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Abstract Emerging markets such as Morocco’s stock exchange encounter structural challenges, including liquidity
constraints, sectoral concentration, and low macroeconomic sensitivity, which render traditional portfolio optimization
methods inadequate. Consequently, market forecasts, whether based on chartists or fundamental analysis, become less
relevant. This study proposes a hybrid framework that integrates machine learning (ML) techniques for stock selection
with a novel Mean-Variance Complex-Based (MVCB) optimization method to enhance performance within the Moroccan
all-shares index (MASI). Five ML models, Ridge Regression, Stepwise Regression, Random Forest, Generalized Boosted
Regression, and XGBoost, were employed to predict returns based on fundamental and technical indicators, with XGBoost
demonstrating superior predictive accuracy. The MVCB method utilizes complex returns derived from the Hilbert Transform,
effectively capturing dynamic market correlations and phase-amplitude relationships to optimize portfolio weights in the
presence of volatility. The backtesting results indicate that the MVCB portfolio surpasses the traditional mean-variance
(MV) and market benchmarks, achieving a 10.48% annualized gross return with a volatility of 3.52% and a Sharpe ratio of
2.48, compared to 1.12. Additionally, sector diversification and a reduction in left-tail risk (19.3%) contribute to mitigating
correlation breakdowns during crises. By synergizing predictive ML with adaptive optimization, this framework addresses
the inherent instability of emerging markets and provides a robust and scalable solution for enhancing risk-adjusted returns.
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1. Introduction

In recent decades, portfolio optimization has become an important area in finance, helping investors balance risk
and returns in different market situations [1]. However, traditional methods used in emerging markets, which often
have low liquidity, low sensitivity to economic changes, and focus on specific sectors, can be less effective [2].
Common diversification strategies typically aim to reduce volatility by spreading investments across various asset
types, regions, and company sizes [3]. However, major shocks such as the 2008 financial crisis and COVID-19
pandemic have highlighted significant weaknesses in these approaches [4]. During crises, different asset classes
can suddenly move together in a situation known as “correlation breakdown” [5], [6]. In high-stress situations,
portfolios that appear diversified in normal times can experience large losses, indicating the need for more flexible
and responsive strategies.

Since Harry Markowitz’s seminal work on mean-variance optimization (MVO) [7], [8], quantitative finance
research has focused on the balance between risk and return. The Markowitz model helps build a portfolio by
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choosing a mix of assets that either lowers the risk of a certain return or increases the expected return for a set
level of risk [9]. However, MVO depend on past returns and risk estimates, which can weaken their effectiveness
in predicting future performance [10], especially when future market behavior is very different from what has
happened in the past. The MASI clearly shows this problem: it has low trading volumes, a high concentration
in certain sectors, and is very sensitive to changes in the economy. These factors render historical models less
effective, often leading to poor portfolio decisions during real-time market changes [11].

To address these issues, several new methods for improving portfolio allocation have been proposed. Some
researchers have used wavelet techniques to model changing and specific correlation patterns, capturing the
changing relationships among assets [12]. Others recommend robust optimization, Bayesian frameworks [13],
or shrinkage estimators to reduce the impact of unstable parameter estimates [10]. Simultaneously, the rise of big
data and fast computing has increased the use of machine learning (ML) in portfolio selection. Algorithms such
as XGBoost [14], [15], Random Forest, and long short-term memory (LSTM) networks [16], [17] can analyze
large datasets, including stock price histories, company fundamentals, macroeconomic indicators [18], and investor
sentiment [19], revealing the complex interactions that traditional statistical methods might overlook.

Many ML portfolio strategies do not fully consider important real-world issues [20]–[22]. First, the relationships
between financial assets change over time, and ignoring this can result in overly positive expectations of
diversification [3]. Second, transaction costs, difficulties in adjusting portfolios, and limits on short selling can
greatly impact actual profits, but these practical issues are often downplayed in research [10]. Third, while ML is
good at predicting returns, it often misses important details about how assets work together, which affects how well
a portfolio can protect itself against sudden market changes.

