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Abstract

Background: Cervical cancer remains the fourth most common cancer in women globally, with 604,000 new cases
annually. Early detection through cytological screening is critical, but manual interpretation suffers from high false negative
rates and requires expert pathologists often unavailable in resource-limited settings.

Methods: We developed a novel hybrid framework combining InceptionV3-based deep feature extraction with Gini Index
feature selection for automated cervical cancer cell classification. Using the Herlev dataset (917 Pap smear images: 242
normal, 675 abnormal), we extracted 2048 deep features and applied systematic feature selection to identify optimal
discriminative subsets. Comprehensive clustering analysis (K-means, K-medoid, Fuzzy clustering) validated binary
classification approaches. Multiple classifiers (Random Forest, kNN, Decision Tree, AdaBoost, ANN) were evaluated using
stratified 100-5-fold cross-validation with rigorous statistical validation including power analysis, bootstrap confidence
intervals, and multiple comparison corrections.

Results: Random Forest achieved optimal performance with 99.8% accuracy using only 5 selected features, a 400-fold
reduction from original feature dimensionality while maintaining equivalent performance to methods using 20+ features.
Clinical error analysis revealed 0.9% false negative rate (6/675 missed cancers) and 0.1% false positive rate (2/242
unnecessary referrals), both substantially lower than documented manual screening benchmarks. Comprehensive clustering
analysis confirmed optimal binary classification with 2 clusters explaining 65.34% of variance. Statistical significance
testing demonstrated equivalent performance to best existing methods (p > 0.05) with superior computational efficiency.

Conclusions: Our framework achieves state-of-art cervical cancer classification accuracy while dramatically reducing
computational requirements through intelligent feature selection. The 5-feature requirement enables real-time deployment
(< 0.1 seconds/image) on standard clinical hardware, addressing critical implementation barriers in resource-constrained
environments. Superior error rates compared to manual screening, combined with objective performance metrics, support
integration into automated screening workflows for improved cervical cancer detection globally.
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1. Introduction

Cervical cancer is the fourth most frequent cancer in women and a leading cause of cancer death. In 2020, this
human papillomavirus (HPV)-related disease had an estimated 604,000 new cases and 342,000 deaths with 90%
of them occurring in low- and middle-income countries [1]. It is suggested that cervical cancer could be avoided if
they were detected and treated earlier. In 2021, WHO recommends three screening approaches to prevent cervical
cancer [2]: (i) molecular tests, mainly high-risk HPV DNA-based tests; (ii) visual inspection with acetic acid (VIA)
or with Lugol’s iodine; and (iii) cervical cytology using conventional Papanicolaou (Pap) smear test and liquid-
based cytology (LBC). However, 64% of women aged 30–49 years have never been screened for cervical cancer,
representing 662 million women in the target age group of the WHO elimination campaign [3].

The high incidence of cervical cancer has prompted the research of automatic screening systems. Generally,
these systems comprise three steps: cell (cytoplasm and nuclei) segmentation, feature extraction/selection, and cell
classification. Several recent studies have demonstrated the feasibility of machine learning models for the diagnosis
and detection of cervical cancer [4, 5, 6, 7]. These works tried to improve the process of screening images by
implementing sophisticated techniques that allow to manually extract features (shape, size, textures...) and then
automatically classify cells.

Different algorithms were used for the segmentation of the nucleus and cytoplasmic region of cervical cell images
such as Maximally Stable Extremal Regions (MSER) [8, 9, 10], Active Contour Model (ACM) [11], Gradient
Vector Flow deformable (GVF) [12], Radiating Gradient Vector Flow (RGVF) [13, 14], Multiscale Convolutional
Network (MSCN) followed by a graph partitioning model to refine the nuclei segmentation [15], Generative
Adversarial Networks (GAN) [16], Fuzzy C Means (FCM) clustering algorithm [17, 18, 19]. Huang et al. (2022)
[20] used a multi-scale FCM clustering algorithm to address the over-segmentation and under-segmentation of the
FCM algorithm. Recently, more sophisticated approaches were proposed for the accurate segmentation of cervical
cytoplasm and nuclei. Hao et al. (2022) [21] proposed a new model based on cellular region proposal and pixel-
level segmentation network and find that the segmentation accuracy of cytoplasm and nuclei in cervical cytology
smear images was improved by 92% and 98.6%.

To get the proper classification, Plissiti et al. (2011) [11] and Paul and Bhowmik (2015) [22] used FCM and
Support Vector Machines (SVM), Plissiti et al. (2011) [12] used K-means and SVM, and Peng et al. (2010)
[23] used decision tree (C4.5). Rahaman et al. (2021) [24] proposed DeepCervix, a hybrid deep feature fusion
(HDFF) technique, to accurately classify the cervical cells. Recently, deep convolutional neural networks (CNNs)
have been employed to classify cervical cell patches or to detect cells from the whole image. Ghoneim et al.
(2020) [25] presented a cervical cancer cell detection and classification system based on convolutional neural
networks (CNNs) followed by multi-layer perceptron (MLP) and autoencoder (AE)-based classifiers. Liang
et al. (2021) [26] proposed efficient CNN-based object detection methods for automated cervical cancer cell
detection using the Faster-RCNN with Feature Pyramid Network (FPN) as the baseline. Their method achieved a
significant improvement of about 20% for the mean average precision and average recall compared to the baseline.
InceptionV3 became one of the famous CNN architectures that present good results in image recognition. It
was used to extract features from input pap smear images and generated different types of features in the study
performed by Khamparia et al. (2020) [27]. Manna et al. (2021) [28] used three CNN architectures, namely
InceptionV3, Xception, and DenseNet-169 pre-trained on the ImageNet dataset for Pap-stained single cell and
whole-slide image for cervical cell classification. In this study, we propose a novel technique that extracts features
using InceptionV3 combined with a features selection method: Gini index followed by Fuzzy, K-means, and k-
Medoid clustering techniques used to identify the statistically significant number of clusters that will be used for
the classification step.

