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Abstract The primary purpose of this research is to describe the two parameter Lindley Binomial (LB2) distribution, a new
probability distribution applicable for the proportion data analysis, specifically in the simulation, real data, and reliability
analysis setting. The shape of probability mass function and some probabilistic properties of the pro posed distribution,
including generating functions are derived. The method of moment, maximum likelihood estimation and the expectation-
maximization algorithm are used for parameter estimation. Goodness of fit of the proposed distribution is assessed by using
it on real dataset. This research also investigates the age specific prevalence and risk pattern of Hepatitis B virus (HBV)
infected within the dataset. It is compared with the binomial, beta binomial, and negative binomial distributions for its
performance. The results show that the proposed distribution has some advantages over previous mod els and therefore is
advantageous in analyzing proportional data. Additionally, the two parameter Lindley Binomial distribution is fit to the data
to evaluate the reliability func tion, hazard rate function, inverted hazard rate function, and mean residual life (MRL) by age
group. The findings demonstrate substantial difference of HBV positive between various age demographics with great public
health implications.
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1. Introduction

Binomial distribution is a basic probability model that is used frequently as many real-world situations have
binary outcomes such as success or failure. For example, it helps in predicting the occurrence of side effects on
a new drug being tried in a clinical trial. However, in reality data often exhibit heterogeneity or over dispersion
and thus the binomial model cannot be fully utilized. To overcome these drawbacks, compound distributions have
been designed by combining the binomial model with any other probability distribution. One such option as a
compound binomial distribution is the Lindley distribution, which was first proposed by Lindley in 1958 [1].
The closed form survival and hazard functions for the Lindley distribution make it a very useful tool to analyse
lifetime data, especially in areas of survival and reliability investigation. Researchers have expanded the model
to be more adaptable by combining it with further distributions. For example, Sankarans (1970) [2] developed
the Poisson-Lindley distribution, which is shown to perform well on real world sets of data. Let’s say, similarly,
the Negative Binomial Lindley distribution, as suggested by Zemani and Ismile (2010) [3], is useful for the over
dispersed count data with excess zeros such insurance claims and accident reports. This study focuses on the
versatility of the two-parameter variation of the Lindley distribution, which is more flexible in fitting lifetime data.
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Among the expansions, the generalised Poisson-Lindley distribution (Bhati et al., 2015) [4], its use in right skewed
data modelling, have been researched. Akaike’s Information Criterion (AIC) and Bayesian Information Criterion
(BIC) among other model selection criteria have been used other research on Weibull based models including
transmuted Weibull distributions [5, 6]. Parameter estimation of the Poisson-Lindley distribution and Lindley
based models as well have been investigated using Linear Quantile Moment (LQM) Estimation, Least Squares
Estimation (LSE) and Maximum Likelihood Estimation (MLE) [7, 8]. Yet, there has been a dearth of proper focus
on bounded discrete counts with overdispersion in the context of epidemiology and reliability testing. One falls
back on standard models such as the negative binomial or beta-binomial; however, these may possess limitations in
terms of interpretability or involve complex estimation procedures. The newly proposed Two-Parameter Lindley-
Binomial (LB2) distribution seeks to overcome these drawbacks by the synthesis of the bound property of the
binomial distribution with a comprehensive dispersion framework. The LB2 model has interpretable parameters
and is computationally straightforward, and hence is appropriate for real-world modeling situations, including
ones dealing with age-specific count data. The contrast is being made to bring out these strengths compared to
alternatives.The structure of this study is as follows: Sections 2 and 3 respectively present the methodology and
various estimation approaches for the Two Parameter Lindley Binomial Distribution. Section 4 presents application
of these techniques and Section 5 presents conclusions summary.

2. Methodology

The theoretical foundation for the Two-Parameters Lindley-Binomial Distribution is presented.

2.1. One-Parameter Lindley Distribution

The following probability density function (pdf) of this one parameter distribution known as Lindley distribution
was innovated by Lindley (1958) [1]

f (x;β) =
β2

β + 1
(1 + x) e−βx; x > 0, β > 0 (1)

When β is the shape parameter.

The parameter β for the one-parameter Lindley distribution is a positive real number. Adjusting this shape
parameter changes the distribution’s general behavior. This distribution is a combination of the exponential (β)
and gamma (2, β) distributions as following formula:

f(x;β) = πf1(x) + (1− π)f2(x)

with a mixture proportion π = β
β+1 , f1 (x;β) = βe−βx and f2 (x;β) = β2xe−βx.

Figure (1) in the left shows how the probability mass function (PMF) for the Lindley distribution, defined
in Equation (1), while the right shows cumulative distribution function (CDF) which follows Equation (2) changes
with different values of β. The graphic shows how the shape of the distribution changes with different values of β.

F (x;β) = 1− β + 1 + βx

β + 1
e−βx; x > 0, β > 0 (2)
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Figure 1. The (PMF) in the left and (cdf) in the right of one-parameter Lindley Distribution for various values of the parameter
β.

2.2. Two-Parameter Lindley Distribution

The research of Shanker et al. (2013) [9] developed a two-parameter Lindley distribution (LD2) for analyzing
waiting and survival time data. Figures (2) in the left shows how the probability mass function (PMF), while the
right shows cumulative distribution function (CDF) of this distribution which uses different (α, β) values as shown
below.

f (x;α, β) =
β2

β + α
(1 + αx) e−βx; x > 0, β > 0, α > 0 (3)

F (x;α, β) = 1− β + α+ αβx

β + α
e−βx; x > 0, β > 0, α > 0 (4)

The two-parameter Lindley distribution presents its probability density function (pdf) as a combination of
exponential (β) and gamma (2, β) distributions which takes this form:

f(x;β) = πf1(x) + (1− π)f2(x)

where π = β
β+α , f1 (x;β) = βe−βx and f2 (x;β) = β2xe−βx

2.3. Two-parameter Lindley-Binomial distribution

Deng and Zhang (2024) [10] introduced the Lindley-Binomial distribution, which has two parameters α and
β, This distribution combines the Binomial distribution

(
n, p = e−λ

)
with the two-parameter Lindley distribution

(α, β). Then, the probability mass function (pmf) of X takes the following form:

p(X = x) =

∞∫
0

p(x|λ)f(λ;α, β)dλ
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Figure 2. The (PMF) in the left and (cdf) in the right of two-parameter Lindley Distribution for various values of the
parameter β.

=

∞∫
0

Cn
x e

−λx
n−x∑
h=0

Cn−x
h (−1)

h
e−λh β2

β + α
(1 + αx) e−βλdλ

Here the PMF of the Two-parameter Lindley-Binomial distribution (LB2) is given directly in terms of the
following equation, obtained by solving this integral.

p (X = x) = Cn
x

β2

β + α

n−x∑
h=0

Cn−x
h (−1)

h β + x+ h+ α

(β + x+ h)
2 ;x = 0, 1, . . . n , β, α > 0 (5)

The distribution probability mass function is explained by this equation and its features such as mean, variance,
moments, skewness and kurtosis will be examined. This section also includes a discussion of how to generate
random numbers from the two parameter Lindley-Binomial distribution and parameter estimation approaches.

