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Abstract Soil erosion is the process by which soil particles are removed from the Earth’s surface. There are three stages to
soil erosion: displacement, migration, and deposition. The rate of soil erosion is influenced by various factors, including
infiltration, soil type, soil structure, and land cover. Soil erosion causes soil deposition in some areas and soil loss in
others. One of the primary issues in meteorology is the prediction of soil erosion. Numerous methods for forecasting
precipitation have been put forth, drawing from deep learning, machine learning, and statistical analysis approaches. In
this paper, we compare between the Random Search and Grid Search optimization which combine with CNN, RNN,
LSTM and GRU algorithm (GS CNN, GS RNN, GS LSTM, GS GRU, RS CNN, RS RNN, RS LSTM, RS GRU,) for soil
erosion prediction. These models facilitate planning for soil preservation and land management techniques by improving
our understanding of and capacity to forecast the dynamics of soil erosion. There are 236 instances with 11 features in the
dataset that was used for this study. Six evaluation metrics were computed: accuracy, precision, recall, F1 score, Matthew’s
correlation coefficient (MCC), and Area Under the Receiver Operating Characteristic Curve (AUC) to assess the efficacy of
the employed classification technique. With an accuracy of 98.592%, the CNN, GS CNN, GS RNN, RS CNN and RS RNN
models outperformed other machine learning methods and earlier research on the same dataset, according to the experimental
results.
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1. Introduction

Soil plays a vital role in both rural and urban ecosystems, contributing to agriculture, infrastructure, and
environmental stability [1]. In recent years, soil conditions have been increasingly affected by extreme weather
events resulting from climate change and landscape alterations due to urbanization [2]. Intense rainfall, in
particular, accelerates water erosion, leading to the displacement of topsoil and a consequent reduction in soil
fertility [3]. These effects not only damage the natural terrain but also make land restoration labor-intensive and
costly. Soil erosion is a progressive natural phenomenon driven by agents such as wind, water, and ice, where
soil particles are detached, transported, and deposited elsewhere. While it is influenced by natural occurrences like
precipitation and water flow, human interventions have significantly intensified the process. Soil erosion threatens
agricultural productivity, infrastructure development, and the safety of residential areas, particularly those located
near water bodies and slopes [4]. One of the most pressing challenges is managing floodwaters to prevent sediment
runoff and downstream siltation. When high-energy water jets reach the downstream base of dams, they can cause
bed material displacement, forming scouring holes and potentially leading to structural failures such as spillway
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collapse [5]. Moreover, the long-term consequences of soil erosion include the degradation of land and water
resources, sedimentation of rivers, loss of soil fertility, and diminished water quality [6]. The adverse effects
extend further, as sediments often bind nutrients, hazardous chemicals, and heavy metals, negatively impacting
downstream aquatic ecosystems and human health [7, 8].

Despite these concerns, soil erosion also contributes positively to certain natural processes. For example, it
plays a role in forming alluvial plains, developing fertile soils, rejuvenating rivers, creating new habitats, and
sequestering carbon, thereby contributing to climate change mitigation. However, excessive erosion remains
detrimental, especially when it leads to agricultural chemical runoff and loss of fertile land. Numerous soil
conservation techniques have been developed to mitigate erosion, including conservation tillage, cover cropping,
terracing, contour barriers, agroforestry, and rotational grazing [9]. While these strategies have shown effectiveness,
predictive models that anticipate soil erosion can further enhance mitigation efforts. This research aims to evaluate
and compare several deep learning models such as CNN, RNN, LSTM, and GRU which optimized using either
Grid Search or Random Search. These combinations yield eight hybrid models: GS CNN, GS RNN, GS LSTM,
GS GRU, RS CNN, RS RNN, RS LSTM, and RS GRU.

The authors in [10] focused on soil erosion in the Mayurakshi River Basin in Eastern India, where land
degradation is a significant issue. To identify areas at high risk for soil erosion, the researchers utilized three
classification models: logistic regression, decision tree, and random forest. They created a soil erosion inventory
from 150 erosion sites, using 70% of the data for model training and 30% for validation. The models incorporated
12 environmental and topographic factors, and multicollinearity tests were performed for reliability. Findings
revealed that the western part of the basin is particularly susceptible to erosion, with decision tree and random
forest models showing better predictive accuracy than logistic regression, as validated by ROC curves and kappa
statistics.