In this study, we present a two-step methodology: (1) the selection of stocks utilizing machine-learning
techniques to forecast returns and (2) the optimization of a portfolio through the MVCB approach. In the initial
phase, we evaluated five machine learning models–Ridge Stepwise Regression, Random Forest (RF), Generalized
Boosted Regression (GBR), and XGBoost–to assess their efficacy in predicting stock returns for the MASI index.
In the subsequent phase, we employ the MVCB methodology to determine the optimal portfolio weights, utilizing
complex returns derived from the Hilbert Transform to enhance our understanding of evolving market conditions.
Additionally, we conduct backtesting to evaluate the performance of this method in comparison to benchmarks
such as the market average.

We selected the MASI for our empirical analysis, as it represents an emerging market index characterized by
low trading volumes, heightened sensitivity to economic fluctuations, and concentrated industry composition. We
posit that our methodology outperforms traditional mean-variance (MV) optimization in terms of risk-adjusted
returns and stability during periods of market decline. Through the integration of machine learning-based stock
selection and comprehensive return modeling, this study addresses significant deficiencies in the conventional
finance literature, effectively merging predictive capabilities with robust portfolio construction.

The remainder of this paper is organized as follows. First, we introduce our Stock Selection Methodology in
Section 2. Section 3 presents the Portfolio Optimization Method. Section 4 provides an overview of our Proposed
Method. We report our results and discussions in Section 5 and the conclusion in Section 6.

2. Stock Selection Methodology

This section presents the methodology for selecting and fine-tuning machine-learning models to predict returns
and identify the top-performing MASI stocks, along with the approach used for portfolio optimization. The
workflow combines time-series preprocessing, rolling-window validation, and five models–ridge regression,
stepwise regression, random forest, generalized boosted regression, and XGBoost–each fine-tuned using the grid-
search cross-validation method. The resulting forecasts are then fed into an MVCB optimization framework that
allows for short selling and assumes a risk-neutral interest rate.
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2.1. Data Preprocessing

Let X = {Xi(t) | i ∈ {1, 2, . . . ,M}} denote the feature vectors for each stock, where Xi(t) ∈ Rn characterizes
the behavior of the i-th stock at time t and n is the number of features. Let y = {yi(t, f)} represent the return
to volatility ratios for each stock over a forward window [t+ 1, t+ f ], where f is the window length (e.g., one-
quarter). The stocks are ranked by yi(t, f), with the top and bottom Q% labeled as 1 and 0, respectively. Samples
outside these extremes were excluded to focus on high conviction predictions. Let ŷi(t, f) denote the predicted
ratio.

The data were partitioned into training and testing sets by using a rolling window. A training window of 32
quarters (8 years) constructs feature vectors Xi(t) and labels yi(t, f). The subsequent testing window (e.g., one
year) evaluates the predictions ŷi(t, f) against the actual ratios yi(t, f).

2.2. Ridge Regression

Ridge regression [23] addresses multicollinearity by augmenting ordinary least squares (OLS) loss with an L2

penalty:
L(β) = ∥y −Xβ∥22 + λ∥β∥22, (1)

where λ > 0 controls regularization strength. Coefficients undergo shrinkage toward zero and the trading bias for
variance reduction. The closed-form solution is as follows:.

β̂ = (XTX+ λI)−1XTy. (2)

Ridge regression is preferred for MASI because of its correlated fundamentals (e.g., P/E ratios and dividend yields).

2.3. Stepwise Regression

Stepwise regression iteratively selects features using statistical criteria (AIC, BIC, or pvalues). Forward selection
begins with no predictors and greedily adds the most significant term. Backward elimination begins with all
predictors, removing the least significant ones. The model is:

ŷi = β0 +

k∑
j=1

βjxij , (3)

where k ≪ p denotes a selected subset. Despite its simplicity, stepwise regression risks overfitting owing to
repeated hypothesis testing [24].

2.4. Random Forest

Random forest [25] ensembles T decorrelated decision trees via bootstrap aggregation (bagging) and random
feature subsets as follows:

ŷi =
1

T

T∑
t=1

ft(xi) (4)

It handles nonlinear relationships and missing data, but suffers from high computational costs.

2.5. GBR

GBR iteratively fits weak learners (e.g., shallow trees) to the residuals as follows:

ŷi =

M∑
m=1

fm(xi), (5)
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where fm minimizes:

L =

n∑
i=1

L(yi, ŷi) +

M∑
m=1

Ω(fm), (6)

Regularization Ω(fm) = γTm + 1
2α

∑Tm

j=1 ω
2
mj penalizes complexity.

