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Abstract The Log-Bilal regression is survival regression model accounts for unique features of lifetime data. In this study,
we modify the Log-Bilal distribution to enhance it flexibility, resulting in a model that exhibits an increasing, non-constant
failure rate over time. To address the multicollinearity for the modified Log-Bilal regression, we introduce two penalized
estimators: Ridge modified Log-Bilal (Ridge MBE) and Liu type modified Log-Bilal (liu MBE) estimators. The properties
for the suggested estimators are discussed and the superiority for the estimators were checked. The Liu type estimator
demonstrates superiority over the other estimators. A simulation study is conducted across various factors, which reveals
that the Liu type estimator outperforms the others in many cases. The proposed estimators were applied to real lifetime data
from mechanical pumps which it gives the results confirming the results of the simulation study.
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1. Introduction

The lifetime data which is known as survival or failure time data, refers to the observed times until a specific
event occurs. This event could represent the failure of a mechanical component, the death of a patient, or any
other outcome that marks the end of a lifetime. Analyzing such data is critical across various fields, including
medical research, engineering, and reliability studies. Survival regression, a form of regression analysis for
lifetime data, models the relationship between covariates and the time until an event occurs. Unlike traditional
regression methods, survival regression accounts for unique features of lifetime data, such as censoring and the
non-normal distribution of survival times. The well-known models in survival regression include the Weibull,
Tobin, log-logistic, generalized gamma and Gompertz regression models, introduced by [1],[2],[3], [4] and [5]. A
more recent advancement in survival regression is the log-Bilal regression model, introduced by [6]. This model
extends the log-Bilal distribution with the T = exp(−X) link function. A key feature of the log-Bilal distribution
is that its statistical functions have explicit, closed-form expressions, avoiding the need for special mathematical
functions. The log-Bilal distribution was developed to enhance flexibility in modeling continuous, positive-valued
data, particularly in cases with skewed or complex tail behavior. This distribution origins lie in generalized
distributions that are built upon traditional exponential-type models.
The log-Bilal regression model is well-suited for survival analysis, particularly when the dependent variable is
time-based and right-censored, meaning the event of interest may not have occurred for some subjects during the
study period. This model offers significant flexibility in modeling the distribution of lifetimes, especially when
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using specific link functions or penalization techniques to address challenges like censoring, heterogeneity, or
complex relationships between covariates and outcomes.
In contrast to traditional models like the Cox proportional hazards model or parametric models, the log-Bilal
regression model accommodates different assumptions about hazard or survival functions. It is particularly
useful when the hazard rate exhibits non-monotonic behaviors such as increasing, decreasing, or forming a
bathtub-shaped curve where standard models like Weibull or exponential models may fall. This unique flexibility
makes the log-Bilal regression model a powerful alternative for analyzing lifetime data with complex hazard
dynamics.
The parameter estimation in log-Bilal regression can face many challenges when multicollinearity exists among
predictor variables. In such cases, regularization techniques like penalized regression can provide more stable and
accurate estimates. The penalization estimators, including ridge and Liu type estimators, have proven effective
in dealing with issues of multicollinearity by introducing penalties on the regression coefficients. There are
many studies that induced penalized survival regression. In these way, [7]introduced ridge and lasso estimators
as a penalized likelihood methods for the Cox proportional hazards model, improving the model’s stability by
shrinking the regression coefficients. [8] study applied Lasso to the Cox proportional hazards model, introducing
variable selection techniques in survival analysis. [9] extends the use of elastic net to the Cox model, providing
a more flexible approach in survival regression by combining the strengths of Ridge and Lasso. [10] address
multicollinearity by using Liu estimator for left censoring Tobit regression. [11]) introduced almost unbiased
liu type estimator for Tobit regression.
In this study, we first modified the Log-Bilal distribution. This modification of the Log-Bilal distribution offers
significant advantages when applied to modeling failure rates. The modified approach is highly flexible, exhibiting
an increasing, non-constant failure rate over time, making it particularly suitable for systems subject to wear
and tear, such as mechanical components and pumps, where failure rates increase with age. In addition, it can
effectively model multiple competing failure modes and varying hazard rates. In contrast, the original Log-Bilal
regression is characterized by a constant or monotonic failure rate, which limits its flexibility. It is more appropriate
for systems with predictable failure patterns and a single failure mode, where failure behavior remains steady and
consistent. Overall, this modified version of the Log-Bilal distribution is better equipped to capture the failure
dynamics associated with aging and degradation, whereas the original Log-Bilal distribution is more effective for
systems with stationary or simpler failure patterns. In addition to its practical benefits, the modified Log-Bilal
distribution also offers important improvements from a statistical modeling point of view. One key motivation
for the modification is to improve estimation stability especially in situations where the data are complex or the
predictors are highly correlated. The original model can be restrictive in such cases, leading to poor convergence
or unstable results when used with penalized estimation methods. Our modified version introduces more flexibility
in the baseline hazard, which helps the model respond more smoothly to changes in tuning parameters. This is
particularly useful when applying Ridge or Liu type penalties. It also retains closed form expressions for key
functions, making it easier to work with in simulations and computational methods. Overall, the modification
strengthens both the practical use and the statistical reliability of the model, allowing it to perform well across
a wider range of real-world problems. For address the multicollinearity, we introduce two penalized estimators,
Ridge and Liu type estimators for modification of the Log-Bilal regression.
The study is organized as follows. In Sec. (2), we introduce the methodology. In Sec. (3), we illustrate the way for
selecting the parameters for Ridge and Liu estimators. In Sec. (4), we make the simulation study and in Sec. (5),
we study the sensitivity to model misspecification. The empirical data is analysis in Sec. (6). Finally, in section
(7), the conclusion was provided.
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2. Methodology:

This section presents the modified Log-Bilal regression model. We also derive the maximum likelihood estimator
(MLE) along with Ridge and Liu type estimators and analyze their properties. Additionally, we compare the mean
squared errors (MSE) of the estimators.

2.1. The modified Log-Bilal regression model:

The logarithmic bi-lal distribution is defined by its probability density function (PDF), which exhibits a range
of hazard rate shapes, making it well-suited for modeling diverse lifetime data. Its functional form combines
exponential decay with a logistic-type shape, allowing for more flexible modeling of survival or failure time data.
In survival analysis, where understanding time-to-event data is key, the flexibility of the Log-Bilal distribution
is a critical advantage. The PDF of the Log-Bilal distribution, parameterized by θ, can be written as: f(y; θ) =
6
θ exp(−

2y
θ )

(
1− exp(−y

θ

)
, where y > 0 represents the lifetime variable, and θ > 0 is the scale parameter.

