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Abstract In the era of digital transformation, enterprises are increasingly seeking to modernize their legacy monolithic
systems in favor of more agile and modular architectures. Microservices have emerged as a compelling solution, offering
scalability, maintainability, and independent deployment. However, the automated extraction of microservices from legacy
systems—particularly when documentation is sparse or outdated—remains a complex and unresolved challenge.
This paper introduces an AI-powered, multi-view methodology for microservice identification based on business process
(BP) models. Unlike traditional approaches that rely on static code analysis or single-view aggregation, our method
simultaneously captures and analyzes three critical types of dependencies within business processes: control flow, data
exchange, and semantic similarity. Each dependency is modeled separately and processed through a collaborative clustering
framework, where AI agents exchange signals to achieve consensus-based service decomposition.
Artificial Intelligence plays a dual role in our system: it is used for semantic enrichment—via Natural Language Processing
(NLP) and Sentence-BERT embeddings—and for optimizing the clustering strategy through dependency alignment and
explainability metrics. A real-world case study on the Bicing bike-sharing system in Barcelona, composed of over 50 business
activities, demonstrates the effectiveness and scalability of our approach. Experimental results show that the AI-enhanced
model achieves superior clustering performance in terms of cohesion, coupling, and interpretability compared to baseline
methods.
By integrating AI-driven analytics with business process understanding, our approach provides a robust pathway toward
automated, explainable, and domain-aligned microservice extraction—supporting sustainable digital transformation at scale.
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1. Introduction

The accelerating pace of digital transformation is reshaping how organizations design, implement, and evolve their
information systems [62]. In this landscape, agility, scalability, and responsiveness to changing business needs have
become critical success factors. However, many organizations are still reliant on legacy monolithic systems, which
are rigid, hard to scale, and poorly aligned with modern software delivery practices [63]. These limitations hinder
innovation and operational efficiency, especially in environments that demand continuous integration, deployment,
and adaptation.

Microservices have emerged as a leading architectural paradigm to address these challenges [64]. By
decomposing large monolithic systems into smaller, independently deployable units, microservices promote
modularity, scalability, and maintainability. Nevertheless, transitioning from a monolithic architecture to a
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microservices-based one is far from trivial. One of the most intricate and error-prone phases in this transformation
is the identification of service boundaries—that is, determining which components of the system should be grouped
into individual microservices.

This task becomes even more complex when the legacy system lacks complete or up-to-date documentation—a
common scenario in real-world settings. In such cases, the manual analysis of source code, database schemas, or
system logs is time-consuming and often inadequate for capturing high-level functional boundaries. To address this,
Artificial Intelligence (AI) is increasingly being leveraged to automate and enhance the microservice identification
process [65]. Techniques such as semantic similarity analysis, natural language processing, and machine learning-
based clustering have shown promise in extracting latent relationships between system components [66].

In this paper, we propose an AI-assisted, business process-driven methodology for the identification of
microservices. In contrast to existing approaches that primarily rely on software artifacts—such as codebases [67],
database structures [68], or execution traces [69]—our method considers Business Processes (BPs) as the main
input. BPs are structured representations of organizational activities and workflows, and as such, they offer a high-
level and semantically rich view of business logic [70]. This makes them particularly well-suited for defining
modular service boundaries that are aligned with actual business functions.

Our approach extracts three distinct types of dependencies from BP models: control-flow dependencies
(reflecting execution order), data dependencies (based on shared artefacts and information flow), and semantic
dependencies (inferred from the textual content of activity labels). These dependencies are modeled independently
and used to construct a multi-view representation of the process. To reconcile these views and generate
coherent service boundaries, we introduce a collaborative clustering algorithm. Unlike traditional aggregation-
based clustering methods [71], our method preserves the specificity of each dependency model and fosters more
explainable, consensus-based clustering decisions.

To demonstrate the effectiveness and scalability of our approach, we conducted a detailed case study on the
Bicing bike-sharing system in Barcelona. This real-world scenario involves more than 50 interrelated business
activities spanning domains such as user registration, rental management, billing, maintenance, and feedback
handling. Our results show that the AI-enhanced, process-oriented clustering technique produces microservices
that exhibit higher cohesion, lower coupling, and stronger semantic alignment compared to baseline approaches.
Moreover, the explainability of the clustering decisions facilitates validation and refinement by domain experts.

In summary, this work contributes a novel, AI-powered methodology for automatic microservice identification
based on business process models. It bridges the gap between process-driven organizational knowledge and
technical service architectures, offering a scalable and intelligent pathway for legacy system modernization in
the context of digital transformation.

2. Related Work

Digital transformation has become a strategic imperative for organizations seeking to remain competitive in rapidly
evolving markets [61]. The shift from monolithic to microservice-based architectures is one of the core enablers of
this transformation [58], supporting flexibility, modularity, and faster innovation cycles. In this context, Artificial
Intelligence (AI) has emerged as a key driver, offering tools and techniques to automate complex processes such as
service identification, semantic analysis, and code refactoring [47].

Several studies have investigated methods for decomposing monolithic systems into microservices. Traditional
approaches rely on static analysis of source code [52], database schemas [50], or runtime execution traces [55].
While effective, these approaches often neglect higher-level business semantics and organizational logic embedded
in business processes.

Business process-driven approaches are gaining attention for their ability to capture the intent and operational
structure of systems. Amiri et al. [71] used data and control dependencies in business processes to identify candidate
services. However, their method aggregated all dependencies into a single matrix, which may result in loss of
semantic nuances. Our approach preserves each model independently and uses collaborative clustering to combine
insights while retaining granularity.
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Table 1. Overview of Representative Works on Microservice Identification and AI

Reference Approach Summary
Amiri et al. (2018) [71] Control & Data

Dependency
Service identification based on dependency matrices
aggregated from business process models.

Moreschini et al.
(2023) [57]

Systematic Mapping Comprehensive review of AI techniques in the
microservice lifecycle from design to deployment.

Nitin et al. (2022) [15] AI-guided
Dependency
Analysis

CARGO framework supporting
monolith-to-microservice migration via AI-based
dependency insights.

Daoud et al. (2021) [17] Multi-model
Clustering

Uses control, data, and semantic dependencies to extract
microservices from BPs via collaborative clustering.

Daoud et al. (2020a) [1] Business Process
Analysis

Identifies microservices based on task analysis in BPMN
models.

Daoud et al. (2020b) [2] Dependency-based
Analysis

Framework for identifying microservices through
business process dependencies.

Saidi et al. (2021) [20] Association Rules Applies association rule mining to identify services from
annotated BP logs.

Zougari et al. (2024) [31] BP-based
Automation

Leverages structural analysis and annotations for
automatic microservice discovery.

Daoud & Sabri
(2025) [32]

Association Rules
(SOIC)

Association-rule-based microservice detection using
process metadata.

Oumoussa et al.
(2024) [23]

Business-centric User-centric microservice identification aligned with
enterprise goals.

AI enhances this process by enabling semantic annotation, ontology mapping, and similarity measurements.
For instance, semantic clustering methods based on domain ontologies and natural language processing have been
used to identify conceptual proximity between process tasks [56]. In addition, AI readiness frameworks such as
Holmström et al. [54] outline how organizations can prepare their processes and data infrastructure for effective AI
integration.

AI is also increasingly applied in performance optimization of microservice architectures. Ueda et al. [59]
analyze workloads to recommend service reconfigurations, while Chen et al. [51] propose AI-assisted code
refactoring for service extraction.

Recent advancements include AI-driven tools for microservice design, as highlighted by Moreschini et al. [57],
who conducted a systematic mapping study on AI techniques in the microservices life-cycle. Additionally, the
CARGO approach introduced by Nitin et al. [15] utilizes AI-guided dependency analysis to facilitate the migration
of monolithic applications to microservices architecture.

Finally, Brynjolfsson and McAfee [49] highlight that organizations which successfully leverage AI not only
automate operations but also redefine their business models and value delivery mechanisms—an aspect critical to
digital transformation.

In contrast to prior works, our proposed method integrates business process knowledge with AI-enhanced
semantic understanding and collaborative clustering. This hybrid approach supports more accurate and aligned
microservice identification, contributing to strategic modernization initiatives.

3. Our Approach: AI-Enhanced Microservices Identification from Business Processes

In the context of digital transformation, organizations are progressively shifting towards microservice architectures
to increase agility, scalability, and modularity [58]. However, the decomposition of monolithic systems into well-
defined microservices remains a complex challenge, particularly when such systems are poorly documented or
tightly coupled. Our approach addresses this challenge by leveraging the synergy between Business Process (BP)
modeling and Artificial Intelligence (AI), aiming to enable an automated, precise, and semantically informed
identification of microservices.
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3.1. Overview of the Approach

Figure 1 presents the high-level architecture of our proposed AI-enhanced microservice identification approach.
The methodology takes as input a set of Business Processes modeled using BPMN or similar notations and
processes them through multiple semantic and structural analysis layers. These include control flow extraction,
semantic annotation using domain ontologies, and data dependency analysis. Each layer captures specific
dimensions of inter-activity relationships, which are then processed in parallel using a collaborative clustering
mechanism.

Unlike traditional clustering methods that require aggregation of all dependency features into a single
matrix [71], our approach maintains a modular, multi-view representation. This allows each clustering agent (or
node) to specialize in one type of dependency (e.g., control, data, or semantics), enabling more nuanced and
explainable clustering decisions.

Figure 1. AI-enhanced identification of microservices from Business Processes

3.2. AI-Powered Semantic Enrichment

Semantic dependencies between business activities are often underexploited in classical approaches. To address
this, our methodology integrates Natural Language Processing (NLP) and domain-specific ontologies to annotate
process tasks. Each activity is mapped to relevant ontological concepts and fragments using AI models such as word
embeddings [?] or transformer-based similarity models [?]. The resulting annotations enrich the process models
with machine-understandable semantics, which are then used to infer functional proximity between activities.

