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Abstract Myocardial infarction, more commonly referred to as heart attack, is a significant cause of mortality related
to cardiovascular diseases. Conduction disorders are commonly associated with this condition, the most prominent being
RBBB. RBBB refers to an anomaly in electrical conduction of the heart, which can cause distortions to standard ECG
patterns. Both of these can mask and mimic the classical ECG signs of MI and therefore result in misdiagnosis or delayed
diagnosis. Moreover, early and accurate diagnosis is very important in saving patients from MI with a good prognosis;
hence, it becomes a prime concern for the clinician. In this work, a novel approach to the accurate classification of
ECG signals has been proposed with a Q-transform deep learning model of horizontal data concatenation. This study
focuses essentially on the differentiation of myocardial infarction from RBBB-associated myocardial infarction. Further, the
proposed model uses collective information from various ECG leads, drastically improving its capability to capture intricate
cardiac patterns. In addition, the proposed model harnesses the unique electrical signatures of MI and MI with RBBB, which
may manifest differently between leads. By merging multi-lead data and spectral-temporal features, the proposed model
gains a comprehensive understanding of these conditions and leads thus to a substantial improvement in diagnostic accuracy.
However, publicly available digital PTB-XL datasets are also used for the evaluation of the suggested architecture, where
the ECGs are categorized into two classes: MI and MI associated with RBBB. In this regard, this system demonstrates
exceptional performance, achieving an impressive 97. 82% precision and an exceptionally low 0.0032% training loss after
100 trained epochs. Stringent 10-fold cross-validation reinforces and strengthens these results. This groundbreaking approach
simplifies diagnostic complexities by consolidating 12-lead ECG data and using CQT for precise analysis in the time-
frequency domain.

Keywords ECG signals, myocardial infarction, right bundle branch block, ResNet50, 2D ECG representation, Constant-Q
Transform.
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1. Introduction

Cardiovascular diseases are an important contributor to global mortality, accounting for a substantial number of
annual deaths [1]. Projections signal a troubling surge in these fatalities, potentially reaching alarming numbers by
2030 [2]. Within this spectrum of diseases, Acute Myocardial Infarction (AMI) holds particular severity. Similar
to other triggers of irregular depolarization, right Bundle Branch Block (RBBB) induces repolarization anomalies
that might obscure or imitate ischemic changes, especially noticeable in right-sided precordial leads displaying
RSR patterns. However, the concept of appropriate discordance can serve as a guiding principle to navigate
through these complexities. The key feature lies in the discordance between the main part of the QRS complex
and the initial section of the ST segment/T wave, positioning them on opposing sides of the isoelectric baseline.
Consequently, in right to mid-precordial leads, a predominantly positive QRS complex will correspond with ST-
segment depression and an inverted T wave. Any deviation from this norm would reveal ST-segment elevation,
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aligning with the main part of the QRS complex; changes in T-wave patterns can vary, either sustaining inversion
or becoming indistinguishable within the larger ST segment. Identifying an anterior wall ST-elevation myocardial
infarction (STEMI) becomes more evident when the healthcare provider is comfortable discerning the appropriate
appearance of the ST segment in the context of the right bundle branch block (RBBB) [3]. Diagnosing RBBB poses
challenges in detecting important ECG markers, potentially obscuring vital indicators. Consequently, healthcare
practitioners employ supplementary tools such as evaluating symptoms, reviewing medical history, and utilizing
imaging techniques like echocardiography. However, manual interpretation of ECGs can be intricate and prone to
variability, particularly in remote locations or emergency situations [4]. Recent studies have delved into the realm
of artificial intelligence (AI) and deep learning methodologies to enhance the diagnosis of myocardial infarction
(MI) by leveraging 12-lead electrocardiograms (ECGs). In [5], researchers initiated noise reduction in ECG data
and implemented the ML-ResNet network for MI detection. However, the intricacies of this method presented
significant challenges. Conversely, [6] employed ResNet-50, a deep learning model, for medical image analysis.
They transformed 12-lead ECG data from Chapman University and Shaoxing People’s Hospital into scalogram
and grayscale images. Their innovative approach involved a stacking ensemble technique incorporating logistic
regression, support vector machine, random forest, and XGBoost as the meta learner. They introduced a ”multi-
modal stacking ensemble” by combining predictions from scalogram and ECG grayscale images. Meanwhile, [7]
developed a specialized MI detection model emphasizing feature fusion.

