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Abstract In this paper, we introduce a novel dynamic dropout (DDROP) based method for inducing sparsity in deep
neural networks. Our method works by adaptively dropping neurons or filters during the training phase. Unlike other
pruning techniques, DDROP determines the probabilities of dropping neurons based on their importance, with the use of a
ranking criteria derived from their activation statistics. Furthermore, we incorporate the ℓ1 regularization to suppress the least
important neurons, further enhancing the dynamic pruning process. We evaluate the proposed method on standard datasets
such as CIFAR-10, CIFAR-100, and ILSVRC2012 and various network architectures, showing the consistent enhancement
in the accuracy of the pruned models compared to other techniques. The results obtained from our evaluations highlight
DDROP’s promise as a strategy for efficient deep neural networks and its ability to achieve structured sparsity, reducing the
complexity of the model while keeping a satisfactory performance.
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1. Introduction

Over the past decade, Deep Learning has proven its ability to model complex functions to solve many problems,
yielding state-of-the-art results in many areas such as computer vision, NLP, and recently generative models for
text and image data [1]. These powers can be attributed to advances in hardware and algorithms, the abundance
of data in the digital age, and a better understanding of the intrinsic properties of Deep Neural Networks (DNNs).
Larger models have proven to be better, and efficient hardware has played a role in making training these larger
models faster [2, 3]. However, the demand for more powerful hardware has grown in recent years as deep
learning necessitates significant computational resources, a problem that is exacerbated by the practice of over-
parameterization. Although over-parametrized models show improved generalization compared to other models,
the practice presents a challenge when deploying these models for low-power devices, which have inherent
contrains on processing power, memory, and energy consumption.

To solve these problems, DNN compression is applied. This area of research has received significant attention
in the past few years [4], researching methods for achieving greater efficiency in deep neural networks by pruning
unnecessary parameters or operations, while keeping the accuracy of the model as much as possible. Among the
categories of methods studied in recent works, filter pruning is one of the simplest but most significantly studied
methods for obtaining more efficient models. Filter pruning aims to identify and eliminate unnecessary filters
from convolutional neural networks, therefore reducing the model’s size and computational requirements without
degrading its performance too much.

Recent works have studied filter pruning as an avenue for more efifcient neural networks [5, 17]. The efficiency
of this family of methods stems from the fact that numerous filters in CNNs are redundant or have little to no
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impact on the overall accuracy of the model [18]. Removing these superfluous filters creates more compact models
that require less resources. However, filter pruning requires the identification of unnecessary filters that can be
eliminated without sacrificing accuracy. Many criteria have been proposed by researchers to select these filters,
including the magnitude, activation values, and sensitivity [5, 17].

Certain pruning methods use the statistical properties of the weights, such as the variational Bayesian
methods [19], whereas others train networks from the ground up with pruning in in mind to enable the network to
adapt to the pruned parameters and optimize its architecture [20]. By applying the right filter pruning techniques,
the networks can be slimmed down to increase their speed and lower their memory requirements, without
sacrificing their cutting-edge performance.

This paper proposes a novel pruning approach using random dropout with ℓ1-regularization applied to
BatchNorm scaling factors to promote sparsity. We use filter importance as a criteria to determine importance,
and from it dropout probabilities to deactivate less important filters dynamically. Our method allows the networks
to explore various sparsity configurations during training, enhancing adaptability and robustness. The experiments
that we conducted have shown that dynamic dropout produces compact models with better accuracy.

A key motivation behind this work is the pressing need to train or fine-tune highly sparse neural networks
that maintain competitive performance even after significant pruning. As modern deep learning applications
increasingly target deployment on edge devices with limited computational and memory resources, it becomes
crucial to develop methods that encourage sparsity early in the training process. Traditional pruning techniques
often operate post hoc, requiring long retraining or fine-tuning to recover performance losses. In contrast, methods
that integrate sparsity-promoting mechanisms during training can yield models that are inherently more robust to
parameter removal. This paper addresses this need by proposing a dynamic dropout-based pruning strategy that
encourages sparsity through ℓ1-regularization on BatchNorm scaling factors, enabling the training of models that
are both efficient and accurate, with minimal performance degradation after pruning.

2. Related Works

The four main categories of neural network compression techniques are pruning, quantization, knowledge
distillation, and matrix factorization. These strategies can frequently be used to provide more significant
performance gains and are not exclusive of one another [21]. Because they can simultaneously increase neural
network efficiency and generalization, pruning and regularization techniques have drawn a lot of interest among
them.