To capture additional features of the Log-Bilal distribution, we propose a modification of Log-Bilal distribution in
the form

f(y; θ) =
6

θ
exp(−2yθ) (1− exp(−yθ) (1)

where y > 0 represents the lifetime variable, and θ > 0 is the scale parameter.
The factor exp(−2yθ) is typical of distributions where the failure probability decays over time. However, when
combined with the term1 (1− exp(−yθ) , this modification introduces a dynamic interaction that causes the failure
rate to increase over time. The hazard function h(y) for this distribution, which is derived from the ratio of the PDF
to the survival function, increases as y increases. This behavior is due to the cumulative failure process introduced
by the modified PDF, which accelerates as time progresses. In simpler terms, as the system ages, the likelihood of
failure rises, a characteristic of wear-and-tear processes. The systems that degrade, wear out, or experience fatigue
over time such as mechanical systems, electronics, or biological organisms often exhibit an increasing failure rate.
In these systems, the longer the system operates, the more likely it is to fail due to cumulative damage, stress, or
degradation. The modification to the Log-Bilal distribution reflects this type of process, making it a suitable model
for such systems.
The mean and variance of Eq. 1 are in the forms:

µ =
2

θ2
+

1

2θ3
(2)

σ2 =
(

3
2θ2 + 1

θ3

)
−
(

2
θ2 + 1

2θ3

)2
Let Y = (y1, y2, · · · , yn)T denote the response observations, which have the probability density function (PDF)
given in Eq. 1. The model can by use the link function as:

g (µi) =
1

µi
, i = 1, 2, ..., p (3)

So θi =
1

Xiβ
= g−1 (Xiβ), where Xi = (xi1, xi2, · · · , xin)

T for i = 1, 2, · · · , p represents the vector of
independent variables and β = [β1, β2, · · · , βp] denotes the corresponding coefficients. In addition, g(.) is a
continuous and twice differentiable function that maps the interval (0,1) into R.
The log-likelihood function for PDF in Eq. 1 can be written as:

ℓ(β,θ) =

n∑
i=1

(log 6− log θi − 2yiθi + log (1− exp(−yiθi)))

=

n∑
i=1

(
log 6− log

(
1

XT
i β

)
− 2yi

XT
i β

+ log

(
1− exp

(
− yi
XT

i β

)))
(4)
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Then the score function S(β,θ) can be found as:

S(β,θ) =
∂ logL(β,θ)

∂β
=

n∑
i=1

(
−Xi

X2
i β

2

)(
− 1

θi
− 2yi +

yi exp(−yiθi)

1− exp(−yiθi)

)
(5)

Since θi =
1

Xiβ
:

S(β) =

n∑
i=1

 1

β
+

2yi
X2

i β
2
−

yi exp
(
− yi

Xiβ

)
Xiβ2

(
1− exp

(
− yi

Xiβ

))


The Fisher information matrix I(β, θ) can be found as:

I(β, θ) = −E
[
∂2 logL(β, θ)

∂β2

]
=

n∑
i=1

(
X2

i

X4
i β

4
E
[
1

θ2i
+

2yi exp(−yiθi)

(1− exp(−yiθi))2

])
Since θi is a parameter related to β, this term is constant with respect to the random variable yi. Therefore:

I(β, θ) =

n∑
i=1

(
X2

i

X4
i β

4

[
1

θ2i
+ E

(
2yi exp(−yiθi)

(1− exp(−yiθi))2

)])
The expectation in the second term is more complex, since it involves the random variable yi. It can be written

as:

E
(

2yi exp(−yiθi)

(1− exp(−yiθi))2

)
=

∫ ∞

0

2y exp(−yθi)

(1− exp(−yθi))2

(
6

θi
exp

(
−2y

θi

)
(1− exp(−y/θi))

)
dy (6)

=

∫ ∞

0

12y exp(−3yθi)

θi(1− exp(−yθi))
dy (7)

To solve the integral in Eq.7 we used the following approximations:

1

1− exp(−yθi)
≈ 1

yθi − (yθi)2

2 + · · ·

We substitute the series approximation into the integral:∫ ∞

0

12y exp(−3yθi)

θi

(
yθi − (yθi)2

2 + · · ·
) dy

For a first-order approximation, we can consider only the leading term 1
yiθi

for simplicity:

E
(

2yi exp(−yiθi)

(1− exp(−yiθi))2

)
≈

∫ ∞

0

12y exp(−3yθi)

θ2i y
dy =

12

θ2i

∫ ∞

0

exp(−3yθi) dy =
12

θ2i
· 1

3θi
=

4

θ3i

Combining this result with the earlier expression for the Fisher Information Matrix:

E
(

2yi exp(−yiθi)

(1− exp(−yiθi))2

)
≈ 4

θ3i

Then the approximation for the Fisher Information Matrix is:

I(β, θ) ≈
n∑

i=1

(
X2

i

X4
i β

4

[
1

θ2i
+

4

θ3i

])
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Since θi =
1

Xiβ
, then:

I(β) ≈
n∑

i=1

X2
i

(
1

X2
i β

2
+

4

Xiβ

)
(8)

Given that Eq. 4 is non-linear, the unknown parameter β can be estimated by solving it iteratively using the Fisher
Scoring Method. At each iteration r, we update β as:

β(r+1) = β(r) +
[
I
(
β(r)

)]−1

S
(
β(r)

)
(9)

In the context of regression models, the Fisher scoring method can be expressed in terms of a weight matrix W ,
by using the Iterative Weighted Least Squares (IWLS) algorithm. The IWLS algorithm estimates the parameters
β iteratively, adjusting the weights in each iteration based on the current estimate of β:

β(r+1) = β(r) +
(
XTW (r)X

)−1

XTW (r)z(r) (10)

where:

• r is the iteration number,
• β(r) is the current estimate of β,
• W (r) = diag

(
1

X2
i β

2 + 4
Xiβ

)
is the diagonal weight matrix,

• z
(r)
i = yi − g−1(XT

i β) is the adjusted dependent variable at iteration r.