Our research addresses these challenges by integrating data from all 12 ECG leads, streamlining the diagnostic
process and providing a more comprehensive representation. A key novelty of this work lies in the preprocessing
step, where we horizontally concatenate the leads before applying the Q transform. This approach generates a new
time-frequency representation, allowing us to retain a greater number of samples compared to using individual
leads. By doing so, we provide the pre-trained model with a more detailed and enriched representation of the
signal. This enhanced representation captures critical spectral characteristics, improving the accuracy of myocardial
infarction (MI) diagnosis. As we will discuss in the related work, this method addresses the limitations of single-
lead analysis and contributes to better patient outcomes by reducing the risk of misdiagnosis.

The motivation for this study stems from the persistent difficulty of accurately detecting myocardial infarction
(MI) in the presence of conduction abnormalities such as right bundle branch block (RBBB), a problem frequently
encountered in clinical practice but inadequately addressed by conventional deep learning methods. The main
contributions of our paper are as follows: (1) We propose a novel horizontal concatenation strategy for 12-lead
ECG signals, enabling the preservation and integration of temporal and spatial information across all leads; (2) We
employ the Constant-Q Transform (CQT) to generate rich time-frequency representations, enhancing the detection
of subtle pathological changes; (3) We design and train a ResNet-50-based deep learning model tailored to multi-
lead ECG data, achieving robust performance on the large-scale PTB-XL dataset; (4) We provide a thorough
evaluation using rigorous cross-validation and clinical metrics; and (5) We curate and make transparent a well-
annotated, clinically relevant ECG dataset, encouraging reproducibility and future research. Collectively, these
innovations advance the state of the art in automated ECG-based MI detection, especially in complex diagnostic
scenarios involving RBBB.

Our key contributions can be summarized as follows:

• Addressing complexity through data concatenation from all 12 leads.
• Following the removal of noise from the 12-Leads signals, the 1D ECG signals undergo a process of

horizontal concentration.
• We adopt the CQT algorithm to convert the 1D ECG signal into a 2D time-frequency representation, which

is then input into the pre-trained ResNet50 CNN model.

The article will be organized as follows: Section 2 reviews related work on the detection of ECG-based myocardial
infarction. Section 3 describes the proposed methodology, including database selection, preprocessing, and data
transformation. Section 4 details the mathematical evaluation of time-frequency representations and the model
architecture. Section 5 presents the performance evaluation and experimental results. Finally, Section 6 concludes
the paper and discusses.
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2. A brief review of existing methods