The first family of methods is pruning, which has two sub-families: structured or coarse-grained pruning and
unstructured or fine-grained pruning. Unstructured pruning removes individual connections (weights) to zero,
these zeroes out connections may be excluded from computation and stored efficiently as sparse matrices. Sparse
matrix multiplication, however, are more difficult to optimize on the hardware level [25]. Structured pruning, on
the other hand, removed entire neurons, filters, or groups of parameters, resulting in a reduced model size while
maintaining a structure that can be used with modern hardware efficiently [22, 23]. Popular criteria for selecting
redundant neurons include the ℓ1-norm of the weights [5], other works have also used group LASSO [17], while
some works used penalty functions that zero neuron activations during training [24]. While unstructured pruning
is more advantageous from an accuracy standpoint, structured pruning is currently preferred for its hardware-
friendly properties. More recently, zero-shot and semi-structured methods like Wanda [7] and Adaptive Sparse
Trainer (AST) [8] have shown strong results on large language models, while differentiable pruning strategies have
emerged that learn sparse topologies via SGD [9]. Comprehensive surveys continue to consolidate best practices
in pruning for various domains [6].

Regularization and dropout are complementaty to pruning, with dropout being initially introduced to combat
overfitting in models by randomly dropping neurons [26]. The ℓ1-regularization is another regularization technique
that was introduced to combat overfitting in neural networks [27]. It is applied to parameters to penalize large
weights, and shrinking the magnitude less important connections. The combination between regularization and
pruning improves model generalization, while also promoting sparsity in the network weights.
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Another family of methods is quantization, which relies on the fact that some neural networks can tolerate
less precise weights. While most neural networks are trained using the standard floating-point 32, which offers
sufficient precision to represents weights, early works have studied the use of 8-bit weights in neural networks and
demonstrated that they can be quantized to reduce their size and computational complexity [28]. Lower precision
weights are not only smaller to store but also faster to compute in hardware, while the accuracy drop can be made
quite small depending on the strategy. Modern techniques have experimented with 4-bit [29] and even ternary
networks [30], which can effectively reduce memory requirements and latency with optimal performance drop.
Recent surveys [10] and toolkits [11] have also targeted large language models specifically, where quantization
methods like GPTQ and AWQ are commonly deployed for inference efficiency.

Knowledge distillation (KD), another prominent technique, involves training a smaller model (the student)
using knowledge extracted from a larger model (the teacher) [31]. This approach enables architectural flexibility
and is particularly useful for transferring knowledge from large language models like BERT or GPT [32, 33].
Knowledge distillation involves training a smaller neural network (student) to emulate the behaviour of a larger
model (teacher) [12]. The approaches have been used extensively to train neural efficient neural networks using
the knowledge from larger model, particularly for language models, and vision transformers [34]. New block-wise
and multi-stage KD methods like CBKD [14] have shown improved compression without loss in accuracy, and
surveys [13] highlight KD’s growing role in distilling foundation models and transformers.

Matrix factorization is the last family of technique, which aims to reduce network size by decomposing weight
tensors into smaller, low-rank matrices [35]. These methods are especially useful for networks with residual
connections, as it preserves input-output compatibility while significantly reducing parameter counts. Recent work
has introduced adaptive-rank strategies that select the decomposition rank based on spectral entropy [16], and
post-training tuning methods like Rank-Tuning [15] that offer a lightweight alternative to full retraining.

3. Proposed Method

3.1. Dynamic Dropout

We propose a dynamic dropout function, which randomly drops neurons or filters during the training phase to
encourage more sparse solutions. Random dropout is a widely used technique to reduce overfitting in neural
networks, and our proposed method builds upon it to promote filter sparsity. During training, we assign dropout
probability to each neuron depending on their estimated importance, enabling dynamic pruning.

We determine the dropout probability of a neuron by assigning a significance score si to it. The significance
score may be based on different criteria such as ℓ2-norm of the weights, the average momentum of the gradients,
or the weight of normalization layers such as BatchNorm or LayerNorm. Once the importance scores are obtained,
each neuron is ranked to calculate its dropout probability. The ith neuron’s rank is expressed as follows:

rank(si) =
∑
j ̸=i

1(sj ≤ si),

where 1(·) is a function whose output is 1 if the condition is true, and 0 when it is false. Normalizing the rank
creates the dropout probability pi, which falls within user-defined bounds pmin and pmax:

pi = pmin + (pmax − pmin)
rank(si)
n− 1

,

where n is the layer’s dimension (number of neurons or filters).
The computed probabilities, are used to generate the binary mask for each neuron by sampling from a Bernoulli

distribution:
maski ∼ Bernoulli(pi).

