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Abstract Speech emotion recognition (SER) has become a critical component of the next generations of technologies
that interact between humans and machines. However, in this paper, we explore the advantage of the hybrid LSTM +
Transformer model over the solo LSTM and Transformer models. The proposed method contains the following steps: data
loading using benchmark datasets such as the Toronto Emotional Speech Set (TESS), Berlin Emotional Speech Database
(EMO-DB), and (SAVEE). Secondly, to create a meaningful representation to preprocess raw audio data, Mel-Frequency
Cepstral Coefficients (MFCCs) are used; thirdly, the model’s architecture is designed and explained. Finally, we evaluate
the precision, recall, F1 score, classification reports, and confusion matrices of the model. The outcome of this experiment
based on classification reports and confusion matrices shows that the hybrid LSTM + Transformer model has a remarkable
performance on the TESS-DB, surpassing the other models with a 99.64% accuracy rate, while the LSTM model gained
97.50% and the Transformer model achieved 98.21%. For the EMO-DB, the LSTM model achieved the highest accuracy of
73.83%, followed by the hybrid that gained 71.96%, and the Transformer model achieved 70.09%. Lastly, LSTM obtained
the highest performance on SAVEE-DB of 65.62% accuracy, followed by the Transformer model which achieved 58.33%,
and the hybrid model achieved 56.25%.
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1. Introduction

Making machines understand humans has become the trend and requirement of the network era due to the
quick development of artificial intelligence technologies. Emotions are the most critical component of human
communication and can be utilized to evaluate paralinguistic human expressions and other things. Therefore, voice
signals are an effective means of smoothing the fastest communication between human-computer interaction (HCI)
and effectively recognizing human behavior [1]. Speech has emerged as a major area of study for many academics
in human—computer interaction because of its practical and useful qualities [2]. Detecting emotional expressions
is still considered a challenging part, as the voice state is variable all the time, and thus it is hard to identify it
accurately most times [3]. SER is a machine learning (ML) problem in which speech utterances are categorized
based on the emotions that underlie them. An overview of the most common classification methods in SER is
provided in this chapter. The researchers used a variety of classifiers for SER, but generally no adequate rationale
is given to select a specific classification model [4]. This paper is organized as follows: Related works are discussed
in the first section, followed by the proposed methodology in the paper along with a hybrid approach model used
that combines LSTM and Transform in the second, the experimental findings in the third, the discussion of the
experiment in the fourth, and the conclusion in the fifth. The purpose of this study is to unveil the strength of the
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hybrid LSTM + Transformer over the solo LSTM and Transformer models across three types of datasets such as
TESS, EMO-DB, and SAVEE. Figure 1 below illustrates the workflow of speech recognition systems.

Input Audio / —>» Pre-processing ———»| Feature Extraction ——— | Classification Model —>
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Language Model (LM)

Figure 1. Workflow of speech recognition systems [5]