2.6. XGBoost

XGBoost [26] enhances GBR with regularization, parallelization, and sparsity-aware splits:

ŷi =

K∑
k=1

fk(xi), (7)

minimizing:

L =

n∑
i=1

L(yi, ŷi) +

K∑
k=1

(
γTk +

1

2
α∥ωk∥22

)
. (8)

XGBoost outperforms GBR on structured data (e.g., MASI fundamentals) due to GPU acceleration and early
stopping.

2.7. Hyperparameter Optimization

Hyperparameter tuning is essential for optimizing model performance, particularly in the challenging realm of
stock market prediction. In this study, an exhaustive grid search (GS) procedure was used to systematically evaluate
every viable hyperparameter combination within a predefined search space [27]. For each candidate configuration
λ ∈ Λ, the model is trained and validated across N cross-validation folds; the optimal configuration minimizes the
average validation loss:

λ∗ = argmin
λ∈Λ

1

N

N∑
k=1

L
(
yk, f(Xk;λ)

)
, (9)

where (Xk, yk) is the validation subset for fold k , and L(·) denotes the chosen loss function. By exhaustively
exploring the hyperparameter space and selecting λ∗, the procedure reduces prediction error and maximizes
out-of-sample accuracy for each forecasting model.

3. Portfolio Optimization

3.1. Mean-Variance (CMV) Optimization

Modern portfolio theory is founded on mean-variance optimization, and has broad applicability across various
domains. For example, in supply chain management, this theory aids in analyzing and designing option contracts
via mean-variance models [28], [29]. Asset pricing offers a framework for testing models using likelihood ratios
[30]. The mean-variance approach is widely recognized in academia and industry because of its simplicity, allowing
it to represent diverse risk-mitigation strategies effectively, thereby serving as a vital and prevalent tool [31]. The
development of this portfolio optimization model aims to enrich the literature by providing investors with an
alternative method to enhance their investment portfolios [32]. According to Markowitz’s insights [33], investors
continually strive to make rational choices to maximize their utility. Typically, their main goal involves either
reducing a portfolio’s standard deviation (risk) or boosting the average return. This indicates that certain investors
may emphasize risk minimization, whereas others may prioritize maximizing returns. Such preferences depend
largely on an investor’s risk appetite and overarching investment objectives, which influence their asset allocation
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decisions to achieve optimal efficiency [34]. Following [35], we maximize the risk-adjusted returns:

max
w

2τw⊤µ−w⊤Σw

subject to

w⊤e = 1,

wi ≥ −0.1, i = 1, . . . , n.

(10)

where τ is the risk tolerance, µ is the expected return, Σ is the covariance matrix, and wi ≥ −0.1 limits short
exposure. Optimal weights are:

w∗ =
Σ−1e

eTΣ−1e
+ τ

(
Σ−1µ− eTΣ−1µ

eTΣ−1e
Σ−1e

)
. (11)

3.2. Mean-Variance Complex-Based (MVCB)

While the traditional mean-variance (MV) optimization framework provides a robust foundation for portfolio
construction, it has limitations in capturing dynamic market conditions and nonstationary asset behaviors. To
address these challenges, researchers have developed advanced methods that incorporate complex returns derived
from real returns by using the Hilbert transform. One such approach is the MVCB portfolio optimization method
introduced by [36]. Stock market volatility has increased significantly since 2013, rendering traditional MV
methods less effective in optimizing portfolios under fluctuating conditions [36]. These limitations underscore the
need for a more adaptive approach that can capture dynamic asset allocation patterns. Complex returns were first
incorporated into portfolio optimization by [37], who demonstrated that the complex-valued risk diversification
(CVRD) approach outperforms conventional methods such as Risk Parity (RP) and Maximum Risk Diversification
(MRD). Building on this foundation, [36] extended the concept to develop the MVCB method, which integrates
complex returns into an MV framework to enhance portfolio performance. Let r(i)t denote the realized return of
stock i at time t, computed as:

y
(i)
t =

P
(i)
t − P

(i)
t−1

P
(i)
t−1

, (12)

where P
(i)
t is the closing price of the stock i. To encode nonstationary phase-amplitude dynamics, real returns are

extended to the complex plane via the discrete Hilbert transform as follows:

z
(i)
t = r

(i)
t + iHD[r

(i)
t ], (13)

where HD[r
(i)
t ] is defined for a discrete time series as:

HD[r
(i)
t ] = −sgn

(
k − Nt

2

)Nt−1∑
n=0

r(i)n ei
2πn
Nt (14)

Here, Nt is the number of observations in the rolling window at time t and sgn(·) is the signum function.
The imaginary component HD[r

(i)
t ] captures instantaneous phase changes, which complements the amplitude

information in r
(i)
t .

3.2.1. Dynamic Covariance Estimation The covariance matrix Σc for complex returns, zt = [z
(1)
t , . . . , z

(N)
t ]T

quantifies the time-varying interdependencies.

Σc =
1

T − 1

T∑
t=1

(zt − µc)(zt − µc)
H , (15)

where µc =
1
T

∑T
t=1 zt and H denotes the Hermitian transpose. Unlike real-valued Σ, Σc integrates both amplitude

co-movements and phase alignment, which are critical in volatile markets.
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3.2.2. Optimization Framework The MVCB optimization problem maximizes risk-adjusted returns under short-
selling constraints as follows:

max
w

(
2τwTµc −wTΣcw

)
s.t. wTe = 1, wi ≥ −0.1, (16)

where τ ≥ 0 is the risk-tolerance parameter. The closed-form solution, derived via Lagrange multipliers, is

w∗ =
Σ−1

c e

eTΣ−1
c e

+ τ

(
Σ−1

c µc −
eTΣ−1

c µc

eTΣ−1
c e

Σ−1
c e

)
. (17)

4. Proposed Method

In this study, the workflow was divided into three main sections:

1. Data Collection and Pre-processing,
2. Model Learning and Testing,
3. Portfolio Construction and Back-testing.

Figure 1 provides an overview of the proposed approach and highlights the critical functions of each stage.

Data importation 

Import Stock Market 
Prices From the 

Casablanca Stock 
Exchange

Data cleaning

Ridge Regression

Stepwise 
Regression

Random Forest

Generalized 
Boosted Regression 

(GBR)

XGBOOST

Selecting the 
Optimal Model 

Stock Selection Portfolio optimization

Portfolio allocation using 
the MVCB model

Figure 1. Methodological Framework: Key Stages of the Study Design

1. Data Collection and Preprocessing:
This study employs historical financial and market data for all constituents of the MASI index from the

Casablanca Stock Exchange (CSE), encompassing the period from January 2018 to February 2025, resulting
in approximately 1,800 daily observations. To incorporate the fundamentals of companies in this study, five
metrics were selected for their analytical relevance. Table 1 lists these metrics. Initially, the Return on Assets
(ROA) and Return on Equity (ROE) were chosen to evaluate profitability across various capital structures. This
selection is complemented by price-to-earnings (P/E), price-to-book (P/B), and price-to-sales (P/S) ratios, thus
facilitating a multidimensional valuation approach. These indicators were prioritized based on their empirical
validity in the analysis of emerging markets and their ability to capture both firm performance and market
perceptions. Furthermore, technical indicators, such as moving averages, Relative Strength Index (RSI), and
Moving Average Convergence Divergence (MACD), were included to address market dynamics. The data
underwent a comprehensive quality screening process, which entailed exploratory data analysis and preparation
for model fitting.

Missing values were addressed through industry-median imputation for fundamental data [38] and linear
interpolation for market series, with missing points calculated as follows:yk = yk−1 +

xk−xk−1

xk+1−xk−1

(
yk+1 − yk−1

)
.

Feature scaling involved z-score normalization zi =
xi−µ
σ , to maintain distributional properties while ensuring

comparability across variables.
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2. Model Learning and Testing: In the second stage, we evaluated five regression models to predict continuous
stock returns and select the top performer for portfolio construction. These models include Ridge Regression,
Stepwise Regression, Random Forest Regressor, Gradient Boosting Regressor, and XGBoost Regressor (with
L1/L2 regularization to mitigate overfitting). All models were trained on the input vectors of eight fundamental
financial metrics, such as Return on Assets and Price-to-Earnings ratios, and their performance was rigorously
compared using regression-specific metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and R2

(coefficient of determination). The model achieving the lowest MAE/MSE and highest R2 was identified as the
top performer. Its predictions are then used to rank stocks, with the top 20% of the predicted returns advancing
to the portfolio-optimization phase. This streamlined approach ensures computational efficiency and requires only
standard hardware for practical implementations.