The mask is then applied to deactivate neurons in each training step, and recomputed for the next iterations to
evolve the masks as the network trains. The method, therefore, ensures the dropout remains independant for each
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item within the batch. Such dynamic probabilities enable the mode to eliminate less significant neurons during
training to promote sparsity of less critical features.

This framework makes use of principles of stochastic regularization and provides a method to promote structured
sparsity in convolutional neural networks, which creates better and more computationally efficient models.
Algorithm 1 presents the pseudo-code of our proposed method.

During inference, channels are pruned using their BatchNorm weight (γ). We opt for a pruning of the lowest n%
of parameters in each layer.

Algorithm 1 Batch Normalization with Dynamic Dropout

1: function DDROPBATCHNORM(x,weight, bias,mean, var,momentum, ϵ, p)
2: y ← BATCHNORM(x,mean, var, weight, bias,momentum, ϵ)
3: if training = False then
4: return y
5: end if
6: a← Rank of weight divided by its total elements
7: probs← pmin + a · (pmax − pmin)
8: mask ← SampleBernoulli(probs)
9: Broadcast mask to the same shape as y

10: y ← y ·mask
11: return y
12: end function

Additionally, the parameters pmin and pmax can be scheduled to move from an initial value (usually 1), and
gradually reduced to their final value during training. We propose two scheduling methods, defined for iteration i
as follows:

• Linear: pi = p+ (1− p) · (1− i
imax

)

• Cosine: pi = p+ (1− p) · cos( iπ
2imax

)

Both of these scheduling methods are applied to pmin and pmax simultaneously.

3.2. ℓ1 Regularization for Sparser Layers

Additionally, we promote sparsity with the ℓ1 regularization, applied to the BatchNorm weights, in addition to the
dynamic dropout mechanism. This regularization term penalizes larger amplitudes of the weights and minimizes
the relevance scores of the least significant neurons by directly affecting BatchNorm layer scaling factors.

Scaling factors, or γ, are critical for modifying neuron outputs. We intend to reduce the scaling factors of less
important neurons by providing a ℓ1 penalty on these weights, pushing the network to prioritize key features. The
regularization term ℓ1 is:

Lℓ1 = λ
∑
i

|γi|,

where λ is a regularization coefficient defined by the user that dictates the strength of the penalty, and γi represents
the scaling factor of the i-th neuron in a BatchNorm layer.

This regularization term is minimzed along with the loss function used for training, resulting in a combined
objective:

Ltotal = Ltask + Lℓ1 ,

where Ltask is the loss function that is chosen for the particular task (eg. cross-entropy for classification).
By introducing this regularization term, the network is urged to scale less important neurons less. This works with

the dynamic dropout method because neurons with lower BatchNorm weights are pruned during training because
to their lower significance scores. Therefore, the combined method promotes organized sparsity while conserving
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task-critical features. We found that combining ℓ1 regularization and dynamic dropout accelerates sparsification,
resulting in a more compact, competitive model.

3.3. Inference Phase

During inference, the stochastic components introduced by dynamic dropout are disabled to ensure that predictions
remain deterministic and reproducible. All modules revert to their full computational graph, and the dynamic masks
generated during training are no longer applied. Instead, neuron and filter importance is assessed solely through the
learned BatchNorm scaling factors γ, which serve as proxies for feature significance. By ranking channels within
each layer according to the magnitude of their γ parameters, it becomes possible to identify and remove the least
critical units.

To prune channels efficiently, a user-defined pruning ratio determines the fraction of channels to eliminate per
layer by selecting those with the smallest scaling weights. After pruning, the remaining network retains only the
most salient features, thereby reducing both its memory footprint and computational cost. This structured sparsity
yields faster inference times and lower energy consumption without further retraining. In practice, one may perform
a brief calibration pass on a representative validation set in order to fine-tune the pruning thresholds, balancing
model compactness with task performance.