2. Related Work

There are numerous other recent papers and studies on SER because of its significance in human—computer
interaction and the creation of artificial intelligence systems. We have examined the most recent research that
is relevant to the current work in this area. A Korean voice emotion database is used in [6] to demonstrate
a two-stream-based emotion detection model based on convolutional neural networks (CNNs) and bidirectional
long short-term memory (Bi-LSTM), with 90.38% and 94.91% performance attained. In order to identify speech
emotion, 1D and 2D CNN LSTM networks were presented in [7]. The process of using log-mel spectrograms and
raw audio samples to extract global contextual information and local correlations is examined. A SER system is
proposed in [8] with an accuracy of 93.31% and 94.18% based on a 1-D deep convolutional neural network and
various auditory characteristics. A DNN-based architectures for text-to-speech systems is suggested in [9], the
result demonstrated the best performance, expressing sad and joyful emotions with over 60% of accuracy rate. A
CNN based model for SER is used in [10] utilizing librosa package for extracting features and RAVDESS dataset,
the model achieved an accuracy of 82.02%. A spoken emotion recognition system is constructed in [11] for WeChat
that uses a random forest classifier, which has an 89% accuracy rate. SVM model is proposed in [12] to categorize
the speech as belonging to one of the four emotions—happiness, fear, rage, or sadness—which ultimately resulted
in higher accuracy rate for classification. A decision-trees methodology in conjunction with random forests method
is suggested in [13] to represent the speech signals in order to categorize them. Recurrent neural networks with
LSTM model for SER is proposed by [14], RAVDESS for datasets, the LSTM model achieved an accuracy rate
of 78.2%, demonstrating it is robustness in SER classification. A technique for identifying speech emotions that
combines silence removal with bidirectional LSTM and attention models is presented by [15]. By concentrating on
emotive speech portions and eliminating unnecessary noise and stillness, it was able to increase accuracy. A dual-
level model that uses LSTM and DS-LSTM architectures to combine MFCC and mel-spectrogram information,
attaining cutting-edge accuracy for unimodal speech emotion recognition [16]. Transformer-based acoustic models
(AMs) for hybrid speech recognition is presented in [17], and it achieves a 19% to 26% relative improvement
over the best published hybrid result. Masked Predictive Coding is introduced in [18], an unsupervised pre-
training technique that may be used for unsupervised pre-training with Transformer-based models. The experiment
outperformed the best end-to-end model by more than 0.2%. Transformer-Transducer model is proposed in [19],
the method achieved 6.37% of word error rates on the test clean test, and 15.30% on the other test set. A study
conducted by [20] developed a hybrid LSTM-Transformer model that successfully captures contextual information
and long-term dependencies for emotion recognition from speech audio recordings, the model recognition rate
reached to 75.62%, 85.55% and 72.49%. In this paper, the hybrid model is tested on 3 benchmark datasets: TESS,
SAVEE, and EMO-DB; however, it performed superiorly on the TESS database and obtained an accuracy of
99.64%, which marks a significant achievement in speech emotion recognition. The following Figure 2 shows
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the basic architecture of the hybrid model, where the input layer feeds the data into both LSTM and Transformer
layers, which are then merged together into a dense layer before delivering the final output.

Transformer Layer

Dense Layer

Output Layer

Figure 2. Basic architecture of LSTM + Transformer model

3. Proposed Methodology

In this section, we describe the techniques used to recognize speech emotions using audio processing methods
and a pre-trained deep learning model. Firstly, datasets that contain .wav files are loaded with all different emotions.
Secondly, audio signals are processed to extract meaningful features that are then fed into a deep learning model
such as Transformer, Long Short-Term Memory (LSTM), and hybrid LSTM + Transformer methods that have
been trained to classify emotions. The system’s integration of cutting-edge machine learning techniques guarantees
reliable performance in practical situations, Figure 3 below illustrates the overall process.

Feature Model Design Evaluation and
Extraction and Training Results

! | |

Data Loading (.wav files)

H{
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Confusion
Matrices

Transformer B
LSTM Model Transformer
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Model

Figure 3. Proposed Framework
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3.1. Data Loading

Audio files are loaded using datasets from three different sources which are: first Toronto Emotional Speech Set
(TESS), the dataset includes recordings of 200 target sounds of old people, each of which is stated in one of seven
emotional categories: angry, disgusted, afraid, happy, neutral, pleasant surprise, or sad. Secondly, EMO-DB (Berlin
Emotional Speech Database) that contains 535 audio files of German speakers, and the structure of it is categories
are as following: "W’: ”anger”, 'L’: ”boredom”,E’: "disgust”, A’: "fear”, ’F’: ”happiness”, *T’: ”sadness”, 'N’:
“neutral”. Lastly, SAVEE (Surrey Audio-Visual Expressed Emotion) dataset it contains 480 acted emotions of
audio and video recording from four male speakers with different emotions categories such as (anger, fear, disgust,
sadness, happiness, surprise and neutral). Each speaker has 120 expressions which cover all emotion categories.