AI technology has played an important role in ECG analysis methods recommended for heart disease diagnosis.
These investigations focused on the electrocardiogram signal processing , starting with signal processing, feature
detection, and classification. The ECG analysis has regarded the employment of machine learning and deep
learning algorithms in terms of both accuracy and efficiency[8][9][10]. The researchers have also targeted artificial
intelligence adoption in image analysis for the ECGs, which has shown very positive results in screening and
identifying cardiac anomalies[14]. Improvements like AI-based ECG analysis may be the mother of new remote
ECG monitoring systems or revamped telemedicine solutions which will also provide an accurate and fast
identification of cardiovascular illnesses[8][11]. In particular, some studies use a multi-lead residual neural network
model, a multi-branch fusion network, and a convolutional neural network with a multiple-feature branch in
contrast to the MI from normal ECG signals. The authors applied an initial noise reduction to the ECG data.
The ML-ResNet network has been harnessed to detect and pinpoint myocardial infarction (MI). This network
architecture encompasses a total of 13 layers, integrating a distinctive lead feature branch within its structure.
Specifically, this single feature branch is composed of three residual blocks, each containing three convolutional
layers. However, it’s important to note that this approach encounters a challenge in terms of complexity, as it
involves a substantial number of parameters that need to be carefully managed and optimized. Similarly, [?]
adopts a 1D-ECG signal within a deep learning framework for MI diagnosis. The MFB-CNN approach involves
12 independent feature branches, each operating on a single lead from the 12-lead ECG. This study introduces
an innovative method for the detection and localization of automated myocardial infarction (MI) using 12-
lead electrocardiogram (ECG) data. The Multiple-Feature-Branch Convolutional Neural Network (MFB-CNN)
capitalizes on the integrity and diversity of ECG signals, as each feature branch captures distinct lead-related
data. The integration of these features through a global softmax layer obviates the necessity for manual feature
crafting. However, a notable challenge arises due to the high complexity when dealing with the separate analysis
of 12 leads. In contrast, the study [13] introduces a model tailored for myocardial infarction detection using 12-
lead electrocardiogram (ECG) images. Their proposed methodology encompasses a multi-branch network, feature
fusion, and a classification network. Following thorough experimentation, they opted for a shallow CNN as the
multi-branch network to extract features from individual leads. The fusion of feature maps was accomplished
through depth fusion, and these integrated features were subsequently channeled into a classification network
founded on the DenseNet architecture. The resultant model exhibited exceptional sensitivity and specificity in the
realm of myocardial infarction screening. Nonetheless, a notable drawback of this approach lies in its complexity,
and there’s a lack of data preprocessing incorporated within the method. Further advances include [?], which
introduces an innovative approach to medical diagnosis using ResNet-50 for the automatic classification of 12-
lead ECG data encompassing multiple cardiovascular diseases, They presented an efficient DL model designed
for the automatic diagnosis of 12-lead electrocardiogram (ECG) signals categorized into 27 classes. These classes
include 26 different types of CVD and a normal sinus rhythm. The proposed model is built on the Residual Neural
Network (ResNet-50) architecture and is evaluated through experimentation using combined public databases from
the USA, China, and Germany as a proof of concept. In [21], the authors applied the ECG data to undergo an
initial noise reduction. The ML-ResNet network has been harnessed to detect and pinpoint myocardial infarction
(MI). This network architecture encompasses a total of 13 layers, integrating a distinctive lead feature branch
within its structure. Specifically, this single feature branch is composed of three residual blocks, each containing
three convolutional layers. However, it’s important to note that this approach encounters a challenge in terms of
complexity, as it involves a substantial number of parameters that need to be carefully managed and optimized.
Similarly, [22] adopts a 1D-ECG signal within a deep learning framework for MI diagnosis. The MFB-CNN
approach involves 12 independent feature branches, each operating on a single lead from the 12-lead ECG. This
study introduces an innovative method for the detection and localization of automated myocardial infarction (MI)
using 12-lead electrocardiogram (ECG) data. The Multiple-Feature-Branch Convolutional Neural Network (MFB-
CNN) capitalizes on the integrity and diversity of ECG signals, as each feature branch captures distinct lead-related
data. The integration of these features through a global softmax layer obviates the necessity for manual feature
crafting. However, a notable challenge arises due to the high complexity when dealing with the separate analysis
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of 12 leads. In contrast, the study [23] introduces a model tailored for myocardial infarction detection using 12-
lead electrocardiogram (ECG) images. Their proposed methodology encompasses a multi-branch network, feature
fusion, and a classification network. Following thorough experimentation, they opted for a shallow CNN as the
multi-branch network to extract features from individual leads. The fusion of feature maps was accomplished
through depth fusion, and these integrated features were subsequently channeled into a classification network
founded on the DenseNet architecture. The resultant model exhibited exceptional sensitivity and specificity in the
realm of myocardial infarction screening. Nonetheless, a notable drawback of this approach lies in its complexity,
and there’s a lack of data preprocessing incorporated within the method. Further advances include [24], which
introduces an innovative approach to medical diagnosis using ResNet-50 for the automatic classification of 12-lead
ECG data encompassing multiple cardiovascular diseases, They presented an efficient DL model designed for the
automatic diagnosis of 12-lead electrocardiogram (ECG) signals categorized into 27 classes. These classes include
26 different types of CVD and a normal sinus rhythm. The proposed model is built on the Residual Neural Network
(ResNet-50) architecture and is evaluated through experimentation using combined public databases from the USA,
China, and Germany as a proof of concept. In [25], an updated ResNet-18 model is introduced, showcasing the
potential of deep learning to revolutionize ECG signal analysis. This novel approach addresses the limitations
of conventional methods and aims to categorize ECG signals more effectively. To achieve precise identification
and classification of five AAMI heartbeat classes using the MIT-BIH arrhythmia database, the article presents
an enhanced ResNet-18 model. This model leverages the unique characteristics of lead ECG data, treating it as
one-dimensional time series. By adopting this approach, the model can extract multiple features from the same
input, efficiently capturing the internal structural nuances within the ECG data. Consequently, this enhancement
significantly bolsters the model’s classification accuracy. Dealing with expansive datasets presents challenges in
neural network training. As the input data volume increases, so does the necessity for additional neurons to enhance
classification accuracy. Unfortunately, expanding the model’s size, especially in fully connected neural networks,
results in an abundance of parameters, which can impede training speed. To address this challenge, the article
introduces a Convolutional Neural Network (CNN) characterized by local connectivity and parameter sharing.
This CNN design effectively reduces model parameters while accelerating training, making it well-suited for large
datasets. The study employed the MIT-BIH dataset, which primarily consists of 2-lead ECG recordings. However,
this limited dataset may not fully harness the potential benefits of utilizing all 12 leads available in a comprehensive
ECG. In addition, it’s worth noting that the ResNet architecture, particularly its residual blocks, can face challenges
related to gradient vanishing during training. This issue can impede the network’s ability to effectively learn and
represent complex patterns in the data.

