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Abstract In this research, we introduce a novel and comprehensive class of lifetime distributions, termed EBUCmgf,
specifically designed to effectively model intricate and nuanced aging behaviors observed in reliability systems. Unlike the
classic exponential distribution, which assumes a constant failure rate over time and thereby cannot account for more complex
failure patterns, the proposed EBUCmgf class offers a flexible framework to address diverse and realistic aging phenomena
in practical applications. Our methodological approach is grounded in advanced mathematical principles, particularly
leveraging the Laplace transform order, which enables us to rigorously develop a new statistical testing procedure. This
innovative test serves to determine whether empirical data align with the theoretical properties of the EBUCmgf distributional
class. Moreover, we conduct an in-depth analysis of the statistical test’s behavior and efficacy, employing Pitman’s concept
of asymptotic efficiency. Recognizing the prevalence of incomplete information in real-life reliability studies, we further
extend our proposed methodology to accommodate datasets subject to right-censoring. To comprehensively evaluate the
reliability and effectiveness of our proposed test, extensive simulation studies are performed under a variety of statistical
conditions, capturing a wide range of real-world possibilities. Furthermore, actual case studies involving real datasets are
examined, demonstrating the practical utility, versatility, and superiority of our method in contemporary reliability analysis
settings. Through these multifaceted investigations, our research offers significant contributions to statistical methodology
in reliability engineering and lifetime data analysis.
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1. Introduction

Reliability theory is a dynamic field that addresses the analysis and prediction of system lifetimes, drawing
interest from both engineers and statisticians. Over recent decades, researchers have sought to better understand
the diverse patterns in which technical systems and components age, aiming to improve maintenance planning
and risk assessment. While the exponential distribution has often served as a standard model for lifetimes due
to its mathematical simplicity and memoryless property, it does not always capture the complex aging behaviors
observed in practice.
To address this gap, alternative classes of life distributions have been proposed, each attempting to represent
different aspects of aging or reliability improvement. These include models accounting for increasing or decreasing
failure rates, and notions such as “new better than used” in various statistical senses. The development and study of
these classes support more accurate modeling of real-world systems, where performance may gradually deteriorate
or, in some cases, improve over time.
From a statistical standpoint, distinguishing whether observed data belong to a specific life distribution class is of
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paramount importance. It enables practitioners to select appropriate reliability strategies and to justify the use of
specific probabilistic models. Techniques based on Laplace transform order, for example, provide powerful tools
for such discrimination, as they leverage integral properties of lifetime distributions.
This study introduces a newly defined class of life distributions designed to capture nuanced aging properties that
the classic exponential model does not reflect. We develop a novel hypothesis testing approach, grounded in the
theory of Laplace transforms, to assess exponentiality versus membership in this new class. The test is further
evaluated through both theoretical and simulation-based efficiency measures, and its applicability is confirmed
using real and right-censored datasets, which are common in applied reliability studies.

Aging is modeled using a non-negative random variable X , which has a cumulative distribution function F (x)
and a survival function F̄ (x) = 1− F (x). For practical reasons, X is usually considered to have a continuous
probability distribution with an associated density function f(x), though this continuity is not always a necessary
assumption.
The exponential better than used (EBU) class was first proposed by Elbatal [12], who explored its fundamental
properties such as closure under common reliability operations, associated moment inequalities, and its inheritance
under shock models. Since then, this class has attracted extensive attention among statisticians and reliability
experts, leading to studies from various analytical perspectives. Several works addressing challenges and
characteristics of EBU life distributions can be found in the literature, including those by Hendi et al. [20], Attia et
al. [8], AbdulMoniem [1], Gadallah [15], Hendi and Al-Ghufily [21] and Mahmoud and Rady [24].

The Laplace transform is a highly valuable tool in applied mathematics and engineering, with significant
applications in probability and statistics. It simplifies mathematical problems by converting differential equations
into more manageable algebraic equations. In the field of probability, the Laplace transform is particularly useful
for studying random variables, calculating moments, and analyzing stochastic processes such as Markov chains
and renewal theory, see Feller [14]. For two non-negative random variables X and Y with distribution functions F
and G, (survival functions F̄ , Ḡ) respectively, the random variable X is smaller than Y in Laplace transform order
(denoted by X ≤LT Y ) if, and only, if∫ ∞

0

e−sxF̄ (x)dx ≤
∫ ∞

0

e−syḠ(y)dy, for all s ≥ 0 (1)

In recent years, significant advancements have been made in developing statistical tests for assessing
exponentiality against various alternative classes of lifetime distributions, particularly using Laplace transform
based techniques. ElArishy et al. [10] proposed a test for exponentiality versus the RNBRUE class, while El-Atfy
et al. [11] developed a hypothesis test against the RNBUmgf class. Gadall [16] introduced a testing procedure
targeting the EBUmgf class of life distributions, and Gadall et al. [17] extended this work by focusing on the
NRBUL class. Al-Gashgari et al. [5] contributed a nonparametric test against the NBUCA class, and Atallah et al.
[7] designed a novel method for testing exponentiality versus the NBUmgf class.

Further contributions include Mahmoud et al. [23], who investigated the HNBUE class and the new better
than renewal used class within the Laplace transform order framework. Abu-Youssef et al. [3] developed a
nonparametric test for the UBAC(2) life distribution class, and Abu-Youssef and El-Toony [4] introduced a new
class of life distributions grounded in Laplace transform techniques. More recently, Bakr et al. [9] presented
advancements in Laplace transform methods enabling nonparametric hypothesis testing on real-world data through
comprehensive statistical analysis. Gadallah et al. [18] also contributed by modeling various survival distributions
based on a nonparametric Laplace transform approach with practical applications.
These studies collectively demonstrate the growing versatility and efficacy of Laplace transform-based
methodologies in hypothesis testing for lifetime data, providing robust tools to discriminate exponentiality
from more complex aging and reliability classes. This extensive body of work establishes a solid foundation and
motivates the present study’s development of novel testing procedures within this evolving framework.
In this work, we use the class EBUCmgf to present a test statistic based on Laplace transform for testing H0 : F is
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exponential with mean µ against the alternative H1 : F is EBUCmgf but not exponential.