The probability mass function (PMF) of the LB2 distribution, defined in Equation (5), involves nested sums
which can prove computationally inconvenient especially at large values of To counter this issue, truncation
methodology is used for the inner sum, halting the computation when further terms make a negligible contribution
to the total result. This method provides a good balance between numerical accuracy and computational speed. To
enable practical usability and reprehensibility, we formulated and tested an algorithm in R capable of computing
the PMF in this truncation framework.

The cumulative distribution function of (LB2) follows this equation below:

F (x) =

x∑
t=0

p (X = x) =

x∑
t=0

Cn
t

β2

β + α

n−t∑
h=0

Cn−t
h (−1)

h β + t+ h+ α

(β + t+ h)
2 ;x = 0, 1, . . . n, β, α > 0 (6)

Figure (3) in the left shows how the probability mass function (PMF), while the right shows cumulative distribution
function (CDF) of the (LB2) distribution given in Equations (5) and (6) for various values of α and β. Also, the
diagrams show how the forms of these functions change with varying parameter values.
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Figure 3. The (PMF) in the left and (cdf) in the rihgt of two-parameter Lindley-Binomial distribution for various β and
constant α.

2.3.1 Interpretation of Parameters

The two parameters of the LB2 distribution, represented as α and β, play distinct and meaningful roles in
determining the behavior of the distribution:
β: primarily influences the tail shape and behavior of the distribution. Small values of β provide more symmetric

and compact probability masses, while large values increase right skewness and stretch out the peak, allowing
for heavier tails. This renders β particularly suitable to model phenomena in which risk or frequency accelerates
with a driving factor(e.g., age-dependent acceleration of HBV infection risk). α serves as a scale and dispersion
parameter. Values of α produce sharper peaks and faster cumulative mass concentration, whereas lower values
spread the distribution more uniformly.

To graphically display these effects, Figure (3) in the left shows how the probability mass function (PMF), while
the right shows cumulative distribution function (CDF) of the (LB2) distribution given in Equations (5) and (6) for
various values of α and β. Also, the diagrams show how the forms of these functions change with varying parameter
values. These plots demonstrate how changes in parameter values influence the peak, spread, and skewness, offering
helpful insights for interpretation in applications to practical problems such as disease prevalence modeling.

2.3.2 Properties of the Two-Parameter Lindley-Binomial Distribution.

To demonstrate that
n∑

x=0

p (X = x) = 1

The (PMF) of the LB2 distribution is expressed as:

p(X = x) =

∞∫
0

p(x|λ)f(λ;α, β) dλ

n∑
x=0

p (X = x) over all (x) gives:

n∑
x=0

p(X = x) =

n∑
x=0

∞∫
0

p(x|λ)f(λ;α, β) dλ
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Rearranging the sums and integrals:

=

n∑
x=0

Cn
x (e−λ)

x (
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

Using the Binomial theorem, the summing reduces to:

= (e−λ + 1− e−λ)
n β2

(β + α)

[
− (1 + αλ)

β
e−βλ − α

β2
e−βλ

∣∣∣∞
0

]
Simplify is given:

=
β2

(β + α)

[
1

β
+

α

β2

]
=

β2

(β + α)

[
β + α

β2

]
= 1

2.3.3 The two-parameter Lindley-Binomial distribution’s rth moment has the following formula:

µ′
r = E(xr) =

n∑
x=0

xrp(X = x) =

n∑
x=0

xr

∞∫
0

p(x|λ)f(λ;α, β) dλ

The first four moments about origin are obtained as:

µ′
1 = E (x)

=

n∑
x=0

xp(X = x)

=

n∑
x=0

x

∞∫
0

p(x|λ)f(λ;α, β)dλ

=

n∑
x=0

x Cn
x (e−λ)

x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

= n e−λ

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

= n
β2

(β + α)

∞∫
0

(1 + αλ) e−λ(β+1)dλ

= n
β2

(β + α)

[
− (1 + αλ)

β + 1
e−λ(β+1) − α

(β + 1)
2 e

−λ(β+1)
∣∣∣∞
0

]
= n

β2

(β + α)

[
1

β + 1
+

α

(β + 1)
2

]
= n

β2

(β + α)

[
β + 1 + α

(β + 1)
2

]
=

nβ2(β + 1 + α)

(β + α) (β + 1)
2
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The second moment is

µ′
2 = E

(
x2
)

=

n∑
x=0

x2p(X = x)

=

n∑
x=0

x2

∞∫
0

p(x|λ)f(λ;α, β) dλ

=

n∑
x=0

x2 Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=
[
(n2 − n)e−2λ + ne−λ

] ∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=
(n2 − n)β2

(β + α)

∞∫
0

(1 + αλ) e−λ(β+2) dλ+
nβ2

(β + α)

∞∫
0

(1 + αλ) e−λ(β+1) dλ

=
(n2 − n)β2

(β + α)

[
− (1 + αλ)

β + 2
e−λ(β+2) − α

(β + 2)
2 e−λ(β+2)

∣∣∣∞
0

]
+

nβ2

(β + α)

[
− (1 + αλ)

β + 1
e−λ(β+1) − α

(β + 1)
2 e−λ(β+1)

∣∣∣∞
0

]
=

(n2 − n)β2

(β + α)

[
1

β + 2
− α

(β + 2)
2

]
+

nβ2

(β + α)

[
1

β + 1
− α

(β + 1)
2

]
=

(n2 − n)β2

(β + α)

[
β + 2 + α

(β + 2)
2

]
+

nβ2

(β + α)

[
β + 1 + α

(β + 1)
2

]
=

(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

Finally, the third and fourth central moments are:

µ3 = E
[
(x− µ′

1)
3
]

=

n∑
x=0

(x− µ′
1)

3
p(X = x)

=

n∑
x=0

(x− µ′
1)

3

∞∫
0

p(x|λ)f(λ;α, β)dλ

=

n∑
x=0

(x− µ′
1)

3
Cn

x (e
−λ)

x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=
[
x3 − 3µ′

1x
2 + 3µ′

1
2
x− µ′

1
3
] n∑

x=0

Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ
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=

n∑
x=0

x3Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

− 3µ′
1

n∑
x=0

x2Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

+ 3µ′
1
2

n∑
x=0

x Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

− µ′
1
3

m∑
x=0

Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

= µ′
3 − 3µ′

1(µ
′
2) + 3µ′

1
2
(µ′

1)− µ′
1
3
(1)

= µ′
3 − 3µ′

1(µ
′
2) + 3µ′

1
3 − µ′

1
3

= µ′
3 − 3µ′

1(µ
′
2) + 2µ′

1
3

=
n(n− 1)(n− 2)β2(β + 3 + α)

(β + α) (β + 3)
2 +

3n(n− 1)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

− 3

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

] [
(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
+ 2

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

]3

µ′
4 = E

(
x4
)

=

n∑
x=0

x4p(X = x)