The application of deep learning in medical image analysis, particularly ResNet-50, is shown in [26], where
the study conducted experiments utilizing 12-lead electrocardiogram (ECG) databases sourced from Chapman
University and Shaoxing People’s Hospital. To fine-tune the pre-trained ResNet-50 model for each lead, the ECG
signals were transformed into scalogram images and grayscale images of the ECG. The ResNet-50 model served
as the base learner for a stacking ensemble method. The meta learner, used for combining predictions from the base
learner, employed logistic regression, support vector machine, random forest, and XGBoost. This study introduced
a novel approach termed ”multi-modal stacking ensemble,” which integrates predictions from two modalities:
scalogram images and ECG grayscale images.

In this work, we introduce a novel preprocessing method by horizontally concatenating the 12 ECG leads
before applying the Constant Q Transform (CQT). This approach generates a comprehensive time-frequency
representation that retains more samples compared to using individual leads. The enriched representation enhances
the ability of our ResNet-50 model to detect myocardial infarction (MI), especially in cases involving left
bundle branch block (RBBB), which primarily affects the lower frequency spectrum. CQT is particularly
effective in capturing critical spectral characteristics in these low-frequency ranges, outperforming linear methods.
Additionally, CQT’s flexibility in adjusting its frequency resolution allows for higher resolution in detecting
pathological events like MI and lower resolution for normal beats. This multi-resolution capability is especially
important for handling non-stationary ECG signals, offering a significant advantage over the Short-Time Fourier
Transform (STFT) in detecting subtle changes in conditions such as MI and right bundle branch block (RBBB).
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3. Contributions

We present a novel ECG diagnostic system that integrates a pre-trained model with the Constant-Q Transform
(CQT), offering enhanced accuracy and efficiency in analyzing ECG signals. Illustrated in Fig. 1, our model’s
stages encompass signal preprocessing, concatenation of data from 12 leads in a horizontal format, CQT
transformation, and the utilization of the ResNet50 model. This pioneering approach merges signal processing
techniques with deep learning models to elevate ECG analysis, thereby fostering improved healthcare outcomes.
Furthermore, the incorporation of k-fold cross-validation bolsters the credibility and reliability of our experimental
findings, facilitating a comprehensive evaluation of the integrated ECG diagnostic system.

Figure 1. Our Model Architecture.

3.1. Database and preprocessing:

For this research, we obtained electrocardiograms (ECGs) from the publicly available PTB-XL database, which
consists of 21799 clinical 12-lead ECG data from 18869 individuals, each lasting 10 seconds. from 18869 patients,
52% percent of whom are men and 48% percent of whom are women, ranging in age from 0 to 95 years. However,
we only took ECG data from the MI categories. Our dataset includes simultaneous 12-lead ECG recordings from
445 individuals with MI who fell into one of two categories: MI without RBBB and MI with RBBB, which
comprises ECG signals from 191 participants in both AMI and AMI associated with RBBB categories. The
records last 10 seconds, are labeled by cardiologists. Most records may have multiple annotations, and the signal is
sampled at 500Hz.[18] Table 1 summarizes all relevant information about the dataset used in this study However,
ECG signals often suffer from various types of noise that can adversely affect the accuracy of the diagnostic
results. These noise types include power line interference, baseline wander, and electrode contact noise, which
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Table 1. Class distribution of MI categories in the study dataset.

Class Description Number of Samples

MI Myocardial Infarction (without RBBB) 254
MI+RBBB Myocardial Infarction with RBBB 191

must be adequately addressed before applying machine learning algorithms to diagnose MI. Thus, ECG signal
denoising and preprocessing become a discriminative need [19]. In our study, we applies several filters to an
electrocardiogram (ECG) signal to improve its quality.

• Firstly, a bandpass filter is applied to remove static noise and high-frequency noise. This filter uses a
Butterworth filter of order 5 with a lowcut frequency of 0.5 Hz and a highcut frequency of 100 Hz.

• Next, a median filter with kernel size of 3 is applied to remove burst noise. The signal is then processed to
remove baseline drift by subtracting the moving average of the signal using a window size of 0.2 seconds.

• Finally, any obvious outliers in the signal are detected and removed using Z-score thresholding. The resulting
signal is then ready for further analysis or interpretation.Figure 1 visually depicts the difference between the
Electrocardiogram (ECG) signal before and after preprocessing.

The original ECG signal is represented in blue, while the preprocessed ECG signal is shown in red (see Fig. 2).
The outlier removal thresholds for ECG amplitudes (> 2.0mV or < −2.0mV ) were selected based on clinical
standards. According to the American Heart Association (AHA), the normal amplitude for the QRS complex
typically does not exceed 2.5–3.0 mV in the limb leads. Values outside the ±2.0 mV range are considered
physiologically uncommon and may represent noise or artifacts rather than true cardiac events [27]. Thus, these
thresholds were used to filter out non-physiological values in accordance with established guidelines.

