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Abstract Malaria remains a notable public health challenge in endemic regions, with an estimated 263 million cases and
579,000 malaria-related deaths globally in 2023. Climate and environmental factors, such as temperature, rainfall, and the
Normalised Difference Vegetation Index (NDVI), play a crucial role in malaria transmission. While statistical models aid in
malaria prediction, Bayesian methods remain underutilised despite their ability to incorporate prior knowledge into predictive
models. The major contribution of this study is to develop a Bayesian malaria prediction model incorporating climate
and environmental data. Both objective and subjective prior distributions are evaluated to determine their effectiveness in
improving model performance. The results indicate that a subjective prior outperforms other priors. Additionally, Ehlanzeni
(Mpumalanga), Vhembe and Mopani districts (Limpopo) are identified as high-risk malaria regions. The findings suggest
that malaria transmission peaks in summer and autumn, particularly in areas where temperatures during the night range
from 12°C-20°C, rainfall is moderate (100–200 mm), and NDVI exceeds 0.6. Malaria risk intensifies following months of
accumulated rainfall, creating optimal mosquito breeding conditions. These insights may assist malaria control programmes
in developing targeted interventions, such as early warning systems and vector management strategies. Future research will
explore Bayesian machine learning for malaria prediction.
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1. Introduction

Climate change is expected to increase the dangers and risks associated with malaria, particularly in vulnerable
regions. Notably, rising temperatures are projected to have the most harmful effects on malaria prevalence in
Africa during the period from 2021 to 2040 [1]. In 2023, the global number of malaria cases was estimated at 263
million, representing an increase of 11 million cases compared to 2022. During the same year, malaria-related
deaths worldwide were estimated at 597 000, with the African region accounting for an overwhelming 94% of
global cases and 95% of deaths [2]. Between September 2022 and August 2023, 5 813 malaria case notifications
were recorded in South Africa through the Notifiable Medical Conditions Surveillance System. Of these, the
endemic provinces of Limpopo, Mpumalanga, and KwaZulu-Natal accounted for 49%, 15%, and 7% of the cases
respectively, while the non-endemic province of Gauteng contributed 19% [3]. Vulnerable populations, such as
children under five years of age and pregnant women, are severely affected by malaria, which further deepens
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socio-economic inequalities and hinders development efforts in endemic regions [4].

The Intergovernmental Panel on Climate Change estimates that by the 2030s, 51-62 million people in Eastern
and Southern Africa will be at increased risk of malaria due to global warming [5]. Key climate and environmental
factors influencing malaria transmission include temperature, which affects larval development, mosquito survival,
parasite development, and biting rates, as well as rainfall, which creates breeding sites, supports the reproductive
cycle, and sustains mosquito survival and habitat. Additionally, the Normalised Difference Vegetation Index
(NDVI) shapes the nature of breeding sites, habitat types, and human-mosquito interactions [6, 7]. In addition,
factors such as conflict and humanitarian crises, resource constraints, and biological challenges, including drug
and insecticide resistance, continue to hinder global progress in the fight against malaria [8].

Malaria remains a crucial public health challenge in endemic countries, necessitating the implementation
of diverse control interventions. Common strategies include insecticide-treated nets, advancements in genomic
surveillance, rapid diagnostic tests, innovative treatment options, and vector control methods [4]. Among these
interventions, the RTS,S/AS01 malaria vaccine, endorsed by the World Health Organization (WHO), has shown
promise. Pilot studies in Ghana, Kenya, and Malawi, involving over two million children, demonstrated a 13%
reduction in child mortality due to its use [9]. Despite these achievements, challenges persist in scaling vaccine
distribution due to limited production capacity. While malaria vaccines offer varying degrees of protection and
minimal severe side effects, public perception of the vaccine in many African communities is high. However,
awareness and understanding of the vaccine remain relatively low [10]. This underscores the importance of
exploring every possible solution to mitigate malaria transmission and associated mortality.

Research emphasised the critical role of effective malaria outbreak early warning systems in predicting
incidence before outbreaks occur[11]. Additionally, studies highlighted the pressing need to address the impacts of
climate change on malaria pathogenesis. These studies suggests that predictive modelling and artificial intelligence
applications can play a pivotal role in addressing these challenges [12]. Malaria is one of the major vector-borne
diseases, highly sensitive to climate and environmental factors [13]. Recent advancements in malaria predictive
modelling have increasingly incorporated climate data. For instance, Kim et al. [14] and Landman et al. [15]
developed malaria prediction models using time-series forecasting techniques, integrating climate variables.
Similarly, studies by Adamu et al. [16], Lee et al. [17], and Nkiruka et al. [18] employed climate data within
Machine Learning algorithms to predict malaria trends. However, Lu et al. [19] conducted a review of ten studies
focused on developing prediction models for malaria re-introduction. Their findings revealed that while diverse
approaches, including mathematical, Machine Learning, Delphi, and statistical methods, were utilised, most
models were designed for European regions. Additionally, these prediction models exhibited a high risk of bias
due to poor reporting, suboptimal methodological rigor, and a lack of proper validation. These findings highlight
the urgent need for the development and thorough evaluation of robust malaria prediction models, particularly
tailored to endemic regions.