=

n∑
x=0

x4

∞∫
0

p(x|λ)f(λ;α, β)dλ

=

n∑
x=0

x4 Cn
x (e

−λ)
x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=
[
n(n− 1)(n− 2)(n− 3)e−4λ + 6n(n− 1)(n− 2)e−3λ + 7n(n− 1)e−2λ + ne−λ

]
∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=
n(n− 1)(n− 2)(n− 3)β2

(β + α)

∞∫
0

(1 + αλ) e−λ(β+4) dλ

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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+
6n(n− 1)(n− 2)β2

(β + α)

∞∫
0

(1 + αλ) e−λ(β+3) dλ

+
7n(n− 1)β2

(β + α)

∞∫
0

(1 + αλ) e−λ(β+2) dλ+
nβ2

(β + α)

∞∫
0

(1 + αλ) e−λ(β+1) dλ

=
n(n− 1)(n− 2)(n− 3)β2

(β + α)

[
− (1 + αλ)

β + 4
e−λ(β+4) − α

(β + 4)
2 e−λ(β+4)

∣∣∣∞
0

]
+

6n(n− 1)(n− 2)β2

(β + α)

[
− (1 + αλ)

β + 3
e−λ(β+3) − α

(β + 3)
2 e−λ(β+3)

∣∣∣∞
0

]
+

7n(n− 1)β2

(β + α)

[
− (1 + αλ)

β + 2
e−λ(β+2) − α

(β + 2)
2 e−λ(β+2)

∣∣∣∞
0

]
+

nβ2

(β + α)

[
− (1 + αλ)

β + 1
e−λ(β+1) − α

(β + 1)
2 e−λ(β+1)

∣∣∣∞
0

]
=

n(n− 1)(n− 2)(n− 3)β2

(β + α)

[
1

β + 4
− α

(β + 4)
2

]
+

6n(n− 1)(n− 2)β2

(β + α)

[
1

β + 3
− α

(β + 3)
2

]
+

7n(n− 1)β2

(β + α)

[
1

β + 2
− α

(β + 2)
2

]
+

nβ2

(β + α)

[
1

β + 1
− α

(β + 1)
2

]
=

n(n− 1)(n− 2)(n− 3)β2

(β + α)

[
β + 4 + α

(β + 4)
2

]
+

6n(n− 1)(n− 2)β2

(β + α)

[
β + 3 + α

(β + 3)
2

]
+

7n(n− 1)β2

(β + α)

[
β + 2 + α

(β + 2)
2

]
+

nβ2

(β + α)

[
β + 1 + α

(β + 1)
2

]
.

=
n(n− 1)(n− 2)(n− 3)β2(β + 4 + α)

(β + α) (β + 4)
2 +

6n(n− 1)(n− 2)β2(β + 3 + α)

(β + α) (β + 3)
2

+
7n(n− 1)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

The variance (σ2) is obtained as:

V ar(x) = σ2 = µ′
2 − µ′

1
2

= E(x2)− [E(x)]
2

=
(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2 −

(
nβ2(β + 1 + α)

(β + α) (β + 1)
2

)2

=
(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

[
1− nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
2.3.4 The two-parameter Lindley-Binomial distribution’s rth moment about the mean appears in the

following formula:

µr = E
[
(x− µ′

1)
r]

=

n∑
x=0

(x− µ′
1)

r
p(X = x) =

n∑
x=0

(x− µ′
1)

r

∞∫
0

p(x|λ)f(λ;α, β) dλ
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Therefore, the second, third and fourth moments about the mean are obtained as:

µ2 = E
[
(x− µ′

1)
2
]

=

n∑
x=0

(x− µ′
1)

2
p(X = x)

=

n∑
x=0

(x− µ′
1)

2

∞∫
0

p(x|λ)f(λ;α, β)dλ

=

n∑
x=0

(x− µ′
1)

2
Cn

x (e
−λ)

x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=
[
x2 − 2µ′

1x+ µ′
1
2
] n∑

x=0

Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=

n∑
x=0

x2 Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

− 2µ′
1

n∑
x=0

x Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

+ µ′
1
2

n∑
x=0

Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

= µ′
2 − 2µ′

1(µ
′
1) + µ′

1
2
(1)

= µ′
2 − 2µ′

1
2
+ µ′

1
2

= µ′
2 − µ′

1
2

= V ar(x)

=
(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

[
1− nβ2(β + 1 + α)

(β + α) (β + 1)
2

]

µ3 = E
[
(x− µ′

1)
3
]

=

n∑
x=0

(x− µ′
1)

3
p(X = x)

=

n∑
x=0

(x− µ′
1)

3

∞∫
0

p(x|λ)f(λ;α, β)dλ

=

n∑
x=0

(x− µ′
1)

3
Cn

x (e
−λ)

x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=
[
x3 − 3µ′

1x
2 + 3µ′

1
2
x− µ′

1
3
] n∑

x=0

Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ
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=

n∑
x=0

x3Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

− 3µ′
1

n∑
x=0

x2Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

+ 3µ′
1
2

n∑
x=0

x Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

− µ′
1
3

m∑
x=0

Cn
x (e

−λ)
x (

1− e−λ
)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

= µ′
3 − 3µ′

1(µ
′
2) + 3µ′

1
2
(µ′

1)− µ′
1
3
(1)

= µ′
3 − 3µ′

1(µ
′
2) + 3µ′

1
3 − µ′

1
3

= µ′
3 − 3µ′

1(µ
′
2) + 2µ′

1
3

=
n(n− 1)(n− 2)β2(β + 3 + α)

(β + α) (β + 3)
2 +

3n(n− 1)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

− 3

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

] [
(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
+ 2

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

]3

µ4 = E
[
(x− µ′

1)
4
]

=

n∑
x=0

(x− µ′
1)

4
p(X = x)

=

n∑
x=0

(x− µ′
1)

4

∞∫
0

p(x|λ)f(λ;α, β)dλ

=

n∑
x=0

(x− µ′
1)

4
Cn

x (e
−λ)

x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=
[
x4 − 4µ′

1x
3 + 6µ′

1
2
x2 − 4µ′

1
3
x+ µ′

1
4
]

n∑
x=0

Cn
x (e

−λ)
x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=

n∑
x=0

x4 Cn
x (e

−λ)
x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ
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− 4µ′
1

n∑
x=0

x3 Cn
x (e

−λ)
x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

+ 6µ′
1
2

n∑
x=0

x2 Cn
x (e

−λ)
x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

− 4µ′
1
3

n∑
x=0

x Cn
x (e

−λ)
x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

+ µ′
1
4

n∑
x=0

Cn
x (e

−λ)
x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

= µ′
4 − 4µ′

1(µ
′
3) + 6µ′

1
2
(µ′

2)− 4µ′
1
3
(µ′

1) + µ′
1
4
(1)

= µ′
4 − 4µ′

1(µ
′
3) + 6µ′

1
2
(µ′

2)− 4µ′
1
4
+ µ′

1
4

= µ′
4 − 4µ′

1(µ
′
3) + 6µ′

1
2
(µ′

2)− 3µ′
1
4

=
n(n− 1)(n− 2)(n− 3)β2(β + 4 + α)