3.2. Feature Extraction

Mel-Frequency Cepstral Coefficients (MFCCs) are used to preprocess raw audio data and create meaningful
representations. It also widely used spectral features in speech processing [21]. The goal of this is to extract
40 MFCC features from every audio file using librosa.feature.mfcc(). Below is an example of computing Mel-
Frequency Cepstral Coefficients (MFCCs):

MEFCC shape: (40, time frames)
Average the MFCC values throughout different time frames:
Feature vector: mean(MFCC.T, axis=0) = Shape: (40,)

3.3. Model Design and Training

In this section, the model’s design and architecture will be discussed as shown in the following sections.
The TESS, SAVEE, and EMO-DB datasets are then split into training data that contains 80% of the datasets
and testing data that contains 20% of the datasets. A manual shuffling that contains an array of indices
corresponding to the samples is used in both features (X) and labels (Y); it randomly shuffles the indices using
np.random.shuffle(indices). This ensures that the data points are combined and mixed without changing how
features and labels relate to one another. Each model is then trained with 50 epochs, a batch size of 32 to balance
between convergence speed and performance stability. The Adam optimizer is used for its ability to adapt learning
rates during training, sparse categorical cross-entropy loss is used for multi-class classification tasks where labels
are integers rather than one-hot encoded vectors, and 40 features are represented by the input features’ (1, 40) form
to maintain a consistent structure for sequential model inputs.

3.3.1. LSTM model design: This model as shown in Figure 4, which uses LSTM, captures time-based patterns
by running input sequences through two stacked LSTM layers (128 and 64 units, with tanh activation). To avoid
overfitting, a dropout layer follows each LSTM layer. The last dense layer (7 units, softmax activation) is where the
extracted features go through more changes after passing through a dense layer (32 units, ReLU activation). The
output in the diagram should display the final model result, but it ties back to an “InputLayer,” which isn’t correct.
This model was crafted to classify sequences or recognize emotions in speech.
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LSTM with 128
units,
activation=tanh

LSTM with 64 units,
activation=tanh

Dense with 32
units,
activation=relu

A

Dense with 7 units,
activation=softmax

Figure 4. LSTM Model Architecture

3.3.2. Transformer model design: The diagram shown in Figure 5 illustrates a speech emotion recognition model
based on Transformer architecture. It begins with an input layer shaped (1x40). After that several Multi-Head
Attention layers pull out context-related connections. Each attention block has dropout, leftover links (Add), and
Layer Normalization next to it to keep training steady. Dense layers with activation functions polish up how features
are shown. Global Average Pooling boils down the features that were pulled out. The last dense layers give out a

sorted result for figuring out emotions. This setup does a good job of catching time-based links and layered views
from speech info.
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Figure 5. Transformer Model Architecture
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3.3.3. Hybrid LSTM + Transformer model design: This combined LSTM and Transformer model illustrated in
Figure 6 begins with an input layer. The input goes into an LSTM with 128 units and tanh activation. Next, it
passes through a multi-head attention mechanism and dropout. The output then gets a dropout and an additive skip
connection before layer normalization. A dense layer with 128 units and ReL.U activation followed by another
dropout, creates another skip connection. This leads to a final dense layer with 128 units and linear activation. The
second branch uses two dense layers (32 units with ReLLU and 7 units with softmax), dropout, layer normalization,
and an LSTM with 64 units to make predictions. This setup uses Transformers’ attention and LSTM’s ability to
remember sequences to spot emotions in speech.
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Figure 6. Hybrid LSTM + Transformer Model Architecture
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3.4. Evaluation and Results

The test set is then used to assess the trained model’s performance, which is gauged by a classification report
such as precision, recall and f1-score for each class, in addition to confusion matrix to display the classification
results for each class. Here are some examples of the formulas used for performance metrics:

Precision: Measures the accuracy of positive predictions of how many are correct.

TP

P .. _ .t
recision TP+ FP

Recall: Measures how many of the actual positive cases were predicted correctly.

TP

Recall = Z5—Fxn

F1-Score: Measures the mean value of Precision and Recall, which finds the balance from both metrics.

Precision x Recall

F1 =2 x —
Precision + Recall

Where T'P = True Positive, F'P = False Positive, F'N = False Negative.

4. Experimental Results

In this section, we will examine the capability of LSTM, Transformer, and hybrid LSTM + Transformer models
using performance measures obtained from confusion matrices and classification reports. The evaluation shows
how well each model manages several classification task components, including precision, recall, and F1-score, as
well as how well they reduce misclassifications. The specific findings and insights for each model will be covered
in the sections that follow.