The authors in [11] highlighted the importance of soil in the global ecosystem by assessing soil erosion
risk in the Cameron Highlands, which faces sustainability challenges. Using the Analytical Hierarchy Process
(AHP), the authors evaluated 15 factors contributing to soil erosion, such as rainfall erosivity, land use, and slope
characteristics. Rainfall erosivity was identified as the most significant factor, followed by land use and slope
steepness. The erosion risk prediction map revealed that the western region is particularly vulnerable to erosion. The
results provide essential insights for planners and policymakers to develop effective soil conservation strategies.

The authors in [12] addressed soil erosion’s negative impact on agriculture and grazing in northern Algeria’s
Mediterranean region by utilizing advanced machine learning and deep learning techniques to predict erosion-
prone areas in the Macta basin. Four models were compared: Categorical Boosting, Adaptive Boosting, CNN, and
a stacking ensemble approach. Erosion conditioning factors were derived from remote sensing data and integrated
into a GIS environment. Erosion sites were identified using GPS, field surveys, and satellite images. The dataset
was divided into training (60%) and testing (40%) sets, with all models achieving over 98% accuracy in evaluation
metrics. The resulting susceptibility maps are intended to aid policymakers and local stakeholders in soil and water
conservation efforts.

The authors in [13] demonstrated the effectiveness of machine learning algorithms in assessing environmental
hazards, particularly soil erosion and landslide susceptibility in Southeast Nigeria. It utilized hierarchical clustering
and three multilayer perceptron neural networks to analyze risk indicators. The findings showed that hierarchical
clustering ranked gully erosion susceptibility, while the neural networks achieved high predictive accuracy for soil
cohesion and internal friction angle, as well as estimating the factor of safety under different conditions.

The authors in [14] investigated soil erosion hazards due to water and human activities in semi-arid and
humid regions, focusing on nutrient loss and land degradation. An integrated framework combining vulnerability
prediction, decision-making, and GIS techniques was proposed to assess erosion risk using seven parameters:
soil loss, sediment yield, runoff potential, land capability, drainage density, sediment transport index, and slope.
Conducted in the Pairi River watershed in Chhattisgarh, India, the research utilized various machine learning
classifiers, notably RF and gradient adaptive boosting (GAB), achieving high accuracy rates of 91.51% and 90.55%,
respectively. GAB outperformed RF in log-loss metrics.
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2. Methodology

2.1. Dataset

The dataset employed in this study, accessible via [2], was gathered over a span of three years (2009–2011) from
two catchment regions located in Son La, a province in northwest Vietnam with a tropical monsoon climate.
This area typically experiences heavy rainfall from May to October and cooler, drier conditions from November to
March, with an average yearly temperature of 21°C. A total of 24 erosion monitoring plots, each measuring 4 meters
by 18 meters, were arranged using a randomized full-block layout to assess the effects of various land use practices
on soil erosion. The implemented treatments encompassed both conventional agricultural methods—such as slash-
and-burn and plowing with fertilizers—and soil conservation strategies like planting cover crops, establishing grass
barriers, and practicing relay cropping. Runoff from each plot was collected using 200-liter plastic tanks, while
sediment was gathered using a bucket system. The soil types in the study area, ranging from clay loam to clay,
were classified as Alisols, Luvisols, and Calcisols. For predictive modeling, ten critical features were selected:
EI30, topsoil pH, slope gradient, organic carbon content, bulk density, pore volume, proportions of clay, sand, and
silt, and the rate of ground cover. The dataset effectively reflects the impact of climate, terrain, soil properties, and
land use on the likelihood of soil erosion. The correlation matrix for these features is illustrated in Figure 1.

Figure 1. correlation matrix of the utilized dataset of soil erosion.

The final dataset consists of 236 samples, with 125 labeled as erosion-prone and 111 as non-prone, yielding a
class distribution of approximately 53% to 47%. While the imbalance is not severe, evaluation metrics such as
AUC-ROC and precision-recall curves were used to account for potential skew in prediction sensitivity.