The final pruned model preserves high accuracy by relying on the synergy between dynamic dropout during
training and BatchNorm-based selection during inference. By integrating structured sparsity from the outset, the
network gracefully adapts to reduced capacity, minimizing the discrepancy between training and deployment.
Consequently, this approach provides a practical solution for real-time applications and resource-constrained
environments while maintaining the integrity of the original task objectives.

4. Experimental Evaluation

This section presents the experimental results of the dynamic dropout (DDROP) strategy in encourage
neural network sparsity. We conduct experiments on CIFAR-10/100, as well as ILSVRC2012 utilizing the
ResNet18, ResNet34, and ResNet50 [36] architectures, as well as VGG11 BN, VGG13 BN [37], ViT [40],
and SwinTransformer [41]. The choice these network architectures come from their widespread use in image
classification and their complexity, which allows us to test our method’s scalability and effectiveness across network
sizes.

CIFAR-10 has 60,000 photos in 10 classes, whereas CIFAR-100 is harder with 100 classes and the same number
of images. Normalization and augmentation by randomly cropping and flipping the images horizontally were
applied to 50,000 training and 10,000 test samples. ILSVRC2012, also known as ImageNet, is a large scale
image classification dataset of over a million images comprising 1000 classes. Classification on the imageNet
dataset represents a challenging task for deep learning models and is widely used as a benchmark for classification
techniques. Our implementation is available at https://github.com/aftoul/ddrop.

After training the model, we prune neurons or filters based on their significance ratings and test the pruned model
before and after fine-tuning. Tests with and without dynamic dropout are compared:

• Standard: Models are trained with ℓ1 regularization and no DDROP has been applied.
• DDROP: Prunes neurons dynamically depending on their rank-derived probabilities during training, as

previously mentioned.

We also compare our method to two recent methods that tackle the issue of training prunable CNNs, those being
ASFP [38] and PGMPF [39]. We use code from the official implementations provided by their authors, and evaluate
them at the same compression threshold with our model. We conduct the experiments with the recommended
parameters for each method, and unless otherwise indicated, we do not use scheduling for DDROP.

All experiments used an RTX 3060 with 12GB VRAM and a Ryzen 5 CPU with 32GB of RAM. The experiments
used PyTorch, and the results are shown in the folowing subsections.
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Figure 1. Accuracy of the models on the test dataset during the initial training (left), and during fine-tuning (right)

4.1. CIFAR-10 Results

The neural networks were trained initially with the SGD optimizer, the training lasted for 200 epochs, with
20 warmup epochs and a maximum learning rate of 0.1 multiplied by 0.1 at 80 and 160 epochs. A batch
size of 128 was used, and the weight decay was set to λ = 10−3. The probabilities for DDROP were set at
(pmin, pmax) = (0.6, 1.0) for ResNet models, resulting in a 40% drop rate for less important items and no drop
for the more critical ones. For VGG, we found that a slightly lower value of pmin = 0.5 yielded better results. We
fine-tuned for 30 epochs to recover performance after trimming. 4 warmup epochs with a maximum LR of 0.02 for
ResNet and 0.01 for VGG were employed, and at 15 and 25, the LR was divided by 10.

Table 1. CIFAR-10 results comparing DDROP to different methods applied to different ResNet and VGG models. We also
present the FLOPs, CPU throughput (and speedup), and maximum memory allocation compared to the original.

Model Method Num. Params. Remaining Params. (%) Fine-Tuned Acc. (%) FLOPs Throughput (batch/s) Max. Memory (MB)

ResNet18 Standard 54,378 29.84 81.30 2.82 M 47 (1.48×) 10.90 (-0.45)
ASFP 54,378 29.84 80.44 2.82 M 47 (1.48×) 10.90 (-0.45)

PGMPF 54,378 29.84 81.32 2.82 M 47 (1.48×) 10.90 (-0.45)
DDROP 54,378 29.84 81.36 2.82 M 47 (1.48×) 10.90 (-0.45)

ResNet34 Standard 100,188 29.38 83.46 5.51 M 73 (1.42×) 12.00 (-0.87)
ASFP 100,188 29.38 83.31 5.51 M 73 (1.42×) 12.00 (-0.87)

PGMPF 100,188 29.38 84.07 5.51 M 73 (1.42×) 12.00 (-0.87)
DDROP 100,188 29.38 85.37 5.51 M 73 (1.42×) 12.00 (-0.87)