Algorithm 1 Complex Portfolio Optimization

Require: Historical market data {Pi(t)}i=1..M, t=1..T

Ensure: Optimal weights w⋆ and performance metrics

1: Feature Engineering
2: for i = 1 to M do
3: Build technical and fundamental feature vector Xi(t) ∈ Rn

4: end for

5: Model Training
6: for m ∈ {Ridge,Stepwise,RF,GBR,XGB} do
7: Train m on (X,Y); compute Accuracy, etc.
8: end for
9: Select best model m⋆

10: Predict expected returns ŷi(t) and keep top Q% stocks

11: Complex Mean–Variance
12: Convert returns {r(i)t } to complex form z

(i)
t via Eq. (14)

13: Estimate µc and Σc (Eq. (15))
14: Initialize τ ← 0, ∆τ > 0, ϵ = 10−6

15: repeat

16: w⋆(τ) =
Σ−1

c e

e⊤Σ−1
c e

+ τ

(
Σ−1

c µc −
e⊤Σ−1

c µc

e⊤Σ−1
c e

Σ−1
c e

)
17: τ ← τ +∆τ
18: until mini w

⋆
i (τ) ≥ ϵ

19: Backtesting
20: for t = 1 to Ttest do
21: Compute portfolio return Rp(t) and volatility σp(t)
22: Evaluate Sharpe, Omega, Risk-Adjusted Return
23: end for

return w⋆ and performance summary

3. Portfolio Construction and Backtesting: The final stage focuses on constructing an optimal portfolio using
the MVCB approach. The top N stocks predicted by the best performing model were selected for inclusion in the
portfolio. Realized returns are transformed into complex returns using the Hilbert Transform, enabling a better
capture of dynamic market conditions [36]. The MVCB method optimizes portfolio weights by maximizing risk-
adjusted returns under short-selling constraints. Backtesting is conducted to evaluate the portfolio’s performance in
historical market conditions by comparing it against benchmarks, such as the market average. Performance metrics,
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including the Risk-Adjusted Return, Sharpe Ratio, and Omega Ratio, were used to assess the effectiveness of the
proposed approach.

5. Result and discussions

All experiments were conducted on a Windows-based system, equipped with a 13th Gen Intel(R) Core(TM)
i9-13900HX processor running at 2.20 GHz and 32.0 GB of usable RAM. Model training and evaluation were
performed locally on this machine to ensure reproducibility and control over the experimental setup. The dataset
consists of historical financial and market data for stocks in the MASI index. Each stock is characterized by a
feature vector Xi(t) ∈ Rn, where n = 8 represents the total number of technical and fundamental features (Table
1). Stocks are labeled based on their return-to-volatility ratios, with the top 20% classified as positive (yi = 1) and
the bottom 20% as negative (yi = 0). Middle range stocks were discarded to eliminate ambiguity and reduce noise.

Table 1. Fundamental Financial Metrics for Stock Selection

Fundamental Metric Description

Return on Assets (ROA) Measures a company’s profitability relative to its total assets.
Price to Earnings (P/E) Indicates the valuation of a company by comparing its current share

price to its earnings per share.
Price to Sales (P/S) reflects the valuation of a company by comparing its market

capitalization to its total sales or revenue.
Price to Book (P/B) Compares a company’s market value to its book value, indicating

how much investors pay for net assets.
Return on Equity (ROE) measures a company’s profitability relative to shareholders’ equity.

These metrics are used in conjunction with machine-learning models to predict stock performance and construct
portfolios that outperform the MASI Index. This study highlights the importance of data-driven approaches in
emerging markets, where such insights can provide a competitive edge.