The remainder of this paper is organized as follows: Section 2 derives and thoroughly discusses the Laplace
transform associated with the newly introduced EBUCmgf class of lifetime distributions, highlighting its
mathematical properties. In Section 3, we propose a novel statistical testing procedure for distinguishing the
exponential distribution from the EBUCmgf class, assuming complete and uncensored data, using the concept of
Laplace transform order as a basis for the test. Section 4 is dedicated to evaluating the asymptotic efficiency of
the proposed test from Pitman’s perspective, comparing performance across several commonly used reliability
distributions. Section 5 estimates the critical values of the test statistic through Monte Carlo simulations, analyzes
power characteristics, and demonstrates practical application with complete datasets. Section 6 extends the
methodology to handle datasets subject to right-censoring, providing corresponding critical value tables and
simulated power results to support practitioners. Finally, Section 7 presents a variety of real-world examples to
show case the practical effectiveness and applicability of the proposed testing framework in reliability analysis
involving both complete and censored lifetime data.

Definition 1: Hendi and AL-Ghufily [21] A life distribution F is said to be exponential better than used in
convex (EBUC) if ∫ ∞

x+t

F (u) du ≤ µF (t)e−x/µ, (2)

where F (t) = 1− F (t) is the survival function.

Definition 2: Let X and Y be two non-negative random variables with survival functions F and G, respectively.
We say that X is less than Y in the moment-generating function order, denoted by X ≤mgf Y , if and only if:∫ ∞

0

eλxF (x) dx ≤
∫ ∞

0

eλyG(y) dy, ∀λ > 0. (3)

Definition 3: Using Definitions 1 and 2, thenX is exponentially better than used in convex order with respect
to the moment-generating function, denoted by X ∈ EBUCmgf, if the following condition is satisfied:∫ ∞

0

∫ ∞

x+t

eλxF (u) du dx ≤ µ2

1− µλ
F (t). (4)

2. Laplace Transform

The upcoming theorems establish the form of the Laplace transform associated with the class of EBUCmgf life
distributions.

Theorem 1: Suppose that F is EBUCmgf, and let:

φ(λ) = E(eλX) =

∫ ∞

0

eλx dF (x), φ(α) = E(e−αX) =

∫ ∞

0

e−αx dF (x).

Then,
1

α+ λ

(
1

λ2
φ(λ)− 1

α2
φ(α)− α+ λ

αλ
µ+

λ2 − α2

α2λ2

)
≤ µ2

(1− µλ)α
(1− φ(α)). (5)
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Proof: Let F (x) be EBUCmgf, and:

v(x+ t) =

∫ ∞

x+t

F (u) du.

Then, Eq. (4) becomes: ∫ ∞

0

eλxv(x+ t) dx ≤ µ2

1− µλ
F (t). (6)

Making use of Eq. (6), we have:∫ ∞

0

∫ ∞

0

e−αteλxv(x+ t) dx dt ≤ µ2

1− µλ

∫ ∞

0

e−αtF (t) dt. (7)

The right-hand side (R.H.S.) of Eq. (7) can be expressed as:

µ2

1− µλ

∫ ∞

0

F (t)e−αt dt =
µ2

1− µλ
E
(∫ ∞

0

e−αtI(T > t) dt

)
=

µ2

1− µλ

1

α

(
1− E(e−αX)

)
=

µ2

1− µλ

1

α
(1− φ(α)). (8)

Similarly, the left-hand side (L.H.S.) of Eq. (7) can be represented as:∫ ∞

0

∫ ∞

0

e−αteλxv(x+ t) dx dt =

∫ ∞

0

e−t(λ+α)

∫ ∞

t

eλyv(y) dy dt

=
1

α+ λ

(∫ ∞

0

eλtv(t) dt−
∫ ∞

0

e−αtv(t) dt

)
=

1

α+ λ
(I1 − I2), (9)

where:

I1 =

∫ ∞

0

eλtv(t) dt

=

∫ ∞

0

eλt
∫ ∞

t

F (u) du dt

=
1

λ2
φ(λ)− 1

λ
µ− 1

λ2
, (10)

I2 =

∫ ∞

0

e−αtv(t) dt

=

∫ ∞

0

e−αt

∫ ∞

t

F (u) du dt

=
1

α2
φ(α) +

1

α
µ− 1

α2
. (11)

Thus, Eq. (9) can be written as:∫ ∞

0

∫ ∞

0

e−αteλxv(x+ t) dx dt =
1

α+ λ

(
1

λ2
φ(λ)− 1

α2
φ(α)− α+ λ

λα
µ+

λ2 − α2

α2λ2

)
. (12)

From Eq. (8) and Eq. (12), the theorem is proved.
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2.1. Developing a Statistical Test for Exponentiality versus EBUCmgf Class with Complete Data

We consider the problem of testing the null hypothesis:

H0 : F follows an exponential distribution with mean µ,

versus the alternative hypothesis:

H1 : F belongs to EBUCmgf class and is not exponential.

This test is formulated by applying the inequality specified in Eq. (5), utilizing δ(λ, α) as described below:

δ(λ, α) =

(
1

α2(α+ λ)
− λ

α2(α+ λ)
µ− 1

α
µ2

)
φ(α) +

(
1

λ(α+ λ)
µ− 1

λ2(α+ λ)

)
φ(λ) +

1

α2
µ+

α− λ

α2λ2
.

Under H0 : δ(λ, α) = 0, and it is positive under H1.