(β + α) (β + 4)
2 +

6n(n− 1)(n− 2)β2(β + 3 + α)

(β + α) (β + 3)
2

+
7n(n− 1)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2 − 4

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
[
n(n− 1)(n− 2)β2(β + 3 + α)

(β + α) (β + 3)
2 +

3n(n− 1)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
+ 6

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

]2 [
(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
− 3

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

]4

(C.K) and (C.S) represent the coefficients of kurtosis and skewness for the two-parameter Lindley-Binomial
distribution that equal:

C.K =
µ4

(µ2)
2

=
E
[
(x− µ′

1)
4
]

(var(x))
2

=

n(n− 1)(n− 2)(n− 3)β2(β + 4 + α)

(β + α) (β + 4)
2 +

6n(n− 1)(n− 2)β2(β + 3 + α)

(β + α) (β + 3)
2

+
7n(n− 1)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2 − 4

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
[
n(n− 1)(n− 2)β2(β + 3 + α)

(β + α) (β + 3)
2 +

3n(n− 1)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
+ 6

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

]2 [
(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
− 3

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

]4
[
(n2−n)β2(β+2+α)

(β+α)(β+2)2
+ nβ2(β+1+α)

(β+α)(β+1)2

[
1− nβ2(β+1+α)

(β+α)(β+1)2

]]2
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And

C.S =
µ3√
(µ2)

3

=
E
[
(x− µ′

1)
3
]

(var(x))
3/2

=

n(n− 1)(n− 2)β2(β + 3 + α)

(β + α) (β + 3)
2 +

3n(n− 1)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

− 3

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

] [
(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
+ 2

[
nβ2(β + 1 + α)

(β + α) (β + 1)
2

]
[
(n2−n)β2(β+2+α)

(β+α)(β+2)2
+ nβ2(β+1+α)

(β+α)(β+1)2

[
1− nβ2(β+1+α)

(β+α)(β+1)2

]]3/2

2.3.5 The moment-generating function for the two-parameter Lindley-Binomial distribution as shown
below:

MX(t) = E(etx) =

n∑
x=0

etxp(X = x)

=

n∑
x=0

etx
∞∫
0

p(x|λ)f(λ;α, β)dλ

=

n∑
x=0

etxCn
x (e

−λ)
x(
1− e−λ

)n−x

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

= (1− e−λ + e−λet)
n

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=
[
1 + e−λ(et − 1)

]n ∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=

n∑
u=0

Cn
u (e

t − 1)
u
e−λu

∞∫
0

β2

(β + α)
(1 + αλ) e−βλ dλ

=

n∑
u=0

Cn
u (e

t − 1)
u β2

(β + α)

∞∫
0

(1 + αλ) e−λ(β+u) dλ

=

n∑
u=0

Cn
u (e

t − 1)
u β2

(β + α)

[
− (1 + αλ)

β + u
e−λ(β+u) − α

(β + u)
2 e−λ(β+u)

∣∣∣∞
0

]
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=

n∑
u=0

Cn
u (e

t − 1)
u β2

(β + α)

[
1

β + u
+

α

(β + u)
2

]

=

n∑
u=0

Cn
u (e

t − 1)
u β2

(β + α)

[
β + u+ α

(β + u)
2

]

=

n∑
u=0

Cn
u (e

t − 1)
u β2(β + u+ α)

(β + α) (β + u)
2

2.3.6 Dispersion Index

The dispersion index serves as a valuable statistical measure which shows how clustered or how dispersed the
observation set is compared to standard models. The dispersion index for the LB2 distribution provides this result

d =
V ar(x)

µ′
1

=
µ′

µ2− µ′
1
2

µ′
1

=
E(x2)− [E(x)]

2

E(x)

=
E(x2)

E(x)
− E(x)

=

(n2−n)β2(β+2+α)

(β+α)(β+2)2
+ nβ2(β+1+α)

(β+α)(β+1)2

nβ2(β+1+α)

(β+α)(β+1)2

− nβ2(β + 1 + α)

(β + α) (β + 1)
2

=
(n− 1)(β + 2 + α)(β + 1)

2

(β + 1 + α)(β + 2)
2 + 1− nβ2(β + 1 + α)

(β + α) (β + 1)
2 (7)

Equation (7) cannot be used directly to determine if the LB2 can suitably use under-dispersed data or over-
dispersed data or both. The LB2 distribution serves as a fitting method for datasets showing over or under dispersion
characteristics which produces plots showing dispersion values based on α and β parameters in Figure (4). The LB2
distribution’s dispersion index changes above and below one when different distribution parameters are selected
according to Figure (4). The dispersion value decreases towards zero as β increases according to the plot in Figure
(5). The plots demonstrate that the LB2 distribution fits data with over-dispersion and under-dispersion when
different α and β values are selected.

3. Various Estimation Techniques

Numerous estimating methods within the classical paradigm are documented in the statistical literature.
However, we will only provide two of these techniques here: moment and maximum likelihood.

3.1. Method of Moments

A random sample consisting of (x1, x2, . . . , xn) is drawn from the two-parameter Lindley-Binomial
distribution with parameters (α, β). The method of moment estimates α̂ and β̂ for parameters α and β are
determined by solving these two equations.
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Figure 4. The dispersion of two-parameter Lindley Distribution for various α and constant β.

Figure 5. The dispersion of two-parameter Lindley Distribution for various β and constant α.
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m1 =

k∑
i=1

xi

k
= µ′

1 = E(x) =
nβ2(β + 1 + α)

(β + α) (β + 1)
2

m2 =

k∑
i=1

xi
2

k
= µ′

2 = E(x2) =
(n2 − n)β2(β + 2 + α)

(β + α) (β + 2)
2 +

nβ2(β + 1 + α)

(β + α) (β + 1)
2

But there is no easy way to get the formulas of α̂ and β̂ by hand. R package ’nleqslv’ can be used to solve these
two equations numerically.