Bayesian methods offer distinct advantages in statistical modelling, particularly through the incorporation
of prior knowledge via both objective and subjective prior distributions. Despite these strengths, they remain
underutilised in scientific research [20]. As one study alone often cannot solve the entire problem, existing research
tends to address only specific components of the broader issue. For instance, Ibeji et al. [21] integrated only
socio-economic variables in their malaria prediction model, while Semakula [22] relied solely on demographic
and health surveys data. In contrast, the study by Rotejanaprasert [23] demonstrated progress by incorporating
both malaria vector species and climate variables. Nonetheless, their analysis was limited to provincial-level data,
potentially obscuring critical local patterns of malaria transmission. Motivated by these limitations, this study
makes a major contribution by developing a Bayesian predictive model that integrates climate and environmental
variables, specifically tailored to malaria-endemic regions in South Africa. Through the incorporation of prior
knowledge, Bayesian frameworks can yield more informed and robust predictions. Furthermore, this research
will evaluate and compare the performance of objective and subjective prior distributions within the Bayesian
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framework to assess their respective predictive capabilities.

A scoping review by Nkiruka et al. [18] on malaria prediction models using climate variability and
machine learning highlighted a range of methodologies, such as Seasonal Autoregressive Integrated Moving
Average (SARIMA), Autoregressive Integrated Moving Average (ARIMA), binomial regression, the Vector-Borne
Disease Community Model of Epidemics, sparse learning with elastic net regularisation, the Scale Interaction
Experiment–Frontier Version 2 (SINTEX-F2), support vector machines (SVM), artificial neural networks (ANN),
and ensemble learning techniques. However, the absence of Bayesian models in the review further highlights their
continued underutilisation in malaria prediction research. By addressing this gap, the present study contributes
to the limited body of literature on Bayesian methods in malaria prediction. The findings are expected to
support enhanced regional malaria surveillance and provide evidence-based insights for policy development and
intervention strategies.

2. Methodology

2.1. Study Area and Data Collection

This study focuses on malaria cases in three endemic South African provinces: KwaZulu-Natal, Limpopo, and
Mpumalanga. Each province offers unique climatic, geographical, and demographic characteristics that influence
malaria transmission dynamics. KwaZulu-Natal has three malaria-endemic districts namely, King Cetshwayo,
uMkhanyakude, and Zululand. These districts are susceptible to malaria transmissions, owing to their favourable
conditions for the malaria carrying mosquitoes, which thrive in regions with moderate rainfall and temperatures
conducive to the mosquito lifecycle. Limpopo, known for its predominantly warm climate, features two malaria-
endemic districts: Mopani and Vhembe. Mpumalanga contains one malaria-endemic district, Ehlanzeni, which
is distinguished by its warm temperatures and plateau grasslands. These ecological factors contribute to suitable
conditions for malaria transmission, particularly during rainy seasons when mosquito breeding sites are abundant.

For this study, secondary data sources have been utilised. Malaria case data is provided by the South African
National Department of Health, comprising confirmed cases of malaria, which include both locally transmitted
and imported instances. Climate data, obtained from the South African Weather Service (SAWS), includes daily
rainfall, maximum, and minimum temperature readings. These data are aggregated to generate monthly averages,
enabling a detailed analysis of the relationship between climatic factors and malaria incidence. In addition to
climate data, the study incorporates the Normalised Difference Vegetation Index (NDVI), a satellite-derived
measure that reflects the health and density of vegetation, which influences the abundance and distribution of
malaria vectors. NDVI data is accessed through EarthExplorer (EE), an online platform hosted by the United
States Geological Survey (USGS). The analysis is based on data spanning from 2018 to 2022, providing a robust
temporal dataset to explore the interactions between environmental factors and malaria incidence in the selected
provinces.

2.2. Model Specifications

2.2.1. Prior Distributions: The choice of prior distributions is crucial in Bayesian statistics. Different rules
suggested for choosing prior distributions are objective (non-informative or weakly informative) and subjective
(informative) [24]. This study tests and compares objective and subjective prior distributions with the goal of
developing malaria prediction models.

i. Objective prior distributions

Objective prior distributions are derived from the sample data embedded in the likelihood function [25].
These priors, often referred to as weakly informative or non-informative priors, are used when prior
knowledge is either limited or ambiguous, making it difficult to specify a fully subjective prior distribution.
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In this study, we examine both non-informative and weakly informative priors. For the non-informative
case, we test Jeffreys prior due to its strong theoretical foundation in information theory and, most
importantly, its invariance to parameterisation. For the weakly informative case, we consider the conjugate
prior corresponding to the sample data distribution. The dataset used in this study is best described by a
negative binomial model, as demonstrated in the study by Sehlabana et al. (Inpress). Jeffreys prior for this
model is defined as follows:

π(θ) ∝ |I(θ)|1/2,

where | · | represents the determinant and I(θ) denotes the expected Fisher information matrix. The dataset
used in this study is best described by a negative binomial model, with Jeffreys prior approximated by
beta(a, b), where a = ϵ and b = 0.5 as ϵ → 0, as demonstrated in the study by Sehlabana et al. (Inpress).
Conjugate priors are widely used in Bayesian analysis, particularly for exponential family distributions such
as the normal, Poisson, gamma, binomial, and negative binomial models. In the case of the negative binomial
distribution, the conjugate prior for the success probability P follows a beta distribution, P ∼ beta(α, β). The
parameters α and β determine the shape of the beta distribution, with the mean and variance given by:

E[P ] =
α

α+ β
,

and
Var(P ) =

αβ

(α+ β)2(α+ β + 1)
.