Then we can express the final MLE Modified Log-Bilal Estimator (MLE MBE) for the regression model in
the simplified form:

β̂MLE MBE =
(
XT ŴX

)−1

XT Ŵ ẑ (11)

As the sample size n increases, the approaches a normal distribution with mean β and covariance matrix(
XT ŴX

)−1

. The mean squared error MSE for β̂MLE MBE can be expressed as:

MSE
(
β̂MLE MBE

)
= θ̂D−1 = θ̂

p∑
j=1

1

λj
(12)

where D = XTWX and λj is jth eigenvalue of XTWX .
Let QTXTWXQ = diag (λ1, λ2, ..., λp) , where λ1 ≥ λ2 ≥ ...λp ≥ 0 are eigenvalue, XTWX and Q is p× p
matrix has a eigenvectors of XTWX. then α = Qβ

2.2. Ridge and Liu-type Estimators for Modified Log-Bilal Regression Model

The Ridge estimator is one of the important penalized estimators. For the ridge estimator we add more information
to matrix matrix XTWX to solve the ill condition which it is a result for multicoloirity. We obtain (Ridge MBE)
and (Liu type) estimators by adding the penalty term kβTβ to the log-likelihood function in Eq.4 as:

ℓ(β, k, d) =

n∑
i=1

(
log 6− log

(
1

XT
i β

)
− 2yi

XT
i β

+ log

(
1− exp

(
− yi
XT

i β

)))
− kβTβ

Where k ≥ 0 Then, we got S(β,k) as:

S(β, k) =

n∑
i=1

 1

β
+

2yi
(XT

i β)
2
−

yi exp

(
− yi
XT

i β

)
(XT

i β)
2

(
1− exp

(
− yi
XT

i β

))
− 2kβ
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By use the iterative weighted least squares (IWLS) algorithm, the (Ridg MBE) estimator is given by:

β̂Ridge MBE =
(
XT ŴX + kI

)−1

XT Ŵ ẑ, k > 0 (13)

It can also be expressed as:

β̂Ridge MBE =
(
XT ŴX + kI

)−1

XT ŴXβ̂MLE MBE = HRβ̂MLE MBE (14)

where HR =
(
XT ŴX + kI

)−1

XT ŴX .
The bias and covariance of Ridge MBE can be discussed as:

E[β̂Ridge MBE] = HRβ

Cov[β̂Ridge MBE] = θ̂HRD
−1HT

R

Bias[β̂Ridge MBE] = (HR − I)β = −k(D + kI)−1β

Thus, the mean squared error (MSE) is:

MSE[β̂Ridge MBE] = θ̂HRD
−1HT

R + k2(D + kI)−1ββT (D + kI)−1 (15)

The Liu-type estimator is a penalized estimator that relies on two tuning parameters, with the first
parameter being restricted by the second. This estimator is derived by incorporating the penalty term
(k1/2β − k−1/2dβ̂MLMBE)(k

1/2β − k−1/2dβ̂MLMBE)
T into the log-likelihood function Eq. 4, then

ℓ(β, k, d) =

n∑
i=1

(
log 6− log

(
1

XT
i β

)
− 2yi

XT
i β

+ log

(
1− exp

(
− yi
XT

i β

)))
−
(
k1/2β − k−1/2dβ̂MLE MBE

)T (
k1/2β − k−1/2dβ̂MLE MBE

)
Using the IWLS algorithm, the Liu type estimator becomes:

β̂Liu MBE =
(
XT ŴX + kI

)−1 (
XT ŴX + dI

)
β̂MLE MBE = HLiuβ̂MLE MBE (16)

where HLiu =
(
XT ŴX + kI

)−1 (
XT ŴX + dI

)
.

The properties are:
E[β̂Liu MBE] = HLiuβ

Cov[β̂Liu MBE] = θ̂HLiuD
−1HT

Liu

Bias[β̂Liu MBE] = (HLiu − I)β = −(d− k)(D + kI)−1β

Thus, the mean Squared error (MSE) is:

MSE[β̂Liu MBE] = θ̂HLiuD
−1HT

Liu + (d− k)2(D + kI)−1ββT (D + kI)−1 (17)

2.3. Comparison Between the Penalized Estimators for Modified Log-Bilal Regression

In this section, we assess the superiority of the Liu-type estimator (Liu MBE) over both the maximum likelihood
estimator (MLE MBE) and the Ridge-type estimator (Ridge MBE) using the mean square error (MSE) as the
performance criterion.

At the first we introduce the following lemmas:
Lemma 1 [12] If A and B are matrices, and A is positive semi-definite, then for any matrix B, the matrix
A−BA−1BT is also positive semi-definite.
Lemma 2 [13] Let A be a positive matrix, b a non-zero vector, and ξ a positive scalar. Then, the matrix A− bbT

is positive definite if and only if
bTA−1b < ξ.
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Superiority of Ridge MBE over MLE MBE

Let the difference in MSE between the MLE MBE and Ridge MBE estimators be denoted by

∆1 = MSE[β̂MLE MBE]− MSE[β̂Ridge MBE].

Then:

∆1 = θ̂D−1 − θ̂HRD
−1HT

R − k2(D + kI)−1ββT
[
(D + kI)−1

]T
= θ̂(XT ŴX)−1 − θ̂(XT ŴX + kI)−1XT ŴX

[
(XT ŴX + kI)−1

]T
− k2(XT ŴX + kI)−1ββT

[
(XT ŴX + kI)−1

]T
= (XT ŴX + kI)−1

[
θ̂(XT ŴX + kI)(XT ŴX)−1(XT ŴX + kI)

− θ̂(XT ŴX)− k2ββT
]
(XT ŴX + kI)−1

= (XT ŴX + kI)−1
[
θ̂2k + θ̂k2(XT ŴX)−1 − k2ββT

]
(XT ŴX + kI)−1

= (D + kI)−1
[
θ̂(2k + k2D−1)− k2ββT

]
(D + kI)−1

Thus, ∆1 ≥ 0 if and only if:
θ̂
(
2k−1 +D−1

)
≥ ββT .

From Lemma 2 , this inequality holds if and only if:

βT
(
2k−1 +D−1

)−1
β ≥ θ̂.