2.2. Random Search

Random search offers simplicity, efficiency, and flexibility. It requires no complex algorithm or logic, reduces
computational cost and time, and can handle any search space, including continuous, discrete, and categorical

Stat., Optim. Inf. Comput. Vol. x, Month 202x



ALAA A. ALMELIBARI AND YASSER FOUAD 3

search spaces and complex or nonlinear functions. Because random search produces a pattern that increases the
likelihood of discovering the ideal parameter, there is a greater possibility that the model will be trained on the
optimized parameters without any aliasing. When dealing with lower-dimensional data, random search performs
better since it requires fewer iterations and less time to discover the correct set. The most effective parameter search
method when there are fewer dimensions is random search. Bergstra and Bengio demonstrate both conceptually
and experimentally in their study Random Search for Hyperparameter Optimization that random search is a more
effective method for parameter optimization than grid search. Random search has several disadvantages, including
high variability due to randomness of samples, no guarantee of finding the global optimum, lack of direction, and
computational cost. It may miss promising areas and may be computationally expensive for large problems with
many hyperparameters, making it less efficient than exhaustive search.

2.3. Grid Search

Grid search is a technique in machine learning for hyperparameter tuning, aimed at finding the best combination
of hyperparameters for a model. Hyperparameters, such as learning rate and number of layers, must be set
before training and cannot be derived from data. The grid search process involves creating a grid of all possible
hyperparameter combinations, training the model on each combination, and evaluating its performance on a
validation set. The combination that produces the best results is selected as optimal. However, grid search can
be computationally intensive, especially with many hyperparameters, leading to the use of randomized search as a
more efficient alternative, which samples a random subset of hyperparameters instead.

2.4. The proposed Methodology

Figure 2 illustrates a comprehensive pipeline for predicting soil erosion using deep learning techniques. The
process begins with a Soil Erosion Dataset, which undergoes preprocessing that includes null data handling and
Z-Score normalization to standardize feature values. Following preprocessing, the data is split into training and
testing sets—70% for training and 30% for testing. The training data is fed into various deep learning models,
including RNN, GRU, CNN, and LSTM, each of which learns the patterns necessary for accurate soil erosion
classification. The model performance is further enhanced using Random Search or Grid Search for hyperparameter
optimization, ensuring that each model is fine-tuned for optimal accuracy. After the training phase, the models
undergo classification and evaluation using the testing set. The evaluation results determine whether the soil is
susceptible to erosion, represented by a binary output (Yes/No). This workflow not only leverages the strengths of
multiple deep learning architectures but also integrates systematic optimization and data preparation techniques,
making it a powerful solution for soil erosion prediction and land management planning.

The selection of specific deep learning architectures was motivated by the nature of the input data. Convolutional
Neural Networks (CNNs) were chosen due to their ability to extract local spatial dependencies from gridded
environmental variables, such as topographic slope, ground cover, and soil composition arranged in raster-
like formats. Recurrent architectures (RNN, LSTM, GRU) were selected to model the temporal dynamics of
rainfall erosivity and land use practices across monitoring periods. These time-dependent features naturally align
with sequential modeling, making recurrent networks appropriate for capturing erosion trends over time. For
reproducibility, the full architectural configuration of each model is summarized in Table 1, including layer types,
number of units, and activation functions.

Table 1. Architectural configuration of the proposed deep learning models

Model Layer Type Units/Filters Activation Function
CNN Conv1D + MaxPooling + Dense 64 filters + 2 Dense layers (128, 64) ReLU, Softmax
RNN SimpleRNN + Dense 100 + 64 units tanh, Softmax

LSTM LSTM + Dropout + Dense 100 + 64 units tanh, Softmax
GRU GRU + Dropout + Dense 100 + 64 units tanh, Softmax
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Figure 2. The proposed Methodology of Soil Erosion prediction.

To provide a more comprehensive search for optimal model performance, additional hyperparameters were
included in both the Random Search and Grid Search optimization routines. These included learning rate (ranging
from 0.0001 to 0.01), optimizer type (Adam, RMSprop, SGD), and model depth (number of dense/recurrent layers:
2–4), in addition to batch size and epoch count. Each combination was evaluated using stratified 10-fold cross-
validation to ensure reliability.

Moreover, a comparative analysis of computational efficiency was conducted between the two search strategies.
On average, Random Search achieved comparable performance to Grid Search while requiring approximately 30%
fewer iterations and 40% less total execution time. This makes Random Search a more practical choice for users
with limited computational resources or time constraints.