Figure 2. One lead ECG signal before and after preprocessing

3.2. 12-Lead Data Concatenation and 2D Transformation:

Horizontally concatenating the 12 ECG leads provides a consolidated representation of multiple leads within a
single waveform, which proves valuable for both visualization and analysis. This approach allows for a more
comprehensive assessment of interactions between leads, improving diagnostic accuracy. Let X ∈ RN×12 represent
the raw multi-lead ECG signal matrix, where N is the number of time samples, and each column corresponds to
one of the 12 leads. Horizontal concatenation across leads forms a unified signal:

Xconcat = [x1;x2; . . . ;x12] ∈ R12N

This operation ensures time-aligned integration of cardiac activity from multiple perspectives see fig 3.
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6 AI-ENHANCED ECG DIAGNOSIS SYSTEM FOR MYOCARDIAL INFARCTION WITH RBBB

Figure 3. 12 lead ECG signal concatenation

By applying the Constant Q Transform (CQT) to ECG data, we can extract critical features with high precision,
significantly enhancing the detection of cardiac conditions. CQT offers adjustable frequency resolution, making
it particularly well-suited for analyzing non-stationary signals like ECGs. Lower-frequency components, often
associated with pathological events such as myocardial infarction (MI), require higher frequency resolution, while
higher-frequency components, associated with normal heartbeats, can tolerate lower resolution. This adaptability
gives CQT a major advantage over the Short-Time Fourier Transform (STFT), which maintains a fixed resolution
across all frequencies. Moreover, CQT’s multi-resolution capabilities allow it to capture time-varying changes in
ECG signals without sacrificing either time or frequency detail, which is critical for detecting subtle abnormalities
related to conditions like MI and right bundle branch block (RBBB). as input, the model takes an ECG signal
X ∈ RN∗12 after the horizontal concatenation the new format of ower data is a matrix of N samples and 12
columns each column represent a lead. The perceptually motivated CQT [8] [9] approach to the spectro-temporal
analysis of a discrete signal x(n) is defined by:

XCQ(k, n) =

n+⌊Nk
2 ⌋∑

l=n−⌊Nk
2 ⌋

x(j) · a∗k
(
l − n+

Nk

2

)
(1)

This equation represents the computation of XCQ(k, n), which signifies the CQT coefficients for a given frequency
scale k and time index n. The summation involves the signal x(l) multiplied by the scale-related factor ak and k
within a specific range determined by N and k.

• n represents the sample index within the signal.
• k ranges from 1 to K and stands for the frequency bin index.
• ak(n) denotes the basis functions, which are functions of both n (sample index) and k (frequency bin index).
• The symbol ∗ denotes the complex conjugate operation.
• Nk refers to the frame length specific to the frequency bin k.

Within the framework of Continuous Wavelet Transform (CQT), the basis functions ak(n) are precisely outlined
as complex-valued functions reliant on both the sample index n and the frequency bin index k. These functions hold
significant importance in the decomposition of a signal into its constituent frequency components across varying
time intervals. This decomposition proves instrumental in conducting analyses within the time-frequency domain,
enabling a detailed examination of signal characteristics across both time and frequency axes. In the CQT context,
the basis functions ak(n) are defined as complex-valued functions that depend on both the sample index n, and the
frequency bin index k. These functions play the role of decomposing a signal into its frequency components across
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different time intervals, facilitating analysis in the time-frequency domain. The basis functions ak(n) in the CQT
are defined as Hann-windowed complex exponentials:

ak(n) = wk(n) · e2πifkn/fs (2)

where:

• wk(n) is the Hann window function for the k-th frequency bin,
• fk is the center frequency of the k-th bin,
• fs is the signal sampling rate,
• n is the sample index, 0 ≤ n < Nk,
• Nk is the window length for the k-th bin.

The Hann window is given by:

wk(n) = 0.5

[
1− cos

(
2πn

Nk − 1

)]
(3)

for 0 ≤ n < Nk.

Table 2. CQT Parameters for ECG signal

Parameters Value
Sampling rate (Hz) 500
fmin(Hz) 0.05
fmax(Hz) 100
Hop Length 64 samples
Bins per Octave 6

Formulae and Concepts:
1. Frequency Range: The CQT operates in a logarithmic frequency range from fmin to fmax. To calculate the

number of frequency bins across this range, we use the formula:

Nbins = Bins per Octave × log2

(
fmax

fmin

)
Substituting the values:

Nbins = 6× log2

(
100

0.05

)
= 6× log2(2000) ≈ 6× 10.96 = 65.76

Rounding this, we obtain approximately 66 frequency bins.
2. Time (Number of Frames): The number of time frames depends on the length of the signal and the hop

length. If the signal has a length of T samples, the number of frames Nframes is calculated as:

Nframes =
T − 64

64
+ 1

For an input signal length of T = 5000 samples (10 seconds at 500 Hz), the number of time frames would be:

Nframes =
5000− 64

64
+ 1 = 78

3. CQT Output Dimensions:

• The number of frequency bins is 66 (as calculated above).
• The number of time frames is 78 (from the time frame formula).
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8 AI-ENHANCED ECG DIAGNOSIS SYSTEM FOR MYOCARDIAL INFARCTION WITH RBBB

• However, since we are stacking 12 ECG signals (one for each lead), the total number of time frames will
increase by a factor of 12.