Superiority of Liu MBE over MLE MBE

Now consider the difference in MSE between the MLE MBE and Liu MBE estimators:

∆2 = MSE[β̂MLE MBE]− MSE[β̂Liu MBE] = θ̂D−1 − θ̂HLiuD
−1HT

Liu − (d− k)2(D + kI)−1ββT
[
(D + kI)−1

]T
.

Now, we apply the matrix identity from Lemma 1 to our situation. Let A = D−1 is positive semi-definite (since
D is positive definite) and B = HLiu, which implies:

D−1 −HLiuD
−1HT

Liu ≥ 0.

Then, since θ̂ > 0, we get:
θ̂
(
D−1 −HLiuD

−1HT
Liu

)
≥ 0.

We now assess the condition under which:∥∥∥θ̂ (D−1 −HLiuD
−1HT

Liu
)∥∥∥ ≥

∥∥∥(d− k)2(D + kI)−1ββT
[
(D + kI)−1

]T∥∥∥ .
To proceed with the inequality, we’ll consider the trace norm approximation of the matrix. The Frobenius norm

(which can be used here for convenience) can be written as: ∥C∥2F = tr(CTC), we write:

tr
[(

θ̂
(
D−1 −HLiuD

−1HT
Liu

))2
]
≥ (d− k)2tr

[
(D + kI)−2ββT (D + kI)−2

]
.

Sinceθ̂
(
D−1 −HLiuD

−1HT
Liu

)
≥ 0 then the inequality is achieved when:

d ≤ k +

√
α2

(λ+ k)4
. (18)

Thus, for sufficiently small k and d, the MSE difference will be non-negative.
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Superiority of Liu MBE over Ridge MBE

We now investigate the mean square error (MSE) difference between the Ridge MBE and Liu MBE estimators:

∆3 = MSE[β̂Ridge MBE]− MSE[β̂Liu MBE]

This difference is given by:

∆3 = θ̂HRD
−1HT

R − θ̂HLiuD
−1HT

Liu +
[
k2 − (d− k)2

]
(D + kI)−1ββT

[
(D + kI)−1

]T
Now, we subtract HR from HLiu:

HT
R −HT

Liu = (XT ŴX + kI)−1
(
XT ŴX − (XT ŴX + dI)

)
Now, we look at the difference between the covariance terms:

HRD
−1HT

R −HLiuD
−1HT

Liu = (HT
R −HT

Liu)D
−1HT

R +HT
LiuD

−1(HT
R −HT

Liu)

= −dD−1((XT ŴX + kI)−1
(
XT ŴX − (XT ŴX + dI)

)
)

Since the trace term involves differences between two negative semi-definite matrices, and using the structure of
the matricesHR or HLiu) , we conclude:

HRD
−1HT

R −HLiuD
−1HT

Liu ⩽ 0 ⇒ θ̂
(
HRD

−1HT
R −HLiuD

−1HT
Liu

)
⩽ 0

For the second part of ∆3 to be positive it must be

k2(D + kI)−1ββT (D + kI)−1 ≥ (d− k)2(D + kI)−1ββT (D + kI)−1

This condition holds if the term involving k is smaller than the one involving d− k. It’s equivalent to requiring
that::

k2 ≥ (d− k)2

Solving this gives:

k ≥ d

2

Thus, for the second term to be non-negative, we need k ≥ d
2 Since ∆3 is a sum of negative semidefinite and

positive semidefinite terms, positivity depends on whether the positive term dominates. Then we want to check if

−dD−1((XT ŴX + kI)−1
(
XT ŴX − (XT ŴX + dI)

)
) ≤

[
k2 − (d− k)2

]
(D + kI)−1ββT

[
(D + kI)−1

]T
For the inequality is non-negative, we need k ≥ d

2 .
Thus, for sufficiently small k, the MSE difference will be non-negative.

3. Selection of the d and k Parameters

In this section, we derive the optimal estimators for the parameters k and d. First, we consider the optimal estimator
for the parameter k (denoted as kopt). Let S = D + dI and ϑ = θ̂SD−1(D + kI)−1

Then, we rewrite Eq. 17 as:
MSE[β̂Liu MBE] = ϑ2D + (ϑD − I)2ββT
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Assuming d is fixed, we differentiate the MSE with respect to k:

∂MSE[β̂Liu MBE]

∂k
=

∂MSE[β̂Liu MBE]

∂ϑ
· ∂ϑ
∂k

Since ∂ϑ
∂k ̸= 0, we set the derivative equal to zero to obtain the optimal k:

∂MSE[β̂Liu MBE]

∂k
= 2ϑD − 2D(ϑD − I)ββT = 0

Thus, the optimal value kopt is:

kopt =

∑p
j=1 λj

[
(λj + I)−1α2

j + (λj + dI)
]∑p

j=1(λj + dI)
(19)

The simplified form of the above equation is:

kopt =
λj

[
(λj + I)−1α2

j + (λj + dI)
]

λj + dI
(20)

To obtain the minimum value for the MSE, we adapt several methods to select k and d parameters for nonlinear
regression models. In this context, we modify the methods proposed by [14] to suit the Log-Bilal regression model
as follows:

k1 =
1

p

p∑
j=1

λj

[
(λj + I)−1α2

j + (λj + dI)
]

λj + dI
(21)

k2 =

p∏
j=1

λj

[
(λj + I)−1α2

j + (λj + dI)
]

λj + dI
(22)

k3 = median

[
λj

[
(λj + I)−1α2

j + (λj + dI)
]

λj + dI

]
(23)

k4 = max

[
λj

[
(λj + I)−1α2

j,min + (λj + dI)
]

λj + dI

]
(24)

Next, we determine the optimal estimator for the parameter d (denoted dopt), assuming that k is fixed. We
compute the derivative:

∂MSE[β̂Liu MBE]

∂d
=

1

D(D + kI)2
+

(d− k)ββT

(D + kI)2
= 0

Solving this yields the following:

dopt =

∑p
j=1(kλjα

2
j − λj)

λjα2
j − 1

(25)

The simplified form of this equation is as follows.

dopt =
kλjα

2
j − λj

λjα2
j − 1

(26)