ResNet50 Standard 108,395 27.17 81.27 6.39 M 12 (1.17×) 12.17 (-0.98)
ASFP 108,395 27.17 85.97 6.39 M 12 (1.17×) 12.17 (-0.98)

PGMPF 108,395 27.17 85.76 6.39 M 12 (1.17×) 12.17 (-0.98)
DDROP 108,395 27.17 83.46 6.39 M 12 (1.17×) 12.17 (-0.98)

VGG11 BN Standard 1,172,827 12.02 88.16 14.56 M 14 (1.65×) 33.96 (-22.1)
ASFP 1,172,827 12.02 88.72 14.56 M 14 (1.65×) 33.96 (-22.1)

PGMPF 1,172,827 12.02 88.22 14.56 M 14 (1.65×) 33.96 (-22.1)
DDROP 1,172,827 12.02 89.45 14.56 M 14 (1.65×) 33.96 (-22.1)

VGG13 BN Standard 1,189,243 11.96 89.36 21.36 M 9.5 (1.61×) 34.27 (-22.5)
ASFP 1,189,243 11.96 90.32 21.36 M 9.5 (1.61×) 34.27 (-22.5)

PGMPF 1,189,243 11.96 89.71 21.36 M 9.5 (1.61×) 34.27 (-22.5)
DDROP 1,189,243 11.96 90.20 21.36 M 9.5 (1.61×) 34.27 (-22.5)

The results for CIFAR-10, presented in Table 1, demonstrate the capability of the DDROP pruning method
compared to the other tested approaches. We maintain similar parameter counts for each model, we observe
that DDROP achieves significantly higher pruned accuracy across all ResNet architectures except for ResNet50,
which is lower than both PGMPF and ASFP. For instance, in ResNet34, DDROP achieves a pruned accuracy of
26.56% compared to 8.92% with Normal pruning. This trend highlights the ability of DDROP to preserve essential
information during pruning. Furthermore, the fine-tuned accuracy of DDROP slightly outperforms Normal pruning
in all cases, suggesting its potential to yield more robust models post-pruning. DDROP significantly outperforms
all tested methods on VGG11 BN, but gets slightly surpassed by ASFP.
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Figure 1 juxtaposes the test accuracy of models in the initial training phase (left) with the fine-tuning phase
(right) for DDROP and standard pruning techniques across ResNet18, ResNet34, and ResNet50 architectures.

Although DDROP marginally diminishes accuracy in the early stages of training due to its dynamic dropout
mechanism, it produces models that are more conducive to pruning. During the fine-tuning phase, DDROP models
demonstrate excellent recovery and attain marginally superior final accuracy relative to the conventional method,
especially for ResNet34. These findings underscore DDROP’s capacity to reconcile early accuracy compromises
with enhanced fine-tuning efficacy, establishing it as a successful approach for structured pruning.

4.2. CIFAR-100 Results

For testing with CIFAR-100, we adopt the same methodology and hyperparameters as with CIFAR-10. Again, we
compare our method to PGMPF [39] and ASFP [38] to demonstrate its effectiveness.

Table 2. CIFAR-100 results comparing Standard pruning, PGMPF, ASFP, and DDROP for different ResNet models.

Model Method Num. Params. Remaining Params. (%) Fine-Tuned Acc. (%) FLOPs Throughput (batch/s) Max. Memory (MB)

ResNet18 Standard 228,700 32.07 59.11 10.84 M 33 (1.41×) 11.57 (-1.81)
ASFP 228,700 32.07 56.99 10.84 M 33 (1.41×) 11.57 (-1.81)

PGMPF 228,700 32.07 60.16 10.84 M 33 (1.41×) 11.57 (-1.81)
DDROP 228,700 32.07 60.32 10.84 M 33 (1.41×) 11.57 (-1.81)

ResNet34 Standard 416,524 30.94 64.19 21.94 M 21 (1.78×) 12.36 (-3.48)
ASFP 416,524 30.94 61.87 21.94 M 21 (1.78×) 12.36 (-3.48)

PGMPF 416,524 30.94 63.71 21.94 M 21 (1.78×) 12.36 (-3.48)
DDROP 416,524 30.94 64.23 21.94 M 21 (1.78×) 12.36 (-3.48)

ResNet50 Standard 470,154 30.72 61.30 23.57 M 4.75 (1.23×) 12.60 (-3.98)
ASFP 470,154 30.72 63.55 23.57 M 4.75 (1.23×) 12.60 (-3.98)