3.2. Maximum Likelihood Estimation

Random observations (x1, x2, . . . , xn) follow the two-parameter Lindley-Binomial distribution with
parameters (α, β) when collected from a sample of size n. The likelihood function appears as follows:

L (α, β) =

n∏
i=1

p(Xi = xi)

=

n∏
i=1

{
Cn

xi

β2

(β + α)

n−xi∑
h=0

Cn−xi

h (−1)
h β + xi + h+ α

(β + xi + h)
2

}

ln [L (α, β)] = ln

{
n∏

i=1

[
Cn

xi

β2

(β + α)

n−xi∑
h=0

Cn−xi

h (−1)
h β + xi + h+ α

(β + xi + h)
2

]}

=

n∑
i=1

ln

[
Cn

xi

β2

(β + α)

n−xi∑
h=0

Cn−xi

h (−1)
h β + xi + h+ α

(β + xi + h)
2

]

=

n∑
i=1

{
lnCn

xi
+ ln

[
β2

(β + α)

]
+ ln

[
n−xi∑
h=0

Cn−xi

h (−1)
h β + xi + h+ α

(β + xi + h)
2

]}

∂L

∂α
=

n∑
i=1


−β2

(β+α)2

β2

(β+α)

+

n−xi∑
j=0

Cn−xi

h (−1)
h 1
(β+xi+h)2

n−xi∑
h=0

Cn−xi
h (−1)

h θ+xi+h+α
(θ+xi+h)2



=

n∑
i=1

 −1

β + α
+

n−xi∑
h=0

Cn−xi

h (−1)
h 1
(β+xi+h)2

n−xi∑
h=0

Cn−xi

h (−1)
h β+xi+h+α
(β+xi+h)2

 = 0 (8)

∂L

∂β
=

n∑
i=1

 (β+α)(2β)−β2(1)

(β+α)2

β2

(β+α)

+

n−xi∑
h=0

Cn−xi

h (−1)
h
(

(β+xi+h)2(1)−(β+xi+h+α)(2(β+xi+h)

(β+xi+h)4

)
n−xi∑
h=0

Cn−xi

h (−1)
h β+xi+h+α
(β+xi+h)2
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=

n∑
i=1

 β(β+2α)

(β+α)2

β2

(β+α)

+

n−xi∑
h=0

Cn−xi

h (−1)
h
(

(β+xi+h)[(β+xi+h)−2(β+xi+h+α)]

(β+xi+h)4

)
n−xi∑
h=0

Cn−xi

h (−1)
h β+xi+h+α
(β+xi+h)2



=

n∑
i=1

 β + 2α

β (β + α)
+

n−xi∑
h=0

Cn−xi

h (−1)
h
(

−(β+xi+h+2α)

(β+xi+h)3

)
n−xi∑
h=0

Cn−xi

h (−1)
h β+xi+h+α
(β+xi+h)2

 = 0 (9)

Equations (8) and (9) can be solved using ‘nleqslv’ R package.

3.3. Expectation Maximization (EM) algorithm

The EM algorithm for the LB2 distribution to estimate the parameters (α, β) consists of the following two-step

1) Expectation (E-Step) is

a. Input Xi = [X1, X2, · · ·Xn], the observation data Xi

(
n, eλi

)
b. fixe α0, β0 Initial parameter estimates
c. Fixe the convergence condition ∈= 10−6

d. Determine the number of iterations: t
e. Define the latent variable λi

f. Calculate the E(λi|Xiα
t, βt), using Lindley distribution prior

E[λi|Xi, α
t, βt] =

m−Xi∑
h=0

(
m−Xi

h

)
(−1)h

α

1 + (Xi + h)β

E[Wi|Xi, α
t, βt] =

m−Xi∑
h=0

(
m−Xi

h

)
(−1)h

2β + (Xi + h)αβ2

(1 + (Xi + h)β)3

2) Maximization (M-Step) is
i. Update α and β using:

αt+1 =
n

n∑
i=1

1
Xi+αt+ βt

βt+1 =

n∑
i=1

(Xi + αt)

n

ii. find ∆α =
∣∣αt+1 − αt

∣∣ <∈ , and ∆β =
∣∣βt+1 − βt

∣∣ <∈
iii. If max (∆α, ∆β) <∈ stop and return α̂ = αt+1, β̂ = βt+1, Otherwise, go to apply step d to ii until get converge
and replace t = t+ 1

3.4. Analysis of Reliability

The Survival Function (also known as the complementary cumulative distribution function) for the LB2
distribution is expressed as follows: The Survival Function (S(x)) indicates the probability that a random variable

Stat., Optim. Inf. Comput. Vol. x, Month 202x



MUSTAFA NEAMAT NADER,SAMEERA ABDULSALAM OTHMAN AND KURDISTAN M.TAHER OMAR 17

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

x

R
e
lia

b
ili

ty

Parameters

.. = 0.2, .. = 0.2

.. = 0.5, .. = 0.2

.. = 2, .. = 0.2

.. = 7, .. = 0.2

Reliability

Figure 6. The survival analysis (Reliability Function) of the LB2 various values of the parameters β and α.

X from the LB2 distribution will exceed a certain value x. Figure (6) shows the reliability. Function for different
(α, β) values.

S (x) = 1− F (x) (10)

Here, F (x) is the cumulative distribution function as given in Equation (6).

3.4.1 Hazard Rate Function

The Hazard Rate Function for the LB2 distribution, represented as h(x), is defined as the instantaneous rate of
failure at time x. It is calculated as the ratio of the probability density function to the survival function:

h (x) =
p (X = x)

S (x)

In this equation, p(X = x) is the probability density function as provided in Equation (5) and S(x) In Equation
(10). Now, let’s formulate the equations for the Survival Function and Hazard Function of the LB2 distribution:
Figure (7) illustrates the Hazard Rate Function of the LB2 distribution with specified values for the parameters β,
and α.

3.4.2 Reversed Hazard Rate Function

The reversed hazard rate function (RHRF ) of the LB2 distribution, denoted as λ∗(x), can be expressed as the
reciprocal of the distribution function’s derivative with respect to x. Mathematically, it is defined as [reference]:

λ∗ (x) =
P (X = x)

F (x)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



18 MODELLING AND RELIABILITY ANALYSIS OF THE TWO-PARAMETER LINDLEY-BINOMIAL DISTRIBUTION

0

1

2

0.0 2.5 5.0 7.5 10.0

x

H
a
z
a
rd

 R
a
te

Parameters

.. = 0.2, .. = 0.2

.. = 0.5, .. = 0.2

.. = 2, .. = 0.2

.. = 7, .. = 0.2

Hazard Rate Function

Figure 7. The Hazard Rate Function of the LB2 Distribution.

where P (X = x) is the probability density function (PDF ) and F (x) is the distribution function of the LB2
distribution provided in equations (5) and (6). Therefore, substituting the expressions from equations (5) and (6)
into the reversed hazard rate function. The Reversed Hazard Rate Function, illustrated in Figure (8), varies based
on the values of the parameters (α, β).

3.4.3 Mean Residual Life (MRL)

The Mean Residual Life (MRL) for a lifetime random variable x in the context of survival analysis and
reliability theory is defined as:

MRL (t) = E(X − t | X > t)

MRL(t, α, β) =
1

S(t)

 ∑
j|tj≥t

tjf(tj)

− t where t > 0

Where:
• t is a specific time point for which you want to calculate the MRL.
• (α, β) are the parameter of the LB2 distribution. R(t) is the survival function, which represents the probability
that the random variable x is greater than or equal to t with a given α, β.
• Time to failure is represented by x.
The MRL allows one to derive valuable information about the expected remaining lifetime of a system or process
at a particular time, taking into account its history of survival. For LB2 system models, it is a fundamental concept
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Figure 8. The Reversed Hazard Rate Function for the LB2 Distribution varies with the parameters (α, β).

in reliability engineering for determining the longevity and performance. Figure (9) shows the Mean Residual Life
(MRL), which depends on values of the parameters (α, β).