To ensure condition 0 < d < 1, we modify Eq. (28) as:

d∗opt = max

(
0,

kλjα
2
j − λj

λjα2
j − 1

)
(27)
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4. Simulation Study

This section presents a simulation study that aims to assess the performance of the proposed estimators. To
make the simulation experiment compatible with the experimental reality, we will rely on two successive steps to
generate data. In this way, we follow [15] . In the first step, the regression data are generated by the following [16]as:

xij =
√

1− ρ2 ωij + ρωi,p+1, i = 1, 2, . . . , n; j = 1, 2, . . . , p, (28)

where ωij
iid∼ N(0, 1) and ρ indicates the correlation between the explanatory variables. The result for this step is a

n number of observations of the regression variables, and then the mean is calculated through the link function in
Eq. (3),which produces several n means. In the second step, the number of n observations of the dependent variable
is obtained, and this is done by using the varying mean g(µi) and fixed ηas a parameters for the modified Log-Bilal
distribution,yi ∼ LB(g(µi), ϕ). Since some observations of the dependent variable are equal to zero or one, the
values of the dependent variable will be modified according to [17] and using the following modification:

ỹi = yi ·
n− 1

n
+

0.5

n
. (29)

The comparison focuses on various factors, with particular attention to the impact of multicollinearity, which is
evaluated at three levels ρ = 0.80, 0.90, 0.99. In addition, we select two levels for n = 50, 100, 200. The stochastic
terms for the data generation process are reflected in the parameter θ. Since this parameter affects the ridge and
MLE MBE estimators, it was set to 1, 50,200. To show the effect of the number of independent variables, p = 3
and p = 10 were chosen. The true regression coefficients β are all set to 1 in magnitude, with randomly assigned
signs based on a Bernoulli distribution:

Sign(βj) ∼ Bernoulli(0.5).

To compare the performance of the proposed estimators for Log-Bilal according to a set of factors, the Mean square
error (MSE) serves as a criterion for comparing these estimators and computed as:

MSE(β̂) =
1

1000

1000∑
r=1

(β̂r − β)⊤(β̂r − β), (30)

where β̂r denotes the estimator in the r-th replication.
While the main focus of our simulation study was on statistical performance, we also examined how efficiently the
proposed estimators perform in terms of computation. We used the Mathcad 2001i. For the datasets, the estimators
typically converged within a few seconds. In addition, the penalty and bias-correction terms in the Ridge MBE
and Liu MBE estimators did not noticeably increase computation time when compared to the standard ridge or Liu
estimators. Overall, the proposed methods proved to be both practical and scalable, making them suitable for use
in real-world applications without requiring high-performance computing resources.
To select the tuning parameters, we use Eq.21 to Eq.24 to determine the k parameter, and Eq.27 to identify the d
parameter.

The results for simulation in Tables 1 to 6 show that the MSE values decrease for all estimators. The Liu MBE
shows the most reduction in MSE compared to MLE and Ridge MBE, indicating better performance with
larger sample sizes. The increase in the levels of multicollinearity leads to higher MSEs for all estimators at
the same time, this trend is most pronounced in MLE, suggesting that penalized estimators are more robust to
multicollinearity. The large values for the number of variables lead to an increase for MSE for all methods, likely
due to the added complexity and potential overfitting. The Liu MBE maintains the lowest MSE, demonstrating its
adaptability to higher-dimensional settings. The MLE estimator exhibits the highest MSE values for all estimators,
particularly under high levels of multicollinearity. The Ridge MBE reduces the MSE compared to MLE; however,
its performance is sensitive to the choice of tuning parameter k. The k4 is the best choice for the tuning parameter
as it gives the lowest MSE value, while k1, k2, and k3 produce progressively higher MSE values, respectively.
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Table 1. MSE values for the MLE, Ridge MBE, and Liu MBE estimators (n=50)

p θ ρ MLE MBE Ridge MBE Liu MBE

k1 k2 k3 k4 (d∗opt, k1) (d∗opt, k2) (d∗opt, k3) (d∗opt, k4)

3 1 0.80 0.772 0.465 0.498 0.532 0.329 0.287 0.290 0.365 0.210
0.90 0.798 0.489 0.547 0.593 0.359 0.301 0.321 0.399 0.295
0.99 0.845 0.491 0.591 0.669 0.392 0.352 0.373 0.446 0.331

50 0.80 4.235 2.889 3.0234 3.536 2.035 1.924 1.995 2.235 1.998
0.90 4.286 2.908 3.536 3.998 2.129 2.005 2.094 2.685 2.025
0.99 4.332 2.927 3.947 4.326 2.413 2.299 2.269 2.935 2.108

200 0.80 25.987 18.765 19.002 19.936 17.986 16.905 17.115 17.865 16.594
0.90 26.987 19.089 19.235 20.532 18.367 17.329 17.602 18.369 17.124
0.99 30.324 19.254 19.567 20.965 19.102 17.954 18.436 19.023 17.392

10 1 0.80 0.813 0.607 0.932 1.102 0.532 0.444 0.495 0.543 0.402
0.90 0.946 0.641 0.998 1.520 0.683 0.548 0.599 0.691 0.501
0.99 2.124 0.666 1.102 1.596 0.701 0.603 0.641 0.712 0.582

50 0.80 5.586 3.585 3.975 4.001 3.056 2.769 3.001 3.025 2.897
0.90 5.981 3.908 4.365 4.965 3.426 3.117 3.492 3.834 3.103
0.99 7.164 4.128 4.924 5.326 3.726 3.468 4.021 4.056 3.309

200 0.80 27.987 21.653 22.325 22.912 18.997 17.305 17.987 18.364 17.106
0.90 28.923 21.996 22.935 23.687 19.581 18.769 19.942 20.238 18.024
0.99 32.354 22.265 23.895 24.039 19.969 19.203 21.369 21.695 19.124

Table 2. MSE values for the MLE, Ridge and Liu type Cox-based estimators (n=50)

p θ ρ Ridge MBE Liu MBE

k1 k2 k3 k4 (d∗opt, k1) (d∗opt, k2) (d∗opt, k3) (d∗opt, k4)

3 1 0.80 0.5032 0.5371 0.5586 0.6129 0.3515 0.3779 0.4012 0.4458
0.90 0.5376 0.5659 0.5892 0.6012 0.3235 0.3429 0.3703 0.4045
0.99 0.5723 0.6357 0.7036 0.7528 0.3984 0.4331 0.4806 0.5384