4.1. LSTM Model Analysis

LSTM model had an overall accuracy rate 97.50% on the TESS-DB. It performed well for anger, sadness, fear,
disgust, and neutral emotions. These all had perfect precision, recall, and F1-measures. Pleasant surprise though,
had lower recall (0.80), and happy had lower precision (0.84). For the EMO-DB, the accuracy fell to 73.83%.
Anger and neutral did well (F1-measures of 0.82 and 0.94), but disgust and sadness had very poor results (0.33 and
0.52). The SAVEE-DB had the lowest accuracy at 65.62%. Results varied across emotions, with fear (F1-measure
0.31) and disgust (0.50) doing, but neutral performing quite well (0.79). The performance measures for this model
are shown in the confusion matrices Figure 7 and classification reports Table 1 below.

Table 1. LSTM model classification report for TESS-DB, EMO-DB, and SAVEE-DB

TESS-DB EMO-DB SAVEE-DB
Class Precision Recall Fl-score Support | Class Precision Recall Fl-score Support | Class Precision Recall Fl-score Support
Fear 1.00 1.00 1.00 40 Anger 0.78 0.85 0.82 34 Anger 0.73 0.67 0.70 12
Pleasant_surprise 1.00 0.80 0.89 35 Boredom 0.67 0.67 0.67 12 Disgust 0.80 0.36 0.50 11
Sad 1.00 1.00 1.00 43 Disgust 0.33 0.33 0.33 3 Fear 0.40 0.25 0.31 8
Angry 1.00 1.00 1.00 42 Fear 0.62 0.67 0.64 12 Happiness 0.60 0.69 0.64 13
Disgust 1.00 1.00 1.00 37 Happiness 0.80 0.67 0.73 18 Neutral 0.70 0.92 0.79 25
Happy 0.84 1.00 0.92 38 Sadness 0.55 0.50 0.52 12 Sadness 0.71 0.71 0.71 14
Neutral 1.00 1.00 1.00 45 Neutral 0.94 0.94 0.94 16 Surprise 0.54 0.54 0.54 13
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Figure 7. LSTM Model Confusion Matrix for (a) TESS-DB, (b) EMO-DB, and (c) SAVEE-DB

4.2. Transformer Model Analysis

The confusion matrices and classification reports described below in Figure 8 and Table 2 illustrate that the
Transformer model performed almost perfectly in TESS-DB with accuracy of 98.21%, with all but pleasant
surprises (F1-score: 0.93) and happy (0.94) having a perfect Fl-score. Accuracy dropped to 68.22% in EMO-
DB, with anger having a strong Fl-score (0.84), but with weak results in disgust (0.33) and happiness (0.52). In
SAVEE-DB the accuracy was lowest 58.33%, with a range of results in the various emotions. Specifically, neutral
was strong (F1-score: 0.79), but fear (0.38) and happiness (0.47) were weak. Overall, the Transformer model was
stronger than LSTM in the TESS-DB but weaker in EMO-DB and SAVEE-DB.

Table 2. Transformer model classification report for TESS-DB, EMO-DB, and SAVEE-DB

TESS-DB EMO-DB SAVEE-DB
Class Precision Recall Fl-score Support | Class Precision Recall Fl-score Support | Class Precision Recall Fl-score Support
Fear 1.00 1.00 1.00 40 Anger 0.78 0.91 0.84 34 Anger 0.60 0.50 0.55 12
Pleasant_surprise 0.97 0.89 0.93 35 Boredom 0.54 0.58 0.56 12 Disgust 1.00 0.36 0.53 11
Sad 1.00 1.00 1.00 43 Disgust 0.33 0.33 0.33 3 Fear 0.38 0.38 0.38 8
Angry 1.00 1.00 1.00 42 Fear 0.50 0.67 0.57 12 Happiness 0.41 0.54 0.47 13
Disgust 1.00 1.00 1.00 37 Happiness 0.78 0.39 0.52 18 Neutral 0.66 1.00 0.79 25
Happy 0.90 0.97 0.94 38 Sadness 0.86 0.75 0.80 16 Sadness 0.83 0.36 0.50 14
Neutral 1.00 1.00 1.00 45 Neutral 0.58 0.58 0.58 12 Surprise 0.46 0.46 0.46 13
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Figure 8. Transformer Model Confusion Matrix for (a) TESS-DB, (b) EMO-DB, and (c) SAVEE-DB