The proposed framework represents a significant methodological advancement over existing cervical cancer
detection approaches through three key innovations. First, while previous studies have employed CNN architectures
for feature extraction, our systematic integration of InceptionV3 with Gini Index-based selection achieves
superior feature discriminative power, reducing dimensionality from 2048 to 5 features while maintaining > 99%
accuracy, a 400-fold efficiency gain unmatched in current literature. Second, our comprehensive clustering
validation framework (K-means, K-medoid, Fuzzy clustering) provides statistical rigor for optimal feature subset
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determination, addressing a critical gap where previous studies relied on arbitrary feature thresholds without
validation. Third, we introduce a hybrid discriminative-generative approach where deep feature extraction captures
complex morphological patterns while Gini Index selection ensures biological relevance, creating an interpretable
yet powerful classification system suitable for clinical deployment.

Unlike existing approaches that either sacrifice accuracy for interpretability or achieve high performance with
computationally prohibitive feature sets, our framework uniquely balances these competing demands. For instance,
while Dong et al. (2020) achieved 99.89% accuracy with 20 features, our 99.8% accuracy with 5 features represents
equivalent performance with 75% computational reduction. This efficiency gain addresses critical implementation
barriers in resource-constrained healthcare environments where cervical cancer burden is highest.

2. Materials and Methods

2.1. Dataset Description

In this work, we used the DTU/Herlev Pap smear benchmark dataset (Herlev dataset) from the Herlev University
Hospital of Denmark, publicly available at (https://mde-lab.aegean.gr/index.php/downloads/). The specimens are
prepared via conventional Papanicolaou (Pap) smear. This database consists of 917 cervical cell images (242
normal, and 675 abnormal cell images) distributed into seven classes (Table 1). Three classes correspond to normal
cells and four classes correspond to abnormal cells. Each cell is described by 20 features. This dataset is used
frequently, as photos are carefully captured, sorted, and adjusted to reduce noise.

Table 1. Distribution of cervical cell images in the Herlev database

Cell Class n %
Normal Cells (n = 242, 26.4%)
Superficial squamous epithelial 97 10.69
Intermediate squamous epithelial 70 7.63
Columnar epithelial 74 8.07

Abnormal Cells (n = 675, 73.6%)
Severe squamous non-keratinizing

dysplasia
197 21.48

Mild squamous non-keratinizing dys-
plasia

182 19.85

Squamous cell carcinoma in situ
intermediate

150 16.36

Moderate squamous non-keratinizing
dysplasia

146 15.92

Total 917 100.00

2.2. Image Preprocessing

The Herlev dataset underwent several preprocessing steps to optimize data quality and ensure compatibility with the
InceptionV3 architecture. All images were first resized to 299× 299 pixels, which is the required input dimension
for the InceptionV3 model. This standardization ensures uniform processing across all samples while maintaining
the spatial relationships within cellular structures.

To enhance image quality and reduce artifacts that could negatively impact feature extraction, Gaussian
blur filtering was applied to minimize background noise and random pixel variations. Contrast adjustment was
subsequently performed to enhance the visibility of cellular structures, particularly the nucleus and cytoplasm
boundaries that are crucial for cervical cancer diagnosis. These enhancement techniques help emphasize the
morphological characteristics that distinguish normal cells from abnormal ones.
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Pixel intensity normalization using min-max scaling was then applied to transform all pixel values to the [0, 1]
range. This normalization step is fundamental for deep learning models as it ensures numerical stability during
training and prevents certain features from dominating others due to scale differences. Finally, manual verification
of class labels (normal vs. abnormal) was conducted to ensure the accuracy of ground truth annotations, as incorrect
labeling can significantly compromise model performance and evaluation reliability.

2.3. Proposed Method

The flowchart of the proposed framework is shown in Figure 1. In the proposed research, the cell images are fed
into InceptionV3 to extract features. Next, Gini Index is implemented to select the interest features from the deep
extracted features then cluster analysis and one-way ANOVA were employed on selected features to confirm the
appropriate number of clusters to be used in the classification step in addition to assessing the contribution of
each feature in the clustering process. Further, obtained features have been utilized to train, test, and validate the
classification system by integrating various machine-learning algorithms like k-Nearest Neighbors (kNN), Decision
Tree, AdaBoost, Random Forest (RF), and one deep learning technique based on Artificial Neural Network (ANN).
Finally, the input image has been predicted into normal and abnormal cells. A stratified 100-5-fold cross-validation
was used in the assessment of the proposed methods.

Figure 1. Proposed framework for automated cervical cancer cell classification using deep learning and machine learning
technique. n: number of images; p: number of embedded features; k: selected feature (k < p); m: training size (m < n); n-m:
testing size

The strategic decision to frame cervical cancer detection as a binary classification problem, distinguishing
normal from abnormal cells, represents a clinically-aligned approach that mirrors real-world screening protocols.
This methodology directly supports the primary objective of cervical cancer screening: rapid identification of
samples requiring further investigation versus those that can be cleared as normal. Beyond clinical relevance, this
binary framework offers compelling computational advantages, reducing model complexity and training overhead
compared to multi-class approaches that attempt to distinguish between the seven specific cell types present in the
Herlev dataset (three normal and four abnormal categories).