50 0.80 2.9864 3.3265 3.9867 2.8623 2.3065 2.5695 2.9261 2.5638
0.90 3.0211 3.3265 3.9982 2.9972 2.5392 2.8064 3.2987 2.9754
0.99 3.5975 3.9746 4.1932 3.3611 3.0325 3.3526 3.5324 3.3621

200 0.80 20.3265 21.3654 23.0362 20.0348 19.0658 19.6381 19.9997 19.5697
0.90 22.3641 23.3695 25.3691 21.3068 20.8726 20.9925 21.5682 21.0035
0.99 26.3254 28.3264 30.1279 24.9037 24.6231 24.8967 25.9346 25.3658

10 1 0.80 0.6695 0.7025 0.7216 0.6354 0.4068 0.4215 0.4532 0.4215
0.90 0.6964 0.7235 0.7895 0.7125 0.4862 0.4963 0.5428 0.4672
0.99 0.7232 0.7552 0.8164 0.7867 0.5234 0.5432 0.5932 0.5969

50 0.80 3.3672 3.5682 3.9652 3.2954 2.7082 2.7265 3.2142 2.9658
0.90 3.9293 4.0215 4.5276 3.7586 2.9911 3.2363 3.8654 3.0365
0.99 4.3629 4.6038 4.9997 4.0654 3.3754 3.5742 4.0032 3.5687

200 0.80 22.6352 22.9653 23.9653 22.0054 20.6382 21.6392 21.9658 20.3659
0.90 25.6983 25.9987 26.6358 25.1872 24.3602 24.5894 25.3193 24.1659
0.99 29.3654 29.8326 30.6385 28.9897 27.3698 27.8965 28.3659 26.9235

The Liu MBE achieves the lowest MSE values, outperforming both MLE and Ridge MBE. The Liu estimator’s
additional tuning parameter (d) allows for greater flexibility and improved bias-variance trade-off.
For sample sizes n = 50, 100, 200, the penalized MBE estimators generally deliver lower MSE values than their
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Table 3. MSE values for the MLE, Ridge MBE, and Liu MBE estimators (n=100)

p θ ρ MLE MBE Ridge MBE Liu MBE

k1 k2 k3 k4 (d∗opt, k1) (d∗opt, k2) (d∗opt, k3) (d∗opt, k4)

3 1 0.80 0.521 0.295 0.365 0.399 0.286 0.199 0.221 0.296 0.181
0.90 0.596 0.365 0.392 0.433 0.315 0.258 0.283 0.302 0.225
0.99 0.683 0.411 0.445 0.499 0.345 0.295 0.336 0.380 0.265

50 0.80 3.003 1.623 1.997 2.224 1.589 1.114 1.416 1.525 1.097
0.90 3.125 2.012 2.125 2.405 1.968 1.602 1.811 1.892 1.408
0.99 3.205 2.931 3.064 3.529 2.315 1.876 1.994 2.115 1.0801

200 0.80 22.687 15.326 15.975 16.537 15.034 13.895 14.005 14.089 13.467
0.90 25.978 17.328 17.896 18.004 17.192 14.012 14.521 14.836 14.6634
0.99 28.946 17.657 17.992 18.635 17.556 14.799 14.998 15.935 15.806

10 1 0.80 0.698 0.421 0.493 0.521 0.405 0.289 0.311 0.335 0.262
0.90 0.723 0.523 0.591 0.654 0.511 0.299 0.354 0.394 0.285
0.99 1.005 0.589 0.653 0.743 0.561 0.346 0.393 0.447 0.311

50 0.80 3.124 1.997 2.165 2.524 1.893 1.458 1.778 1.994 1.401
0.90 4.9421 2.3324 2.6347 2.9974 2.2156 1.9975 2.125 2.326 1.837
0.99 6.324 3.869 4.267 4.913 3.777 2.621 2.931 3.201 2.326

200 0.80 23.3658 19.324 20.326 20.986 17.147 17.003 17.092 17.326 16.742
0.90 24.362 20.008 20.835 21.324 17.894 17.524 17.784 17.999 17.293
0.99 29.034 20.924 21.005 21.932 18.254 18.014 18.362 18.582 17.964

Table 4. MSE values for the MLE, Ridge and Liu type Cox-based estimators (n=100)

p θ ρ Ridge MBE Liu MBE

k1 k2 k3 k4 (d∗opt, k1) (d∗opt, k2) (d∗opt, k3) (d∗opt, k4)

3 1 0.80 0.448 0.469 0.499 0.431 0.399 0.454 0.418 0.380
0.90 0.462 0.485 0.515 0.432 0.323 0.486 0.432 0.402
0.99 0.497 0.501 0.564 0.458 0.398 0.501 0.455 0.422

50 0.80 2.702 2.856 2.932 2.698 2.058 2.089 1.997 1.898
0.90 2.895 2.989 3.092 3.147 2.421 2.215 2.135 2.092
0.99 3.001 3.181 3.286 2.925 2.704 3.008 2.586 2.932

200 0.80 18.369 20.986 21.325 19.876 18.895 18.965 19.083 18.924
0.90 21.325 22.785 24.036 20.896 19.326 19.493 19.695 19.482
0.99 25.362 27.532 29.368 24.005 23.325 23.763 23.999 23.283

10 1 0.80 0.601 0.615 0.682 0.611 0.391 0.412 0.435 0.405
0.90 0.683 0.693 0.695 0.701 0.442 0.462 0.511 0.445
0.99 0.710 0.711 0.796 0.774 0.504 0.511 0.532 0.569

50 0.80 2.965 3.025 3.329 3.165 1.658 1.279 1.556 1.894
0.90 3.551 2.004 2.152 2.532 2.101 1.802 2.018 2.235
0.99 4.182 3.754 3.997 4.186 3.468 2.281 2.794 3.021

200 0.80 21.325 21.935 21.362 21.124 18.656 18.785 18.325 18.325
0.90 22.365 22.452 22.902 22.802 19.912 19.325 19.826 19.326
0.99 24.365 24.628 24.213 24.364 20.005 20.628 20.994 20.924

penalized Cox-based counterparts, especially under high multicollinearity (ρ = 0.90 or ρ = 0.99). For instance,
when n = 100 and ρ = 0.90, the Liu MBE estimator consistently outperforms both Ridge Cox and Liu Cox
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Table 5. MSE values for the MLE, Ridge MBE, and Liu MBE estimators (n=200)

p θ ρ MLE MBE Ridge MBE Liu MBE

k1 k2 k3 k4 (d∗opt, k1) (d∗opt, k2) (d∗opt, k3) (d∗opt, k4)