4.3. A Hybrid LSTM Transformer Model Analysis

The hybrid model showed an accuracy rate of 99.64% in the TESS-DB, outperforming the solo models in terms
of performance for this specific dataset. It had perfect precision, recall, and F1-measures for all emotions except
pleasant-surprise and happy, which both had an Fl-measure of 0.99. In the EMO-DB, the model’s accuracy has
dropped to 62%. Sadness obtained the best performance with an F1-measure of 0.86, whereas disgust (0.25) and
neutral (0.21) showed weak results. The SAVEE-DB the lowest accuracy at 56%. Here, neutral had the best F1-
measure at 0.76, while disgust (0.17) and fear (0.29) performed weakly. The model excelled with TESS-DB but
struggled with EMO-DB and SAVEE-DB, suggesting it lacks consistency across varied datasets perhaps because
of the diversity and variability of emotional expressions in these kinds of datasets. Figure 9 and Table 3 below
illustrate the confusion matrices and classification reports for the hybrid approach, presenting the performance
measures.

Table 3. Hybrid model classification report for TESS-DB, EMO-DB, and SAVEE-DB

TESS-DB EMO-DB SAVEE-DB
Class Precision Recall Fl-score Support | Class Precision Recall Fl-score Support | Class Precision Recall Fl-score Support
Fear 1.00 1.00 1.00 37 Anger 0.70 0.91 0.79 34 Anger 0.53 0.67 0.59 12
Pleasant_surprise 0.98 1.00 0.99 50 Boredom 0.50 0.33 0.40 12 Disgust 1.00 0.09 0.17 11
Sad 1.00 1.00 1.00 42 Disgust 0.20 0.33 0.25 3 Fear 0.33 0.25 0.29 8
Angry 1.00 1.00 1.00 36 Fear 0.50 0.58 0.54 12 Happiness 0.43 0.46 0.44 13
Disgust 1.00 1.00 1.00 37 Happiness 0.62 0.28 0.38 18 Neutral 0.70 0.84 0.76 25
Happy 1.00 0.98 0.99 43 Sadness 0.76 1.00 0.86 16 Sadness 0.62 0.71 0.67 14
Neutral 1.00 1.00 1.00 35 Neutral 0.29 0.17 0.21 12 Surprise 0.43 0.46 0.44 13
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Figure 9. Hybrid Model Confusion Matrix for (a) TESS-DB, (b) EMO-DB, and (c) SAVEE-DB

5. Discussion

The hybrid LSTM + Transformer model performed outstandingly well on the TESS-DB, achieving 99.64%
accuracy. This performance surpassed the standalone LSTM 97.50% and Transformer 98.21% models. The model’s
success comes from combining LSTM features to capture local time patterns such as speech signals with the
transformer’s ability to capture overall context through self-attention. TESS-DB is big, and well-organized data
helps to fine-tune the hybrid, reducing overfitting and boosting how well it works in all aspects. However, in
smaller datasets, the performance drops significantly. LSTM’s basic structure handles short sequences better, while
the hybrid’s complexity adds unnecessary elements. Although the hybrid model offers theoretical advantages
by combining sequence memory LSTM and global attention Transformer, its complex architecture may not be
beneficial for smaller datasets such as EMO-DB and SAVEE-DB. These datasets may not provide enough diverse
samples for the hybrid architecture to effectively generalize, causing the simpler solo LSTM to perform better. In
contrast, in larger, well-balanced datasets, such as TESS-DB, the hybrid model demonstrates its superiority.

6. Conclusion
In this paper, an evaluation study of the performance of LSTM + Transformer versus standalone LSTM and
Transformer for speech emotion recognition is conducted. Moreover, the study uses the three most used datasets,

which are TESS, EMO-DB, and SAVEE, to test the proposed models. Furthermore, the outcome generated from
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this study suggests that the hybrid model was somewhat outperformed by the solo Transformer and the solo
LSTM models in the TESS dataset by 99.64%. For the EMO-DB and SAVEE-DB, the LSTM model had an edge
over the hybrid and Transformer models in accuracy rate (78.83% - 65.62%). The hybrid model performs well
when there is rich data; however, it struggles with smaller datasets, as demonstrated in the experimental result.
Future work includes dynamic shuffling during training using lighter versions of Transformers and bidirectional
LSTMs to handle longer dependencies. In addition, leveraging data augmentation methods and integrating attention
mechanisms to enhance generalization and address overfitting challenges.
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