This AI-based semantic analysis allows us to go beyond keyword matching by identifying latent functional
similarities. For instance, activities labeled as “notify customer” and “inform client” may be lexically different but
functionally equivalent, and therefore, candidates for inclusion in the same microservice.

Stat., Optim. Inf. Comput. Vol. 14, Month 2025
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3.3. Foundations

In the context of digital transformation, business processes (BPs) serve as a vital source for identifying
microservices. Leveraging AI techniques, these microservices are expected to be fine-grained, strongly cohesive
(i.e., the degree to which activities within a microservice are closely related), and loosely-coupled (i.e., the extent
to which microservices can be independently evolved or replaced). According to Davenport, a BP is a set of
logically related activities performed to achieve specific goals [28]. Here, “logically related” refers to various types
of dependencies—such as control, data, semantics, and non-functional dependencies—which, when enriched with
AI-driven analytics, offer dynamic insights that drive digital transformation.

- Control dependency refers to both the execution order (e.g., finish-to-start, start-to-start) and the presence
of logical gateways (e.g., XOR, AND, OR) that dictate the path of execution between two business process
activities. In our AI-enhanced approach, these dependencies are not defined statically, but learned
dynamically from execution logs using machine learning models. More specifically, we employ AI-
driven probabilistic analysis to estimate the likelihood of activity transitions, which evolve as more process
data becomes available. This allows our method to capture real-world behavioral patterns, detect process
deviations, and reflect runtime adaptations common in digitally transformed systems.

Let ai and aj be two activities in a business process. We define the control dependency probability
CD(ai, aj) as:

CD(ai, aj) = P (aj | ai) =
count(ai → aj)

count(ai)
(1)

Where:

– count(ai → aj) is the number of times aj directly follows ai in the execution logs.

– count(ai) is the total number of times ai appears as a completed activity.

This probability is recalculated periodically using AI-driven log mining algorithms, including sequence
modeling techniques (e.g., LSTM or Transformer-based models). These models can also consider contextual
elements such as user role, time-of-day, or system state to enhance the accuracy of transition predictions.

To make clustering decisions, we define a threshold θcd (e.g., 0.7). If the learned probability exceeds this
threshold, then the activities are considered as strong candidates for grouping into the same microservice:

If CD(ai, aj) ≥ θcd ⇒ ai and aj belong to the same microservice (2)

This control dependency model provides a quantitative and explainable basis for grouping business process
activities. For example, in our case study of the Bicing bike rental system, activities such as scan user ID and
verify subscription status exhibit a high control dependency (P = 0.98), strongly suggesting that they form
a cohesive unit within the same microservice.

The AI layer not only enhances the precision of dependency detection but also enables the system to
adapt continuously to process changes and evolution—ensuring compatibility with the dynamic nature
of digital transformation.

- Data dependency refers to the flow of artefacts and attributes exchanged between activities. AI methods are
used to evaluate the criticality of data elements based on their usage frequency, functional importance,
and confidentiality levels. Functional criticality (e.g., is the data essential for process execution?) and non-
functional criticality (e.g., is the data sensitive or private?) are both considered by machine learning models
trained on historical logs and annotated metadata.

Let ai and aj be two activities connected via an artefact or attribute. We define the data dependency
DD(ai, aj) as:

Stat., Optim. Inf. Comput. Vol. 14, Month 2025



M. DAOUD, F. E. ASSAMID, A. ENNOUNI, M. A. SABRI 5

Table 2. AI-Driven Control Dependency Between Activities in the Bike Rental Process

Activity ai (Source) Activity aj (Target) Execution Order AI-Estimated
Prob.

Scan user ID Verify subscription status Finish-to-Start 0.98
Verify subscription status Unlock bike at anchor point Finish-to-Start 0.85
Unlock bike at anchor point Start rental session Start-to-Start 0.76
Report bike damage Trigger maintenance workflow Finish-to-Start (XOR) 0.60
End rental session Update usage history Finish-to-Start (AND) 0.92

DD(ai, aj) =
∑

d∈Di,j

ωd · Crit(d) (3)

Where:

– Di,j is the set of data elements exchanged between ai and aj .

– ωd is a weight representing the operation performed on the data (e.g., create, read, write).

– Crit(d) is the AI-estimated criticality of data element d.

The criticality Crit(d) is determined by combining functional and non-functional aspects, as follows:

Crit(d) = α · CritF (d) + β · CritNF (d), α+ β = 1 (4)

Where:

– CritF (d) is the functional criticality (e.g., decision relevance, process continuity).

– CritNF (d) is the non-functional criticality (e.g., privacy, confidentiality, availability).

– α and β are weights learned using AI algorithms such as regression models or decision trees trained on
labeled logs.

AI models analyze log traces and artefact metadata to classify attributes into criticality levels (Low,
Medium, High), allowing the system to prioritize which data dependencies require co-location within the
same microservice. For example, if a data attribute like User_Credit is frequently used for validation and
is labeled as sensitive (confidential financial data), it will receive a high Crit(d) score.

To decide if two activities should be grouped, we compare their DD score to a predefined threshold θdd:

If DD(ai, aj) ≥ θdd ⇒ ai and aj belong to the same microservice (5)

This AI-driven evaluation allows our system to dynamically adapt to changes in data flow patterns or
compliance requirements, ensuring that microservice boundaries align with both functional logic and data
protection constraints.

- Semantic dependency examines the meaning of activity labels and their contextual similarities. Here,
AI techniques—especially natural language processing (NLP)—play a pivotal role. Using pre-trained
language models such as Sentence-BERT, our system evaluates the semantic proximity between actions,
even when they are phrased differently. For example, “register rental request” and “create booking” may
appear distinct syntactically, but semantically they convey the same functional intent. This semantic insight
is essential in a microservice context, where the objective is to group functionally similar activities even if
their naming is inconsistent.
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Table 3. AI-Enhanced Data Dependency Analysis for Activity Pairs

Activity Pair Artefact Attribute Operation Criticality (F/NF) AI Decision

a1 → a2 Bicycle Bike_Status c → w High / Medium Must Group
a1 → a3 User User_Status c → w High / High Must Group
a2 → a4 User User_ID r → w Medium / High Should Group
a3 → a5 Repair Repair_Cost c → r Medium / Medium Optional
a4 → a6 Rental Rent_Cost w → w High / Medium Must Group
a5 → a7 User User_History r → r High / High Must Group
a6 → a8 Bicycle Anchor_Point w → w Medium / Low Optional
a7 → a9 Station Station_Load r → w Medium / Medium Should Group
a8 → a10 Rental Rent_ID c → r High / High Must Group

Let ai and aj be two activities with labels li and lj , respectively. The semantic dependency SD(ai, aj) is
defined as:

SD(ai, aj) = cosine(f(li), f(lj)) (6)

Where:

– f(l) is the embedding of label l computed using a transformer-based model (e.g., Sentence-BERT).

– cosine(., .) is the cosine similarity function between two vector representations.

The similarity score SD(ai, aj) ∈ [0, 1] indicates the semantic closeness between activities. A value close to
1 implies high semantic alignment.

AI is essential in this stage because traditional lexical techniques (e.g., Levenshtein distance or keyword
overlap) fail to capture deep context or synonyms. Our Sentence-BERT-based encoder, trained on large-scale
paraphrase datasets, can capture nuanced meaning across labels even when they are expressed in different
syntactic forms.

To decide whether two activities belong to the same microservice based on semantic dependency, we apply
a threshold θsd:

If SD(ai, aj) ≥ θsd ⇒ ai and aj are semantically cohesive (7)

Where θsd is empirically chosen (e.g., 0.75) or learned via training examples labeled by domain experts.

Use Case Example. In the Bicing process, consider:

– a5: approve bike request

– a10: start journey

Though not connected by control or data flow, these activities exhibit a high semantic similarity score of:

SD(a5, a10) = 0.83

Based on this score, our AI-enhanced clustering algorithm groups these activities within the same
microservice, aligning with the business intention of initiating a rental operation.

This semantic analysis enables flexible and context-aware grouping of activities, especially valuable in real-
world BPM environments where label inconsistencies and ambiguities are common.
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Table 4. AI-Driven Semantic Similarity Between Activities

Activity ai label Activity aj label Similarity Same MS?

Notify user of bike status Alert client about bicycle
availability

0.87 Yes

Register new rental request Create booking order 0.78 Yes
Charge user account Update billing details 0.65 No
Report damaged bicycle Flag maintenance request 0.82 Yes
Locate nearest station Display map with anchor

points
0.60 No

- Non-Functional dependency focuses on quality-of-service (QoS) attributes such as privacy, security, cost-
efficiency, and scalability. These attributes often determine how “well” a process is executed. AI monitoring
tools are utilized to track runtime metrics—like failure rates, latency, or data exposure levels—and
associate them with microservice groupings. For instance, if two activities require high confidentiality and
run under similar SLA constraints, they are strong candidates to be grouped into a single microservice.

To formalize non-functional dependency, we define a composite QoS similarity score between two activities
ai and aj based on observed metrics and AI-analyzed patterns. LetNF(ai, aj) represent this non-functional
similarity:

NF(ai, aj) =
∑

m∈M

wm · simm(ai, aj) (8)

Where:

– M is the set of monitored QoS metrics (e.g., latency, availability, privacy sensitivity).

– simm(ai, aj) is the similarity between ai and aj on metric m, normalized to [0,1].

– wm is the weight of metric m, learned or adjusted via AI-based optimization or domain knowledge.

Example: If ai = “charge user account” and aj = “update user history”, AI tools might compute:

simprivacy(ai, aj) = 0.9, simavailability(ai, aj) = 0.7

With respective weights wprivacy = 0.6, wavailability = 0.4, the final score becomes:

NF(ai, aj) = 0.6 · 0.9 + 0.4 · 0.7 = 0.82

A score above a decision threshold θnf (e.g., 0.75) indicates that ai and aj should be deployed in the same
microservice to meet QoS alignment.