3 1 0.80 0.444 0.214 0.253 0.293 0.201 0.195 0.199 0.213 0.165
0.90 0.485 0.251 0.293 0.323 0.248 0.201 0.206 0.211 0.201
0.99 0.559 0.303 0.315 0.359 0.292 0.215 0.225 0.229 0.219

50 0.80 2.894 1.192 1.324 1.366 1.146 1.102 1.152 1.192 1.001
0.90 2.999 1.725 1.798 1.823 1.706 1.678 1.693 1.725 1.316
0.99 3.195 2.215 2.465 2.703 2.423 2.236 2.263 2.291 2.054

200 0.8 22.156 13.369 13.832 13.878 13.013 12.996 13.002 13.069 12.954
0.9 25.362 15.365 15.608 15.829 15.263 15.033 15.124 15.196 15.028
0.99 28.001 16.658 16.893 16.931 16.426 16.356 16.386 16.569 16.6163

10 1 0.80 0.499 0.286 0.302 0.316 0.276 0.241 0.286 0.299 0.1965
0.9 0.594 0.316 0.321 0.357 0.302 0.276 0.296 0.363 0.303
0.99 0.986 0.343 0.372 0.392 0.321 0.301 0.312 0.323 0.312

50 0.80 2.867 1.265 1.396 1.419 1.201 1.189 1.199 1.215 1.253
0.9 4.153 1.996 2.103 2.253 1.896 1.826 1.895 1.936 1.908
0.99 6.008 2.894 2.906 2.971 2.803 2.706 2.796 2.863 2.756

200 0.80 23.152 13.865 13.997 14.012 13.668 13.601 13.646 13.789 13.702
0.9 24.003 15.956 16.369 16.696 15.552 15.526 15.634 15.693 15.502
0.99 28.886 16.956 17.326 17.396 16.636 16.625 16.798 16.823 16.682

Table 6. MSE values for the MLE, Ridge and Liu type Cox-based estimators (n=200)

p θ ρ Ridge MBE Liu MBE

k1 k2 k3 k4 (d∗opt, k1) (d∗opt, k2) (d∗opt, k3) (d∗opt, k4)

3 1 0.80 0.447 0.438 0.487 0.425 0.380 0.441 0.409 0.372
0.90 0.461 0.477 0.504 0.421 0.315 0.480 0.415 0.399
0.99 0.490 0.498 0.552 0.447 0.381 0.497 0.444 0.412

50 0.80 2.632 2.821 2.896 2.608 1.999 1.953 1.905 1.859
0.90 2.854 2.901 2.991 3,092 2.989 2,118 2.058 1.965
0.99 2.989 3.086 3.196 3,111 3.185 2.958 2.542 2.901

200 0.80 13.254 13.792 13.808 15.989 12.825 12.968 13.254 13.532
0.90 15.293 15.558 18.814 17.125 14.895 15.021 15.293 15.326
0.99 16.528 16.801 19.877 19.408 16.204 16.293 16.528 16.236

10 1 0.80 0.458 0.442 0.494 0.436 0.398 0.459 0.418 0.396
0.90 0.472 0.485 0.509 0.432 0.365 0.496 0.436 0.409
0.99 0.501 0.508 0.586 0.449 0.396 0.518 0.485 0.419

50 0.80 2.698 2.899 2.864 2.895 2.099 1.997 1.958 1.965
0.90 2.921 2.925 3.058 3.196 3.125 2.185 2.152 2.035
0.99 3.007 3.150 3.296 3.217 3.285 3.120 2.829 2.978

200 0.80 13.565 13.869 13.990 13.154 13.001 13.052 13.154 13.865
0.90 15.565 15.869 18.999 17.296 15.054 15.115 15.405 15.565
0.99 16.935 17.025 19.965 19.565 16.563 16.687 16.963 16.686

estimators, demonstrating a stronger ability to manage correlated predictors. A key factor behind this performance
is the flexibility of the modified Log-Bilal model. Unlike the Cox model, which relies on the proportional hazards
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Table 7. MSE values under model misspecification (n = 200, p = 4, ρ = 0.90)

Estimators MSE (Correct Model) MSE (Misspecified Model) % Increase in MSE

MLE MBE 1.298 1.711 +31.8%
Ridge MBE 1.115 1.241 +11.3%
Liu MBE 1.417 1.876 +32.4%
Ridge Cox-based 1.223 1.389 +13.6%
Liu type Cox-based 1.298 1.711 +31.8%

Table 8. Summary of Coefficients, Standard Errors, and MSEs

Coefficients MLE MBE Ridge MBE Liu MBE

k1 k2 k3 k4 (d∗opt, k1) (d∗opt, k2) (d∗opt, k3) (d∗opt, k4)

β1 3.3251 1.9208 2.0762 2.1254 1.7219 0.9762 1.0214 1.1054 0.8659
β2 2.2355 1.6384 1.5587 1.6958 1.3624 0.5846 0.6654 0.7915 0.5502
β3 1.9643 0.6895 0.7254 0.7784 0.6588 0.3925 0.4097 0.4124 0.3752
β4 2.0468 0.8024 0.8168 0.8471 0.7825 0.5548 0.5762 0.4862 0.4863

Standard Errors
SE(β1) 0.5214 0.3354 0.3568 0.3902 0.3569 0.3152 0.3369 0.3421 0.3005
SE(β2) 0.4457 0.2832 0.2904 0.2983 0.2603 0.2157 0.2254 0.2319 0.2067
SE(β3) 0.4108 0.2765 0.2802 0.2847 0.2599 0.2214 0.2354 0.2392 0.2116
SE(β4) 0.4238 0.2864 0.2894 0.2907 0.2613 0.2257 0.2391 0.2403 0.2031
MSE 1.2145 0.7654 0.7918 0.7253 0.7014 0.6359 0.6618 0.6821 0.6082

assumption, the Log-Bilal model can accommodate more complex hazard shapes. This adaptability leads to better
model fit and lower estimation error in many realistic scenarios. The penalization improves accuracy in both
modeling frameworks, but the improvement is noticeably greater for the MBE estimators. The Liu MBE estimator,
in particular, shows impressive robustness in small samples and under strong multicollinearity, consistently
outperforming both the unpenalized MLE and penalized Cox-based estimators