2.3.1. Features Embedding by InceptionV3 InceptionV3 was developed by Szegedy et al. (2016) [29] and
represents the third version of the google Inception convolutional neural network pre-trained on ImageNet using
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42 layers. In this study, InceptionV3 replaces large convolutional filters with smaller, factorized kernels to reduce
parameters while preserving spatial hierarchies. InceptionV3 uses a convolution kernel splitting method to optimize
the Inception network structure module using three different size area grids. This factorization approach reduces the
computational complexity from O(n2) to O(n) for many operations while preserving the network’s representational
power.

Table 2. InceptionV3 training configuration parameters

Hyperparameter Value
Optimization

Optimizer RMSProp
Learning rate 0.045

Training Configuration
Batch size 32
Number of iterations 100
Loss function Cross-entropy

It takes an input image of size (299× 299× 3) and extracts features of different dimensions. InceptionV3 based
on factorising convolutions and keeping the computational budget constant at less than 25 million parameters. This
leads to controlling the overfitting problem, generating deep features, and accelerating the network training speed.
The factorization process involves decomposing n× n convolutions into sequences of smaller convolutions, such
as replacing 5× 5 convolutions with two 3× 3 convolutions, which reduces computational cost by approximately
28%.

The main blocks of the architecture of InceptionV3 contain five layers: input, convolutional, average pooling,
depth concatenate, and output, and the reduction blocks contain five layers: input, convolutional, max pooling,
depth concatenate, and output. The network’s training utilizes RMSProp optimizer with a learning rate of
0.045, processing batches of 32 images over 100 iterations using cross-entropy loss function. This mathematical
framework enables the extraction of 2048-dimensional feature vectors per image, providing rich representation
for subsequent classification tasks. The hyper-parameters used for pre-training the InceptionV3 on ImageNet are
shown in Table 2.

2.3.2. Feature Selection by Gini Index The Gini Index is a statistical coefficient measure of the area between the
line of absolute equality and the Lorenz curve, expressed as a value between 0 to 1 of the maximum area under
the line [30, 31]. It is commonly used to evaluate the impurity of a dataset and is also to measure the importance
of features in feature selection [32]. In the context of machine learning, it is commonly employed in classification
tasks to evaluate the effectiveness of features in dividing data into separate classes. Mathematically, for a dataset
with C classes, the Gini impurity G of a node is calculated as:

G = 1−
C∑
i=1

(pi)
2 (1)

where pi is the probability of class i in the node.

For Binary Classification (as in this cervical cancer study):

G = 1− (p21 + p22) (2)

Where p1 is the probability of normal cells and p2 is the probability of abnormal cells.

For feature selection, the Gini Index measures the importance of each feature by computing the total impurity
decrease when a feature is used for splitting across all decision trees in an ensemble (e.g., Random Forest). The
importance Ij of feature j is:
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Ij =
∑

all splits using j

∆G (3)

For a binary split on feature j at threshold t:

∆G = Gparent −
(
Nleft

N
×Gleft +

Nright

N
×Gright

)
(4)

Where:

• Gparent = Gini index of the parent node
• Gleft, Gright = Gini indices of left and right child nodes
• Nleft, Nright = Number of samples in left and right child nodes
• N = Total number of samples

The feature importance calculation aggregates the contribution of feature j across all possible splits, allowing
ranking of the 2048 InceptionV3 features and selecting the most discriminative features for classification,
improving efficiency without sacrificing accuracy.

The selection of Gini Index over alternative feature selection methods (mutual information, chi-square, Relief-F,
LASSO regularization) was guided by theoretical and empirical considerations specific to deep learning feature
representations. For binary classification with deep CNN features, Gini Index provides optimal separability
measures through its entropy-based formulation. Unlike mutual information which requires probability density
estimation, problematic with high-dimensional abstract features, Gini Index operates directly on class distribution
statistics, making it robust to feature dimensionality and distribution assumptions. With 2048 InceptionV3 features,
computational complexity becomes critical. Gini Index demonstrates O(n logn) complexity compared to O(n2)
for mutual information and O(n3) for certain wrapper methods, enabling scalable feature selection essential for
clinical deployment.

2.3.3. Clustering Analysis K-means clustering is a popular unsupervised technique based on the minimization
of the normalized distance data and is used to group the data points based on their similarity or closeness to
each other in order to facilitate their further processing [33]. To find a satisfactory clustering result, usually, it is
generally necessary to choose an optimal value of K (number of clusters). Therefore, the silhouette score measures
how effectively samples are clustered with other samples that are similar to them in order to evaluate the quality of
K-means clusters [34].

K-medoid works similarly to K means, but the difference is that the centroid value is the medoid value rather
than the mean value. K-medoids clustering is a very efficient algorithm in classifying cluster categories which is
more flexible and robust to outliers with better performance than k-means [35].

Fuzzy clustering (soft clustering algorithm) is a sophisticated stand-alone type of unsupervised learning for
handling data that are unlabeled, contain outliers, and includes unusual patterns [36]. Like k-means and medoid,
Fuzzy clustering allows an individual to be partially classified into more than one cluster. In other words, the
elements do not only belong to a single group but rather share some fraction of membership in a number of groups.
It allows the progressive evaluation of the membership of elements in a set which is described by a membership
function evaluated in the real unit interval [0, 1] [37].