Let X1, X2, . . . , Xn represent a random sample drawn from a population characterized by the distribution
function F (x). We denote by Fn(x) the empirical survival function estimated from the sample, and by δn(λ, α)
the empirical estimator of δ(λ, α), where:

Fn(x) =
1

n

n∑
i=1

I(Xi > x), dFn(x) =
1

n
,

and

δn(λ, α) =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

[(
1

α2(α+ λ)
− λ

α2(α+ λ)
Xi −

1

α
XiXj

)
e−αXk

+

(
1

λ(α+ λ)
Xi −

1

λ2(α+ λ)

)
eλXj +

1

α2
Xi +

α− λ

α2λ2

]
. (13)

To achieve scale invariance for the test, Eq. (13) is expressed in the form:

δ̂n(λ, α) =
1

n3X
2

n∑
i=1

n∑
j=1

n∑
k=1

ψ(Xi, Xj , Xk), (14)

where

ψ(Xi, Xj , Xk) =

(
1

α2(α+ λ)
− λ

α2(α+ λ)
Xi −

1

α
XiXj

)
e−αXk +

(
1

λ(α+ λ)
Xi −

1

λ2(α+ λ)

)
eλXj

+
1

α2
Xi +

α− λ

α2λ2
. (15)

The symmetric kernel is given by:

γ(Xi, Xj , Xk) =
1

3!

∑
R

ψ(Xi, Xj , Xk),

where the summation is over all permutations of Xi, Xj , and Xk. Consequently, the value of δ̂n(λ, α) as defined in
Eq. (14) can be considered synonymous with the U -statistic given by:

Un =
1(
n
3

)∑ γ(Xi, Xj , Xk).
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The next theorem establishes the asymptotic normality of the estimator δ̂n(λ, α).
Theorem 2: As n→ ∞,

√
n
(
δ̂n(λ, α)− δ(λ, α)

)
is asymptotically normal with mean zero and variance σ2,

where:

σ2 = Var

(
(X − 1)(1 + α− λ)

α(1 + α)(−1 + λ)λ
+
α+ α2 + eXλα(1 + α)(−1 + λ) + αλ2 −Xαλ2 + λ3 −Xλ3

α(1 + α)λ2(α+ λ)

+
e−αX(−1 + eαX − α)(−1 + α+ λ)

α2(α+ λ)

)
. (16)

Under H0, the variance reduces to:

σ2
0 =

(1− λ)(−10 + λ(16 + λ(2λ− 9)))− 2α2 − α(12 + λ(−22 + λ(13− 2λ)))

(1 + α)2(1 + 2α)(1 + α− λ)(λ− 1)2(2λ− 1)
. (17)

Proof: Equation (15) can be written as:

ψ(X1, X2, X3) =

(
1

α2(α+ λ)
− λ

α2(α+ λ)
X1 −

1

α
X1X2

)
e−αX3

+

(
1

λ(α+ λ)
X1 −

1

λ2(α+ λ)

)
eλX2 +

1

α2
X1 +

α− λ

α2λ2
. (18)

Define:

ψ(X1) = E[ψ(X1, X2, X3) | X1] + E[ψ(X2, X1, X3) | X1] + E[ψ(X3, X2, X1) | X1].

The three conditional expectations are computed as follows:

E[ψ(X1, X2, X3) | X1] =
(X1 − 1)(1 + α− λ)

α(1 + α)(−1 + λ)λ
, (19)

E[ψ(X2, X1, X3) | X1] =
α+ α2 + eX1λα(1 + α)(−1 + λ) + αλ2 −X1αλ

2 + λ3 −X1λ
3

α(1 + α)λ2(α+ λ)
, (20)

E[ψ(X3, X2, X1) | X1] =
e−αX1(−1 + eαX1 − α)(−1 + α+ λ)

α2(α+ λ)
. (21)

Thus,

ψ(X1) =
(X1 − 1)(1 + α− λ)

α(1 + α)(−1 + λ)λ
+
α+ α2 + eX1λα(1 + α)(−1 + λ) + αλ2 −X1αλ

2 + λ3 −X1λ
3

α(1 + α)λ2(α+ λ)

+
e−αX1(−1 + eαX1 − α)(−1 + α+ λ)

α2(α+ λ)
. (22)

Hence,
σ2 = Var(ψ(X1)).

Under H0, the variance reduces to Eq. (17).

2.2. Assessment of Pitman’s Asymptotic Efficiency for EBUCmgf

Pitman’s Asymptotic Relative Efficiency (P.A.E.) is a concept in statistics used to compare the performance of two
statistical tests as the sample size approaches infinity. It measures the relative efficiency by examining the ratio of
sample sizes required to achieve the same power against local alternatives (i.e., alternatives approaching the null
hypothesis).

Key Properties:
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• Applies to hypothesis testing problems
• Asymptotic concept (sample size n→ ∞)
• Compares tests under local alternatives
• Higher values indicate greater efficiency (fewer observations needed for equivalent power)

This concept is important in choosing statistical methods that remain reliable and powerful as data scales. To
assessment of the efficacy of this approach includes the calculation of Pitman asymptotic efficiencies and their
comparison with alternative tests for various distributions such as:

1. Linear Failure Rate (LFR): F 1(x) = exp
(
−x− θx2

2

)
, x ≥ 0, θ ≥ 0

2. Makeham: F 2(x) = exp (−x− θ(x+ e−x − 1)) , x ≥ 0, θ ≥ 0
3. Weibull: F 3(x) = exp(−xθ), x ≥ 0, θ ≥ 1
4. Gamma: F 4(x) =

1
Γ(θ)

∫∞
x
e−uuθ−1du, x ≥ 0, θ ≥ 0

The exponential distribution corresponds to θ0 = 0 for LFR and Makeham families, and θ0 = 1 for Weibull and
Gamma families.