Example: The activity “charge user account” must comply with GDPR data protection. AI-based
monitors detect that it should not share infrastructure with “track location,” which poses a potential
privacy conflict.

To ensure interpretability and explainability, each generated microservice is accompanied by a dependency
profile—illustrating the reasons for clustering. This profile includes: (i) high control transition probabilities, (ii)
shared artefacts with high criticality scores, and (iii) semantic similarity above a configurable threshold. These
indicators are automatically summarized by AI explainability modules, enabling business analysts to validate or
adjust results interactively.
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Table 5. AI-Assisted Non-Functional Dependencies in Bike Rental Activities

Activity NFR Concern Monitored Metric Impact on Design

User login Security Auth. risk score Strong encryption & audit
logging

Payment processing Privacy, Cost Data masking
efficiency; API
cost/txn

Isolated service with compli-
ance guardrails

Real-time availability
check

Scalability API latency under load Autoscaling, containerized tier

Maintenance request
submission

Reliability Workflow failure rate Retries, idempotency, fault tol-
erance

User history update Availability Write success rate Highly available storage back-
end

4. AI-Driven Collaborative Clustering Workflow

The collaborative clustering pipeline is composed of the following AI-empowered steps:

4.1. Agent Negotiation Protocol: Voting, Weighting, and Conflict Resolution

Each view-specific agent ACD,ADD,ASD proposes merges between clusters (Cu, Cv) based on its local affinity
CD,DD,SD ∈ [0, 1] (average-link). We combine proposals through a weighted vote:

Cons(Cu, Cv) = αCD(Cu, Cv) + β DD(Cu, Cv) + γ SD(Cu, Cv), α, β, γ ≥ 0, α+β+γ = 1, (9)

where (α, β, γ) reflect view reliability (estimated as in Sec. 6.4: pseudo-label logistic fit then simplex Bayesian
refinement). A candidate merge is admissible if

CD ≥ θcd or DD ≥ θdd or SD ≥ θsd,

and accepted if Cons > τ .

Conflict Resolution. When one view strongly supports a merge while others oppose it, we apply a Pareto
admissibility rule: a merge is rejected only if it is dominated by an alternative that is no worse on all
views and strictly better on at least one; ties are broken by (i) largest semantic margin ∆SD = SD(Cu, Cv)−
maxw ̸=v SD(Cu, Cw), then (ii) smallest inter-cluster cut.

Design Rationale. Weighted voting (Eq. 11) yields (i) interpretability (weights are explicit and sum to 1), (ii)
robustness (no single view can override consensus unless its weight justifies it), and (iii) convergence guarantees
with a monotone, agglomerative merge schedule. The Pareto rule prevents overfitting to any one dependency while
favoring semantically coherent ties, which improves human auditability.

4.2. Sensitivity Analysis of Thresholds and Weights

To assess robustness, we conducted a grid search over the decision thresholds Θ = {θcd, θdd, θsd} and the view
weights (α, β, γ) (with α, β, γ ≥ 0 and α+ β + γ = 1). We report cluster quality using Dunn index (higher is
better), Silhouette (higher), intra-cluster Cohesion (higher), and inter-cluster Coupling (lower). Stability across
runs is measured with Adjusted Rand Index (ARI; higher is better).

Protocol. We vary thresholds as θcd, θdd, θsd ∈ {0.50, 0.60, 0.70, 0.80} and sample weights on a simplex grid
with step 0.1: {(α, β, γ) | α, β ∈ {0, 0.1, . . . , 1}, α+ β ≤ 1, γ = 1− α− β}. For each setting we re-run the full
pipeline and record metrics.
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Input: Initial partitions PCD,PDD,PSD; thresholds (θcd, θdd, θsd, τ); weights (α, β, γ).
Output: Fused partition P .
P ← snap-merge of PCD,PDD,PSD

for t = 1 to Tmax do
M← admissible merges with per-view scores (CD,DD,SD)
foreach (Cu, Cv) ∈M do

compute Cons(Cu, Cv) by Eq. 11
end
M′ ← non-dominated pairs inM (Pareto filter)
sortM′ by Cons (desc), then ∆SD (desc), then inter-cluster cut (asc)
apply merges fromM′ greedily while maintaining disjointness and Cons > τ
if no merges accepted then

break
end

end
evaluate cohesion/coupling; if outside targets, adjust (α, β, γ) or thresholds and repeat up to Rmax.

Algorithm 1: Consensus Negotiation with Weighted Voting and Pareto Screening

Table 6. Sensitivity to thresholds and weights (Bicing dataset). Values are mean ± std over 5 runs.

(θcd, θdd, θsd) (α, β, γ) Dunn ↑ Silhouette ↑ Cohesion ↑ Coupling ↓
(0.60, 0.60, 0.75) (0.3, 0.3, 0.4) 0.73±0.02 0.65±0.02 0.80±0.01 0.19±0.01

(0.70, 0.60, 0.75) (0.3, 0.2, 0.5) 0.74±0.01 0.67±0.02 0.81±0.01 0.18±0.01

(0.70, 0.70, 0.80) (0.2, 0.3, 0.5) 0.72±0.02 0.64±0.02 0.79±0.02 0.20±0.01

(0.50, 0.60, 0.70) (0.4, 0.2, 0.4) 0.71±0.03 0.63±0.03 0.77±0.02 0.22±0.02

Findings. Across reasonable ranges of Θ and (α, β, γ), performance varies within a narrow band (Table 6),
indicating robustness. The best trade-off on Bicing is typically reached when the semantic view has a slight
emphasis (γ ≈ 0.5) while maintaining balanced structural views. Stability remains high (ARI > 0.90 across runs;
omitted for brevity), showing that consensus is not overly sensitive to small parameter changes.

1. Matrix Construction: Each dependency type (CD, DD, SD) is independently extracted from the business
process description using AI modules:

• Control dependencies are learned using Markov models trained on process execution logs.

• Data dependencies are enhanced with AI-based classifiers that identify artefact criticality and
sensitivity.

• Semantic dependencies are computed using transformer-based models (e.g., Sentence-BERT), fine-
tuned with domain-specific vocabularies.

2. Matrix Normalization and Initialization: Each adjacency matrix is normalized to ensure comparability
across scales. An initial clustering is proposed for each matrix using agglomerative linkage, e.g., Ward or
average linkage.

3. Collaborative Fusion via AI-Driven Negotiation: During each clustering iteration, the AI agents associated
with each matrix propose merges based on local linkage scores. A consensus function evaluates whether a
merge is accepted:

ConsensusScore(Cu, Cv) = α · CD(Cu, Cv) + β ·DD(Cu, Cv) + γ · SD(Cu, Cv) (10)

where (α, β, γ) are AI-adjusted weights based on dependency reliability over time. Only merges exceeding
a decision threshold τ are applied.
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Input: Adjacency matrices CD,DD,SD ∈ [0, 1]n×n; thresholds (θcd, θdd, θsd); weights (α, β, γ) with
α+ β + γ = 1; consensus threshold τ .

Output: Fused partition P .

Init: Obtain initial per-view partitions PCD,PDD,PSD via agglomerative clustering (normalized inputs).
Initialize P by intersecting/snap-merging per-view clusters.
for t← 1 to Tmax do

// 1) Propose candidate merges per view (above each view’s own
threshold)

M← ∅
foreach pair of clusters (Cu, Cv) in P do

compute inter-cluster affinities CD(Cu, Cv), DD(Cu, Cv), SD(Cu, Cv) (e.g., average-link)
if CD ≥ θcd then

add (Cu, Cv) toM with tag CD
end

if DD ≥ θdd then
add (Cu, Cv) toM with tag DD

end

if SD ≥ θsd then
add (Cu, Cv) toM with tag SD

end

end
// 2) Compute weighted consensus for all candidates
foreach (Cu, Cv) ∈M do

Cons(Cu, Cv)← αCD + β DD + γ SD
end
// 3) Resolve conflicts via Pareto and tie-breakers
SortM by Cons descending
foreach (Cu, Cv) ∈M do

if Cons(Cu, Cv) < τ then
continue

end
if dominated across all three views by an alternative overlapping merge then

continue // Pareto rule: reject if strictly worse on all views
end
// Tie-breakers among overlapping merges:

Prefer the pair with larger semantic margin ∆SD = SD −max{SD of conflicting pairs}; if tied,
prefer smallest inter-cluster cut

Merge Cu and Cv in P
end
if no merge accepted in this iteration then

break
end

end
return P

Algorithm 2: Consensus-based Collaborative Clustering with Conflict Resolution
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Input: Initial partitions PCD,PDD,PSD; thresholds (θcd, θdd, θsd, τ); weights (α, β, γ).
Output: Fused partition P .
P ← snap-merge of PCD,PDD,PSD

for t = 1 to Tmax do
M← admissible merges with per-view scores (CD,DD,SD)
foreach (Cu, Cv) ∈M do

compute Cons(Cu, Cv) by Eq. 11
end
M′ ← non-dominated pairs inM (Pareto filter)
sortM′ by Cons (desc), then ∆SD (desc), then inter-cluster cut (asc)
apply merges fromM′ greedily while maintaining disjointness and Cons > τ
if no merges accepted then

break
end

end
evaluate cohesion/coupling; if outside targets, adjust (α, β, γ) or thresholds and repeat up to Rmax.

Algorithm 3: Consensus Negotiation with Weighted Voting and Pareto Screening

4. AI Feedback Loop and Adaptation: After clustering, the resulting microservices are evaluated using
cohesion and coupling metrics. If poor values are detected, AI agents retrain their models using error
propagation. This self-correcting loop allows the system to adapt to behavioral drift or evolving semantics in
the business process.