The total prior strength, S, measures how informative the prior is. It is derived from the mean µP and variance
σ2
P of the beta distribution and is given by:

S =
µP (1− µP )

σ2
P

− 1.

From the properties of the Beta distribution, we find that:

α+ β = S =⇒ α = SµP , and β = S(1− µP ).

Thus, the Beta parameters α and β are determined by µP and S, based on the dataset.
ii. Informative prior distributions

Subjective prior distributions are based on experts’ beliefs or knowledge, which are quantified into
probabilities and probability distributions through an elicitation process. For the dataset used in this study,
Sehlabana et al. (In progress) elicited prior distributions, and statistical assessments revealed that beta,
gamma, and normal distributions best captured expert perspectives on factors affecting malaria transmission.
These prior distributions are tested in this study, and their specifications are provided in Table 1.

Table 1. Specifications of elicited prior distributions

Probability Distribution Estimated Parameters
Beta (27.948; 83.957)
Gamma (37.585; 150)
Normal (0.250; 0.041)

2.2.2. Posterior distributions: The posterior distribution in a Bayesian framework is derived using Bayes’
theorem. It is defined as:

P (θ|Y ) =
P (Y |θ)P (θ)

P (Y )
,

where:
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P (θ|Y ) is the posterior distribution, representing the updated belief about the parameter θ given the observed
data Y ,
P (Y |θ) is the likelihood function, representing the probability distribution of the observed data given θ,
P (θ) is the prior distribution, reflecting the initial belief about θ before observing the data, and
P (Y ) is the marginal likelihood, which serves as a normalising constant, given by:

P (Y ) =

∫
P (Y |θ)P (θ) dθ.

Since P (Y ) is independent of θ, the posterior is often written as:

P (θ|Y ) ∝ P (Y |θ)P (θ).

Here, “∝” means "proportional to," indicating that the posterior is obtained by multiplying the likelihood and prior,
followed by normalisation. Consider that malaria counts Y follow a negative binomial distribution. The probability
mass function of Y is given by:

P (Y |r, P ) =
Γ(Y + r)

Γ(r)Γ(Y + 1)
P r(1− P )Y ,

and its likelihood function is given by:

L(r, P |Y ) =

n∏
i=1

Γ(Yi + r)

Γ(r)Γ(Yi + 1)
P r(1− P )Yi . (1)

where Pi =
eXiθ

1+eXiθ
. Consider that an informative normal prior specified in Table 1 is used in the model. That is,

the prior θ ∼ N(0.25, 0.001681). Then, the probability density function of the normal prior is given by:

P (θ) =
1√

2π × 0.001681
exp

(
−(θ − 0.25)2

2× 0.001681

)
. (2)

Combining the likelihood function in equation (1) and the prior distribution in equation (2), the posterior is given
by:

P (θ|Y ) =

n∏
i=1

[
Γ(Yi + r)

Γ(r)Γ(Yi + 1)
P r
i (1− Pi)

Yi × 1√
2π × 0.001681

exp

(
−(θ − 0.25)2

2× 0.001681

)]
. (3)

The log posterior is given by:

logP (θ|Y ) =

n∑
i=1

[log Γ(Yi + r)− log Γ(r)− log Γ(Yi + 1) + r logPi + Yi log(1− Pi)]−
(θ − 0.25)2

2× 0.001681
+ C,

where C is a constant that does not depend on θ. The posterior does not have a closed-form solution and is
approximated in this study using the Markov Chain Monte Carlo (MCMC) method.

2.2.3. Posterior predictive distribution: The posterior predictive distribution represents the distribution of future
malaria case counts, denoted by Y ∗, given the observed malaria case counts Y . It accounts for both parameter
uncertainty (through the posterior distribution) and the stochastic nature of new observations (through the
likelihood). Taking into account the likelihood function of Y in equation (1) and the posterior in equation (3),
the posterior predictive distribution is given by:

P (Y ∗|Y ) =

∫
P (Y ∗|θ)P (θ|Y )dθ.
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Considering that Y ∗|θ ∼ NegBin(r, P ∗), where P ∗ is computed using predictor X∗, then:

P (Y ∗|Y ) =

∫ n∏
i=1

[
Γ(Y ∗

i + r)

Γ(r)Γ(Y ∗
i + 1)

P r
i (1− Pi)

Y ∗
i

]
×

n∏
i=1

[
Γ(Yi + r)

Γ(r)Γ(Yi + 1)
P r
i (1− Pi)

Yi × 1√
2π × 0.001681

]
×

exp

(
−(θ − 0.25)2

2× 0.001681

)
dθ. (4)

Since the integral in equation (4) does not have a closed-form solution, sampling methods like Monte Carlo
integration are used to approximate it.

2.2.4. Model validation: In this study we use the Leave-One-Out (LOO) cross-validation method to estimate the
predictive accuracy of the fitted Bayesian model. The key metrics of LOO used for model validation in this study
include:

i. The expected log pointwise predictive density (elpd)
A primary measure of model predictive accuracy is the expected log pointwise predictive density (elpd),
defined as:

elpd =

n∑
i=1

∫
logP (Y ∗

i |y)Pt(Y
∗
i )dY

∗
i ,

where Pt(Y
∗
i ) is the true data-generating process. Since Pt(Y

∗
i ) is unknown, we approximate elpd using

leave-one-out cross-validation (LOO-CV), where elpd is expressed as:

elpdloo =

n∑
i=1

logP (Yi|Y(−i)),

where P (Yi|Y(−i)) is the predictive density computed by leaving out the ith observation, given by:

P (Yi|Y(−i)) =

∫
P (Yi|θ)P (θ|Y(−i))dθ.