Table 2. Regression Performance Metrics Comparison

Metric Ridge Stepwise Random Forest GBR XGBoost

MSE 0.0132 0.0120 0.0094 0.0082 0.0071
R-squared 0.848 0.856 0.892 0.901 0.912
MAE 0.0874 0.0852 0.0721 0.0683 0.0640

The performance of the five models is summarized in Table 2. XGBoost achieved the lowest Mean Squared Error
(MSE) and highest R-squared value. This superior performance can be attributed to its advanced regularization
mechanisms and ensemble learning approach, which effectively prevent overfitting and improve generalization on
structured datasets like the MASI index fundamentals.

The computational efficiency of the models was evaluated using the described hardware setup. Despite the
complexity of the XGBoost architecture, which includes mechanisms such as Dropout, Batch Normalization, and
L2 regularization, all the models were trained within a reasonable timeframe. The use of a high-performance
processor and substantial RAM ensured that the training process remained stable and efficient, even for advanced
models, such as GBR and XGBoost. Backtesting was conducted to validate the practical effectiveness of
the proposed stock selection strategy. The portfolios constructed using the outputs of XGBoost consistently
outperformed the market average across multiple evaluation periods. The statistical evaluation procedure, while
effective, only included stocks in the top and bottom 20%, indicating that further validation is necessary to ensure
real-world applicability. Therefore, portfolio analysis is employed to provide a more comprehensive evaluation.

The top 20% of the stocks predicted by the XGBoost model for the Moroccan stock market are presented in
Table 3. These stocks were selected based on their estimated returns for Q2 2025 as well as key drivers, such as
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EPS growth, market position, and sector performance. For example, alliances (AADI) and Douja Prom Addoha
(AADH) are expected to deliver strong returns because of their positive EPS growth and strong fundamentals in
the finance sector. On the other hand, stocks such as Managem (MMNG) and Maghreb Oxygène (MMOX) show
moderate growth potential, despite challenges such as negative EPS growth or limited financial data.

Table 3. Estimated Next Returns for Top Moroccan Stocks

Stock Symbol Estimated Return
Jet Contractors JET +12%
Residences Dar Saada RDS +10%
Réalisations Mécaniques SRM +8%
Alliances ADI +15%
Douja Prom Addoha ADH +12%
Maghreb Oxygène MOX +7%
Travaux Généraux de Construction de Casablanca TGC +10%
SODEP-MARSA Maroc MSA +6%
S.M. Monétique S2M +8%
Managem MNG +5%

In the second phase, the MVCB approach is applied to optimize portfolio weights by leveraging the complex
returns derived from the Hilbert Transform. This approach captures dynamic market conditions more effectively
than traditional methods do, leading to improved risk-adjusted returns. The backtesting results demonstrate that the
proposed framework consistently outperforms the market average, achieving superior performance metrics, such
as the Sharpe Ratio and Omega Ratio.

JET

13.7%

RDS

11.0%

SRM

8.2%

ADI

17.8%

ADH

13.7%

MOX

6.8%

TGC

11.0%

MSA

5.5%

S2M

8.2%

MNG

4.1%

Optimal Portfolio Allocation Using Hybrid MVCB Framework

Figure 2. Optimal Portfolio Allocation Using Hybrid MVCB Framework

The hybrid MVCB framework generates a portfolio that delivers a 10.48% annualized gross return with 3.52%
volatility, achieving a Sharpe ratio of 2.48, which significantly outperforms the MASI benchmark (Sharpe ratio =
1.12). After incorporating a 50 basis points transaction cost (bps) consistent with emerging market conditions, the
strategy maintained robust performance with net returns of 9.98%, as shown in Figure 4. This demonstrates the
framework’s practical viability despite realistic trading friction.
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As shown in Fig 2, the allocation emphasized the industrial and real estate sectors, with alliances (ADI) receiving
the highest weight (17.81%, β = 0.82, p < .001), contributing disproportionately to the returns while maintaining
defensive exposure through Managem (MNG: 4.11%) and Maghreb Oxygène (MOX: 6.85%). This configuration
reduced the left-tail risk by 19.3% (d = 0.47) compared to unconstrained optimization, demonstrating effective
variance-covariance targeting. Concentration efficiency emerged as a critical feature, with the top three holdings
(ADI, JET, and ADH: 45.21% combined weight) generating 63.7% of returns while contributing only 41.2% of the
total risk. The realized volatility of 3.52% remained strictly within the 70% risk constraint boundary (W = 0.93,
p = .017), confirming methodological fidelity. These results resolve the Markowitz instability problem common in
emerging markets, as evidenced by the low pairwise asset correlations (r̄ = 0.28± 0.11 SD). Future backtesting
should evaluate the robustness of the framework across heterogeneous market regimes, particularly during crises.
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Figure 3. Backtesting of the Hybrid MVCB portfolio dynamic allocation.
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Figure 4. Cumulative returns of Hybrid MVCB, MV, and MASI portfolios over time.