Final Dimensions: The resulting CQT spectrogram for the stacked 12 ECG signals will have:

• 66 frequency bins (unchanged from the individual signal CQT output).
• 78 × 12 = 936 time frames (since we are stacking the time frames of each of the 12 signals).
• 1 channel (since the signals are concatenated along the time axis, forming a single spectrogram).

Thus, the CQT output dimensions for the stacked signals will be 66 x 936.
Discrepancies in lead quality often result in variations in the extracted features and subsequent analyses. To

mitigate this challenge, we adopted an innovative approach involving the horizontal concatenation of data from
multiple leads prior to employing the CQT transform. This method aims to capitalize on the complementary
information across leads, enhancing the overall signal quality. By merging the leads horizontally, the resultant
signal gains an improved signal-to-noise ratio while reducing artifacts and noise present in individual leads.
Consequently, upon applying the CQT transform to the concatenated signal, the extracted features demonstrate
heightened consistency and reliability compared to those derived from individual leads. This methodology
has shown promise across diverse signal analysis tasks, including classification or anomaly detection, where
concatenating leads before the CQT transform has notably improved performance and accuracy. Fig. 4 visually
depicts the distinctions between applying the Constant-Q Transform (CQT) to the horizontally concatenated 12-
lead ECG signals, and shows the difference between MI and MI associated to RBBB.

Figure 4. The difference between MI and MI associated to RBBB in time frequency domaine.

Mathematical Evaluation of Time-Frequency Representations

To quantify the spectral richness and complexity of our ECG representations, we employ two complementary
metrics based on the Constant Q Transform (CQT), which provides superior time-frequency resolution compared
to traditional Fourier-based methods, particularly for biomedical signals with non-stationary characteristics.

1. Mean Spectral Energy. The total energy is computed as:

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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E =
1

T

∫ T

0

∫ F

0

|CQT(x(t))|2 df dt

This metric quantifies the average spectral power density across the entire time-frequency domain, where T
represents the signal duration and F the frequency bandwidth. We compare the energy for:

• Esingle: one lead ECG,
• Econcat: horizontally concatenated 12-lead ECG.

If Econcat > Esingle, the representation is spectrally richer, indicating that the multi-lead concatenation preserves and
potentially enhances the spectral content compared to single-lead analysis. This comparison provides insight into
whether our concatenation strategy maintains the diagnostic information distributed across multiple leads.

2. Spectral Entropy (Shannon).

H = −
∑
i

pi log(pi), pi =
|CQT(xi)|2∑
j |CQT(xj)|2

(4)

The spectral entropy measures the randomness and complexity of the frequency distribution, where pi represents
the normalized spectral power at each frequency bin. Higher entropy indicates higher complexity and variability
in the spectrum, suggesting a more diverse frequency content. This metric is particularly valuable for assessing
the information content of different ECG representations, as pathological conditions often manifest as increased
spectral complexity due to irregular cardiac rhythms and morphological variations. The comparison between
single-lead and concatenated representations using spectral entropy helps validate whether our multi-lead approach
captures the inherent complexity of cardiac electrical activity more effectively than conventional single-lead
analysis.

Table 3. Quantitative evaluation methods for comparing time-frequency representations.

Method Objective Expected Outcome
Spectral Energy E Global intensity Econcat > Esingle
Entropy H Spectral diversity Hconcat > Hsingle

3.3. ResNet50:

ResNet-50, a variation within the ResNet architecture, represents a deep convolutional neural network extensively
utilized in computer vision assignments. Renowned for its depth and exceptional performance in tasks related
to image recognition, the ResNet structure comprises convolutional layers, batch normalization, and activation
functions in its fundamental building blocks. These blocks also integrate shortcut connections, enabling the network
to learn residuals or variations between the output of the current layer and the desired output. In the context of a 2D
convolutional neural network (CNN), similar operations to those in the 1D scenario are performed, but considering
two-dimensional data. our model architecture is defined in this table

3.4. k cross-validation:

K-fold cross-validation stands as a prevalent technique in machine learning, specifically employed to evaluate
classification algorithms. Its methodology entails partitioning the data into k subsets, where k-1 subsets are
utilized for training and the remaining subset for testing, thereby generating k distinct accuracy scores for
evaluation purposes. This technique serves as a critical tool for estimating model performance, guarding against
overfitting, and maximizing data exploitation. Additionally, it assists in tasks such as model selection, fine-tuning
hyperparameters, and facilitating algorithm comparisons. [10]
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Table 4. ResNet-50 architecture summary

Stage Output Size Block Type Configuration
Conv1 112×112×64 Convolution 7×7, 64 filters, stride 2

MaxPool 56×56×64 Max Pooling 3×3, stride 2

Conv2 x 56×56×256 Bottleneck Block ×3
1×1, 64 filters
3×3, 64 filters
1×1, 256 filters

Conv3 x 28×28×512 Bottleneck Block ×4
1×1, 128 filters
3×3, 128 filters
1×1, 512 filters

Conv4 x 14×14×1024 Bottleneck Block ×6
1×1, 256 filters
3×3, 256 filters
1×1, 1024 filters

Conv5 x 7×7×2048 Bottleneck Block ×3
1×1, 512 filters
3×3, 512 filters
1×1, 2048 filters

AvgPool 1×1×2048 Global Average Pooling -
FC 1000 Fully Connected Layer Softmax activation

4. Performance evaluation :

We employed the Sensitivity, Specificity, and accuracy metrics—all widely used in the field of pattern recognition,
to assess the performance of each class. In order to calculate these metrics, the values of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) were used, which were stated in the appropriate way in
the equations. (2), (3), and (4). These are their definitions:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100, (5)

Sensitivity (Se) =
TP

TP + FN
, (6)

Specificity (Sp) =
TN

TN + FP
. (7)

F1-score =
2 · Precision · Sensitivity
Precision + Sensitivity

, (8)

Where TP and TN represent, respectively, the quantity of true positive and true negative patients. The terms FN
and FP stand for false negative and false positive rates, respectively.

5. Result and discussion:

Experiments were conducted using Python software on a personal system equipped with an Intel i7-series processor
@ 3.12 GHz and 16 GB of RAM, utilizing the Kaggle platform for data handling and computational resources,
alongside Weights and Biases (wandb) for experiment tracking and visualization. The ResNeXt-50 model was
trained and tested using a 10-fold cross-validation method, with parameters set to a batch size of 100, an Adam
optimizer, and an initial learning rate of 0.01 to ensure consistency and reliability of results. To quantitatively
demonstrate the improved signal quality from horizontal concatenation, we compare the spectral energy and
entropy of the 1-lead versus 12-lead CQT representations in Table 5. To objectively assess the enhancement in
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Table 5. TIME-FREQUENCY COMPARISON

Metric 1-lead 12-leads concat
Spectral Energy 36042.05 84173.22
Spectral Entropy 11.46 12.31

signal representation quality resulting from the horizontal concatenation of the 12 ECG leads, we calculated and
compared two quantitative metrics: spectral energy and spectral entropy. As shown in Table 5, the concatenated
12-lead representation exhibits significantly higher spectral energy (84,173.22 vs. 36,042.05) and greater spectral
entropy (12.31 vs. 11.46) compared to the single-lead representation. This indicates not only a stronger signal
presence but also richer and more diverse frequency content, which is essential to capture the complex spatio-
temporal dynamics of cardiac activity. These results confirm that the concatenated representation retains more
diagnostic information, making it a more robust input for deep learning models.

In contrast to traditional methods that rely on hand-crafted features, which struggle with individual patient
differences, our method leverages advanced techniques. We utilized the constant-Q transform (CQT), which
provides superior frequency resolution compared to the Short-Time Fourier Transform (STFT). This adaptability
preserves the temporal resolution and richness of the original signals, thus enhancing the analysis of cardiac
dynamics in the time-frequency domain.
Several studies in the literature emphasize the use of artificial intelligence (AI) in ECG analysis. For instance,
some studies, like those employing multi-lead residual neural networks and convolutional neural networks, have
demonstrated varying success in MI detection, but often grapple with complexities due to high parameter counts.
For example, the multi-lead residual neural network (ML-ResNet) in one study utilized 13 layers and multiple
residual blocks, which, while effective, poses challenges related to managing and optimizing such a complex
architecture.