4. Application and Analysis

4.1. Simulation study

In this section, it presents an experimental technique to assess when the distribution model (LB2) is correct
and reliable to explain the phenomenon of interest. In particular, simulation is often used to produce exactly
and reliably backed up results in carefully conceived experiments which are necessary for progress in science.
This work evaluates the performance of the LB2 distribution model using a simulation-based method that is
both rational and practical. Simulation experiment setting: Simulation experiment is run with six different sample
sizes (10, 25, 50, 100, 150, and 500). We use two stages to construct two parameter LB2. First, produce λi,
i = 1, 2 · · · , n from the L2 distribution. The rslindley function from (LindleyR(v1.1.0)) can be used. The word
slindley is a term referring to Shanker’s L2 distribution [9]. Second To generate Xi , i = 1, 2 · · · , n, where
Xi ∼ Bin

(
n, e−λi

)
. Within the following ranges, the parameters were systematically adjusted: α = [0.3, 0.6] and

β = [0.3, 0.6, 1]. The ranges were chosen to represent several distribution shapes and scales including skewness and
kurtosis that are commonly seen in environmental and reliability investigations. Simulation Procedure: To establish
statistical robustness, each simulation scenario was run 1000 times with different sample sizes and parameter
sets. The simulation was run on [R version 4.3.3] with ggplot2(v3.5.1) and dplyr(v1.2.1), which includes tools
for random number generation, parameter estimation, and goodness-of-fit testing. The performance of moments,
maximum likelihood estimators (MLEs), and Em method estimators was assessed by computing mean squared
error (MSE) for each scenario. Lower (MSE) values suggest improved estimator performance. The findings,
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Figure 9. Mean Residual Life (MRL) for the LB2 distribution with (α, β) are varying parameters.

summarised in Tables (1),(2), and (3). In the Table (1) presents the results for Method of Moments estimators. For
example, Table (1) demonstrates that with an increase in sample size, both bias and mean squared error diminish,
signifying enhanced parameter estimation. Minor samples demonstrate more biases, especially for β when β = 1.
Estimates stabilize for large sample size when greater than or equal to 100, demonstrating minimal bias and low
mean squared error, so validating the consistency of the estimation approach. Hence, the Method of Moments
performs well for estimating parameters. And then the following formula calculates the mean square errors across
every possible set of parameter combinations

MSE =
1

k

k∑
i=1

(α̂i − α)
2

And

Bias (α) = E (α̂)− α

This means that the elements α̂i represent estimators whereas α denotes the actual parameter values.

Table (2) presents the results for Maximum Likelihood Estimation. For instance, some parameter estimates in
these results match closely with the actual values of the underlying parameters. The analyzed mean square error
(MSE) values demonstrate proximity to zero. And, as well as the bias of the estimators is near to zero. So,
maximum likelihood estimation is fairly good for parameter estimation. In Table (3) the show the findings of EM

Algorithm estimation. The findings indicate that if the sample size n will be small or large is not important, so the
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Table 1. Results of the moments method.

Sample α β Estimate(α) Estimate(β) MSE MSE
Size (n) (true) (true) (Bias(Estimate(α))) (Bias(Estimate(β))) (Estimate (α)) (Estimate (β))

0.3 0.3 0.1431 (-0.1569) 0.3083 (0.0083) 0.4139 0.0228
0.6 0.2414 (-0.0586) 0.6172 (0.0172) 0.2738 0.3187

10 1 0.2101 (-0.0899) 0.5074 (-0.4926) 0.3881 6.2313
0.6 0.3 0.2533 (-0.3467) 0.2658 (-0.0342) 0.5962 0.0195

0.6 0.4213 (-0.1787) 0.5689 (-0.0311) 0.3249 0.0822
1 0.4223 (-0.1777) 0.7717 (-0.2283) 0.3254 1.7067

0.3 0.3 0.2503 (-0.0497) 0.3147 (0.0147) 0.1991 0.0123
0.6 0.2975 (-0.0025) 0.6446 (0.0446) 0.1505 0.0511

25 1 0.2632 (-0.0368) 0.6365 (-0.3635) 0.2889 4.8793
0.6 0.3 0.4739 (-0.1261) 0.2924 (-0.0076) 0.2215 0.0119

0.6 0.5414 (-0.0586) 0.6036 (0.0036) 0.1720 0.0463
1 0.5587 (-0.0413) 0.9865 (-0.0135) 0.1667 0.2528

0.3 0.3 0.2913 (-0.0087) 0.3142 (0.0142) 0.1138 0.0077
0.6 0.3254 (0.0254) 0.6437 (0.0437) 0.0996 0.0362

50 1 0.3320 (0.0320) 1.0013 (0.0013) 0.1384 1.1222
0.6 0.3 0.5417 (-0.0583) 0.3019 (0.0019) 0.1321 0.0074

0.6 0.5779 (-0.0221) 0.6145 (0.0145) 0.1125 0.0301
1 0.5918 (-0.0082) 1.0282 (0.0282) 0.1162 0.0955

0.3 0.3 0.3119 (0.0119) 0.3115 (0.0115) 0.0646 0.0048
0.6 0.3287 (0.0287) 0.6293 (0.0293) 0.0550 0.0194

100 1 0.3339 (0.0339) 1.0405 (0.0405) 0.0673 0.3402
0.6 0.3 0.5906 (-0.0094) 0.3093 (0.0093) 0.0818 0.0056

0.6 0.6155 (0.0155) 0.6300 (0.0300) 0.0767 0.0236
1 0.6298 (0.0298) 1.0649 (0.0649) 0.0825 0.0805

0.3 0.3 0.3085 (0.0085) 0.3076 (0.0076) 0.0428 0.0032
0.6 0.3160 (0.0160) 0.6175 (0.0175) 0.0350 0.0119

150 1 0.3212 (0.0212) 1.0440 (0.0440) 0.0385 0.0453
0.6 0.3 0.6096 (0.0096) 0.3118 (0.0118) 0.0648 0.0046

0.6 0.6233 (0.0233) 0.6300 (0.0300) 0.0609 0.0197
1 0.6299 (0.0299) 1.0581 (0.0581) 0.0668 0.0677

0.3 0.3 0.3048 (0.0048) 0.3026 (0.0026) 0.0104 0.0006
0.6 0.3070 (0.0070) 0.6053 (0.0053) 0.0084 0.0021

500 1 0.3098 (0.0098) 1.0139 (0.0139) 0.0091 0.0083
0.6 0.3 0.6246 (0.0246) 0.3100 (0.0100) 0.0289 0.0023

0.6 0.6253 (0.0253) 0.6199 (0.0199) 0.0273 0.0091
1 0.6358 (0.0358) 1.0483 (0.0483) 0.0354 0.0369
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Table 2. Results of maximum likelihood estimation.