The predictive density P (Yi|Y(−i)) is estimated using posterior draws from the full model.
ii. The effective number of parameters (Ploo)

The effective number of parameters, denoted by Ploo, quantifies the model complexity. It reflects how much
flexibility the model has in predicting new data. The Ploo is given by:

Ploo =

n∑
i=1

[
logP (Yi|Y )− logP (Yi|Y(−i))

]
,

where logP (Yi|Y ) is the log-likelihood of the observed data, and logP (Yi|Y(−i)) is the log-likelihood for
the ith observation computed using the model without the ith observation. Larger values of Ploo indicate more
complex models with higher flexibility.

iii. The LOO information criterion (Looic)
Looic is a model selection criterion based on LOO. It is calculated by adding a penalty term for the effective
number of parameters to the LOO estimate of predictive accuracy. Looic is given by:

Looic = −2× elpdloo + 2× Ploo.

Looic helps in comparing the models by balancing the fit of the model to the data with the complexity of the
model. Lower Looic values are preferred, indicating better predictive accuracy relative to their complexity.
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In addition to the three LOO metrics, we compute the difference in expected log predictive density (elpddiff)
between each model and a reference model. Given M models (M1,M2, . . . ,MM ), we select a reference model
Mref, typically the one with the higher elpdloo value. For each model Mj , we compute elpddiff given by:

elpddiff = elpd(100,j) − elpd(100,ref),

where elpd(100,j) is the LOO elpd for model j, and elpd(100,ref) is the LOO elpd of the reference model. A positive
elpddiff value indicates that the model has better predictive accuracy than the reference model, while a negative
elpddiff value indicates that the reference model has better predictive accuracy.

3. Results and Discussion

This section presents and discusses the results of the study, derived from the data exploration and statistical
modelling techniques outlined in Section 2. Table 2 summarises the variables included in the malaria count models,
providing their descriptions and the corresponding coding in the dataset.

Table 2. Description and Coding of Variables .

Variable Description Data Set Code Data Type
District Districts in the three Provinces of interest,

namely: Amajuba, Capricorn, Ehlanzeni district,
Gert Semenya, Harry Gwala, iLembe, King
Cetshwayo, Mopani, Nkangala, Sekhukhune,
Ugu, uMgungundlovu, uMkhanyakude, uMziny-
athi, uThukela,Vhembe, Waterberg, and Zulu-
land.

District with levels:
Amaj, Capr, Ehlan,
Gert, Harry G,
iLembe, KingC,
Mop, Nkang, Sekh,
Ugu, uMgun,
Umkha, Umzin,
Uthu, Vhem,
Water, and Zulu
respectively

Character

Malaria counts Malaria cases reported. Mal Numeric
Maximum temperatures This variable represents the average tempera-

tures during the day (in ◦C).
MaxT Numeric

Minimum temperatures This variable captures the average temperatures
during the night (in ◦C).

MinT Numeric

Month Months of the year, namely:January, February,
March, April, May, June, July, August, Septem-
ber, October, November, and December.

Month, with levels:
Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec

Character

Normalised differenced
vegetation index (NDVI)

It is a widely used metric for quantifying health
and density of vegetation using sensor data.

NDVI Numeric

Province The three malaria endemic provinces of South
Africa, namely: KwaZulu-Natal, Limpopo, and
Mpumalanga.

Province, with lev-
els: KZN, LP, MP

Character

Rainfall This variable measures the amount of precipita-
tion in each period (in mm).

Rain Numeric

Year The period in which the data was collected, in
years from 2028 to 2022.

Year, levels: 2018,
2019, 2020, 2021,
2022

Character
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Table 3. Summary Statistics of Predictors Across Provinces.

Province Predictor
Summary Statistics

Mean SD Min Max Median N

KZN

Malaria Cases 9.99 32.15 0 339 1.0 580
Max Temperature (◦C) 26.01 3.14 0.00 37.60 26.10 449
Min Temperature (◦C) 12.94 5.13 -0.20 22.30 13.90 448

Rainfall (mm) 67.52 64.69 0 465.40 56.95 460
NDVI 0.59 0.12 0.28 0.79 0.62 580

LP

Malaria Cases 101.26 238.62 0 3005 19.5 290
Max Temperature (◦C) 27.98 3.10 20.10 34.13 28.19 232
Min Temperature (◦C) 13.85 4.49 3.30 20.90 14.46 232

Rainfall (mm) 50.79 75.32 0 570.50 21.83 290
NDVI 0.44 0.12 0.24 0.72 0.45 290

MP

Malaria Cases 148.03 301.61 0 2451 9.5 174
Max Temperature (◦C) 24.22 3.23 16.65 30.76 24.65 174
Min Temperature (◦C) 10.37 4.67 0.05 18.98 10.82 174

Rainfall (mm) 55.22 56.66 0 262.24 38.52 174
NDVI 0.49 0.14 0.28 0.73 0.48 174

Table 3 presents a summary of key predictors across three South African provinces: KwaZulu-Natal (KZN),
Limpopo (LP), and Mpumalanga (MP). The mean malaria cases (Mal_mean) vary significantly across provinces,
with KZN reporting the lowest average at approximately 9.99 cases, while LP and MP exhibit much higher means
at 101.26 and 148.03, respectively. The standard deviation of malaria cases is also highest in LP (238.62) and MP
(301.61), indicating greater variability in malaria incidence compared to KZN (32.15). Minimum malaria cases
recorded in all provinces are zero, while maximum cases are highest in LP (3005) and MP (2451), with KZN
reaching only 339 cases.