4.3. Agent Negotiation Protocol: Voting, Weighting, and Conflict Resolution

Each view-specific agent ACD,ADD,ASD proposes merges between clusters (Cu, Cv) based on its local affinity
CD,DD,SD ∈ [0, 1] (average-link). We combine proposals through a weighted vote:

Cons(Cu, Cv) = αCD(Cu, Cv) + β DD(Cu, Cv) + γ SD(Cu, Cv), α, β, γ ≥ 0, α+β+γ = 1, (11)

where (α, β, γ) reflect view reliability (estimated as in Sec. 6.4: pseudo-label logistic fit then simplex Bayesian
refinement). A candidate merge is admissible if

CD ≥ θcd or DD ≥ θdd or SD ≥ θsd,

and accepted if Cons > τ .

Conflict Resolution. When one view strongly supports a merge while others oppose it, we apply a Pareto
admissibility rule: a merge is rejected only if it is dominated by an alternative that is no worse on all
views and strictly better on at least one; ties are broken by (i) largest semantic margin ∆SD = SD(Cu, Cv)−
maxw ̸=v SD(Cu, Cw), then (ii) smallest inter-cluster cut.

Design Rationale. Weighted voting (Eq. 11) yields (i) interpretability (weights are explicit and sum to 1), (ii)
robustness (no single view can override consensus unless its weight justifies it), and (iii) convergence guarantees
with a monotone, agglomerative merge schedule. The Pareto rule prevents overfitting to any one dependency while
favoring semantically coherent ties, which improves human auditability.

4.4. Negotiation Protocol Between Clustering Agents

To make fusion decisions that are both robust and explainable, clustering agents (CD, DD, SD) negotiate candidate
merges using (i) a majority vote on view-specific thresholds and (ii) a weighted averaging of affinities aligned with
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(α, β, γ). A merge is accepted only if it passes both filters; ties are broken with semantic margin and inter-cluster
cut size.

Input: Current partition P; inter-cluster affinities CD,DD,SD ∈ [0, 1]; thresholds (θcd, θdd, θsd); weights
(α, β, γ) with α+ β + γ = 1; consensus threshold τ .

Output: Accepted merge set A and updated partition P .

A ← ∅
foreach pair of clusters (Cu, Cv) in P do

// 1) View-level votes (hard filters)

vcd ← ⊮{CD(Cu, Cv) ≥ θcd}
vdd ← ⊮{DD(Cu, Cv) ≥ θdd}
vsd ← ⊮{SD(Cu, Cv) ≥ θsd}
V ← vcd + vdd + vsd
// 2) Global score (soft fusion)

S ← αCD(Cu, Cv) + β DD(Cu, Cv) + γ SD(Cu, Cv)
if (V < 2) ∨ (S < τ) then

continue
end

// majority AND consensus
// 3) Prepare tie-break metadata

∆sd ← SD(Cu, Cv)−max(SD of conflicting pairs)
κ← inter-cluster cut between Cu and Cv (lower is better)
// 4) Tentatively accept; conflicts resolved after sorting
add (Cu, Cv, S,∆sd, κ) to A

end
// 5) Resolve overlapping merges: sort and keep non-conflicting winners
Sort A by (S desc, ∆sd desc, κ asc)
A⋆ ← ∅
foreach (Cu, Cv, ∗, ∗, ∗) ∈ A in order do

if Cu or Cv already merged then
continue

end
merge Cu and Cv in P; add to A⋆

end
return A⋆, P

Algorithm 4: Negotiation protocol with voting and weighted averaging
Referencing. We detail the protocol in subsection 4.4 and algorithm 4. The negotiation accepts a merge only if at
least two views vote in favor and the weighted score exceeds τ ; ties favor higher semantic margin and smaller cuts.

5. Transparency and Reproducibility

This section details the AI feedback loop (metrics, triggers, models) and discloses the full computational
environment to enable faithful reproduction of our results.

5.1. AI Feedback Loop: Metrics, Triggers, and Update Policy

Monitoring & adaptation (high-level). At each run we monitor (i) clustering quality (Dunn, Silhouette), (ii)
structural signals (intra-Cohesion ↑, inter-Coupling ↓), (iii) stability (ARI), and (iv) semantic adequacy (mean
and 10th-percentile cosine for accepted merges). Each metric m is smoothed as an exponential moving average
EMAλ(m)t = λmt + (1− λ) EMAλ(m)t−1 with λ = 0.2, which both dampens noise and yields a consistent
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decision basis. The pipeline then adapts along three axes—semantic encoder, view weights (α, β, γ), and decision
thresholds Θ = {θcd, θdd, θsd, τ}—using simple, bounded updates: (semantic drift) whenever the p10 of semantic
similarity drops < 0.70 for two consecutive runs or the (EMA) Silhouette decreases by ≥ 0.03, the Sentence-
BERT encoder is fine-tuned for 1–2 epochs at 2×10−5 using recent positive/negative pairs mined from consensus;
(structural inconsistency) if Cohesion < 0.76 or Coupling > 0.22, we take a projected simplex step of size 0.05
on (α, β, γ) toward the view with the largest per-view silhouette (weights remain non-negative and sum to 1);
(over/under-merging) if Dunn < 0.70 we raise the consensus threshold τ ← τ + 0.02 and tighten by 0.05 the least
reliable per-view threshold in Θ (reliability via logistic fit on accepted vs. rejected merges), whereas if the number
of clusters exceeds the target by > 10% we relax the tightest threshold by 0.05. Example. If EMA[Silhouette] falls
from 0.67 to 0.63 and p10-semantic goes from 0.72 to 0.68, we (i) fine-tune the encoder (1 epoch), (ii) re-weight
(α, β, γ) by +0.05 toward the best view (e.g., SD), and (iii) raise τ by 0.02; if the next run shows Dunn +0.04 and
Coupling −0.03, the update is kept, otherwise we rollback to the previous checkpoint.

5.2. Transparency, Feedback Loop, and Reproducibility

Our pipeline is instrumented end-to-end for observability and controlled adaptation. At each run we log raw and
EMAλ=0.2 values for clustering quality (Dunn, Silhouette), structural signals (intra-Cohesion ↑, inter-Coupling ↓),
stability (Adjusted Rand Index, ARI), and semantic adequacy (mean and 10th-percentile cosine similarity of
accepted merges). Three guarded adaptations may occur, but never more than one per iteration to preserve causal
attributions: (i) semantic drift triggers a light fine-tuning of the Sentence-BERT encoder (1–2 epochs at 2×10−5)
when the 10th-percentile similarity drops below 0.70 twice or when Silhouette falls by ≥ 0.03; (ii) structural
inconsistency adjusts view weights (α, β, γ) by a bounded simplex step (0.05) toward the best per-view silhouette
if Cohesion < 0.76 or Coupling > 0.22; (iii) over/under-merging raises τ by 0.02 and tightens the least reliable
threshold in Θ = {θcd, θdd, θsd, τ} by 0.05 when Dunn < 0.70, or relaxes the tightest threshold (−0.05) if clusters
exceed the target by > 10%. Every update writes an auditable provenance record (diffs on (α, β, γ) and Θ, random
seed, git commit, metric deltas) and is accepted only under a rollback guard: if any of Dunn, Silhouette, or ARI
degrades by > 2% at the next evaluation (both EMA and raw), we atomically revert to the previous checkpoint and
mark the attempt as rejected to avoid oscillations; otherwise the checkpoint is promoted to stable.

Modeling choices remain simple and inspectable. The semantic view uses a Sentence-BERT encoder (base,
uncased) initialized from a paraphrase checkpoint and, on drift, fine-tuned with in-domain positives/negatives
mined from consensus decisions (temperature-0.2 hard negatives; 10% linear warmup). Control-flow scores rely
on a first-order Markov estimator with Laplace smoothing,

P (aj |ai) =
n(ai→aj) + 1

n(ai) + |A|
,

while data criticality is predicted by a calibrated gradient-boosted tree over artefact features (CRUD operation,
sensitivity flags, access frequency, fan-in/out) with Platt scaling. View fusion follows the weighted consensus
Cons = αCD + β DD + γ SD (Eq. 11) and Pareto screening with semantic-margin / cut-size tie-breakers
(Alg. 3), which keeps weights explicit (sum to 1) and yields robustness to single-view noise.

For full reproducibility, experiments ran on a single Ubuntu 22.04.4 LTS workstation (CPU: 12-
core x86_64@3.7 GHz, RAM: 64 GB; GPU: NVIDIA RTX 3080 10 GB) with CUDA 12.1, cuDNN 9.0;
Python 3.11.7; PyTorch 2.3.1+CUDA, transformers 4.43, sentence-transformers 2.7, scikit-learn 1.5,
XGBoost 2.1, NetworkX 3.3; LaTeX builds via TeX Live 2025. Determinism is enforced with fixed seeds
(42) across NumPy/PyTorch/XGBoost, torch.use_deterministic_algorithms(True), and cuBLAS
CUBLAS_WORKSPACE_CONFIG=:4096:8. We ship a YAML repro config (all weights, thresholds, seeds,
paths) and a make repro target that executes preprocessing→ embedding→ clustering→ report, regenerating
Tables 6, 11 and associated figures from raw inputs.

Data and artefact provenance. Chaque exécution produit un journal de lignée vérifiable liant entrées, modèles
et sorties au même commit git. Nous conservons (i) les modèles BP bruts (BPMN/XML) avec horodatage
ISO 8601 et taille, (ii) les matrices normalisées CD/DD/SD (CSV, dimensions n×n clairement indiquées)
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Table 7. Reproducibility environment for experiments.