Sample α β Estimate(α) Estimate(β) MSE MSE
Size (n) (true) (true) (Bias(Estimate(α))) (Bias(Estimate(β))) (Estimate (α)) (Estimate (β))

0.3 0.3 1.0000 (0.7000) 0.4967 (0.1967) 0.4900 0.0560
0.6 0.5827 (0.2827) 0.7129 (0.1129) 0.3034 0.1026

10 1 0.5008 (0.2008) 1.0733 (0.0733) 0.3342 0.4356
0.6 0.3 1.0000 (0.4000) 0.4518 (0.1518) 0.1600 0.0414

0.6 0.7387 (0.1387) 0.6654 (0.0654) 0.1619 0.0614
1 0.6021 (0.0021) 1.0070 (0.0070) 0.2319 0.2545

0.3 0.3 0.9968 (0.6968) 0.4601 (0.1601) 0.4863 0.0338
0.6 0.3723 (0.0723) 0.6419 (0.0419) 0.2090 0.0440

25 1 0.3958 (0.0958) 1.1205 (0.1205) 0.2018 0.2098
0.6 0.3 0.8059 (0.2059) 0.3605 (0.0605) 0.1323 0.0098

0.6 0.6603 (0.0603) 0.6572 (0.0572) 0.1417 0.0390
1 0.5758 (-0.0242) 1.0643 (0.0643) 0.1666 0.1721

0.3 0.3 0.9834 (0.6834) 0.4635 (0.1635) 0.4719 0.0329
0.6 0.3329 (0.0329) 0.6179 (0.0179) 0.0959 0.0220

50 1 0.3414 (0.0414) 1.0240 (0.0240) 0.1045 0.0680
0.6 0.3 0.7739 (0.1739) 0.3555 (0.0555) 0.1215 0.0081

0.6 0.6460 (0.0460) 0.6487 (0.0487) 0.1028 0.0306
1 0.5880 (-0.0120) 1.0610 (0.0610) 0.1141 0.1169

0.3 0.3 0.5594 (0.2594) 0.3767 (0.0767) 0.1928 0.0129
0.6 0.2829 (-0.0171) 0.5981 (-0.0019) 0.0313 0.0081

100 1 0.2962 (-0.0038) 1.0080 (0.0080) 0.0324 0.0257
0.6 0.3 0.7497 (0.1497) 0.3486 (0.0486) 0.0978 0.0067

0.6 0.6193 (0.0193) 0.6297 (0.0297) 0.0756 0.0234
1 0.6341 (0.0341) 1.0910 (0.0910) 0.0835 0.0959

0.3 0.3 0.5428 (0.2428) 0.3705 (0.0705) 0.1740 0.0122
0.6 0.3090 (0.0090) 0.6079 (0.0079) 0.0251 0.0062

150 1 0.3094 (0.0094) 1.0112 (0.0112) 0.0239 0.0183
0.6 0.3 0.7451 (0.1451) 0.3455 (0.0455) 0.0858 0.0059

0.6 0.6318 (0.0318) 0.6324 (0.0324) 0.0614 0.0199
1 0.6446 (0.0446) 1.0756 (0.0756) 0.0664 0.0721

0.3 0.3 0.3133 (0.0133) 0.3052 (0.0052) 0.0088 0.0004
0.6 0.2983 (-0.0017) 0.6006 (0.0006) 0.0065 0.0015

500 1 0.3047 (0.0047) 1.0048 (0.0048) 0.0069 0.0057
0.6 0.3 0.6597 (0.0597) 0.3179 (0.0179) 0.0380 0.0023

0.6 0.6301 (0.0301) 0.6085 (0.0085) 0.0278 0.0052
1 0.6351 (0.0351) 1.0199 (0.0199) 0.0339 0.0224
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results show parameter estimates that are near to the real values of the parameters. And also, the mean square error
(MSE) values are near zero. And, as well as the bias of the estimators are near to zero. EM algorithm compare
with other of method of moments and maximum likelihood estimation is much better, accurate and appropriate for
estimation of parameters.

4.2. Real Data Applications

This section shows how the LB2 Distribution can be used in practice by fitting it to a real-world data set.
Data Set: Incidence of Hepatitis B virus-positive of Azadi Teaching Gastroenterology and Hepatology Center
(GHC) in Duhok, Kurdistan Region, Iraq
The data set in Table (5) shows the hepatitis B virus-positive incidence rates recorded at Azadi Teaching
Gastroenterology and Hepatology Center (GHC) from 2017 through 2024 in Duhok, Kurdistan Region, Iraq.The
dataset includes 742 individuals across 87 age-specific groups, covering the full range from childhood to older
adulthood. The number of positive cases is represented by the variable xi while the total number of trials is indicated
by ni. Table (4) demonstrates the goodness of fit results for the two-parameter Lindley Binomial distribution when
compared against the Binomial distribution and negative-binomial distribution and Beta-Binomial distribution.
Based on this result, two parameters Lindley–Binomial distribution is found to have the highest log-likelihood
(L = 163.0421) and lowest Akaike Information criterion AIC = −322.0841 as well as smallest χ2 = 60.425
compared with Binomial distribution, negative-binomial and Beta–Binomial distribution. Moreover, the following
functions of Lindley-binomial and Beta-Binomial distributions are much better for the fitting this data compared
with the Negative-Binomial and binomial distributions: Additionally, the Lindley-Binomial and Beta-Binomial
distributions’ probability mass functions are provided by:

p (X = x) = Cn
x

β2

β + α

n−x∑
h=0

Cn−x
h (−1)

h β + x+ h+ α

(β + x+ h)
2

where α̂ = 0.1000 and β̂ = 0.4008
and

p (X = x) = Cn
x

B (x+ c, n− x+ d)

B (c, d)

where ĉ = 1.4564 and d̂ = 3.0994 These findings suggest that the Lindley-Binomial and Beta-Binomial
distributions, rather than the Binomial and Negative-Binomial distributions, offer a better model for the data set.
Previously, the method of moments which is typically less effective than other estimating techniques was used to
estimate the parameters for the Beta-Binomial model. Consequently, for modelling this dataset, the two-parameter
Lindley-Binomial distribution is a superior substitute for the Binomial distribution. . Figure (10) is the residual
Q-Q plot, which tests for normality of the residual distribution. The residuals are mostly on the line of reference,
suggesting a good fit, but the deviations of the upper quantiles reveal mild skewness or heavy tails. Figure (11)
presents the variation in dispersion index across four distributions: Binomial,Beta-Binomial, Lindley-Binomial,
and Negative-Binomial. The Lindley-Binomial is more flexible and has varying levels of dispersion across
probability values, suggesting it has the capability of accommodating various levels of over- and under-dispersion
(compared to the more limited Binomial,Beta-Binomial (red) and Negative-Binomial ). The Negative-Binomial
curve exhibits the least variability and hence the least flexibility for dispersion. The results reinforce the utility
of LB2 in modeling real-world count data, and overdispersion and underdispersoin can matter. We then used
reliability analysis on actual data. Figure shows the results of the reliability analysis.