Regarding temperature variables, the mean maximum temperature (MaxTemp_mean) is highest in LP (27.98°C),
followed by KZN (26.01°C) and MP (24.22°C). However, the range of maximum temperatures varies, with MP
having the lowest recorded MaxTemp_min (16.65°C) and LP the highest (20.10°C). The minimum temperature
(MinTemp_mean) follows a similar pattern, with LP having the warmest nights (13.85°C) and MP the coolest
(10.37°C). The temperature variability (MaxTemp_sd and MinTemp_sd) is fairly consistent across provinces, with
standard deviations ranging between 3°C and 5°C.

Rainfall patterns show that mean rainfall (Rain_mean) is highest in KZN (67.52 mm), followed by MP (55.22
mm) and LP (50.79 mm). The standard deviation of rainfall is highest in LP (75.32 mm), suggesting more
fluctuations in rainfall compared to MP (56.66 mm) and KZN (64.69 mm). The maximum recorded rainfall
(Rain_max) is also highest in LP (570.5 mm), while MP has the lowest maximum rainfall (262.24 mm).

The Normalised Difference Vegetation Index (NDVI), shows that KZN has the highest mean NDVI (0.59),
followed by MP (0.49) and LP (0.44). This suggests that KZN has denser or healthier vegetation compared to the
other two provinces. The NDVI variability (NDVI_sd) is slightly higher in MP (0.14) compared to LP (0.12) and
KZN (0.12), indicating that vegetation cover is more heterogeneous in MP.
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Overall, the data suggest significant differences in malaria incidence, temperature, rainfall, and vegetation among
the three provinces. Malaria cases are more frequent and variable in LP and MP than in KZN, which also has the
highest vegetation index and the most rainfall. Temperature differences may contribute to variations in malaria
incidence, with LP generally being the warmest province and MP the coolest.
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Figure 1. Malaria Distribution Across Provinces and Monthly Variations.

The composite Figure 1 provides an overview of malaria cases across three provinces, namely: KwaZulu-Natal
(KZN), Limpopo (LP), and Mpumalanga (MP) and their monthly distribution. The pie chart illustrates the
proportion of malaria cases reported in each province over the years of the study. Limpopo accounted for the
highest share, contributing 48.2% of total cases, followed by Mpumalanga with 42.3%, and KwaZulu-Natal (KZN)
with the lowest proportion at 9.5%. This suggests that malaria burden is heaviest in Limpopo and Mpumalanga,
possibly due to environmental conditions that favour transmission.

The bar chart further breaks down malaria case patterns by month, revealing distinct seasonal trends. The highest
transmission is observed from January to April, with January recording the peak number of cases, exceeding
10,000. Cases gradually decline from May onwards, reaching the lowest levels between June and August. A slight
increase is observed from September to December, indicating the start of the malaria season. This trend aligns with
known malaria transmission cycles, where cases peak during and after the rainy season due to increased mosquito
breeding and favourable conditions for parasite development.
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Figure 2. Scatterplots Showing Malaria Incidence Across Key Predictors

Figure 2 presents multiple scatterplots, each showing the relationship between malaria counts and a numeric
predictor variable: maximum temperature (MaxTemp), minimum temperature (MinTemp), normalised difference
vegetation index (NDVI), and rainfall (Rain). These visualisations help assess potential associations between
malaria cases, climate, and environmental factors.

In the MaxTemp plot, malaria cases appear to increase with temperature around 25–30°C, after which they
decline. This suggests that malaria transmission may be highest within this optimal temperature range, beyond
which extreme heat might reduce mosquito survival. The MinTemp plot shows a somewhat similar pattern, with
malaria cases increasing as minimum temperature rises, peaking around 15–20°C, and then tapering off. This
suggests that malaria transmission is more favourable in regions where temperatures during the night remain
moderate, supporting mosquito survival.

The NDVI plot suggests a weak but slightly positive relationship, where higher vegetation index values (around
0.5–0.7) correspond to an increased malaria count. This aligns with the idea that dense vegetation provides
breeding grounds for mosquitoes, although the relationship does not appear strongly linear. The Rain plot shows
that malaria cases are more frequent at low to moderate rainfall levels (approximately 0–200 mm), with fewer
cases at very high rainfall levels (around 250 mm and more).