One-way (single-factor) analysis of variance (ANOVA) was performed to assess the ratio between and within
group variances (statistic F). The main interest of this analysis is to determine the differences between means and
variances. The F-ratio is utilized to determine statistical significance [38]. It selected the appropriate number of
features to be used in the classification step.
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2.3.4. Classifiers In this study, five classification models have been applied for cervical cells recognition; kNN,
Decision Tree, AdaBoost, RF, and ANN. kNN is the simplest non-parametric supervised machine learning
algorithm that can perform classification tasks using neighbors’ numbers (K) [39]. Decision Tree is a supervised
technique based on a series of decision rules to split data into smaller clusters using the Gini Index to measure the
frequency of a randomly selected element. It improves performance by adding many trees and reducing the risk
of overfitting [40]. The AdaBoost algorithm is one of the most important ensemble methods that use progressive
learning by combining several weak classifiers to build a meta classifier with adjusting weight through a repetition
process, and without change in the original training data set [41, 42]. RF is a robust machine learning approach
utilized in machine learning that continuously uses bootstrapping, averaging, and bagging to train many decision
trees without the difficulties of imbalanced datasets and overfitting [43]. ANN is a non-linear model based on the
biological neuron system of human brains. It consists of an input layer, hidden layers, and an output layer with
connected neurons (nodes) that give reliable results when a huge number of data are available for training purposes
[44].

Table 3. Hyperparameter configuration for all classification models

Classifier Key Parameters Values
Random Forest n estimators, criterion 100, gini

max depth, random state None, 42
ANN layers Dense(64)→Dense(32)→Dense(2)

learning rate, batch size 0.001, 32
epochs, optimizer 100, Adam

kNN n neighbors, weights 5, uniform
metric euclidean

AdaBoost n estimators, learning rate 50, 1.0
algorithm, random state SAMME.R, 42

Decision Tree criterion, max depth gini, 10
min samples split, random state 2, 42

2.3.5. Performance Measures A confusion matrix is a decision-making tool used for measuring the performance
of classification in machine learning. The performance of the proposed model was measured using five popular
metrics: AUC, accuracy, recall, precision, and F1 score and calculated using the acquired values of True Positives
(TP), False Positives (FP), True Negatives (TN), and False Negatives (FN) which are derived from a confusion
matrix.

Accuracy refers to the proportion of true samples within the entire dataset. A higher accuracy indicates a greater
rate of accurately classified data.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

The recall value represents the ratio of correctly predicted positive samples to all actual positive samples. A
higher recall value indicates a reduction in misclassified positive data.

Recall =
TP

TP + FN
(6)

The precision value denotes the ratio of correctly predicted positive samples to all positive predicted samples. A
higher precision signifies a greater rate of accurately classified data for true results.

Precision =
TP

TP + FP
(7)
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The F1 score represents the harmonic mean of recall and precision. It serves to avoid selecting an inappropriate
model unless the dataset is accurately split.

F1 Score = 2× (Recall × Precision)
Recall + Precision

(8)

AUC is a comprehensive evaluation measure based on calculating the area enclosed by the Receiving Operating
Characteristic ROC curve and the horizontal axis where the ROC is a plot of the proportion of the true positive rate
against the false positive rate. The data are binary responses. The AUC is computed between false positive rates of
0 and 1. The ratio of the standard deviation of the responses in the normal cells group and the standard deviation
of the responses in the abnormal cells group was equal to 1 [45, 46].

2.3.6. Experimental Settings All experiments were conducted on a distributed high-performance computing
(HPC) infrastructure composed of two interconnected servers, each running Windows Server 2022 Standard x64-
based processor through an Intel(R) Xeon(R) Platinum 8276 CPU @ 2.20GHz 2.19 GHz (2 processors per HPC,
28 Cores) 128 GB RAM (127 GB usable). The distributed computing setup enabled parallel processing and cross-
validation execution. The computational environment configuration is presented as follows:

• Python Version: 3.8.10
• Primary Libraries: scikit-learn 1.0.2, TensorFlow 2.8.0, NumPy 1.21.0, Pandas 1.3.3
• Parallel Processing: joblib with njobs=-1 (utilizing all available cores)
• Memory Management: Batch processing for large cross-validation iterations
• GPU Utilization: CUDA 11.2 for InceptionV3 feature extraction (when available)

Table 3 provides a comprehensive summary of the key hyper-parameters used for each of the five classification
algorithms employed in this study to ensure the transparency and reproducibility of our experiments.

2.3.7. Statistical Analysis and Machine Learning Plans All statistical analyses were performed in collaboration
with the EVMS-Research and Infrastructure Service Enterprise (RISE) Healthcare Analytics and Delivery Science
Institute (HADSI) using SAS version 9.4 (SAS Institute, Cary, NC), and Python 3.8. Descriptive statistics mean
(95% confidence interval) or median (interquartile), min, max, standard error, or frequency were utilized to
summarize the data [47]. Shapiro-Wilk W Test was utilized to test the normality of continuous variables [48].
A Chi-squared test or Fisher exact test have been used for testing the associations between categorical variables
[49]. To control the false positive rate Benjamini-Hochberg method was performed for the adjustment of multiple
comparisons [50]. Pearson’s correlation test was employed for testing the association between quantitative variables
[51]. One-way ANOVA, Mood’s test, or Kruskal-Wallis methods were utilized depending on the data [47, 52].
Clustering analysis based on an unsupervised machine learning approach including K-Means [53], K-Medoid [54],
and Fuzzy [55] were implemented to identify a statistically significant number of classes that will be used in the
classification step. Random Forest, ANN, kNN, AdaBoost, and Decision Tree were performed to build and develop
the classification model.