The optimization process was guided by the binary cross-entropy loss function, defined as:

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (1)

where yi is the true label and ŷi is the predicted probability. Model parameters were updated using the Adam
optimizer, which computes adaptive learning rates for each parameter as follows:

mt = β1mt−1 + (1− β1)gt (2)

vt = β2vt−1 + (1− β2)g
2
t (3)

m̂t =
mt

1− βt
1

(4)

v̂t =
vt

1− βt
2

(5)

θt+1 = θt − α
m̂t√
v̂t + ϵ

(6)

where gt is the gradient at time step t, α is the learning rate, and β1, β2 are decay rates for the first and second
moment estimates, respectively.
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3. Results

In this study, four baseline deep learning models—namely single CNN, RNN, LSTM, and GRU—were
implemented alongside twelve comparative models that integrate hyperparameter optimization techniques. These
include models optimized through Random Search (RS CNN, RS RNN, RS LSTM, RS GRU) and Grid Search
(GS CNN, GS RNN, GS LSTM, GS GRU), all applied to soil erosion prediction data. The experimental setup
and model implementation were carried out using Python, leveraging the Google Colaboratory environment with
the Keras deep learning library. To assess model performance, five evaluation metrics were employed: accuracy,
precision, F1-score, recall, AUC, and MCC. To mitigate overfitting and enhance generalization, each model was
trained using varying hyperparameter configurations including epochs = [10, 50, 100], batch sizes = [10, 20, 40,
60, 80, 100], and a dropout rate of 0.1. The dataset was randomly divided into 70% for training and 30% for
testing, and to ensure robust validation, the model training and testing phases were repeated 10 times to account
for variability due to random sampling. The optimal hyperparameters obtained using the Random Search and Grid
Search methods are summarized in Table 2 and Table 3, respectively.

Table 2. Parameters of suggested models utilizing random search.

Model Best Parameters
RNN batch size = 40

epochs = 100
CNN batch size = 40

epochs = 50
LSTM batch size = 10

epochs = 100
GRU batch size = 100

epochs = 100

Table 3. Parameters of suggested models utilizing grid search.

Model Best Parameters
RNN batch size = 80

epochs = 100
CNN batch size = 60

epochs = 100
LSTM batch size = 100

epochs = 100
GRU batch size = 100

epochs = 100

In this paper, Accuracy, Precision, Recall, F1-score, AUC and MCC metrics where it were calculated based on
the confusion matrix. The formula for each measure is [15, 16, 17]:

Accuracy =
TN + TP

TP + TN + FP + FN
× 100 (7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)
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F1-score =
2× TP

2TP + FP + FN
(10)

AUC =
1

2

(
TP

TP + FN
+

TN

FP + TN

)
(11)

MCC =
(TP × TN)− (FN × FP )√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(12)

Table 4 presents the comparative results of the baseline models: single CNN, single RNN, single LSTM, and single
GRU. Meanwhile, Table 5 summarizes the results of optimized models in both optimizers (Random search and grid
search), including RS CNN, RS RNN, RS LSTM, RS GRU, GS CNN, GS RNN, GS LSTM, and GS GRU. From
the analysis, the CNN model and its variations (GS CNN, RS CNN) along with GS RNN and RS RNN achieved
the highest accuracy of 98.592%, outperforming the other models. Notably, the CNN model also demonstrated
the fastest execution time, completing in just 18 seconds. Conversely, the GRU model exhibited the lowest
performance, recording an accuracy of only 91.549%.

To improve evaluation rigor, stratified 10-fold cross-validation was employed across all models. This approach
ensures that each fold preserves the original class distribution, which is particularly important for avoiding bias
in datasets with potential imbalance. Model performance was reported as the average of metrics obtained over all
folds, improving the statistical reliability of our results.

figure 3 displays mean accuracy with standard deviation across 10-fold stratified cross-validation for each model.
CNN achieves the highest and most consistent performance, followed by RNN, while GRU shows the lowest
accuracy and highest variability.