The line graph in Figure 3 display malaria case trends across different districts from 2018 to 2022. Each line
represents a district, and the y-axis indicates the malaria count over the years. The legend at the bottom provides
abbreviated district names. From the trends, two districts stand out with the highest malaria cases: one represented
by a brownish-yellow line (Ehlanzeni district) and another by a pink line (Vhembe district). The Ehlanzeni district
showed a sharp decline in malaria cases from 2018 to 2021 before stabilising in 2022. Conversely, the Vhembe
district experienced fluctuations, with cases dropping initially but rising sharply in 2020 before declining again.
Mopani and Umkhanyakude districts had moderate malaria counts, showing either a steady trend or a slight increase
in cases over the years. Other districts, represented by thin lines near the bottom, had consistently low malaria
counts, suggesting lower transmission levels.
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Figure 3. Malaria Case Trends Over the Years Across Districts.

Table 4. Model Comparison for Bayesian Negative Binomial Regression Using Different Prior Distributions.

Bayesian Negative Binomial
Model Prior

Elpd_loo Estimate Elpd_loo Std Error P_loo Estimate P_loo Std Error Looic Estimate Looic Std Error

Normal (0.25, 0.00168) -2334.0 63.9 8.5 2.7 4669.7 127.8
Jeffreys beta(0.000009, 0.5) -2388.3 63.7 4.9 1.4 4776.7 127.4
Betawi (0.090, 65.430) -2368.0 63.3 6.0 1.2 4736.1 126.7
Gamma(37.585, 150) -2370.5 64.2 5.2 1.1 4741.0 128.3
Betai (27.948, 83.957) -2374.2 64.4 5.3 1.2 4748.5 128.8

Table 4 presents the results of a Bayesian negative binomial regression model using different prior distributions,
with key metrics including the Expected Log Predictive Density using Leave-One-Out Cross-Validation (elpdloo),
the estimated effective number of parameters (Ploo), and the Leave-One-Out Information Criterion (Looic). The
key metrics estimates for each prior distribution tested provide a means to evaluate the sensitivity of the model
to prior specifications. Among the priors tested, the Normal(0.25, 0.00168) prior demonstrates the best predictive
performance, having the highest elpdloo (-2334) and the lowest Looic (4669.7). However, this model is also the
most complex, as indicated by its highest Ploo estimate (8.5). In contrast, the Jeffreys [beta(0.000009, 0.5)] prior
performs the worst, with the lowest elpdloo (-2388.3) and the highest Looic (4776.7), suggesting weaker predictive
accuracy despite its lower complexity (Ploo = 4.9). In particular, the model using Jeffreys prior was simplified
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due to convergence issues with a more complex version (see Appendix 2). The beta (0.090, 65.430) and gamma
(37.585, 150) priors offer a balance between model complexity and predictive performance, with moderately high
elpdloo values and lower Ploo estimates. While the Normal prior provides the best overall predictive fit, simpler
models like the beta or gamma priors remain viable alternatives depending on the trade-off between complexity
and performance. However, given that this study focuses on developing a predictive model, the normal prior will be
used for malaria count predictions. Additionally, there is no extreme gap in predictive performance across models,
suggesting that there are no sensitivity issues.

bayesian_nb_modelBetai

bayesian_nb_modelBetawi

bayesian_nb_modelGamma

bayesian_nb_modelN

−100 0 100

elpd_diff (Difference in Predictive Performance)

M
o

d
e

ls

Figure 4. LOO-CV Model Comparisons.

The plot in Figure 4 presents a Leave-One-Out Cross-Validation (LOO-CV) comparison of four Bayesian
negative binomial models: the model with informative normal prior (bayesian_nb_modelN), informative gamma
prior (bayesian_nb_modelGamma), weakly informative beta prior (bayesian_nb_modelBetawi), and informative
beta prior (bayesian_nb_modelBetai). In this LOO-CV comparison, the best model serves as the reference, meaning
its expected log predictive density difference (elpd_diff) is set to zero. Based on the plot, bayesian_nb_modelN is
the best-performing model. The second-best model is bayesian_nb_modelGamma, as its elpd_diff is close to zero
with overlapping uncertainty intervals. Following that, bayesian_nb_modelBetawi ranks third, showing a slightly
lower elpd_diff than the second-best model. The least-performing model is bayesian_nb_modelBetai, which has
the lowest elpd_diff. However, due to the large uncertainty intervals, the differences between the models are not
major, suggesting that their predictive performances may be quite similar.
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Table 5. Bayesian Negative Binomial Regression Model Summary (with Informative Normal Prior).