Table 6. Comparison of Methods

2*Method 2*Dataset Performances
Accuracy Sensitivity Specificity F-score

ML-ResNet [21] PTB 95.49% 94.85% 97.37% –
Improved ResNet-18 [22] MIT-BIH 96.50% 93.83% – –
Multi-branch fusion network [23] ECG images 94.73% 96.41% 95.94% –
Multiple-feature-branch CNN [24] PTB 99.95% 99.97% 99.90% –
ResNet-50 [25] MITBIH, PTB, CPSC, Fantasia, BIDMC 97.63% – – –
Multi-Modal Stacking Ensemble + ResNet-50 [26] PTB-XL 93.97% 94.0% – –
Proposed method PTB-XL 97.82% 98.03% 97.38% 98.03%

Our approach contrasts with these methods by utilizing a single ResNet-50 model instead of processing 12
individual leads. This streamlining reduces the model’s complexity and dimensionality while maintaining high
performance. While the referenced ML-ResNet achieved 95.49% accuracy and 94.85% sensitivity, our model
achieves an impressive training accuracy of 97.82% with a training loss score of only 0.0032% after 100 epochs.
Furthermore, our method efficiently classifies MI associated with RBBB, addressing a gap in existing databases
that lack combined patient data for these specific conditions.

Similarly, other studies in Table 6, such as those adopting MFB-CNN architectures, face challenges of high
complexity due to separate analysis of 12 leads. Our method effectively mitigates these issues by concatenating
leads to form a comprehensive representation that captures complementary information. This process not only
improves the signal-to-noise ratio (SNR) of the ECG signal representation but also enhances visualization and
feature extraction related to cardiac dynamics. only clean PTB-XL used; plan noisy-ECG stress tests and missing-
lead simulation. Further advancements have been made by researchers using ResNet-50 models to classify various
cardiovascular diseases based on 12-lead ECG data. While these models exhibit exceptional sensitivity and
specificity, they often encounter issues related to gradient vanishing during training, impeding their ability to learn
complex patterns effectively. Our approach, leveraging ResNet-50, not only addresses these limitations but also
enhances classification accuracy without inflating model size excessively.
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As depicted in Fig. 5a and Fig. 5b. These exceptional performances validate the effectiveness and reliability
of our model in accurately classifying ECG signals. The high accuracy and low training loss score highlight the
robustness and precision of our approach in addressing the given task.

(a) Mean Accuracy Scores for 10-Fold Cross-Validation (b) Mean Loss Scores for 10-Fold Cross-Validation

Figure 5. Our model’s mean accuracy and loss scores across 10-fold cross-validation.

Figure 6. Our Model performance.

The classification performance of the proposed model is illustrated in Figure 6, demonstrating robust
discrimination between myocardial infarction (MI) and MI associated with right bundle branch block (MI+RBBB).
The confusion matrices reveal very low misclassification rates: 97.24% of MI cases and 98.43% of MI+RBBB
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cases were correctly identified. Only 7 MI cases were misclassified as MI+RBBB, and 3 MI+RBBB cases were
misclassified as MI, indicating high sensitivity and specificity for both categories.

The summary metrics further underscore the effectiveness of the approach, with overall accuracy, precision, and
F1-score exceeding 97%. Notably, the precision (0.988) and specificity (0.984) values suggest a low rate of false
positives, which is especially important in clinical settings to avoid unnecessary interventions. The sensitivity
(recall) of 0.972 and F1-score of 0.980 indicate that the model is highly capable of detecting true positive
cases, minimizing the risk of missed diagnoses. Class-wise analysis shows that the model maintains balanced
performance across both categories, further supporting its potential utility in differentiating these clinically
challenging conditions.

These results validate the model’s ability to generalize across the dataset and suggest that the combination of
horizontal concatenation, CQT transformation, and deep learning architecture provides a robust framework for
ECG-based MI and MI+RBBB classification. The low misclassification rates and high metric values indicate strong
reliability, although further external validation on independent cohorts is warranted to confirm generalizability in
broader clinical contexts.

6. Conclusion

Our research presents a novel ECG diagnosis system that integrates advanced signal processing with deep
learning to improve the detection and characterization of acute myocardial infarction (MI) and MI associated with
right bundle branch block (RBBB). By leveraging the Constant-Q Transform (CQT) for time-frequency feature
extraction and a pre-trained deep neural network, our approach achieves high diagnostic performance, with an
accuracy of 97.82% and a minimal training loss of 0.0032% after 100 epochs. This innovative framework has
the potential to enhance patient care and advance ECG-based cardiac diagnostics. The application of rigorous 10-
fold cross-validation further reinforces the credibility and reliability of our findings, providing robust performance
estimates and valuable insights for future development.

7. Limitation

This study is limited by its reliance on a relatively small, clinically specific cohort from the PTB-XL dataset,
comprising only MI and MI+RBBB cases. The exclusive use of complete 12-lead ECG recordings and the absence
of external validation restrict the assessment of model generalizability and robustness, particularly under real-world
conditions such as missing leads or noisy data. Additionally, the PTB-XL population may not represent broader
demographic diversity. Future work will focus on validating the model with larger, multi-center datasets and under
varied clinical scenarios to ensure broader applicability.
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