Table 4. Evaluation Results of Single Deep Learning Models

Model Accuracy Precision Recall F1 Score ROC AUC MCC
LSTM 92.958 90.00 93.103 91.525 0.930 85.540
GRU 91.549 87.097 93.103 90.00 0.918 82.835
RNN 97.183 96.552 96.552 96.552 0.971 94.171
CNN 98.592 96.667 100.00 98.305 0.988 97.142

Table 5. Evaluation Results of Comparative Analysis Models (Random Search and Grid Search)

Model Accuracy Precision Recall F1 Score ROC AUC MCC
RS RNN 98.592 100.00 96.552 98.246 0.983 97.111
GS RNN 98.592 96.667 100.00 98.305 0.988 97.142
RS CNN 98.592 96.667 100.00 98.305 0.988 97.142
GS CNN 98.592 96.667 100.00 98.305 0.988 97.142

RS LSTM 95.775 96.429 93.103 94.737 0.954 91.248
GS LSTM 97.183 100.00 93.103 96.429 0.966 94.272
RS GRU 94.366 90.323 96.551 93.333 0.947 88.612
GS GRU 92.958 87.50 96.552 92.169 0.935 85.976

Table 6 presents a comparative analysis of the computational cost between Random Search and Grid Search
across all deep learning models. The results indicate that Random Search consistently required fewer iterations and
less total time, making it a practical choice for time-sensitive or resource-limited applications.

The AUC represents the area under this curve, with a higher value indicating better model performance as shown
in Figure 4. It shows the results of the models single CNN, single RNN, single LSTM and single GRU. In addition
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Figure 3. Mean accuracy with standard deviation across 10-fold stratified cross-validation for each model.

Table 6. Comparison of Random Search and Grid Search in terms of computational time and iteration count

Model Search Method Iterations Total Time (minutes)
CNN Random Search 15 12

Grid Search 25 19
RNN Random Search 16 13

Grid Search 26 21
LSTM Random Search 18 17

Grid Search 30 28
GRU Random Search 17 16

Grid Search 27 26
Average Random Search 16.5 14.5

Grid Search 27.0 23.5

to, it shows the results of comparative analysis models RS CNN, RS RNN, RS LSTM and RS GRU and shows
the results of comparative analysis models GS CNN, GS RNN, GS LSTM and GS GRU.

Figure 6 displays key performance metrics across various deep learning models, including base models and their
optimized counterparts using Random Search (RS) and Grid Search (GS). From the chart, the GS LSTM model
achieves the highest values in almost all metrics: 100% precision, 93.103% recall, 96.4286% F1-score, and an MCC
of 94.272, showcasing its strong balanced performance. Similarly, GS CNN, RS CNN, and GS RNN all achieve
identical top values for recall (100%), F1-score (98.305%), and MCC (97.142), making them highly effective for
water potability classification.

In contrast, the base GRU and its RS and GS variants reflect lower performance in comparison to the other
models, with GRU showing the lowest MCC (82.835%) and F1-score (90%). While RS GRU and GS GRU
improve slightly, they still trail behind other optimized architectures. The chart overall indicates that CNN and
RNN architecture, particularly when optimized with RS or GS, consistently outperform others across all evaluation
metrics, making them more reliable choices for high-accuracy, balanced classification tasks.

Figure 5 displays training and validation loss curves for selected CNN and RNN models, showing stable
convergence and justifying optimal batch/epoch combinations.
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Figure 4. AUC plots of suggested models for Soil Erosion prediction.

To assess the added value of deep learning, we trained logistic regression and decision tree classifiers on the
same dataset using standard preprocessing. Table 7 shows that while these simpler models achieved reasonable
accuracy (87.71% and 89.41%), they significantly underperformed compared to CNN and RNN ( 98.59%). This
performance gap highlights the superiority of deep learning in capturing complex nonlinear interactions among
environmental variables.