Coefficients Estimate Est. Error l-95%CI u-95%CI Sig
Intercept -3.724 0.599 -4.896 -2.538 ***
factorProvinceKZN (Ref) ———– ———- ———- ———- ———
factorProvinceLP 0.253 0.040 0.175 0.332 ***
factorProvinceMP 0.343 0.041 0.264 0.422 ***
factorDistrictCapr (Ref) ———- ———- ———- ——— ———
factorDistrictEhlan 0.358 0.040 0.280 0.437 ***
factorDistrictGert 0.239 0.041 0.160 0.318 **
factorDistrictHarryG 0.233 0.041 0.152 0.314 **
factorDistrictiLembe 0.240 0.041 0.159 0.319 **
factorDistrictMop 0.251 0.042 0.168 0.332 **
factorDistrictNkang 0.247 0.039 0.169 0.324 **
factorDistrictUgu 0.236 0.041 0.156 0.314 **
factorDistrictuMgun 0.236 0.041 0.157 0.315 **
factorDistrictUmkha 0.252 0.041 0.173 0.331 **
factorDistrictUmzin 0.234 0.041 0.154 0.315 **
factorDistrictUthu 0.237 0.041 0.158 0.317 **
factorDistrictVhem 0.272 0.040 0.193 0.350 ***
factorDistrictWater 0.239 0.040 0.162 0.316 **
factorDistrictZulu 0.237 0.041 0.157 0.317 **
factorMonthJan 0.255 0.040 0.177 0.333 ***
factorMonthFeb 0.241 0.040 0.164 0.319 **
factorMonthMar 0.245 0.040 0.164 0.324 **
factorMonthApr (Ref) ———- ———- ———- ———- ———
factorMonthMay 0.260 0.040 0.183 0.337 ***
factorMonthJun 0.272 0.040 0.193 0.352 ***
factorMonthJul 0.257 0.041 0.177 0.336 **
factorMonthAug 0.251 0.040 0.173 0.329 **
factorMonthSep 0.246 0.041 0.164 0.326 **
factorMonthNov 0.240 0.040 0.162 0.317 **
factorMonthOct 0.238 0.041 0.160 0.318 **
factorMonthDec 0.239 0.040 0.159 0.318 **
factorYear2018 (Ref) ———– ———- ———- ———- ———
factorYear2019 0.247 0.041 0.169 0.326 **
factorYear2020 0.227 0.040 0.149 0.306 **
factorYear2021 0.238 0.040 0.159 0.317 **
factorYear2022 0.257 0.041 0.178 0.337 ***
MaxTemp 0.186 0.027 0.133 0.239 ***
MinTemp 0.156 0.023 0.111 0.201 ***
Rain -0.007 0.001 -0.010 -0.005 ***
NDVI 0.248 0.040 0.170 0.326 **

Table 5 presents the results of a Bayesian negative binomial model developed using an informative normal
prior distribution. It shows the estimated coefficients (Estimate), their estimation errors (Est. Error), and the 95%
credible intervals (l-95% CI and u-95% CI). Statistical significance (Sig) is indicated with asterisks, three asterisks
indicate very strong significance (the credible intervals are far from zero) while two asterisks indicates moderate
significance (the credible intervals are still not including zero but are closer). This model produces reliable and
stable parameter estimates, enabling valid inferences and accurate predictions. Model convergence confirms this.
See Appendix 1 for model diagnostics and evidence of convergence.
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The intercept has an estimate of -3.724, suggesting a baseline log-count of the response variable in the reference
categories. The province effects show that compared to the reference province (KZN), both Limpopo (LP) and
Mpumalanga (MP) have positive and significant estimates (0.253 and 0.343, respectively), indicating higher
expected counts. Similarly, the district effects suggest that all included districts have positive associations with
the response variable relative to the reference district (Capr), with Ehlanzeni showing the highest estimate
(0.358). Seasonal patterns are evident, with all months except April (the reference category) showing positive and
significant effects. Notably, June (0.272) has the highest estimate, indicating an unexpected peak in activity during
mid-year. The year effects indicate that cases were higher in all years relative to 2018, with 2022 showing the
strongest increase (0.257).

Regarding climatic variables, maximum and minimum temperatures have positive and significant associations,
meaning that higher temperatures correspond to increased cases. Rainfall, however, has a small but significant
negative effect (-0.007), suggesting that increased rainfall is linked to fewer cases. Lastly, NDVI is positively
associated (0.248), indicating that greener vegetation correlates with higher case counts.

Figure 5. Malaria risk contours for different months based on rainfall and mimimum temperature.

The contour plot in figure 5 illustrates the relationship between minimum temperature, rainfall, and predicted
malaria cases across different months (February–July) with reference categories, Ehlanzeni district, Limpopo
Province, and 2019. The contour lines represent malaria predictions, with blue shades indicating lower values and
red shades representing higher values. The results suggest that malaria risk is highest in March, April, and May,
particularly in warm and wet conditions, with April showing the highest predicted cases exceeding 1,500. By June
and July, malaria predictions drop remarkably, aligning with cooler and drier conditions. The plot also highlights
the nonlinear effect of rainfall, moderate rainfall combined with higher temperatures leads to increased malaria risk,
while excessive rainfall (>300 mm) does not always correspond to higher cases, possibly due to habitat flushing.
These findings suggest that peak malaria transmission occurs in early autumn, warranting intensified control efforts
during this period.
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Figure 6. Malaria risk contours for different months based on rainfall and mimimum temperature.

The contour plot in Figure 6 depicts the relationship between minimum temperature, rainfall, and predicted
malaria cases across different months (August–January). The highest malaria predictions occur in January, where
warm temperatures and moderate rainfall contribute to cases exceeding 1,500. In contrast, from August to
December, malaria predictions remain relatively low, with contour values mostly below 1,000 and an expected
substantial decline in November and December. This seasonal pattern suggests that malaria transmission is highest
in the summer months, particularly in January, when conditions are most favourable for mosquito breeding and
parasite development. The gradual increase in predicted cases from September onward highlights the transition
from low-risk winter months to peak transmission season.

Figure 7. Malaria risk contours for different months based on NDVI and rainfall.

The contour plot in Figure 7 depicts the fitted relationship between rainfall, NDVI, and predicted malaria cases
across different months from February to July. The results suggest that malaria cases are expected to peak between
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March and May, particularly when NDVI is high (above 0.6) and rainfall is moderate (around 100–200 mm).
In contrast, malaria predictions decline in June and July, with lower values dominating the plot. The model also
indicates that excessive rainfall beyond 300 mm may reduce malaria cases, possibly due to unfavourable breeding
conditions for mosquitoes. The fit was computed at an average maximum temperature of 26.18°C and an average
minimum temperature of 12.66°C relative to Ehlanzeni district, Limpopo province, and the year 2019. It highlights
the role of climatic factors in malaria transmission.