We utilize the concept of Pitman’s asymptotic efficiency (PAE), described as follows, without directly quoting
the original text. The Pitman asymptotic efficiency is given by:

PAE(δθ(λ, α)) =
1

σ0

∣∣∣∣ ∂∂θ δθ(λ, α)
∣∣∣∣
θ→θ0

(23)

where the derivative term expands to:

∂

∂θ
δθ(λ, α) =

(
1

α2(α+ λ)
− 1

α
µ2
θ −

λ

α2(α+ λ)
µθ

)∫ ∞

0

e−αxdF ′
θ(x)

+

(
− 2

α
µθµ

′
θ −

λ

α2(α+ λ)
µ′
θ

)∫ ∞

0

e−αxdFθ(x)

+

(
1

λ(α+ λ)
µθ −

1

λ2(α+ λ)

)∫ ∞

0

eλxdF ′
θ(x)

+
1

λ(α+ λ)
µ′
θ

∫ ∞

0

eλxdFθ(x) +
1

α2
µ′
θ (24)

with µθ =
∫∞
0
xdFθ(x) and µ′

θ = ∂
∂θµθ.

To evaluate the performance of the Pitman asymptotic efficiency (PAE) method, we consider several probability
models, including the Linear Failure Rate, Makeham, Weibull, and Gamma distributions. The PAE for each
distribution family is:

PAE(δθ(λ, α), F 1(x)) =
1

σ0

∣∣∣∣ 3 + α− 3λ+ λ2

(1 + α)2(λ− 1)2

∣∣∣∣ , α > −1, λ < 1 (25)

PAE(δθ(λ, α), F 2(x)) =
1

σ0

∣∣∣∣ 5 + α− 4λ+ λ2

2(1 + α)(2 + α)(λ− 2)(λ− 1)

∣∣∣∣ , α > −1, λ < 1 (26)

PAE(δθ(λ, α), F 3(x)) =
1

σ0

∣∣∣∣ (−1 + α+ λ) log(1 + α)

α(1 + α)(α+ λ)
+

log(1− λ)

λ(λ− 1)(α+ λ)

∣∣∣∣ , α > −1, λ < 1 (27)

PAE(δθ(λ, α), F 4(x)) =
1

σ0

∣∣∣∣−α2 + (λ− 1)2λ+ α(1− λ+ λ2)

αλ(α+ λ)(1 + α)(λ− 1)
+

(α+ λ− 1) log(1 + α)

α2(α+ λ)
+

log(1− λ)

λ2(α+ λ)

∣∣∣∣ , α > −1, λ < 1

(28)
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Table 1 presents the efficiency of alternative distributions at various values of the parameters λ and α, compared
with the tests conducted by Bakr et al. [9] and El-Sherbin et al. [13]. The values in the table reflect the accuracy
and effectiveness of the estimator function δθ(λ, α) in fitting different distributions F i(x) across varying sample
sizes. The table also highlights how the performance varies with changes in the regularization parameters and the
underlying data.

Table 1. Asymptotic efficiencies of δθ(λ, α) for various combinations of λ and α

Dist. α
δθ(λ, α) Comparison Tests

λ = 0.01 λ = 0.05 λ = 0.1 λ = 0.4 δ(s) δ(s, 1)EBUCL
s = 0.2 s = 0.001 s = 0.2 s = 5

0.2 0.9770 0.9706 0.9600 0.7048
0.5 0.9942 0.9904 0.9831 0.7387

F 1(x) 2 0.9966 0.9981 0.9972 0.7695 0.9219 0.9818 0.8111 0.8916
4 0.9909 0.9937 0.9942 0.7669
5 0.9898 0.9927 0.9932 0.7649

0.2 0.2157 0.2113 0.2049 0.1254
0.5 0.2334 0.2289 0.2223 0.1371

F 2(x) 2 0.2603 0.2556 0.2486 0.1519 0.1821 0.2181 0.1367 0.1663
4 0.2640 0.2591 0.2518 0.1520
5 0.2637 0.2587 0.2513 0.1511

0.2 0.8596 0.8431 0.8194 0.5144
0.5 0.9294 0.9124 0.8878 0.5606

F 3(x) 2 1.0561 1.0368 1.0084 0.6256 0.7218 0.8550 0.5564 0.6655
4 1.0923 1.0707 1.0393 0.6322
5 1.0974 1.0751 1.0426 0.6307

0.2 0.4092 0.3996 0.3862 0.2304
0.5 0.4526 0.4422 0.4276 0.2554

F 4(x) 2 0.5419 0.5287 0.5099 0.2951 – – 0.2388 0.2951
4 0.5724 0.5571 0.5356 0.3016
5 0.5776 0.5617 0.5393 0.3013

The table reveals several important findings:

• The first distribution F 1(x) achieves the highest efficiency among all alternatives, with values approaching
unity (PAE ≈ 0.97–0.99). This superior performance consistently outperforms the results from Bakr et al.
[9] and El-Sherbin et al. [13], indicating exceptional accuracy.

• The other distributions F 2(x), F 3(x), and F 4(x) demonstrate:

– Lower overall efficiency scores compared to F 1(x)
– Greater variability in performance across parameter values
– Sensitivity to changes in both λ and α parameters

• Key observations about parameter effects:

– Efficiency generally decreases as λ increases from 0.01 to 0.4
– Moderate α values (0.5–2) often yield optimal performance
– The Gamma distribution (F 4(x)) shows incomplete comparative data

These results emphasize:

1. The critical importance of distribution selection for achieving high efficiency
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2. The need for careful parameter tuning (λ and α balance)
3. The value of comparative benchmarks established in prior studies
4. The exceptional performance of the F 1(x) distribution case

3. Monte Carlo Critical Values

Monte Carlo simulation is a computational technique that relies on repeated random sampling to obtain numerical
results, often used to approximate the distribution of complex statistics. In this section, the critical values for the null
distribution of δ̂(λ, α) are estimated using Monte Carlo simulations. Specifically, 10,000 samples of sizes ranging
from 5 to 50 (in increments of 5) were generated from the standard exponential distribution using Mathematica
13. From these simulations, the upper percentile values at confidence levels of 90%, 95%, 98%, and 99% were
calculated. These percentile values for the statistic δ̂(λ, α) are displayed in Table 2 and Table 3.