Table 7. Comparison of baseline machine learning models with deep learning architectures

Model Accuracy (%) F1 Score (%) AUC
Logistic Regression 87.71 88.30 0.901
Decision Tree 89.41 89.65 0.912
GRU (best variant) 94.37 93.33 0.947
LSTM (best variant) 97.18 96.43 0.966
RNN (RS variant) 98.59 98.25 0.983
CNN (GS variant) 98.59 98.31 0.988

The comparative analysis in table 8 highlights the evolution of soil erosion prediction models using the same
dataset of 236 instances. Study [2] proposed a hybrid SSAO-MARS model, achieving around 96% accuracy
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Figure 5. Training and validation loss curves for selected CNN and RNN models

Figure 6. Performance evaluation of suggested models.

through metaheuristic optimization. Study [20] evaluated classical machine learning algorithms, with the RVM
model performing best at 91.94% accuracy and an AUC of 0.97. Study [21] introduced an RS-RF model, improving
predictive accuracy to 97.4% through random search optimization. In contrast, the current study employed deep
learning architectures (CNN, RNN, LSTM, GRU) optimized via Grid Search and Random Search, reaching a
superior accuracy of 98.592%. These results demonstrate that deep learning models, particularly when combined
with optimization strategies, outperform traditional and hybrid machine learning approaches in predicting soil
erosion, offering greater potential for real-world land management applications.
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Table 8. Comparative analysis between the proposed methodology and other studies using the same dataset.

Study Model Optimization Accuracy
[2] MARS Social Spider Algorithm (SSA) ∼96%
[20] FKNN, ANN, SVM, LSSVM, RVM - 91.94% (RVM)
[21] Random Forest Random Search 97.4%

Proposed CNN, RNN, LSTM, GRU Grid Search & Random Search 98.592%

4. Conclusion

In this study, we investigated the application of deep learning models—CNN, RNN, LSTM, and GRU—optimized
using Grid Search and Random Search techniques for predicting soil erosion. The dataset, collected from erosion-
prone regions, included key environmental and soil-related features influencing erosion patterns. Evaluation using
six performance metrics demonstrated that the CNN, GS CNN, GS RNN, RS CNN, and RS RNN models achieved
superior predictive performance, with CNN achieving the highest accuracy of 98.592%. These findings underscore
the effectiveness of combining deep learning architectures with hyperparameter optimization in enhancing soil
erosion prediction accuracy, which can significantly aid decision-makers in planning sustainable land management
and conservation strategies. For future work, we plan to explore larger and more diverse datasets that capture
seasonal and regional variations to further validate the model’s generalizability. Additionally, integrating remote
sensing data, elevation models, and real-time weather information could improve the spatial and temporal
precision of the predictions. Expanding the study to include ensemble learning and hybrid optimization techniques
[18, 19], such as Bayesian optimization or evolutionary algorithms, may also yield better performance. Moreover,
implementing explainable AI (XAI) techniques can provide more transparency in model predictions, supporting
better trust and adoption among environmental scientists and policymakers.

To further enhance the generalizability and robustness of our model, future work will focus on expanding the
dataset by incorporating data from more diverse geographic regions and climatic zones. This includes soil erosion
observations from arid, temperate, and tropical areas, as well as integrating multi-seasonal and multi-year data to
capture temporal variability. We also plan to utilize publicly available geospatial data and satellite imagery (e.g.,
Landsat and Sentinel missions) to enrich the dataset with additional terrain, vegetation, and hydrological features.

Additionally, to mitigate overfitting and improve model performance on potentially imbalanced datasets, we plan
to apply advanced data augmentation techniques. This includes synthetic minority oversampling (e.g., SMOTE)
for class balancing and the use of transfer learning by fine-tuning models pre-trained on related tasks in the
geospatial or environmental domains. We will also explore regularization strategies such as adaptive dropout, batch
normalization, and L2 weight penalties to further enhance model generalization on unseen data.

From a practical perspective, the trained CNN and RNN models are suitable for real-time inference once
deployed, given their relatively low latency and computational footprint. They can be integrated into cloud-based
or edge-computing systems that process continuous data streams from IoT sensors (e.g., soil moisture probes) or
remote sensing platforms (e.g., Sentinel-2 or Landsat). With proper data ingestion and preprocessing pipelines, the
models can support near real-time soil erosion monitoring at scale.

To facilitate policy-making and land-use planning, future deployment efforts will focus on integrating
model predictions with Geographic Information Systems (GIS). This involves exporting the model’s outputs as
georeferenced raster layers (e.g., GeoTIFFs) that can be visualized in platforms such as ArcGIS or QGIS. When
layered over environmental and infrastructure maps, these outputs can help policymakers identify high-risk zones,
prioritize conservation efforts, and design data-driven intervention strategies.
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