᾱT ξ
′
(x̄, x− x̄) + β̄T ξ

′
(x̄, x− x̄) ≥ 0,∀x ∈ E, (9)

and
β̄T ξ(x̄) = 0, (10)

hold for all x ∈ Fp, then x̄ is a weak minimizer of (MP).

Proof
Let if possible x̄ is not a weak minimizer of (MP). Then there exists x ∈ Fp such that

ϕ(x̄)− ϕ(x) ∈ intC. (11)

Since ϕ is C-slsb, there exist v ∈ intC, d1(x, x̄) < a(x, x̄), 0 < t < d1(x, x̄), ϵ > 0 such that ϵv + ϕ(x)− ϕ(x̄)−
ϕ

′
(x̄, x− x̄) ∈ C, as ᾱ ∈ C+\{0},

ᾱT ϵv + ᾱTϕ(x)− ᾱTϕ(x̄)− ᾱTϕ
′
(x̄, x− x̄) ≥ 0. (12)

Again as ξ is D-slsb there exist w ∈ intD, d2(x, x̄) < a(x, x̄), 0 < t < d2(x, x̄), δ > 0 such that

β̄T δw + β̄T ξ(x)− β̄T ξ(x̄)− β̄T ξ
′
(x̄, x− x̄) ≥ 0. (13)

Adding (12) and (13) we have,

ᾱT ϵv + β̄T δw + ᾱT (ϕ(x)− ϕ(x̄)) + β̄T (ξ(x)− ξ(x̄))− ᾱTϕ
′
(x̄, x− x̄)− β̄T ξ

′
(x̄, x− x̄) ≥ 0. (14)

Using (9) and (10) and as ϕ
′

and ξ
′

are linear we get,

ᾱT ϵv + β̄T δw + ᾱT (ϕ(x)− ϕ(x̄)) + β̄T ξ(x) ≥ 0. (15)

Since x ∈ Fp,−ξ(x) ∈ intD therefore, β̄T ξ(x) ≤ 0. As ϵ and δ are arbitrarily chosen using (15) we have,
ᾱT (ϕ(x)− ϕ(x̄)) ≥ 0. Now using, ᾱ ̸= 0 and above we have ϕ(x̄)− ϕ(x) /∈ intC which contradicts (11) thus
x̄ is a weak minimizer of (MP).
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5. Duality

(MD) C-max ϕ(u) + βT ξ(u)c

subject to αTϕ
′
(x̄, x− x̄) + βT ξ

′
(x̄, x− x̄) ≥ 0 (16)

where c ∈ intC is a fixed element,α ∈ C+\{0}, αT c = 1, β ∈ D+andu ∈ E.
The feasible set of (MD) is denoted by Fd.

Definition 7. A point (u, α, β) ∈ Fd is called a weak maximizer of (MD) if ϕ(z) + βT ξ(z)c− ϕ(u)− βT ξ(u)c /∈
intC, ∀ (z, α, β) ∈ Fd.

Theorem 8. Let x ∈ Fp and (u, α, β) ∈ Fd. If ϕ is C -slsb and ξ is D-slsb at u then

ϕ(u) + βT ξ(u)c− ϕ(x) /∈ intC.

Proof
Suppose if possible

ϕ(u) + βT ξ(u)c− ϕ(x) ∈ intC. (17)
Since ϕ is C-slsb at u there exists v ∈ intC such that for all ϵ > 0,

ϵv + ϕ(x)− ϕ(u)− ϕ
′
(u, x− u) ∈ C. (18)

Adding (17) and (18) we get, ϵv + βT ξ(u)c− ϕ
′
(u, x− u) ∈ intC. Using α ∈ C+\{0} andαT c = 1, we have,

αT ϵv + βT ξ(u)− αTϕ
′
(u, x− u) > 0. (19)

As v ∈ intC, ϵ > 0, α ∈ C+\{0}, αT ϵv > 0 therefore,

βT ξ(u)− αTϕ
′
(u, x− u) > 0. (20)

Since (u, α, β) is a feasible solution of (MD) so (16) holds, adding (16) and (20) we get

βT ξ(u) + βT ξ
′
(u, x− u) > 0. (21)

Now as ξ is D-slsb at u there exists w ∈ intD such that for all δ > 0, δw + ξ(x)− ξ(u)− ξ
′
(u, x− u) ∈ D, using

β ∈ D+,
βT δw + βT ξ(x)− βT ξ(u)− βT ξ

′
(u, x− u) ≥ 0. (22)

Again adding (21) and (22) and using w ∈ intD, δ > 0, βT δw > 0 we have

βT ξ(x) > 0 (23)

Now, as x ∈ Fp,−ξ(x) ∈ D consequently βT ξ(x) ≤ 0, forβ ∈ D+ which contradicts (23).

Theorem 9. Let ϕ be C-slsb and ξ be D-slsb on E. Suppose F (E) + int (C ×D) be closed with nonempty interior
and ξ satisfies the Slater-type constraint qualification. If x̄ ∈ Fp is a weak minimizer of (MP) then there exists
0 ̸= ᾱ ∈ C+, β̄ ∈ D+ such that (x̄, ᾱ, β̄) is a feasible solution of (MD). Moreover, if the conditions of the Weak
Duality theorem 8 are satisfied for all feasible solutions of (MP) and (MD) then, (x̄, ᾱ, β̄) is a weak maximizer of
(MD).

Proof
Since x̄ is a weak minimizer of (MP), by theorem 6 there exist multipliers ᾱ ∈ C+\{0}, β̄ ∈ D+ such that

ᾱTϕ
′
(x̄, x− x̄) + β̄T ξ

′
(x̄, x− x̄) ≥ 0,∀x ∈ E, (24)

β̄T ξ(x̄) = 0, (25)
so (x̄, ᾱ, β̄) is a feasible solution of (MD). Let if possible (x̄, ᾱ, β̄) be not a weak maximizer of (MD), then there
exists a feasible solution (u, ᾱ, β̄) of (MD) such that ϕ(u) + β̄T ξ(u)c− ϕ(x̄)− β̄T ξ(x̄)c ∈ intC. In view of (25)
we get, ϕ(u) + β̄T ξ(u)c− ϕ(x̄) ∈ intC. The above is a contradiction to the Weak Duality theorem 8, for the
feasible solutions x̄ of (MP) and (u, ᾱ, β̄) of (MD). Therefore (x̄, ᾱ, β̄) is a weak maximizer of (MD).
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6. Conclusion

The article introduces a new generalization of semilocally convex functions over cones, known as cone semilocally
subconvex functions. We establish the theorem of alternatives for a mathematical programming problem (MP)
involving cones and investigate the necessary and sufficient optimality conditions for the problem using the defined
generalizations. We examine a Wolfe-type dual corresponding to the programming problem (MP) and demonstrate
the weak duality and strong duality theorems for weak minimum between the primal problem (MP) and the
associated dual (MD).
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