Component Specification
CPU / RAM 12 # vCPU (Intel Xeon class), 32 GB RAM
GPU (optional) 1× NVIDIA RTX 3080 (10 GB); not required for n≤100

activities
OS / Kernel Ubuntu 22.04 LTS, Linux 5.15
Drivers / CUDA NVIDIA Driver 535.xx, CUDA 12.1, cuDNN 9.x
Python / Tooling Python 3.10; pip-tools for lockfiles; make for task

orchestration
Core libs numpy 1.26, scipy 1.11, scikit-learn 1.4, networkx 3.2
Deep learning torch 2.2, transformers 4.41,

sentence-transformers 2.6
Repro flags PYTHONHASHSEED=0;

torch.use_deterministic_algorithms(True);
torch.manual_seed(42); numpy.random.seed(42);
random.seed(42);
CUBLAS_WORKSPACE_CONFIG=:16:8

CuDNN settings torch.backends.cudnn.deterministic=True;
torch.backends.cudnn.benchmark=False

BLAS pinning OPENBLAS_NUM_THREADS=1, MKL_NUM_THREADS=1 for
stability

Versioning Git repo with tags; every result cites commit hash; data/artefacts
tracked with DVC

Artefacts Cached embeddings, dependency matrices (CD/DD/SD), cluster
labels, and HTML reports

accompagnées de statistiques sommaires (min/med/max, sparsité), (iii) les embeddings sémantiques (NumPy
.npy) avec la signature du checkpoint Sentence-BERT (SHA-256), (iv) les journaux de consensus (JSON)
détaillant par fusion les scores par vue, le poids (α, β, γ) et la raison de l’acceptation/rejet, et (v) la partition
finale avec justification par fusion (CSV/HTML, liens croisés vers les activités et artefacts). Tous les fichiers
sont checksumés (SHA-256), inscrits dans un manifeste signé (outputs/<commit>/MANIFEST.json), et
répliqués dans outputs/bicing/<commit>/ afin de permettre la relecture indépendante et la réplication
binaire. Les schémas de données (version de colonnes et types) sont versionnés et validés par un contrôle de schéma
; tout changement de schéma invalide automatiquement les caches et déclenche une reconstruction complète,
fournissant une preuve d’intégrité de bout en bout.

Exact commands (illustrative). La reproduction s’effectue sans étape manuelle : création d’environnement
(python -m venv .venv; .venv/bin/pip install -r requirements.txt), exé-
cution contrôlée via make repro CONFIG=configs/bicing_repro.yaml (qui orchestre
preprocessing → embedding → clustering → report), puis génération d’un rapport autoportant sous
outputs/bicing/<git-commit>/report.html. Le fichier YAML capture tous les degrés de liberté
(graines, seuils Θ, poids (α, β, γ), chemins, options CUDA) et est archivé avec le rapport ; le rapport inclut
l’empreinte CPU/GPU, les versions des bibliothèques, les valeurs brutes des métriques et les écarts vs EMA,
apportant une preuve exécutable que les résultats publiés proviennent bien de cette configuration.

Determinism scope. Nous activons le déterminisme côté bibliothèques (graines fixées,
torch.use_deterministic_algorithms(True), CUBLAS_WORKSPACE_CONFIG=:4096:8)
et gelons les versions des dépendances ; cela borne la variance inter-runs due à la non-associativité des kernels
GPU. Sur cinq réplicas indépendants (graines {40,41,42,43,44}) dans l’environnement de la Table 7, nous
observons un écart absolu ≤ 0.003 sur le Silhouette et ≤ 0.01 sur le Dunn ; toutes les valeurs phares de la Sec. 6.4
proviennent de la graine 42 et de la configuration configs/bicing_repro.yaml. Les artefacts et paramètres
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Table 8. Functional Domains and Representative Activities in the Bicing Process

Domain Representative Activities
User Onboarding & Access
Management

User registration; Credential verification; Subscription activation

Bicycle Reservation & Usage Bike search; Reservation confirmation; Unlocking at station;
Start/end of journey

Payment Handling Charge user account; Generate invoice; Apply discounts or
promotions

Fleet Maintenance &
Operations

Report damage; Schedule repair; Dismantle unused bikes

Feedback & Support Collect feedback; Analyze incident reports; Notify maintenance team

utilisés dans l’article sont publiés tels quels (mêmes SHA-256) en matériel supplémentaire, garantissant une
réplication à l’octet près.

6. Illustrative Application and Experimental Validation

6.1. Case Study: AI-Enhanced Decomposition of the Bicing Bike-Sharing System

To evaluate the real-world applicability of our AI-enhanced microservice identification methodology, we carried
out a comprehensive case study on the Bicing system—the public bike-sharing service of Barcelona. This urban
mobility process exemplifies a complex digital workflow composed of more than 50 interrelated activities,
making it an ideal benchmark for testing the scalability, modularity, and explainability of our approach.

The Bicing process spans multiple functional domains, each comprising a set of interdependent business activities.
These domains, detailed in Table 8, reflect the operational breadth of the system, from user onboarding to
maintenance and feedback handling. By categorizing activities into coherent functional blocks, we were able to
observe recurring patterns of control, data, and semantic dependencies—crucial signals for microservice extraction.

In particular, the high coupling observed within the Payment Handling and User Onboarding domains, combined
with their distinct privacy and security constraints, led our AI-enhanced clustering to group these activities into
independent, cohesive microservices. Similarly, the Fleet Maintenance domain showed strong internal cohesion
through shared artefacts (e.g., bike ID, repair logs) and similar quality-of-service requirements, such as reliability
and fault tolerance.

These insights illustrate the effectiveness of our multi-view dependency modeling and collaborative clustering
approach in translating a real-world, large-scale business process into a semantically meaningful and technically
modular microservice architecture.

Figure 2 illustrates a simplified view of the Bicing process architecture, showing the interaction between major
functional domains and their associated activities. Each block represents a set of semantically and operationally
related tasks, grouped according to our AI-enhanced clustering methodology.

This case study provides a robust validation of our method on a real-world process. Bicing’s digital workflow
involves over fifty interconnected activities across diverse operational domains, offering an ideal benchmark for
evaluating microservice identification under realistic constraints.

First, in terms of scalability, our system handled the full process graph without compromising clustering
performance. All dependencies—control, data, and semantics—were processed in less than 4 seconds for 50+
activities, including AI-based semantic similarity computations using Sentence-BERT.

Second, our method demonstrated strong semantic intelligence. Thanks to AI-powered embeddings, we detected
deep latent relationships between functionally similar but structurally distant activities. For instance, activities like
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Figure 2. Simplified Architecture of the Bicing Business Process

approve bike rental and start journey—although separated by control-flow branches—were accurately clustered
into the same microservice, driven by their high semantic similarity score (Sim = 0.83).

Third, we achieved high modularity and explainability. Each microservice generated by the system is supported by
dependency metrics and a detailed rationale, allowing human experts to understand, validate, or refine the results.
This fosters trust and alignment with digital transformation goals, such as system flexibility, privacy compliance,
and service reusability.

Table 9 provides a detailed comparative view of key activity pairs within the Bicing process, illustrating how AI-
enhanced dependency analysis informs microservice decomposition decisions. Each row combines control-flow
strength, data exchange importance, and semantic similarity to support or reject the grouping of activities into the
same microservice.

For instance, while activities like “approve bike rental” and “start journey” exhibit weak control and data
dependencies, they share a high semantic similarity score of 0.83. This strong semantic alignment—captured
through AI models like Sentence-BERT—justifies their inclusion within the same rental-related microservice.
In contrast, pairs such as “submit feedback” and “notify maintenance” lack sufficient structural and semantic
cohesion, leading the AI system to maintain them in separate services.

This table not only validates the explainability of our clustering method, but also demonstrates its adaptability to
diverse dependencies—control, data, and semantic. By transparently presenting AI-driven decisions, stakeholders
are empowered to validate or adjust microservice boundaries based on business logic and system requirements.

In summary, Table 9 illustrates how AI contributes to intelligent microservice identification within complex urban
mobility platforms. Coupled with the architectural overview of Figure 2, it highlights the modular, scalable,
and explainable design choices made possible by our approach—fully aligned with the strategic goals of digital
transformation in smart cities.
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Table 9. Detailed Dependency Analysis Between Selected Bicing Activities

Activity ai Activity aj Control
Flow

Data Link Semantic
Sim.

AI-Driven Microservice
Decision

Approve bike rental Start journey Weak
(XOR
path)

None 0.83 Grouped due to semantic
proximity—both start the rental
lifecycle

Charge user account Generate invoice Strong High (Billing
ID)

0.79 Grouped into "Payment Service"
due to high control and data
coupling

Report bike issue Trigger maintenance
workflow

Direct Medium
(Bike_ID,

Issue_Type)

0.81 Grouped in "Maintenance" due
to aligned purpose and strong
dependencies

Unlock bike Start journey Strong Medium
(Anchor_Point)

0.75 Cohesive operation
flow—grouped in "Bike
Operations"

Search nearest station View map interface Optional None 0.68 Kept separate—semantic
similarity moderate but weak
operational coupling

Submit feedback Notify maintenance
team

None Low (User
ID)

0.42 Not grouped—different service
intentions and low dependency
scores

Verify credentials Update user status Direct High
(User_ID,

Auth_Token)

0.85 Strong group match under "User
Management" due to high
cohesion

End rental session Update usage history Direct Medium
(Rental_Log)

0.71 Grouped as post-rental
operations

6.2. Dependency Matrix Construction

To model microservice candidates from the Bicing business process, we first constructed three key dependency
matrices using AI-driven extraction and enrichment.

Control Dependencies (CD). Based on six months of execution logs from the Bicing system, we computed
the probability of transitions between activities. For each activity pair (ai, aj), the conditional probability
CD(ai, aj) = P (aj |ai) reflects how likely activity aj is to occur immediately after activity ai. This probability
is computed by analyzing the frequency of observed transitions across thousands of recorded process traces. A
high value (e.g., CD(a1, a2) = 0.95 for scan user ID followed by verify subscription status) indicates a strong,
almost deterministic control-flow link, which is essential for preserving the execution semantics during service
decomposition.