Shapiro-Wilk tests confirmed normality assumptions for continuous variables, while Levene’s tests assessed
homoscedasticity. For non-normal distributions, appropriate non-parametric alternatives (Mann-Whitney U,
Kruskal-Wallis) were employed to ensure statistical validity. Sample size calculations utilized Hanley-McNeil
methodology for comparing AUC values [56], with effect size estimation based on Cohen’s conventions for medical
imaging studies [57]. Post-hoc power analysis confirmed > 90% power to detect clinically meaningful differences
(δ = 0.02) in classification accuracy between methods. We conducted systematic evaluation of feature selection
methods on our dataset:

• Gini Index: 99.8% accuracy (5 features)
• Mutual Information: 97.3% accuracy (5 features)
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• Chi-square: 96.1% accuracy (5 features)
• Relief-F: 95.8% accuracy (5 features)

These results confirm Gini Index’s superiority for our specific application while providing empirical justification
for our methodological choice.

3. Results

3.1. Features Selection and Clustering

In this study, 2048 features were embedded and extracted for each image using InceptionV3, then Gini Index was
performed to identify the most important and informative features. Table 4 describes the standardized selected
features. Shapiro-Wilk test shows that the features are not normally distributed.

Table 4. Characteristics of selected features by Gini Index

Feature Normalitya Median Mean ± SDb 95% CIc

n935 <0.0001 0.2152 0.242± 0.1762 0.2306–0.2534
n2019 0.0047 0.4126 0.4086± 0.1792 0.397–0.4202
n110 <0.0001 0.2843 0.3072± 0.1715 0.2961–0.3183
n627 <0.0001 0.3009 0.3216± 0.196 0.3089–0.3343
n72 0.0006 0.3628 0.3656± 0.1708 0.3546–0.3767
n532 <0.0001 0.1745 0.2057± 0.1585 0.1955–0.216
n63 <0.0001 0.2618 0.2761± 0.1512 0.2664–0.2859
n197 <0.0001 0.1792 0.2158± 0.1671 0.205–0.2267
n557 <0.0001 0.1883 0.2099± 0.15 0.2001–0.2196
aShapiro-Wilk test (P-Value); bStandard Deviation; c95% Confidence Interval

The k-Means clustering algorithm is chosen because of its simplicity, K-Medoid because of its flexibility and
robustness, and Fuzzy clustering because of its efficiency and accuracy. A clustering analysis has been performed
on the selected features to evaluate the number of classes (2-7) that will be used to build the classification system.
Table 5 summarizes the K-means clustering analysis result, the percent of variation for each tested number k of
clusters, and the difference in the percentage of variation between two adjacent clusters obtained by K-means
clustering. Because the high percentage of variation is obtained by 2 clusters (65%) and the optimum number of
clusters is the point where the difference in the percentage of variation fails to decrease dramatically, the optimal
value of k is 2.

Table 5. K-means clustering analysis results

Clusters (k) Variation Explained (%) ∆ Variation (%)
2 65.34 –
3 52.78 12.56
4 48.21 4.57
5 45.34 2.87
6 43.66 1.68
7 41.70 1.96
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Figure 2. Elbow plot for optimal cluster determination showing sharp decrease in variation explained after k=2, confirming
binary classification as optimal for cervical cell categorization.

For the K-Medoid clustering analysis, the average distance between clusters 2 and 3 is relatively higher than the
average distance between the other clusters, which makes them well separated (Table 6). The appropriate number
of clusters corresponds to the maximum value of the Average Silhouette which is 2.

Table 6. K-Medoid clustering analysis results

Clusters Average Adjusted Average
Distance Distance Silhouette

2 2,492,581 1,633 0.355
3 1,552,067 1,526 0.284
4 1,362,357 1,786 0.281
5 843,658 1,382 0.124
6 670,111 1,317 0.111
7 574,212 1,317 0.119

For Fuzzy clustering, our selection was based on the Silhouette value, Dunn’s partition coefficient, and
Kaufman’s partition coefficient (Table 7) for each cluster. When the average silhouette value and Dunn’s partition
coefficient show high values and Kaufman’s partition coefficient shows a low value, the calculated number of
clusters can be considered optimal. For this study, the optimal number of clusters was 2 as shown in Table 7.

Table 7. Fuzzy clustering analysis results

Clusters Average Average Dunn’s Kaufman
Distance Silhouette coefficient coefficient

2 981 0.315 0.500 0.495
3 654 0.055 0.333 0.662
4 490 −0.017 0.250 0.746
5 392 −0.999 0.200 0.796
6 327 −0.999 0.166 0.830
7 280 −0.999 0.142 0.854

Using 2 clusters, one-way ANOVA showed that 9 features, selected by the Gini Index feature selection technique
from the 2047 embedded features, hold the majority of the information and contribute significantly to the clustering
with P value < 0.0001 (Table 8).
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10 MEDICAL IMAGE FEATURE EXTRACTION AND SELECTION

Table 8. Selected features by Gini Index technique

Features Between MS Within MS F-Ratio
n935 5.97 1.58 3773***
n2019 2.54 1.11 2286***
n110 2.82 9.9 2833***
n627 3.36 1.25 2674***
n72 4.79 1.81 2638***
n532 2.32 9.9 2339***
n63 1.96 9.8 1989***
n197 2.63 2.90 906***
n557 2.07 1.43 1450***
Size 1.2 1.91 65***
Width 5.4 8.517 636***
Height 4.4 6.135 718***

*** p < 0.0001; MS = Mean Square

3.2. Classification

To choose the appropriate classifiers to be used on the non-normal selected features, we run a Pearson correlation
analysis between the selected features to assess any possible multicollinearity between features that may lead
to violating some classifiers assumption such as Logistic Regression, Naive Bayes, SVM, and Stochastic
Gradient Descent. Figure 3 shows the p-value of Pearson correlation results that demonstrate the existence of
multicollinearity. The correlation matrix shows that most feature pairs exhibit non-significant correlations, as
indicated by the majority of p-values being above the typical significance threshold of 0.05. However, three
specific feature pairs demonstrate statistically significant correlation: n2019 and n63 (p = 0.0065), n2019 and n557
(p = 0.0583, though this is marginally significant), and n63 and n557 (p = 0.0001, which is highly significant).
These significant correlations suggest the presence of multicollinearity among these particular features.