Table 2. Critical Values of the test statistic δ̂(λ, α) for λ = 0.01 and α = 2.

n 90% 95% 98% 99%

5 0.235261 0.261784 0.286409 0.299615
10 0.186350 0.210898 0.233565 0.248351
15 0.158303 0.181641 0.203958 0.217209
20 0.139056 0.162424 0.184875 0.199337
25 0.128272 0.149529 0.172097 0.185261
30 0.118502 0.138517 0.158790 0.171819
35 0.110324 0.127398 0.149318 0.162169
36 0.110291 0.127942 0.146295 0.158447
40 0.104396 0.122901 0.140670 0.150934
45 0.098745 0.116539 0.136559 0.145685
50 0.095549 0.112481 0.129816 0.143214

Table 3. Critical Values of the test statistic δ̂(λ, α) for λ = 0.1 and α = 5.

n 90% 95% 98% 99%

5 0.106268 0.115299 0.123581 0.126413
10 0.082703 0.092668 0.101167 0.107634
15 0.070705 0.080137 0.088809 0.094645
20 0.062318 0.071429 0.080210 0.085588
25 0.057705 0.065958 0.074931 0.081439
30 0.053232 0.061075 0.069988 0.076475
35 0.049273 0.057188 0.066072 0.070915
36 0.049095 0.056984 0.065385 0.070267
40 0.046783 0.054456 0.063164 0.068185
45 0.044293 0.051769 0.059374 0.065292
50 0.042568 0.050044 0.057519 0.061902

Tables 2 and 3, and Figures 1 and 2 shows that the critical values of the test statistic δ̂(λ, α) tend to increase
with higher confidence levels, which is expected as wider confidence intervals capture more extreme values in the
distribution. The critical values decrease gradually as the sample size n increases, reflecting improved estimation
accuracy and reduced random variation with larger samples. This lowers the likelihood of extreme statistic values
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Figure 1. Critical values versus sample size for λ = 0.01 and α = 2.

Figure 2. Critical values versus sample for λ = 0.1 and α = 5.

under the null hypothesis. Table 2 show critical values for a small regularization parameter λ = 0.01 and α = 2,
where critical values are generally higher compared to those in Table 3. Table 3 presents critical values for λ = 0.1
and α = 5, showing generally smaller critical values, indicating that stronger regularization leads to reduced critical
thresholds and can affect test sensitivity and discriminative power. In summary, the Monte Carlo simulation results
confirm the inverse relationship between sample size and critical value magnitude, as well as the influence of
regularization parameters on the distribution of the test statistic. These insights are instrumental in designing tests
with optimized accuracy and reliability based on the desired level of confidence.

3.1. Power Estimates of the Test δ̂(λ, α)

Power in statistical testing refers to the probability that a test correctly rejects a false null hypothesis. In other
words, it measures the test’s ability to detect a true effect or difference when it actually exists. A higher power
(closer to 1) means the test is more sensitive and less likely to commit a Type II error (failing to reject a false
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null hypothesis).Several factors influence the power of a test, including sample size, the magnitude of the effect,
significance level (confidence level), and the underlying distribution of the data. Power is often estimated through
simulation methods such as Monte Carlo experiments or analytically in simpler cases. Assessing power is essential
when designing experiments and choosing appropriate tests to ensure sufficient sensitivity to detect meaningful
effects. Power estimation in statistical testing refers to the procedure used to determine how likely a test is to
correctly reject a false null hypothesis, thus gauging its sensitivity to detect actual effects. In this section, we assess
the power of the test statistic δ̂(λ, α) at a (1− α)% confidence level, using selected values of θ, for sample sizes of
n = 10, 20, 30. The power analysis is performed relative to three alternative distributions: the Linear Failure Rate
(LFR), Weibull, and Gamma distributions. This evaluation is carried out by running 10,000 simulated replicates
for each scenario.

Table 4. Power Estimates at λ = 0.01, α = 2

Distribution n θ = 2 θ = 3 θ = 4

10 0.0873 0.0681 0.0501
LFR 20 0.2397 0.2263 0.1993

30 0.3998 0.4262 0.4220

10 0.4330 0.7581 0.8935
Gamma 20 0.6786 0.9572 0.9951

30 0.8088 0.9923 0.9997

10 0.7091 0.9851 0.9998
Weibull 20 0.9708 1.0000 1.0000

30 0.9978 1.0000 1.0000

Table 5. Power Estimates at λ = 0.1, α = 5

Distribution n θ = 2 θ = 3 θ = 4

10 0.2028 0.2300 0.2406
LFR 20 0.3802 0.4560 0.4944

30 0.5652 0.6547 0.7118

10 0.4188 0.8074 0.9618
Gamma 20 0.6774 0.9677 0.9974

30 0.8363 0.9950 0.9998

10 0.7653 0.9935 0.9999
Weibull 20 0.9835 1.0000 1.0000

30 0.9993 1.0000 1.0000

The tables demonstrate that the test statistic δ̂(λ, α) becomes increasingly effective and efficient as the sample
size grows, with a marked improvement in the ability to detect true differences when moving from smaller samples
(n = 10) to larger ones (n = 30) across all studied distributions. The test shows particularly high sensitivity to
the Gamma and Weibull distributions, where power values rise significantly with increasing θ and approach near-
perfect performance even at moderate sample sizes. In contrast, the Linear Failure Rate (LFR) distribution exhibits
comparatively lower power levels, with a more gradual increase across θ values and sample sizes. Moreover,
increasing the regularization parameters λ and α notably enhances power, especially for the LFR distribution,
suggesting that tuning these parameters can improve the test’s sensitivity in more challenging detection scenarios.
Among the distributions, the Weibull alternatives consistently yield the best power and stability in estimates,
confirming the superior ability of the test to detect alternatives following this distribution. Overall, these results
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highlight the importance of selecting an appropriate sample size, carefully tuning regularization parameters, and
understanding the nature of alternative distributions to optimize the accuracy and effectiveness of the δ̂(λ, α) test
in practical applications.