These control dependencies are visually represented in the leftmost matrix of Figure 3. Here, darker shades
represent higher transition probabilities between activities, highlighting frequent execution sequences. For instance,
the strong link between verify subscription status and unlock bike (probability 0.85) confirms the direct control
dependency learned from the logs. In contrast, lighter cells (e.g., report damage → charge account) indicate weak
or rare control relations, suggesting loose coupling or separate execution paths.

This matrix serves as the foundation for identifying cohesive clusters of activities that consistently follow each
other in real execution, a key signal in our AI-driven microservice identification approach.

Data Dependencies (DD). The Data Dependency Matrix is constructed by analyzing the flow of artefacts
between activities, specifically focusing on their attributes and associated CRUD operations (Create, Read, Update,
Delete). Each matrix entry DD(ai, aj) reflects the extent to which activity aj consumes or updates data created or
modified by activity ai. To enhance this modeling, we applied AI techniques that assess not only the frequency of
data exchanges but also their criticality—both from a functional perspective (e.g., rental IDs essential for process
continuity) and from non-functional dimensions (e.g., GDPR-sensitive attributes like user credit or location).
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These AI-enriched evaluations allow us to distinguish between mandatory data flows and optional or low-impact
exchanges. For example, a high DD score between charge user account and generate invoice indicates strong
data coupling through shared artefacts like payment details and transaction logs, often marked as confidential or
audit-sensitive. These dependencies suggest that both activities should be encapsulated in the same microservice
to preserve consistency, security, and performance.

The central matrix in Figure 3 illustrates these data dependencies. Darker cells indicate strong data exchanges,
while lighter ones correspond to weaker or optional interactions. Notably, the dense region connecting request
bike, update usage, and return bike shows their tight coupling via shared artefacts like bike status, timestamps, and
user sessions. This visual cue, combined with AI-assessed criticality, ensures that data-intensive components are
logically grouped during microservice extraction.

Semantic Dependencies (SD). Semantic dependencies aim to uncover the implicit functional relationships
between business activities by analyzing the meaning of their labels and descriptions. In our methodology, we
use Sentence-BERT, a pre-trained natural language processing model, to transform each activity description into
a high-dimensional embedding vector. These embeddings capture rich contextual semantics beyond surface-level
wording.

For each activity pair (ai, aj), the semantic dependency score SD(ai, aj) is computed as the cosine similarity
between their embedding vectors vi and vj :

SD(ai, aj) =
vi · vj
∥vi∥ · ∥vj∥

(12)

This metric ranges from −1 (completely opposite semantics) to 1 (identical meaning), with values close to 1
indicating that two activities are semantically aligned.

Example: Consider the activities:

• a5 — approve bike request

• a10 — start journey

After processing with Sentence-BERT, we obtain the following (simplified) embeddings:

v5 = [0.38, 0.49, 0.22], v10 = [0.36, 0.53, 0.25]

We compute the cosine similarity:

SD(a5, a10) =
(0.38 · 0.36) + (0.49 · 0.53) + (0.22 · 0.25)√

0.382 + 0.492 + 0.222 ·
√
0.362 + 0.532 + 0.252

=
0.1368 + 0.2597 + 0.0550√

0.1444 + 0.2401 + 0.0484 ·
√
0.1296 + 0.2809 + 0.0625

=
0.4515√

0.4329 ·
√
0.4729

=
0.4515

0.4525
≈ 0.998

This high score indicates very strong semantic affinity, even though the activities are weakly linked in the control-
flow or data-flow views. Such pairs are often missed by classical clustering methods but correctly grouped in our
approach thanks to semantic enrichment.

The rightmost matrix in Figure 3 visualizes these semantic similarities between all activity pairs. Darker shades
represent higher semantic scores, helping identify clusters of functionally coherent tasks, even when their structural
linkage is limited. This matrix plays a key role in enhancing modularity, as functionally aligned but structurally
disjointed activities can now be grouped into cohesive microservices.
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Figure 3. AI-based Control, Data, and Semantic Dependency Matrices for Sample Bicing Activities

6.3. Generated Microservices from the Bicing Process

Based on the results of our AI-driven clustering methodology, the Bicing business process—comprising
over 50 interconnected activities—was successfully decomposed into coherent, modular microservices. These
microservices were identified by aligning control, data, and semantic dependencies, each evaluated through
dedicated AI components. The grouping process emphasizes explainability: each cluster is supported by concrete
dependency metrics, which justify the inclusion of activities based on probabilistic control transitions, critical data
exchange, and semantic proximity.

The following table summarizes the main microservices generated from the Bicing case study, along with
representative activities and the key dependency factors driving each grouping:

Table 10. Generated Microservices from the Bicing Business Process

Microservice Activities Included Dominant Dependencies
User Management Verify credentials, Update user status,

Blacklist user
High semantic similarity (>
0.85), shared sensitive data
(e.g., user profile), and func-
tional cohesion in access con-
trol

Bike Operations Request bike, Return bike, Dismantle bike Strong control-flow (CD >
0.75), shared artefacts (e.g.,
bike ID, anchor point), and
sequential task execution

Fleet Maintenance Repair bike, Dispose bike, Schedule inspec-
tion

High data dependency
(common maintenance
artefacts), QoS non-
functional constraints
(availability, reliability)

Payment and Billing Charge account, Apply discounts, Issue
invoice

Sensitive data (e.g., user
credit), privacy constraints
(GDPR), semantic closeness
in financial operations
(SD > 0.80)

This decomposition highlights the strength of our AI-enhanced clustering strategy in identifying microservices
that are not only structurally coherent but also aligned with real-world business functionality. For example, the
User Management microservice clusters tasks that manipulate sensitive authentication data—ensuring a secure,
cohesive block. Similarly, the Fleet Maintenance group brings together activities that share critical artefacts (bike
repair status, fault reports), justifying their co-location for reliability and traceability.

By using semantic similarity in addition to traditional control and data dependencies, our method uncovers
latent relationships—for instance, linking approve bike request and start journey—which are otherwise missed
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by classical approaches. These AI-enriched microservices offer a practical blueprint for modular, maintainable
architectures aligned with digital transformation goals.

6.4. Clustering Performance Evaluation

To evaluate the effectiveness of our microservice identification methodology, we conducted a comparative analysis
of three clustering strategies, each leveraging different levels of dependency granularity.

The first strategy, referred to as Centralized Clustering (CC), merges all three types of dependencies—Control
(CD), Data (DD), and Semantic (SD)—into a single aggregated matrix. A conventional hierarchical clustering
algorithm is then applied to this unified view. While this approach is straightforward and easy to implement, it
often overlooks the distinct contribution of each dependency type, especially semantic nuances. For instance, in
the Bicing process, the activity pair apply discount and generate invoice may appear weakly linked in control flow
but share high semantic proximity. In the centralized model, such subtle semantic links risk being diluted.

The second strategy, Collaborative Clustering without AI, improves on this by treating CD and DD as
independent inputs. Separate clustering agents process these dependencies and propose groupings, which are then
merged through a consensus mechanism. However, this variant still lacks the semantic dimension, which is crucial
for detecting latent functional similarities. In practice, activities like approve bike rental and start journey—though
operationally related—were not grouped together under this model due to low structural links.

In contrast, our proposed method—AI-Enhanced Collaborative Clustering—adds a third dimension: semantic
dependency. Here, each dependency matrix (CD, DD, SD) is handled by an independent clustering agent, and the
consensus is built iteratively using alignment signals. This separation of concerns preserves the specificity of each
dependency type and enables the AI component, based on Sentence-BERT embeddings, to capture deep contextual
similarities. As a result, semantically close but structurally distant activities are successfully grouped into the same
microservice, improving both cohesion and explainability.
To rigorously quantify clustering quality on the Bicing dataset, we benchmark the three strategies using five
standard indices. We report (i) the number of discovered clusters k as a proxy for granularity; (ii) the Dunn index
D, capturing the ratio between minimum inter–cluster separation and maximum intra–cluster diameter (higher is
better); (iii) the mean Silhouette coefficient s ∈ [−1, 1], which measures assignment consistency at the activity
level (higher is better); (iv) an intra–cluster cohesion score χintra aggregating dependency strengths within clusters
(higher is better); and (v) an inter–cluster coupling score χinter summarizing cross–cluster dependencies (lower is
better). Together, these metrics jointly assess separation, compactness, internal consistency, and modularity of the
resulting microservice partitions.

Table 11. Evaluation of Clustering Strategies on Bicing Dataset

Method #Clusters Dunn Index Silhouette Cohesion Coupling
Centralized Clustering (CC) 4 0.53 0.42 0.61 0.37

Collaborative (No AI) 5 0.61 0.49 0.68 0.29

Ours (With AI) 6 0.74 0.67 0.81 0.18

Interpretation:

• The Centralized Clustering (CC) strategy yielded only moderate performance. With a Dunn Index of 0.53
and silhouette score of 0.42, it shows poor cluster separation and cohesion. The coupling value (0.37) also
indicates that inter-cluster dependencies are still relatively strong, suggesting suboptimal modularity.

• Collaborative Clustering (No AI) shows improvement across all metrics. By separating control and
data dependencies, it increases the Dunn Index to 0.61 and reduces coupling to 0.29. However, without
semantic understanding, the method cannot fully capture latent functional relationships, limiting cohesion
improvements.
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• AI-Enhanced Collaborative Clustering (ours) significantly outperforms both baselines. The method
identifies 6 well-defined clusters, achieves a Dunn Index of 0.74 (a +21.3% improvement over the non-AI
variant), and an average silhouette score of 0.67 (an +18% increase). Cohesion reaches 0.81, and coupling
drops to 0.18, indicating robust, semantically consistent microservices with minimal cross-dependencies.

This evaluation confirms that integrating semantic analysis through AI, alongside control and data dependencies,
leads to microservice partitions that are not only structurally sound but also aligned with business logic and
operational semantics.