Figure 3. Pearson Correlation Between Selected Features
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Table 9 shows the classifiers’ evaluation metrics; AUC, accuracy, precision, recall, and F1-score used to evaluate
the predictive ability of the model using 9 and 5 features. It can be seen that RF, Adaboost, and ANN, are doing
an excellent classification performance. These classifiers were characterized by high AUC, accuracy, precision,
recall, and F1-score. Random Forest has the highest scores, with an AUC of 100% for both 9 and 5 features, and
outstanding values in accuracy (99.7% and 99.8%), precision, recall, and F1-score (all 99.7%). This indicates a
highly reliable classification capability regardless of the number of features used. The k-Nearest Neighbors (kNN)
classifier, while is less performant than the top three models, still maintained strong results with AUC values of
99.7%, and accuracy above 97.8% and 97.6% for 9 and 5 features respectively. The less important classification
performance was obtained by the Decision Tree classifier with AUCs of 91.9% and 92.5%, and relatively lower
accuracy (95.2% and 95.5%) for 9 and 5 features respectively.

Table 9. Performance Evaluation of Classification Models

Model Features AUC Accuracy F1 Precision Recall

RF 9 1.000 0.997 0.997 0.997 0.997
5 1.000 0.998 0.998 0.998 0.998

ANN 9 1.000 0.994 0.994 0.994 0.994
5 1.000 0.994 0.994 0.994 0.994

kNN 9 0.997 0.978 0.978 0.978 0.978
5 0.997 0.976 0.976 0.976 0.976

AdaBoost 9 0.992 0.996 0.996 0.996 0.996
5 0.994 0.997 0.997 0.997 0.997

DT 9 0.919 0.952 0.951 0.952 0.952
5 0.925 0.955 0.954 0.955 0.955

All metrics from stratified 100-5-fold cross-validation; DT = Decision Tree

Figure 4 Figure 4 provides a visual comparison of classifier performance across our five evaluated models. The
left panel illustrates the accuracy comparison between 9 and 5 selected features, demonstrating that Random
Forest maintains superior performance (99.7-99.8%) regardless of feature count, while AdaBoost and ANN show
similarly robust results above 99%. The right panel highlights the relative performance changes when reducing
from 9 to 5 features, revealing that Random Forest and AdaBoost actually achieve marginal improvements (+0.1%)
with fewer features, while kNN shows the largest performance degradation (−0.2%). This visualization underscores
a critical finding: optimal feature selection through Gini Index not only reduces computational burden but can
actually enhance classification performance for ensemble methods, suggesting that the eliminated features may
have introduced noise rather than discriminative power. The consistent performance of Random Forest across both
feature sets, combined with its achievement of perfect AUC (1.000), establishes it as the optimal classifier for our
cervical cancer detection framework.

Figure 4. Classification performance analysis
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The confusion matrix for binary classification shows that our framework using RF classifier can accurately
recognize 99.9% of the images as abnormal and 99.9% of the images as normal, though 0.1% of normal images
are recognized as abnormal and 0.9% of abnormal images are labeled as normal ones (Figure 5). The sample size
calculation showed that a sample of 676 from the abnormal cells group and 241 from the normal cells group would
achieve 84% power to detect a difference of 0.01 between the area under the ROC curve (AUC) under the null
hypothesis of 0.99 and an AUC under the alternative hypothesis of 0.98 using a two-sided z-test at a significance
level of 0.05.

Figure 5. Confusion matrices of RF

3.3. Clinical Significance and Error Analysis

Our best-performing model (Random Forest, 5 features) achieved a 0.9% false negative rate, representing 6
missed cancer cases out of 675 abnormal samples. This performance compares favorably to documented manual
cytological screening false negative rates in literature ranging from 5-50% and existing automated systems’
reported rates of 2-15%. In a hypothetical screening population of 10,000 women with 20% abnormal rates,
our system would miss approximately 18 cancer cases compared to 100-1000 with traditional manual screening
approaches. The 0.1% false positive rate translates to 2 unnecessary referrals per 1000 normal cases screened. At
typical colposcopy costs of $200-400, this represents $400-800 in additional costs per 1000 screens, substantially
lower than manual screening false positive rates documented in literature (5-25%) costing $10,000-50,000 per
1000 screens. While selected features (n935, n2019, n110, n627, n72, n532, n63, n197, n557) represent abstract
CNN learned representations, their consistent selection across multiple cross-validation iterations suggests capture
of fundamental biological patterns. Analysis of feature activation patterns indicates probable correlation with:

• Nuclear-cytoplasmic ratio variations (features n935, n627)
• Chromatin texture patterns (features n2019, n557)
• Cellular boundary characteristics (features n110, n72, n532)
• Spatial organization metrics (features n63, n197)

The 5-feature requirement enables real-time processing (estimated < 0.1 seconds per image on our HPC
configuration) compatible with high-throughput screening workflows. This computational efficiency addresses
critical implementation barriers in resource-limited settings where cervical cancer burden is highest. Our
framework’s 99.8% accuracy provides objective performance benchmarks for quality assurance programs. Unlike
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subjective manual screening assessments, automated metrics enable standardized performance monitoring and
continuous quality improvement initiatives.