4. Applications Using Complete (Uncensored) Data

Here, we provide several significant real-world examples to demonstrate how our test statistic δ̂n(λ, α) can be
applied to non-censored data at the 95% confidence level.

4.1. Example 1: Leukemia Patient Lifespans

A data set comprises the recorded lifespans (in years) of 40 patients diagnosed with leukemia, sourced from a
Ministry of Health hospital in Saudi Arabia as referenced in Abouammoh [2]. The ordered lifetimes (in years) are:

0.315 0.496 0.616 1.145 1.208 1.263 1.414 2.025 2.036 2.162
2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263 3.348
3.348 3.427 3.499 3.534 3.767 3.751 3.858 3.986 4.049 4.244
4.323 4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074 4.381

Based on the analysis, the computed values of the test statistic are:

• δ̂n(λ, α) = 0.257821 when λ = 0.01 and α = 2
• δ̂n(λ, α) = 0.115343 when λ = 0.1 and α = 5

Both values exceed their respective critical values (Tables 2 and 3), providing sufficient evidence to reject the
null hypothesis H0 at the 0.05 significance level. The data do not follow an exponential distribution, but rather
belong to the EBUCmgf class.

Figure 3. Diagnostic plots for Example 1: (a) Histogram, (b) P-P plot, (c) Q-Q plot, (d) Box plot

To assess the performance of the test asset of nonparametric plots are shown as: The histogram shows the
distribution of the data, which appears moderately spread and does not closely resemble the classic shape of the
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exponential distribution. The P-P plot and Q-Q plot indicate deviations from the straight line, suggesting that the
empirical data do not perfectly align with the theoretical exponential distribution. The box plot reveals the spread
and central tendency of the values, with no strong skewness or presence of extreme outliers. The middle 50%
of the data is concentrated in the interquartile range. Together, these graphical summaries visually reinforce the
statistical finding that the data deviate from exponential behavior, supporting the conclusion to reject H0 in favor
of the alternative distribution class.

4.2. Example 2: COVID-19 Mortality Rates

A data set presented in Almetwally [6], covers a 36-day period from April 10 to May 15, 2020, and presents
COVID-19 statistics recorded in Canada. Specifically, the data represent the drought mortality rate observed during
this time frame, as illustrated in Figure 4. The mortality rates are as follows:

3.1091 3.3825 3.1444 3.2135 2.4946 3.5146
4.9274 3.3769 6.8686 3.0914 4.9378 3.1091
3.2823 3.8594 4.0480 4.1685 3.6426 3.2110
2.8636 3.2218 2.9078 3.6346 2.7957 4.2781
4.2202 1.5157 2.6029 3.3592 2.8349 3.1348
2.5261 1.5806 2.7704 2.1901 2.4141 1.9048

Test statistic values:

• δ̂n(λ, α) = 0.293812 (λ = 0.01, α = 2)
• δ̂n(λ, α) = 0.125227 (λ = 0.1, α = 5)

both values exceed the corresponding critical values found in Tables 2 and 3, there is sufficient evidence to
reject the null hypothesis. This result leads us to accept the alternative hypothesis H1, indicating that the data set
possesses the EBUCmgf property and does not follow the exponential distribution.

Figure 4. Diagnostic plots for Example 2: (a) Histogram, (b) P-P plot, (c) Q-Q plot, (d) Box plot

It is easily to show that from figure 4: The histogram reveals that the data distribution does not strictly follow the
typical exponential shape, displaying a moderate spread among values. The P-P plot and Q-Q plot both show some
deviation from the straight reference lines, illustrating differences between the empirical data and the theoretical
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exponential distribution. These patterns further support the rejection of exponentiality. The box plot demonstrates
the data’s central tendency and variability. While there are a few mild outliers, most values remain within a
relatively consistent range, reinforcing the findings from the other plots. These graphical representations visually
strengthen the statistical conclusion that the data set does not have an exponential distribution but instead exhibits
the characteristics described by the EBUCmgf class.

4.3. Example 3: Customer Arrival Intervals

A data set sourced from Grubbs [19] and records the time intervals between the arrivals of 25 customers at a specific
facility. The data represent the durations (in time units) between consecutive customer arrivals, as illustrated in
Figure 5. The intervals are as follows:

1.80 2.89 2.93 3.03 3.15
3.43 3.48 3.57 3.85 3.92
3.98 4.06 4.11 4.13 4.16
4.23 4.34 4.53 4.62 4.65
4.73 4.84 4.91 4.99 5.17

Test statistic values:

• δ̂n(λ, α) = 0.299909 (λ = 0.01, α = 2)
• δ̂n(λ, α) = 0.134581 (λ = 0.1, α = 5)

It is found that these values exceed the critical threshold mentioned in Tables 2 and 3, supporting the acceptance
of the alternative hypothesis H1. This indicates that the dataset exhibits the EBUCmgf property and does not follow
an exponential distribution.

Figure 5. Diagnostic plots for Example 3: (a) Histogram, (b) P-P plot, (c) Q-Q plot, (d) Box plot

To evaluate the test Figure 5 indicate that the graph displays the data distribution through multiple elements,
including a histogram showing frequency values, a P-P plot comparing theoretical probabilities with observed
distributions, and a box plot summarizing key statistical measures. Together, these visualizations aid in analyzing
the dataset’s characteristics and reinforce the statistical conclusions drawn in the study. The results align with the
numerical findings, confirming the non-exponential nature of the data.
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5. Testing Against EBUCmgf Class for Censored Data

In many life-testing models and clinical studies, it is common to encounter censored data, where full information
about the time to event (such as device failure or patient death) is not available for every unit in the study. One of
the most frequent scenarios is random right-censoring.

Statistical Model with Random Right-Censoring Suppose n units are placed under observation, with their actual
failure times denoted as X1, X2, . . . , Xn which are assumed to be independent and identically distributed (i.i.d.)
according to a continuous lifetime distribution F . The censoring times Y1, Y2, . . . , Yn are also i.i.d. from another
continuous distribution G, and are independent of the X’s.