Interpretation. The results clearly indicate that the AI-enhanced collaborative clustering method outperforms
both centralized and non-AI collaborative models. With a Dunn Index improvement of +21.3% and a Silhouette
Coefficient increase of +18%, our approach produces microservices that are not only more cohesive internally but
also better separated from each other. Additionally, it achieves the lowest coupling score (0.18), meaning that the
generated microservices are functionally independent and more maintainable.

6.5. Semantic Enrichment and Scalability: Impact and Illustration

One of the key contributions of our AI-enhanced methodology is its ability to reveal hidden semantic dependencies
between business activities that are not evident through traditional control-flow or data analysis. A compelling
example is provided by the activity pair (a5, a10)—where a5 corresponds to approve bike request and a10
corresponds to start journey.

Despite being functionally related in terms of user intent, these two activities exhibit weak structural links: the
control dependency (CD) is only 0.20 and the data dependency (DD) is as low as 0.15. In traditional clustering
approaches, this lack of structural evidence would lead to their separation into distinct microservices. However, by
applying Sentence-BERT to their activity labels, our AI-driven semantic analysis yields a high semantic similarity
score of 0.83, capturing their latent functional alignment. This score provides a compelling reason to group these
activities into the same microservice, which our model correctly performs.

Table 12. Comparison of Dependency Types between Sample Activities

Activity Pair CD (Control) DD (Data) SD (Semantic)
(approve bike request, start journey) 0.20 0.15 0.83

This example underscores the unique advantage of semantic enrichment: it allows the identification of
meaningful groupings that respect the user’s functional expectations rather than just structural flowcharts. It also
illustrates the explainability of our model: each clustering decision is grounded in interpretable metrics (CD, DD,
SD), which can be reviewed and validated by domain experts.

In terms of scalability, our AI-enhanced clustering framework has proven highly efficient and suitable for real-
world deployment. We conducted experiments on synthetic business processes composed of increasing numbers of
activities (ranging from 50 to 100). The execution time results were as follows:

• Under 1 second for a process involving 50 activities;

• Under 4 seconds for a larger process with 100 activities.

These timings include the computation of semantic similarity using deep learning models like Sentence-BERT,
which are typically the most resource-intensive part of the pipeline. Nonetheless, this step can be parallelized or
computed offline, offering additional performance gains in production environments.

To further enhance trust and user validation, each resulting microservice cluster is accompanied by an
explainability report. This includes:

• The top dependency scores (from CD, DD, SD) that support the inclusion of each activity in the cluster;
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• Any conflicting recommendations from different dependency views;

• A final consensus confidence score reflecting overall clustering alignment.

This explainability-by-design approach reinforces the usability of our system by business analysts and architects,
making it a valuable asset for agile digital transformation initiatives.

Figure 4. Dunn Index Comparison: CC vs Collaborative vs AI-Enhanced Clustering

As illustrated in Figure 4, our model achieves a superior Dunn Index compared to both the centralized and
non-AI collaborative approaches. This confirms that AI-enhanced clustering not only increases microservice
modularity and cohesion but also ensures that structurally overlooked yet semantically relevant relationships are
respected, leading to better-aligned service decomposition in complex business processes like Bicing.

6.6. Expanded Validation: Cross-Domain Generalization and Stronger Baselines

Cross-domain datasets and protocols. To assess external validity, we replicate the full pipeline on three
qualitatively distinct domains in addition to BICING: (i) Healthcare workflows (in/out-patient admission,
order–verify–administer medication loops, discharge planning); (ii) E-commerce (browse–cart–checkout,
payment, fulfillment, returns); (iii) Public administration (permit request, dossier validation, fee collection,
notification). For each domain, we ingest BPMN (or event logs when available), construct CD/DD/SD with the
same normalization, and keep all hyperparameters fixed to the Bicing repro profile (Table 7). Where terminology
differs, we do not hand-tune labels; instead, the Sentence-BERT encoder is optionally fine-tuned by the feedback
loop under the same triggers, thereby testing genuine generalization rather than per-domain optimization.

Baselines (strong and diverse). Beyond the centralized and collaborative (no-AI) variants already reported, we
compare against:
1. Graph partitioning: (a) Spectral clustering on the normalized Laplacian of CD+DD; (b) Modularity

maximization (Louvain/Leiden) on the multigraph (views as edge types with learned scalars); (c) Multilevel
k-way partitioning (METIS) with target cluster count set to ours.

2. Topic-centric clustering: (a) LDA topics over activity labels/descriptions with KL-divergence affinities; (b)
NMF on TF-IDF; (c) BERTopic (Transformer + HDBSCAN) with clusters mapped to microservices.

3. Structure+embedding hybrids: Node2Vec/DeepWalk embeddings of the process graph (edges from CD/DD),
then k-means; and a correlation-clustering objective optimized by ILP on sign(affinity−τ ).
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Table 13. Cross-domain validation and stronger baselines (mean ± std over 5 seeds). Best in bold; ⋆ marks methods not
statistically different from the best under Nemenyi (α=0.05).

Domain & Method #Clusters Dunn ↑ Silhouette ↑ Cohesion ↑ Coupling ↓ ARI ↑
Healthcare
Ours (AI, CD+DD+SD, consensus) 7 0.71±0.02 0.63±0.02 0.79±0.02 0.21±0.01 0.88±0.02
Leiden (multi-view) 7 0.66±0.02⋆ 0.59±0.02⋆ 0.75±0.02 0.24±0.01 0.84±0.02
Spectral (CD+DD) 6 0.61±0.03 0.54±0.03 0.70±0.02 0.28±0.02 0.79±0.03
BERTopic (labels) 8 0.52±0.04 0.47±0.04 0.63±0.03 0.34±0.03 0.71±0.04
Node2Vec + k-means 6 0.58±0.03 0.51±0.03 0.68±0.03 0.30±0.02 0.76±0.03
E-commerce
Ours (AI, CD+DD+SD, consensus) 6 0.76±0.01 0.69±0.02 0.83±0.01 0.17±0.01 0.91±0.02
Louvain (CD+DD) 6 0.70±0.02⋆ 0.64±0.02⋆ 0.78±0.02 0.21±0.01 0.87±0.02
METIS (k-way) 6 0.67±0.02 0.60±0.02 0.75±0.02 0.24±0.02 0.84±0.02
NMF (TF-IDF) 7 0.55±0.03 0.49±0.03 0.66±0.03 0.33±0.02 0.73±0.03
DeepWalk + k-means 6 0.62±0.03 0.55±0.03 0.71±0.02 0.27±0.02 0.80±0.03
Public administration
Ours (AI, CD+DD+SD, consensus) 8 0.72±0.02 0.65±0.02 0.80±0.02 0.19±0.01 0.90±0.02
Centralized (CD+DD+SD) 7 0.60±0.03 0.52±0.03 0.69±0.03 0.29±0.02 0.78±0.03
Correlation clustering (ILP) 8 0.66±0.02⋆ 0.60±0.02⋆ 0.76±0.02 0.23±0.02 0.85±0.02
LDA (labels) 9 0.54±0.04 0.48±0.04 0.65±0.03 0.32±0.03 0.72±0.04
Spectral (CD only) 7 0.58±0.03 0.50±0.03 0.67±0.03 0.31±0.02 0.76±0.03

All baselines consume the same preprocessed inputs and, where needed, see the same number of clusters for
fairness.

Metrics and statistical testing. We report internal quality (Dunn ↑, Silhouette ↑, Cohesion ↑, Coupling ↓),
stability (ARI across five seeds), and explainability adequacy (mean and P10 cosine similarity of accepted merges).
For cross-method comparison we include critical difference (CD) diagrams over average ranks and non-parametric
tests (Friedman with Nemenyi post-hoc); effect sizes use Cliff’s δ against the best non-semantic baseline. We also
provide ablations: (i) remove SD; (ii) remove Pareto screening; (iii) freeze (α, β, γ); (iv) raise/relax τ by ±0.05.

Design controls and threats to validity. To avoid leakage, domain-specific label cleaning is limited to
lowercasing and punctuation stripping. When only event logs exist, CD is mined from directly-follows graphs
with Laplace smoothing; DD uses artefact keys extracted from payload schemas. Hyperparameters, seeds, and
environment are frozen via the repro config (configs/*_repro.yaml); determinism/cadence controls follow
Sec. ??. We discuss construct validity (are metrics aligned with microservice desiderata?) and mitigate by reporting
both cohesion/coupling and graph separation indices.

Evidence summary (reader’s map). For each domain we release: per-seed raw scores, CD diagrams, and
ablation deltas; plus per-merge rationales (scores per view, consensus value, tie-breakers). This bundle (manifest +
checksums) enables independent verification that the observed rank advantages of our consensus method are not
tied to a single sector, baseline family, or seed.

6.7. Robustness to Noisy or Incomplete BP Models

To assess fault tolerance, we stress-tested our pipeline under three perturbation regimes that emulate realistic BP
defects:

a) Edge Dropout (structure incompleteness): random removal of a proportion ρ ∈ {10%, 20%, 30%} of
control- and data-flow edges.
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Table 14. Noise robustness on Bicing (mean over 10 runs; ± std).

Perturbation Level ρ Dunn Silhouette ARI (w.r.t. clean)
Edge Dropout 10% 0.73±0.01 0.66±0.01 0.93±0.02

Edge Dropout 20% 0.71±0.02 0.64±0.02 0.90±0.03

Edge Dropout 30% 0.69±0.02 0.61±0.02 0.87±0.03

Attribute Masking 10% 0.73±0.01 0.66±0.01 0.94±0.02

Attribute Masking 20% 0.72±0.01 0.65±0.02 0.91±0.03

Attribute Masking 30% 0.70±0.02 0.62±0.02 0.88±0.03

Label Corruption 10% 0.72±0.01 0.65±0.01 0.92±0.02

Label Corruption 20% 0.70±0.02 0.63±0.02 0.89±0.03

Label Corruption 30% 0.68±0.02 0.60±0.02 0.86±0.03

b) Attribute Masking (artefact incompleteness): random masking of entity attributes used by DD(·, ·) with
the same ρ levels.

c) Label Corruption (semantic noise): stochastic synonym substitution (WordNet-based) and light character
noise on activity labels before Sentence-BERT encoding; intensity scaled by ρ.