Figure 8. Malaria risk contours for different months based on NDVI and rainfall.

The contour plot in Figure 8 illustrates the relationship between rainfall, NDVI, and predicted malaria cases
across different months from August to January. The results suggest a seasonal pattern in malaria risk, with
relatively lower case counts predictions from August to December and a noticeable increase in January. This
surge in January, indicated by the red-shaded region, corresponds to higher malaria cases, reaching values up to
1500. Rainfall appears to be a key driver of malaria incidence, as moderate rainfall levels generally coincide with
an increase in malaria cases, particularly in January. In contrast, during months like August and November, the
malaria burden is expected to be relatively low despite varying rainfall levels. NDVI, which represents vegetation
greenness, also influences malaria cases, with higher NDVI values sometimes associated with an increased malaria
burden. However, its effect appears less pronounced compared to rainfall.

Conclusion and Recommendations

3.1. Conclusion

This study integrates climate and environmental data to develop a predictive malaria model for three malaria-
endemic provinces of South Africa. The climate factors considered include maximum and minimum average daily
temperatures and rainfall, while the environmental factor is NDVI. In addition to exploratory data analysis, the
study employs Bayesian methods, testing and comparing both objective and subjective prior distributions. The
objective priors tested include Jeffreys’ non-informative prior and a beta distribution, which serves as a weakly
informative conjugate prior. For subjective informative priors, beta, gamma, and normal distributions are evaluated.
The findings reveal that among the three malaria-endemic provinces, Limpopo accounted for nearly half of all
reported malaria cases between 2018 and 2022, followed by Mpumalanga with just over 40%. Ehlanzeni district in
Mpumalanga emerges as the most susceptible to malaria transmission, followed by Vhembe and Mopani districts
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in Limpopo. The results indicate that location, seasonality, and climate factors influence malaria transmission
remarkably. Warmer temperatures and greener environments contribute to higher malaria counts, while excessive
rainfall has a suppressive effect due to habitat flushing.

Malaria cases are predicted based on climate and environmental conditions, with the highest transmission
expected between January and May in areas where temperatures during the night range between 12°C-20°C and
rainfall is moderate (about 100–200 mm). Similarly, malaria peaks in regions where NDVI exceeds 0.6, coinciding
with moderate rainfall levels.

Overall, malaria transmission is expected to peak in summer and autumn while remaining low in winter and
spring. The study highlights rainfall as a key risk factor, with heavy rainfall reducing malaria transmission by
flushing breeding habitats. These findings reinforce the ongoing challenge climate change poses to malaria control
and eradication efforts worldwide.

3.2. Recommendations

The predictions of the model can be integrated into early warning systems to anticipate malaria outbreaks,
particularly in areas where transmission peaks are expected between January and May. Furthermore, the model
could be integrated into decision-support tools that allow public health officials to monitor climatic conditions
and predict malaria risks on a weekly or monthly basis. The tool could guide resource allocation, such as the
distribution of insecticide-treated bed nets, spraying campaigns, and health outreach in high-risk districts.

We recommend that malaria control programme of South Africa place greater emphasis on control and
eradication efforts in Ehlanzeni district (Mpumalanga), Vhembe and Mopani districts (Limpopo), as these areas
experience the highest transmission rates. We also recommend closer collaboration between malaria control
programmes and researchers to continuously update the model with new data, improving its accuracy and
responsiveness over time. By utilising the model in this way, it could support data-driven, proactive interventions
to reduce the burden of malaria in the most affected regions of South Africa.

3.3. Limitations of the Study and Future Research

One limitation of this study is that the current model may not fully capture potential non-linear relationships
between climatic variables, particularly rainfall and malaria incidence. While the model demonstrated good
predictive performance overall, the assumption of linear effects may overlook complex or threshold-dependent
associations. Future research should explore more flexible modelling approaches, such as Gaussian processes, to
better represent these dynamics and improve model interpretability and accuracy.

While this study successfully develops a Bayesian malaria prediction model incorporating climate and
environmental factors, several areas warrant further investigation. Future research should explore Bayesian machine
learning techniques, such as Bayesian neural networks and Gaussian processes, to enhance prediction accuracy
while maintaining the ability to integrate prior knowledge. These methods could provide more flexible and
robust models for malaria prediction. Additionally, expanding the model to incorporate additional climate and
environmental variables, such as relative humidity, forest cover, land surface temperature, and elevation, may
improve predictive performance. These factors could offer deeper insights into malaria transmission dynamics,
particularly in regions with complex ecological interactions.
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Appendices

Appendix 1

The inferences and malaria predictions in this study are based on a Bayesian Negative Binomial model developed
using an informative normal prior distribution. The following figures present the model diagnostics, demonstrating
that the model has successfully converged.
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Appendix 2

The figures in this appendix illustrate the model diagnostics for a fully Bayesian Negative Binomial model
developed using Jeffreys prior distribution. Despite increasing the number of iterations and chains, convergence
issues persisted. As a result, a simplified model was adopted for comparison purposes.
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