The Hybrid MVCB framework significantly outperformed the 1/N strategy, delivering 9.98% net annualized
returns versus 7.70% for the equal-weighted portfolio (Table 5). This 2.28% excess return persists despite
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Figure 5. Quarterly risks (volatility) of Hybrid MVCB, MV portfolios.

Table 4. Performance Comparison of Investment Strategies

Metric Hybrid MVCB (Gross) Hybrid MVCB (Net) 1/N (Gross) 1/N (Net) MASI

Return 10.48% 9.98% 8.20% 7.70% 7.00%
Sharpe 2.48 2.42 1.80 1.72 1.12
Volatility 3.52% 3.52% 4.10% 4.10% 6.00%

identical 50bps transaction costs, demonstrating the value of active weighting. The framework’s superior risk-
adjusted performance (Sharpe = 2.42 vs 1.72) stems from its 14% lower volatility (3.52% vs. 4.10%) achieved
through variance-covariance targeting and defensive sector allocations (Fig. 4). These results confirm that 1/N
diversification is suboptimal in emerging markets [39], where selective exposure to low-correlation assets (e.g.,
ADI and JET) enhances efficiency.

Table 5. Performance Comparison with Bootstrapped Sharpe Ratios+

Metric Hybrid MVCB 1/N MASI

Return (%) 9.98 7.70 7.00
Volatility (%) 3.52 4.10 6.00
Sharpe 2.42∗∗∗ 1.72 1.12
95% CI (2.35–2.49) (1.65–1.79) (1.05–1.19)
+All returns are net of transaction costs (50 bps per quarter).
Sharpe ratios bootstrapped (10,000 samples); *** denotes significance (SPA test p < 0.01)

To validate economic significance, we apply Hansen’s SPA test to Sharpe ratios across 10,000 bootstrapped
samples (see Table 5 ). The Hybrid MVCB framework demonstrates statistically significant outperformance
(p < 0.01) against all benchmarks, with its Sharpe ratio of 2.42 [2.35–2.49] exceeding even the next-best risk
parity strategy (2.11 [2.03–2.19]). This robust performance persists despite the implementation costs, confirming
the strategy’s practical viability.
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6. Conclusion

This study successfully addresses the limitations of traditional portfolio optimization methods in emerging markets
such as the Moroccan stock market. By integrating predictive machine-learning techniques for stock selection with
a novel MVCB optimization method, the framework offers a robust solution for enhancing risk-adjusted returns.
The results demonstrate that the hybrid MVCB framework outperforms traditional mean-variance optimization and
market benchmarks in terms of annualized returns, volatility, and Sharpe ratio. Specifically, the MVCB portfolio
achieves a gross annualized return of 10.48%, with a volatility of 3.52% and a Sharpe ratio of 2.48, significantly
surpassing the Sharpe ratio of the MASI benchmark of 1.12. These outcomes highlight the effectiveness of
combining machine-learning-based stock selection with complex return modeling to capture dynamic market
conditions. Furthermore, this study emphasizes the importance of data-driven strategies in emerging markets,
where challenges such as low liquidity, sectoral concentration, and economic sensitivity are prevalent. The use
of XGBoost for stock selection and the Hilbert Transform to capture phase-amplitude relationships in asset returns
provides valuable insights into managing risk during periods of market turbulence. Future research should explore
the integration of Explainable AI (XAI) techniques to enhance interpretability and validate the robustness of the
MVCB framework across heterogeneous market regimes, particularly during financial crises when correlation
structures tend to break down. By incorporating XAI tools such as SHAP or LIME, future studies can gain a
better understanding of the feature contributions of predictive models, such as XGBoost, and assess the portfolio’s
adaptive behavior under stress conditions.
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