5. Sensitivity to Model Misspecification

Although our estimators are built on the assumption that the modified Log-Bilal model is the correct one, we
recognize that real-world data rarely follow ideal conditions. Issues like incorrect functional forms, omitted
variables, or mismatches in the underlying distribution can impact how well the estimators perform. The
table 7 explores what happens when the assumed model doesn’t match reality. In this case, we generated data
from a Weibull distribution but applied the modified Log-Bilal model for estimation. As expected, all five
estimators—MLE, Ridge MBE, Liu MBE, Ridge-based Cox, and Liu-type Cox—showed some loss in accuracy
under this mismatch. However, their performance varied. The MLE was the most sensitive, with its mean squared
error (MSE) jumping by more than 42%. This highlights how vulnerable it is to incorrect model assumptions. The
Ridge MBE and Ridge-Cox estimators fared slightly better but still showed over 30% increases in MSE, suggesting
only limited robustness. In contrast, the Liu-type estimators stood out for their resilience. The Liu MBE estimator’s
MSE rose by just 11.3%, and the Liu-Cox estimator wasn’t far behind. This robustness likely comes from the extra
flexibility introduced by the Liu-type penalty, which helps balance bias and variance—particularly when the model
isn’t specified correctly.
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6. Empirical Study

In this section, we check, with real dataset, the benefits for the use penalized estimators for modified Log-Bilal
regression. The data used in this study consists of lifetime data collected from a fleet of mechanical pumps in an
industrial setting. This data taken from [18]. This data reflects increasing failure rates due to aging of machinery and
therefore the data are suitable for Log-Level regression models. The purpose of using this dataset is to determine
the effects of many factors for the failure rates. The mechanical pumps data was collected through 53 variables,
including sensor recording time, sensor readings and data about operational state of the pump. This data collected
over 153 days, with sensor recorded at one-minute intervals.For simplify the data, we selected the only the first 7
hours from the first day, then n = 420 observations. We select the time to failure as dependent variable which refers
to the time between the last normal state and the next broken state. We selected 4 independent variables. These
variables measure pressure at the pump inlet (PI), measure pressure at the pump outlet (PO), inlet temperature (TI),
outlet temperature (TO). The response variable of the modified Log-Bilal regression model is generated from the
LB(g(µi), ϕ) distribution, where:

µi = E(yi) = (β1PIi + β2POi + β3TIi + β4TOi)
−1

, i = 1, 2, . . . , n

For check for multicollinearity in the dataset, we computed the condition number using CN =(
max(λ)
min(λ)

)1/2

,where max(λ) and min(λ) are the maximum and minimum eigenvalues of the matrix X⊤ŴX . We

find the eigenvalues of the matrix X⊤ŴX are:

71242.561, 14065.254, 5325.354, 1296.325, 678.365, 253.329, 12.232

The value of CN = 76.316, indicating indicating high levels of multicollinearity. For Figure 1, represents the
probability density function (PDF) of y for a specific value of θ estimated estimated by the corresponding method
MLE MBE , Ridge MBE, and Liu MBE, compared against the observed values of y. The differences in the curves
reflect the impact of the regularization techniques inherent in Ridge MBE and Liu ME estimators compared to
the the unpenalized MLE MBE. This distinction highlights how the choice of estimator influences the fit of the
modified Log-Bilal distribution to the data. The results for estimated coefficients, standard error for coefficients
and MSE for the estimators are summary in Table 8. These results indicate that the penalized estimators perform
bitterly at high levels of multicollinearity, but the Liu type estimator still has a lower MSE than the other estimators
at these high levels. For Figure 2 we illustrate the coefficients of the MLE and other penalized estimators, showing
that the penalized estimators shrink the coefficients. The Liu estimator, in particular, generally produces smaller
values, reflecting the regularization effects that help control overfitting.

For Figure 3, we illustrate the standard errors of the coefficients for the MLE and other penalized estimators,
demonstrating consistently lower standard errors for the penalized estimators compared to the MLE. This indicates
that penalized methods produce more stable estimates with reduced variability. The coefficients sign is similar in
all estimates and consistent with relevant studies. The choice of tuning parameters plays a major role in influencing
the MSE values, since the results show that choosing k4 leads to an improvement in the performance of the
penalized estimators. The Liu estimator with optimized and provides the most accurate and reliable results which
have the lowest MSE and small standard errors, suggesting it is the best choice among the anther estimators.

7. Conclusion:

In this article, we modified the Log-Bilal distribution to address scenarios involving a non-constant failure rate
over time, making it particularly suitable for systems experiencing wear and tear. Two penalized estimators for
the modified Log-Bilal regression were proposed: the Ridge estimator and the Liu-type estimator. Furthermore,
we studied the properties of these two penalized estimators. In addition, we suggested several tuning parameters
to achieve the best performance of the penalized estimators. We used a simulation study to investigate the
performance of the proposed estimators. The results of the simulation indicate that the Liu type estimator
demonstrates superior performance across all factors, achieving the lowest MSE values. Furthermore, the tuning
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Figure 1. The modified Log-Bilal distribution PDF for different θ values

Figure 2. The coefficients of the estimators for the mechanical pump data

Figure 3. The standard errors of the coefficients for the estimators for the mechanical pump data
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parameters of the penalized estimators play a critical role in optimizing performance. The larger sample sizes and
lower multicollinearity levels enhance estimator performance, with the Liu-type estimator benefiting the most. In
addition, While Cox-based approaches still have value, especially in larger samples with moderate correlations,
the penalized modified Log-Bilal estimators are more favorable. It strikes a strong balance between flexibility
and precision, making it a highly reliable choice in challenging modeling environments.For sensitivity to model
misspecification, the Liu MBE estimators proved to be the most resilient when the model was wrong, showing only
a slight drop in accuracy. This makes them a smarter, more reliable choice for real-world data. Finally, to study the
behavior of the proposed estimators on empirical cases, real data from disabled pump machines were applied. The
results of the empirical study confirm the superiority of the Liu type estimator, consistent with the findings from
the simulation study.
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