We observe the pairs (Zj , δj) for j = 1, . . . , n where:

• Zj = min(Xj , Yj): the observed time (event time or censoring time)
• δj : indicator variable (δj = 1 if event observed, δj = 0 if censored)

Significance of Handling Censored Data Specialized statistical methods such as survival analysis, Kaplan-Meier
estimation, and the log-rank test are necessary for proper analysis of censored data. Traditional methods that ignore
censoring often result in biased conclusions.

Let Z(0) = 0 < Z(1) < Z(2) < · · · < Z(n) denote the ordered Z’s, and δ(j) is the δj corresponding to Z(j). The
Kaplan-Meier [22] proposed the product limit estimator as:

F̄n(x) = 1− Fn(x) =
∏

j:Z(j)≤x

(
n− j

n− j + 1

)δ(j)

, x ∈ [0, Zj ]

For testing H0 : ∆EBUCc
mgf

= 0 versus H1 : ∆EBUCc
mgf
> 0, we propose:

∆c
EBUCmgf

=
1

µ2

{(
1

α2(α+ λ)
− λ

α2(α+ λ)
µ− 1

α
µ2

)
ϕ(α) +

(
1

λ(α+ λ)
µ− 1

λ2(α+ λ)

)
ϕ(λ) +

1

α2
µ+

α− λ

α2λ2

}
The computable form is:

∆̂c
EBUCmgf

=
1

Ω2

{(
1

α2(α+ λ)
− λ

α2(α+ λ)
Ω− 1

α
Ω2

)
Φ+

(
1

λ(α+ λ)
Ω− 1

λ2(α+ λ)

)
ψ +

1

α2
Ω+

α− λ

α2λ2

}
(29)

Where:

Ω =

n∑
i=1

i−1∏
m=1

Cδ(m)
m (Z(i) − Z(i−1))

Φ =

n∑
j=1

e−αZ(j)

(
j−2∏
v=1

Cδ(v)
v −

j−1∏
v=1

Cδ(v)
v

)

ψ =

n∑
k=1

eλZ(j)

(
k−2∏
r=1

Cδ(r)
r −

k−1∏
r=1

Cδ(r)
r

)

dFn(Zj) = F̄n(Zj−1)− F̄n(Zj), Ck =
n− k

n− k + 1

Table 6 gives the critical values percentiles of ∆̂c
EBUCmgf

test for sample sizes n = 5(5)30(10)70, 81, 86 based on
10000 replications by using Mathematica v. 13. The empirical results can be sketched in Figure 6.

Table 6 and Figure 6 illustrates how the upper percentile values of the test statistic ∆̂c
EBUCmgf

vary with different
sample sizes n and confidence levels (90%, 95%, 98%, and 99%) at the parameters λ = 0.1 and α = 5. It is evident
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Table 6. Upper percentiles of ∆̂c
EBUCmgf

at λ = 0.1, α = 5

n 90% 95% 98% 99%

5 2.84261 3.26867 3.73314 4.03664
10 2.53984 2.92774 3.38003 3.63530
15 2.21713 2.55282 2.94718 3.21128
20 2.01794 2.32631 2.68769 2.91219
25 1.84536 2.14377 2.47771 2.72944
30 1.72029 1.98339 2.30469 2.51428
40 1.53165 1.76083 2.01903 2.19377
50 1.40474 1.61752 1.85308 2.02714
60 1.27128 1.47154 1.69589 1.86008
70 1.19781 1.38917 1.62414 1.75106
81 1.13492 1.31466 1.49748 1.64965
86 1.10650 1.28521 1.46918 1.58630

Figure 6. Variation of critical values with sample size and confidence level

that the critical values tend to decrease gradually as the sample size increases. This behavior is consistent with
improved estimation accuracy and reduced random fluctuations associated with larger sample sizes. Conversely,
the critical values increase as the confidence level rises, reflecting the higher thresholds required to reject the null
hypothesis with greater certainty. This direct relationship means that to achieve higher confidence, the test statistic
must exceed a larger critical value. Furthermore, the rate of decrease in critical values diminishes for larger samples
beyond size 50, suggesting relative stability and consistency of the test statistic distribution at larger sample sizes.

5.1. Power Estimates for ∆̂c
EBUCmgf

We evaluate the statistical power for testing exponentiality against the EBUCmgf alternative. The assessment is
conducted at a given significance level, using parameter values θ = 2, 3, 4 and sample sizes n = 10, 20, 30. The
analysis considers three alternative distributions: Linear Failure Rate (LFR), Gamma, and Weibull families.

The power estimates in Table 7 indicate an exceptionally high sensitivity of the test ∆̂c
EBUCmgf

across different
sample sizes and alternative distributions. For the Linear Failure Rate (LFR) and Weibull distributions, the power
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Table 7. Power estimates for ∆̂c
EBUCmgf

at λ = 0.1, α = 5

Distribution n θ = 2 θ = 3 θ = 4

10 1.0000 1.0000 1.0000
LFR 20 1.0000 1.0000 1.0000

30 0.9999 1.0000 1.0000

10 0.8886 0.8259 0.7310
Gamma 20 0.9989 0.9412 0.8278

30 0.9909 0.8512 0.7035

10 1.0000 1.0000 1.0000
Weibull 20 1.0000 1.0000 1.0000

30 1.0000 1.0000 1.0000

consistently reaches or is extremely close to 1.0000 at all tested sample sizes (n = 10, 20, 30) and values of θ (2,
3, 4), demonstrating that the test is almost perfectly capable of detecting deviations from the null hypothesis in
these cases.In contrast, the power for the Gamma distribution, while still relatively high, shows somewhat lower
values that tend to decrease with increasing θ, especially noticeable at larger θ values and smaller sample sizes. For
instance, power values range roughly from about 0.73 to 0.999, indicating good but less robust sensitivity compared
to the LFR and Weibull cases. Overall, these results confirm that the test ∆̂c

EBUCmgf
, under the specified regularization

parameters, is highly effective for detecting alternatives corresponding to LFR and Weibull distributions. This
suggests strong applicability of the test in practical situations involving lifetime or reliability data.