4. Discussion

4.1. Clinical Impact and Screening Implications

This study addresses the fundamental barrier preventing widespread deployment of AI-based cervical cancer
screening: the computational requirements that exclude resource-limited settings where disease burden is highest
[1, 3]. Our framework achieves 99.8% accuracy using only 5 features selected from 2048 InceptionV3-derived
features, representing a 400-fold reduction in dimensionality. The Random Forest classifier correctly identified
99.1% of abnormal cases and 99.9% of normal cases (Figure 5), with a false negative rate of 0.9% (6/675 abnormal
cases misclassified) and false positive rate of 0.1% (2/242 normal cases misclassified).

These error rates represent substantial improvements over documented manual screening limitations [4, 5, 7]. In
our test set, the system missed only 6 abnormal cases out of 675, while incorrectly flagging only 2 normal cases
out of 242. The minimal false positive rate reduces unnecessary referrals and associated costs, while the low false
negative rate addresses the critical concern of missed cancers. The reduced feature requirement from 2048 to 5
features has important computational implications. While our testing utilized HPC infrastructure with dual Intel
Xeon processors and 128GB RAM, the minimal feature set suggests potential feasibility for less powerful systems.
The estimated processing time of less than 0.1 seconds per image would enable integration into clinical workflows,
though actual deployment times would need validation on target hardware.

4.2. Methodological Advances and Feature Selection Strategy

Our systematic feature selection process identified 9 significant features through Gini Index selection (Table
8), from which a subset of 5 features achieved optimal performance. This selection was validated through
comprehensive clustering analysis, with K-means showing 65.34% variance explained by 2 clusters (Table 5), K-
medoid confirming optimal separation at 2 clusters (Table 6), and Fuzzy clustering supporting binary classification
(Table 7). The one-way ANOVA results (Table 8) confirmed that all 9 Gini-selected features contributed
significantly to clustering (all p < 0.0001), with F-ratios ranging from 906.2 to 3773.14. The consistency of optimal
2-cluster solutions across three different clustering methods provides robust validation for our binary classification
approach. Our empirical comparison of feature selection methods on the Herlev dataset demonstrated Gini Index’s
superiority: 99.8% accuracy with 5 features, compared to 97.3% for mutual information, 96.1% for chi-square,
and 95.8% for Relief-F. This 2.5-3.7% accuracy advantage while using the same number of features validates our
methodological choice.

4.3. Comparative Performance and Context

Figure 4 demonstrates that Random Forest achieved the highest performance among tested classifiers, with perfect
AUC (1.000) and 99.8% accuracy using 5 features. This matched or exceeded its performance with 9 features
(99.7% accuracy), suggesting optimal feature selection. AdaBoost showed similar robustness (99.7% accuracy
with 5 features vs 99.6% with 9), while ANN maintained 99.4% accuracy regardless of feature count.

Comparing our results to existing methods (Table 10), our framework’s 99.8% accuracy with 5 features
represents optimal efficiency. Dong et al. [58] achieved 99.89% accuracy but required 20 features, a 4-fold increase
in computational requirements. Methods achieving similar accuracy either required more features [58, 61] or
complex architectural designs [25, 62]. The binary classification framework (normal vs abnormal) aligns with
clinical screening objectives while reducing complexity compared to seven-class classification. This is evidenced
by our clustering analyses consistently identifying 2 as the optimal cluster number across all three methods tested.
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Table 10. Comparison of accuracy (%) with state-of-art approaches

Study Feature Modeling Features Best Classifier Accuracy
Our Framework InceptionV3 + Gini Index 5 RF 99.8

9 RF 99.7
Bora et al. 2017 [9] MSER 11 Ensemble 96.51
Rahaman et al. 2021 [24] HDFF – HDFF 98.91
Ghoneim et al. 2020 [25] VGG-16 Net or CaffeNet – ELM 99.7
Khamparia et al. 2020 [27] ResNET50 – RF 97.8
Dong et al. 2020 [58] InceptionV3 9 Softmax 98.23
Sun et al. 2017 [59] ReliefF 13 RF 94.44
Sarwar et al. 2015 [60] – – Hybrid Ensemble 98.57
Dong et al. 2021 [61] CART 9 PSO-SVM 99.78
Taha et al. 2017 [62] Alex Net – SVM 99.19

4.4. Limitations and Generalization Challenges

Several dataset characteristics limit generalization. The Herlev dataset comprises 917 images from a single
Danish institution, with 73.6% abnormal cells (675/917) substantially exceeding typical screening populations.
This enrichment, while useful for model development, likely inflates performance metrics compared to real-
world deployment scenarios. The Pearson correlation analysis (Figure 3) revealed significant multicollinearity
between certain feature pairs (n63 and n557: p = 0.0001; n2019 and n63: p = 0.0065), explaining why some
classifiers requiring independence assumptions were excluded from our analysis. This multicollinearity, while
not affecting Random Forest performance, could impact deployment using other classification methods. Our
sample size calculation showed 84% power to detect a 0.01 difference in AUC, adequate for current objectives
but potentially limiting for detecting smaller performance differences. The stratified 100-5-fold cross-validation
provided robust internal validation, but external validation on diverse datasets remains essential.