We re-run the full pipeline (Sec. 1–6.4) and report (i) Dunn, (ii) Silhouette, (iii) cohesion/coupling, and (iv)
stability via Adjusted Rand Index (ARI) vs. the clean partition.
Findings. Even at ρ = 30%, Dunn and Silhouette remain within∼8–12% of the clean baseline (Table 11), and ARI
stays ≥ 0.86, evidencing graceful degradation. Notably, edge dropout impacts separation the most (lower Dunn),
whereas semantic label noise affects intra-cluster compactness (Silhouette). The collaborative fusion (with α, β, γ
constrained by α+β+γ = 1) mitigates single-view failures by leveraging residual signals from the other views.

7. Ethical and Operational Risks

This section details known ethical risks (bias, privacy) and operational risks (latency, cold starts, reclustering
overhead) associated with multi-view, AI-assisted clustering. For each risk, we specify observable symptoms,
quantitative triggers, and mitigation routines aligned with our feedback loop and resources in Secs. 4.2 and ??.

Bias in semantic embeddings. Sentence encoders (e.g., Sentence-BERT) may inherit corpus-level biases
(selection and representation bias), potentially skewing the semantic view (SD). In practice, this can over/under-
link activities with demographically loaded terms, amplify domain-specific jargon, or degrade for low-resource
variants. We institute a three-layer protocol: (i) Pre-deployment auditing: we compute word/sentence association
tests (WEAT/SEAT) on activity-label templates; if any effect size d>0.6 or p<0.05, we flag the term for
remediation. (ii) Data curation and augmentation: we build balanced positive/negative pairs per domain, remove
duplicates, and inject counterfactuals (gender/locale swaps, neutral paraphrases) to reduce spurious correlations;
PII-like tokens are anonymized before embedding. (iii) Post-hoc calibration and caps: we calibrate SD scores
(temperature scaling) and cap the instantaneous contribution of the semantic view to γ ≤ γmax = 0.55 under drift
(see below), preventing dominance of a biased signal. We report per-domain parity gaps (Silhouette, Dunn); gaps
> 3% trigger remediation and an audit entry.

Privacy, governance, and accountability. We follow data minimization: only artefact metadata required for
DD is retained; embeddings operate on de-identified labels. Artefacts are checksumed (SHA-256) and bound to
code commits, access to raw logs is role-gated. Risk registers (model card, change log, drift reports, WEAT/SEAT
sheets) are versioned. For regulated domains, we complete DPIA checklists and map processing records to GDPR
Art. 30; reports enforce k-anonymity for low-k buckets.
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Table 15. Risk–symptom–mitigation matrix (non-exhaustive).

Risk Observable symptom (trigger) Primary mitigation (action)
Embedding bias (SD) Unexplained merges near sensitive terms;

parity gap > 3%
WEAT/SEAT audit; counterfactual augmentation;
SD calibration; γ cap; expert review

Semantic drift 10th-pctl SD < 0.70 or ∆Silhouette ≤
−0.03

Short fine-tuning; temporary γ cap; shadow
validation; rollback if needed

Over-merging Dunn < 0.70; Coupling ↑ Raise τ ; tighten least reliable threshold in Θ;
enforce Pareto non-domination (Alg. 3)

Under-merging #clusters > 10% above target; low Cohesion Relax tightest threshold; reweight toward CD/DD
with higher reliability

Cold starts p95 latency spikes on first queries Provisioned concurrency/warm pools; hot embed-
ding cache; lazy weight loading

Reclustering latency SLA breaches during updates Incremental updates; schedule off-peak; circuit
breakers to last-good partition

View outage One view times out/errors Bulkheads; temporary weight reduction for the
failing view; provenance annotation

Privacy leakage Sensitive attributes in artefacts/reports Label anonymization; PII redaction; role-gated
reports; k-anonymity enforcement

Runtime risks and service reliability. Cold starts and p95 latency spikes: we provision concurrency (serverless)
or warm pools (containers) and maintain a hot cache of frequent label embeddings. Semantic lookup cost:
embeddings are precomputed/batched and indexed with an ANN structure (HNSW/IVF); cache TTLs are tuned to
process churn. Dynamic (re)clustering overhead: we prefer incremental updates with bounded batches; production
workloads are protected with circuit breakers that fall back to the last-good partition if consensus latency exceeds
budget. View isolation: bulkheads per view (CD/DD/SD) prevent cascading failures; transient timeouts reduce the
affected view’s weight temporarily and annotate provenance.

Quantitative triggers (tied to the feedback loop). We monitor per-run and EMAλ=0.2 metrics: Dunn,
Silhouette, intra-Cohesion ↑, inter-Coupling ↓, ARI, and semantic adequacy (mean and 10th-percentile cosine
among accepted merges). We act on: (a) Semantic drift: 10th-percentile SD< 0.70 for two runs or ∆Silhouette≤
−0.03 ⇒ short fine-tuning (1–2 epochs, lr 2×10−5) on balanced in-domain pairs, with a temporary cap γ←
min(γ, 0.45) until recovery. (b) Structural inconsistency: Cohesion< 0.76 or Coupling> 0.22⇒ bounded simplex
step (0.05) on (α, β, γ) toward the highest per-view silhouette; non-negativity and α+β+γ=1 enforced. (c)
Over/under-merging: Dunn< 0.70⇒ τ ← τ+0.02 and tighten the least reliable threshold in Θ by 0.05 (reliability
via per-view logistic fit); if clusters exceed target by > 10%, relax the tightest threshold by 0.05.

Promotion, rollback, and provenance. We apply at most one adaptation (encoder, weights, thresholds) per
iteration. Each change writes a provenance record (diffs on (α, β, γ) and Θ, seed, git commit, metric deltas).
Shadow runs must match or exceed prior EMA on Dunn/Silhouette/ARI; any > 2% degradation in the first post-
promotion run triggers automatic rollback to the previous checkpoint (blue–green deployment for the partition
artefact).

Reproducibility and accountability. All artefacts—raw BP models, normalized CD/DD/SD matrices (CSV),
embeddings (NumPy), consensus logs (JSON), and final partitions with per-merge rationales (CSV/HTML)—
are stored per run, checksumed, and tied to code commits. The environment in Table 7 plus the
configs/bicing_repro.yaml file (make repro) reproduces headline numbers in Sec. 6.4. Residual
nondeterminism due to GPU kernels is bounded: across five seeds, absolute Silhouette variance ≤ 0.003.

Taken together, these audits, quantitative triggers, and operational controls bound ethical and reliability risks while
preserving the modularity and explainability benefits of our multi-view consensus.
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8. Conclusion and Future Work

In this paper, we introduced an AI-enhanced methodology for microservice identification grounded in business
process analysis. Unlike traditional approaches that rely on monolithic clustering techniques, our method adopts
a multi-view strategy—separately modeling control, data, and semantic dependencies—each processed through
dedicated AI-supported components. These views are then reconciled through a collaborative clustering algorithm
that ensures semantic coherence, low coupling, and strong modularity.

The case study on the Bicing bike-sharing system, composed of over 50 interrelated activities, served as a robust
testbed for validating our framework. Our experiments demonstrated significant improvements in key clustering
metrics such as the Dunn Index (+21.3%) and Silhouette Coefficient (+18%) compared to baseline methods. More
importantly, semantic enrichment through Sentence-BERT embeddings allowed us to discover latent relationships
between activities—enabling the identification of cohesive and functionally aligned microservices that traditional
control- or data-driven methods failed to capture.

The AI-enhanced system also supports explainability by generating detailed rationale reports for each
microservice candidate, thus fostering human validation, trust, and auditability—essential aspects in digital
transformation and system modernization contexts.

Future Work

Building on the promising results of our AI-enhanced microservice identification framework, several avenues for
future research can be explored to further improve performance, usability, and adaptability in real-world business
process (BP) environments. First, we intend to integrate generative AI models, such as ChatGPT or domain-
specific large language models (LLMs), to automatically generate business process documentation, enrich semantic
annotations, and propose human-readable names for the identified microservices. This will enhance the clarity and
maintainability of the system decomposition, especially when dealing with poorly documented or legacy BPs.

Second, we envision incorporating active learning mechanisms that include human-in-the-loop feedback during
the clustering process. By allowing domain experts to validate or adjust the AI-generated groupings based on
their understanding of operational workflows and business constraints, the system can learn incrementally from
corrections and improve its accuracy over time. This dynamic feedback loop would significantly increase the
model’s adaptability and trustworthiness, particularly in rapidly evolving or regulation-sensitive industries.

Third, from an operational perspective, we plan to develop a complete toolchain integration that connects our
AI-driven clustering engine to popular BPM platforms such as Camunda, Bonita, or Bizagi. This integration will
enable real-time monitoring and automated deployment of microservices, transforming static process models into
actionable, modular service-oriented architectures (SOA). It will also support the automatic parsing and analysis
of control dependencies, data dependencies, and semantic dependencies extracted from BPMN or execution logs.

Finally, we aim to extend our research into the post-migration phase of digital transformation. Once
microservices have been deployed, AI-driven tools can continue to monitor service behavior for anomaly detection,
semantic drift, or inter-service bottlenecks. In particular, by leveraging the previously computed semantic and data
dependencies, the system could detect violations of expected communication patterns or identify services that no
longer align with their original business intent. Moreover, we will investigate how AI can support automatic SLA
validation and security compliance verification by analyzing runtime quality metrics and behavioral traces.

In summary, these future directions aim to transform our framework from a powerful design-time tool into a
comprehensive AI-assisted platform for continuous microservice-driven BP modernization.
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