The figure (12) illustrates the data indicates notable age-specific trends in HBV positive. The spike in hazard
and reversed hazard rates around age 25 suggests a critical period of increased risk. Public health policies must
prioritize targeted interventions for this demographic to mitigate HBV transmission. In order to sustain high levels
of immunity in the community, early preventive and vaccination programs are crucial, as seen by the declining
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Table 3. Results of expectation maximization algorithm

Sample α β Estimate(α) Estimate(β) MSE MSE
Size (n) (true) (true) (Bias(Estimate(α))) (Bias(Estimate(β))) (Estimate (α)) (Estimate (β))

0.3 0.3 0.3406 (0.0406) 0.3365 (0.0365) 0.1519 0.0249
0.6 0.3433 (0.0433) 0.6992 (0.0992) 0.1573 0.1443

10 1 0.3446 (0.0446) 1.2219 (0.2219) 0.1620 0.5642
0.6 0.3 0.4311 (-0.1689) 0.2863 (-0.0137) 0.1894 0.0185

0.6 0.4884 (-0.1116) 0.6184 (0.0184) 0.1821 0.1105
1 0.5101 (-0.0899) 1.0841 (0.0841) 0.1884 0.3925

0.3 0.3 0.3232 (0.0232) 0.3259 (0.0259) 0.1200 0.0124
0.6 0.3336 (0.0336) 0.6665 (0.0665) 0.1193 0.0617

25 1 0.3486 (0.0486) 1.1482 (0.1482) 0.1303 0.2349
0.6 0.3 0.5069 (-0.0931) 0.3003 (0.0003) 0.1449 0.0120

0.6 0.5337 (-0.0663) 0.6195 (0.0195) 0.1402 0.0547
1 0.5573 (-0.0427) 1.0601 (0.0601) 0.1423 0.1729

0.3 0.3 0.3194 (0.0194) 0.3180 (0.0180) 0.0863 0.0074
0.6 0.3342 (0.0342) 0.6494 (0.0494) 0.0886 0.0403

50 1 0.3470 (0.0470) 1.1074 (0.1074) 0.0947 0.1368
0.6 0.3 0.5467 (-0.0533) 0.3056 (0.0056) 0.1115 0.0078

0.6 0.5642 (-0.0358) 0.6206 (0.0206) 0.1041 0.0339
1 0.5790 (-0.0210) 1.0508 (0.0508) 0.1065 0.1105

0.3 0.3 0.3229 (0.0229) 0.3128 (0.0128) 0.0565 0.0046
0.6 0.3304 (0.0304) 0.6307 (0.0307) 0.0538 0.0209

100 1 0.3357 (0.0357) 1.0658 (0.0658) 0.0555 0.0730
0.6 0.3 0.5869 (-0.0131) 0.3101 (0.0101) 0.0769 0.0057

0.6 0.5991 (-0.0009) 0.6266 (0.0266) 0.0697 0.0232
1 0.6089 (0.0089) 1.0590 (0.0590) 0.0723 0.0790

0.3 0.3 0.3131 (0.0131) 0.3080 (0.0080) 0.0402 0.0030
0.6 0.3156 (0.0156) 0.6171 (0.0171) 0.0342 0.0119

150 1 0.3186 (0.0186) 1.0397 (0.0397) 0.0359 0.0432
0.6 0.3 0.6035 (0.0035) 0.3112 (0.0112) 0.0601 0.0045

0.6 0.6124 (0.0124) 0.6278 (0.0278) 0.0558 0.0192
1 0.6248 (0.0248) 1.0644 (0.0644) 0.0602 0.0694

0.3 0.3 0.3056 (0.0056) 0.3027 (0.0027) 0.0103 0.0006
0.6 0.3070 (0.0070) 0.6052 (0.0052) 0.0084 0.0022

500 1 0.3083 (0.0083) 1.0113 (0.0113) 0.0080 0.0070
0.6 0.3 0.6196 (0.0196) 0.3083 (0.0083) 0.0260 0.0020

0.6 0.6188 (0.0188) 0.6159 (0.0159) 0.0234 0.0077
1 0.6268 (0.0268) 1.0387 (0.0387) 0.0279 0.0296
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Table 4. Results for the Hepatitis B virus-positive in Duhok dataset.

Distribution Parameters Log-Likelihood AIC Chi-Squared p-value
Binomial p̂ = 0.3293 −194.4131 390.8261 207.7336 2.866685e-12

ĉ = 1.4564

Beta-Binomial 162.3379 −320.6758 61.502 0.00000
d̂ = 3.0994

α̂ = 0.1000

Lindley-Binomial 163.0421 −322.0841 60.425 0.00000
β̂ = 0.4008

Negative-Binomial p̂ = 1.0354 −190.9346 385.8692 205.6898 0.00000
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Figure 10. displays the Q-Q plot of residuals.

reliability and MRL with age. Lindley-Binomial Distribution-Based Age-Specific Evaluation of Hepatitis B Virus
Positivity: Reliability, Hazard, and Reversed Hazard Functions.

5. Conclusion

This research, a new generalized discrete distribution, the LB2 distribution, was introduced by compounding
the two-parameter Lindley distribution with the binomial distribution. Its probabilistic properties, including the
shape of the probability mass function, generating functions, mean and variance, and index of dispersion, have
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Figure 11. Index of Dispersion for various distributions Across Probability Values.

been discussed Furthermore, graphical representations of important functions, such as the mean residual life
(MRL), hazard rate function, and reversed hazard rate function, were used to investigate reliability analysis. Three
estimation methods: method of moments, maximum likelihood estimation, and the expectation-maximization
algorithm—were used to estimate the distribution’s parameters. The results indicate that all three methods provide
good estimations; however, the expectation-maximization algorithm is the most stable and accurate compared to
the method of moments and maximum likelihood estimation. The LB2 distribution was fitted on a dataset of the
incidence of the Hepatitis B virus (HBV ) and its positivity was evaluated in real world applications. To evaluate
the goodness of fit of a LB2 distribution to those of binomial, beta binomial and negative binomial, metrics such
as log likelihood, Akaike Information Criterion (AIC), chi-squared statistics and p values were used. Results
indicate that the LB2 distribution fitted the data better than both binomial and negative binomial distributions and
thus, had higher log-likelihood values and lower AIC scores. Additionally, the beta-binomial distribution and the
LB2 distribution performed similarly. These results indicate that the two parameter Lindley Binomial distribution
is particularly useful for modeling proportional data when over-dispersion is present. Because of its flexibility as
well as its enhanced goodness-of-fit, the suggested distribution can be a useful tool in statistical modeling, and it
may be used in epidemiology, reliability analysis, and medical research. Further extensions of the LB2 distribution
are used in the further analysis of age specific HBV positive in this study. The findings can provide important
data regarding risk patterns and thus be used to persuade public health campaigns to successfully end the spread of
HBV .
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Figure 12. Lindley-Binomial Distribution-Based Age-Specific Evaluation of Hepatitis B Virus Positivity: Reliability, Hazard,
, Reversed Hazard Functions and Mean Residual Life.
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