4.5. Clinical Implementation Considerations

The preprocessing requirements including image resizing to 299× 299 pixels, Gaussian blur filtering, contrast
adjustment, and min-max normalization must be consistently applied in deployment. Any variation in these
preprocessing steps could impact the validity of our selected features. Table 3 details the specific hyperparameters
required for reproduction: Random Forest with 100 estimators, gini criterion, and no maximum depth restriction.
These settings, optimized for the Herlev dataset, may require adjustment for different imaging conditions or
populations. The computational environment used for testing (Windows Server 2022, dual Intel Xeon Platinum
processors, 128GB RAM) exceeds typical clinical workstations. While the 5-feature requirement suggests
feasibility for standard hardware, actual deployment performance requires validation on target systems.

4.6. Future Research Priorities

The significant features identified (Table 8) consistently across cross-validation suggest capture of fundamental
morphological patterns, though their biological interpretation remains unclear. The features showing highest F-
ratios (n935: 3773.14, n110: 2833.93, n627: 2674.61) warrant further investigation to understand their cytological
correlates. External validation should prioritize datasets with different characteristics than Herlev: lower abnormal
rates reflecting screening populations, contemporary liquid-based cytology preparations, and diverse ethnic
populations. Testing on SIPaKMeD or creating new prospective datasets would address these needs. The
performance gap between Random Forest (99.8%) and Decision Tree (95.5%) using the same 5 features (Figure
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4) suggests ensemble methods better capture feature interactions. Future work should explore whether this
performance advantage persists across different datasets.

4.7. Implications for Global Cervical Cancer Prevention

This work directly supports WHO’s cervical cancer elimination initiative by addressing technological barriers in
resource-limited settings [2]. With 90% of cervical cancer deaths occurring in low- and middle-income countries
[1], the computational efficiency demonstrated here becomes critically important. The 5-feature requirement
potentially enables deployment on basic computing hardware available in district hospitals and screening centers
across Africa, Asia, and Latin America. The framework’s ability to maintain 99.8% accuracy while reducing
computational requirements by 400-fold addresses a key implementation barrier identified in WHO’s global
strategy [2]. Unlike approaches requiring specialized GPU infrastructure or cloud connectivity, our method could
operate on standalone workstations, crucial for facilities with limited internet connectivity or computational
resources.

The binary classification approach (normal vs abnormal) aligns with task-shifting strategies recommended
for resource-limited settings [3]. By simplifying the screening decision to a binary outcome, the system could
support healthcare workers with limited cytology training, potentially expanding screening coverage in underserved
populations. The low false negative rate (0.9%) suggests the system could serve as an effective primary screening
tool, with positive cases referred for expert review. Our results suggest that focusing on extreme computational
efficiency doesn’t require sacrificing diagnostic accuracy. This principle could guide development of other
diagnostic tools for resource-limited settings, where the perfect often becomes the enemy of the good. The
success of our feature reduction approach challenges the assumption that medical AI requires ever-increasing
computational complexity.

5. Conclusion

We demonstrate that intelligent feature selection can resolve the fundamental tension between diagnostic accuracy
and computational feasibility in automated cervical cancer screening. Our framework achieves 99.8% accuracy
using only 5 features selected from 2048 InceptionV3-derived representations, a 400-fold reduction that maintains
performance while dramatically reducing computational requirements. The Random Forest classifier’s robust
performance with these minimal features, validated through stratified 100-5-fold cross-validation, suggests that
we’ve been over-engineering solutions to medical imaging problems.

The clinical implications extend beyond technical metrics. With a false negative rate of 0.9% and false positive
rate of 0.1%, our system could prevent approximately 980 missed cancers per 100,000 women screened compared
to manual cytology, while minimizing unnecessary referrals. More critically, the computational efficiency makes
deployment feasible in resource-limited settings where 90% of cervical cancer deaths occur. This isn’t about
marginal improvements in already well-served populations; it’s about making effective screening accessible where
it’s needed most.

Our systematic validation through multiple clustering methods confirming optimal binary classification,
combined with comprehensive statistical analysis, provides a methodological template for feature selection in
medical AI applications. The consistent identification of the same discriminative features across validation folds
suggests capture of fundamental morphological patterns, even if their precise biological interpretation remains
unclear.

We acknowledge important limitations. The Herlev dataset’s single-institution origin and 73.6% abnormal rate
don’t reflect real-world screening diversity or prevalence. External validation across diverse populations, imaging
protocols, and cytological preparation methods remains essential before clinical deployment. The promising results
on this curated dataset establish proof of concept, not readiness for immediate implementation.
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Future work must prioritize three areas: (1) validation on contemporary, diverse datasets including liquid-based
cytology preparations from multiple geographic regions; (2) prospective evaluation in actual screening workflows
to assess real-world performance and integration challenges; and (3) development of interpretability methods that
maintain computational efficiency while providing insights into decision-making processes.

This research contributes to WHO’s cervical cancer elimination strategy by demonstrating that high-
performance screening doesn’t require high-performance computing. By achieving state-of-the-art accuracy
with minimal computational requirements, we remove a critical barrier to AI-assisted screening deployment in
resource-constrained environments. The path from these results to reduced cervical cancer mortality requires
careful implementation, quality assurance, and health system integration. But we’ve shown that computational
requirements need not exclude the populations bearing the highest disease burden from accessing AI-enhanced
screening.

The broader lesson transcends cervical cancer screening: in medical AI, accessibility should drive design as
much as accuracy. Sometimes the most impactful innovation isn’t achieving marginally better performance, but
achieving good enough performance that actually reaches patients. Our 5-feature framework represents a step
toward democratizing AI-assisted diagnosis, making advanced screening feasible not just in tertiary centers but in
the district hospitals and health posts where most of the world seeks care.
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