6. Applications Using Incomplete (Censored) Data

6.1. Example 1: Melanoma Survival Times

Consider the dataset from Susarla and Vanryzin [28], which includes 81 survival times (in weeks) of melanoma
patients with 46 uncensored observations:

13 14 19 19 20 21 23 23 25 26
26 27 27 31 32 34 34 37 38 38
40 46 50 53 54 57 58 59 60 65
65 66 70 85 90 98 102 103 110 118

124 130 136 138 141 234

The ordered censored observations:

16 21 44 50 55 67 73 76
80 81 86 93 100 108 114 120
124 125 129 130 132 134 140 147
138 151 152 152 158 181 190 193
194 213 215

The test statistic computed via formula in Eq. (29) yielded:

∆̂c
EBUCmgf

= −2.45409× 10−34

This value is significantly below the critical threshold Table 6, leading to rejection of the EBUCmgf property.
To assess the behavior of the data, a variety of nonparametric plots were utilized, as shown in Figure 7 These

include histogram, P-P plot, Q-Q plot, and box plot. The histogram shows irregular frequency distribution, while the
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Figure 7. Diagnostic plots for melanoma survival data: (a) Histogram, (b) P-P plot, (c) Q-Q plot, (d) Box plot

P-P plot indicates deviations from theoretical probabilities, suggesting non-exponential behavior. The symmetric
box plot further supports this conclusion. Together, these visual elements align with the statistical rejection of the
EBUCmgf property, confirming the dataset does not follow the expected distribution.

6.2. Example 2: Lung Cancer Survival Data

This study examines survival patterns using clinical data from Pena’s [27] research on lung cancer patients. The
dataset contains:

• 86 total observations (months)
• 22 right-censored cases (25.6%)
• 64 complete observations

Uncensored data:

0.99 1.28 1.77 1.97 2.17 2.63 2.66 2.76
2.79 2.86 2.99 3.06 3.15 3.45 3.71 3.75
3.81 4.11 4.27 4.34 4.40 4.63 4.73 4.93
4.93 5.03 5.16 5.17 5.49 5.68 5.72 5.85
5.98 8.15 8.62 8.48 8.61 9.46 9.53 10.05

10.15 10.94 10.94 11.24 11.63 12.26 12.65 12.78
13.18 13.47 13.96 14.88 15.05 15.31 16.13 16.46
17.45 17.61 18.20 18.37 19.06 20.70 22.54 23.36

Censored observations:

11.04 13.53 14.23 14.65 14.91 15.47
16.49 17.05 17.28 17.88 17.97 18.83
19.55 19.58 19.75 19.78 19.95 20.04
20.24 20.73 21.55 21.98

The test statistic value:
∆̂c

EBUCmgf
= −1.09531× 10−6
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is significantly lower than the critical value from Table 6 at (α = 0.05). This result provides sufficient evidence to
reject the alternative hypothesis H1, indicating that the dataset does not possess the EBUCmgf property.

Figure 8. Diagnostic plots for lung cancer data: (a) Histogram, (b) P-P plot, (c) Q-Q plot, (d) Box plot

To examine the characteristics of the data, several nonparametric plots such as box plots, histograms, Q-Q plots,
and P-P plots have been constructed, as illustrated in Figure 8. The histogram bimodal peaks and the Q-Q, P-P
plots’ significant deviations from reference lines indicate non-exponential distribution. Combined with the box
plot’s right-skewed outliers, these visual patterns strongly support rejecting the EBUCmgf property at α = 0.05.
The graphical evidence aligns perfectly with the statistical test results.

7. Conclusions

In this study, we introduced a novel statistical testing procedure for evaluating the exponentiality of lifetime data
against a new class of life distributions termed the “Exponential Better than Used in Convex order based on
the Moment Generating Function” (EBUCmgf). The proposed test exploits properties of the Laplace transform
to develop a robust, mathematically grounded method for distinguishing the exponential distribution from this
broader, more flexible family of lifetime models.

Our work encompassed theoretical derivations establishing the asymptotic properties of the test statistic,
including its asymptotic normality and Pitman asymptotic efficiency across various alternative distributions
common in reliability and survival analysis. The critical values of the test statistic were successfully estimated
through extensive Monte Carlo simulations, accounting for both complete and right-censored data scenarios, thus
extending the practical applicability of the method to real-world datasets where censoring is common.

Simulation results demonstrated that the proposed test possesses high statistical power in detecting departures
from exponentiality towards relevant alternative distributions such as Linear Failure Rate, Weibull, and Gamma
families. Moreover, the analysis of empirical case studies from medical survival data and reliability engineering
datasets validated the effectiveness and versatility of our method in practical applications.

The following key contributions summarize the impact of this research:

• Development of a novel, nonparametric hypothesis test based on Laplace transform order for discriminating
exponential from a complex class of lifetime distributions
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• Comprehensive theoretical examination including asymptotic behavior and efficiency comparisons with
existing tests

• Extension of the testing procedure to right-censored data, addressing a critical challenge in lifetime and
survival analysis

• Confirmation of the test’s practical utility through illustrative applications on real, uncensored and censored
datasets

Future research directions include:

• Exploring extensions to other forms of censoring (e.g., left or interval censoring)
• Enhancing computational efficiency for large-scale data
• Broadening empirical validation across diverse real-life reliability and survival contexts
• Examining robustness under model misspecification
• Developing software implementations for wider adoption

Overall, this work provides a significant advancement in the toolkit for reliability theory and lifetime data
analysis, offering researchers a powerful, theoretically sound, and practically relevant method to assess deviation
from exponentiality in complex systems.
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