PGMPF 470,154 30.72 65.18 23.57 M 4.75 (1.23×) 12.60 (-3.98)
DDROP 470,154 30.72 62.12 23.57 M 4.75 (1.23×) 12.60 (-3.98)

Table 2 presents the CIFAR-100 results comparing Standard pruning, ASFP, PGMPF, and DDROP across various
ResNet models. Despite the generally lower pruned accuracies on CIFAR-100 due to its increased complexity
compared to CIFAR-10, notable differences among the pruning methods are evident. In ResNet18 and ResNet34,
DDROP achieves significantly higher pruned accuracies than Standard pruning and demonstrates superior or
comparable fine-tuned accuracies relative to the other methods. However, for ResNet50, DDROP’s performance
declines; its fine-tuned accuracy is lower than that of PGMPF and ASFP, with PGMPF attaining the highest fine-
tuned accuracy among all methods for this model. These observations suggest that while DDROP is effective for
smaller models, its advantages may diminish in deeper architectures like ResNet50.

We hypothesize that the suboptimal performance of DDROP with ResNet50 may be due to the need for more
careful hyperparameter tuning. Identifying optimal values for λ, pmin, and pmax could potentially enhance its
effectiveness for deeper models.

4.3. ILSVRC2012 Results

To evaluate the performance of DDROP on complex tasks, we applied it to the standard ImageNet (ILSVRC2012)
dataset, which is comprised of 224× 224 images from 1,000 classes. Specifically, DDROP was implemented on
the pretrained ResNet18 model available through the TorchVision library. Given the computational intensity and
time demands of fine-tuning on ImageNet, each method was evaluated over 15 epochs.

To test on ResNet18, the first 10 epochs employed the dynamic dropout technique for fine-tuning, followed by
5 epochs of fine-tuning the pruned model. A cosine LR scheduler was used, we set the maximum learning rate to
0.01 for the initial training phase and 0.001 for the fine-tuning phase, transitioning over each batch of 256 images.
Additionally, we applied two other methods, ASFP and PGMPF, to fine-tune the ResNet18 model for 15 epochs,
using the parameter settings specified in their respective publications. The results of these experiments are shown
in table 2. For all of tests, we set pmin = 0.5, pmax = 1.0 while λ = 10−3.

Transformer based models were also tested, we compared to the random pruning at a rate of 70%, we apply the
same pmin and pmax as ResNet18 and λ = 10−1 for both models. We employ a batch size of 64, and a learning
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rate of 4× 10−5. We prune the inner features of the MLP layers of the transformers, since the MLP layers can be
pruned easily with DDROP.

Table 3. ImageNet results comparing PGMPF, ASFP, and DDROP for ResNet-18, SwinTransformer, and ViT.

Model Method Num. Params. Remaining (%) Acc.@1 (%) Acc.@5 (%) FLOPs Throughput (batch/s) Max. Memory (MB)

ResNet18 ASFP 3,971,104 33.99 55.38 79.08 1.83 G 22 (1.73×) 105.19 (-31.20)
PGMPF 3,971,104 33.99 58.75 81.85 1.83 G 22 (1.73×) 105.19 (-31.20)
DDROP 3,971,104 33.99 60.35 83.26 1.83 G 22 (1.73×) 105.19 (-31.20)

SwinTransformer Tiny Random 16,207,570 57.25 75.48 92.83 9.78 G 3.87 (1.49×) 171.34 (-34.64)
DDROP 16,207,570 57.25 76.37 93.28 9.78 G 3.87 (1.49×) 171.34 (-34.64)

ViT Base Random 46,924,120 54.18 78.33 94.08 1.62 G 1.73 (1.77×) 281.50 (-138.92)
DDROP 46,924,120 54.18 78.71 94.18 1.62 G 1.73 (1.77×) 281.50 (-138.92)

We observe that DDROP maintains a higher accuracy after fine-tuning compared to the other two methods on
ILSVRC2012, indicating that it creates models that converge faster with a small number of epochs.

4.4. Medical Segmentation Results

We evaluate our method on another task, which is the medical image segmentation task. We use DeepLabV3 [42],
with ResNet50 as a base. The results on the Kvasir [43], ISIC2017 [45], and PH2 [44] datasets are presented in
table 4.

Table 4. Comparison of pruning methods on segmentation datasets (Kvasir, PH2, ISIC2017).

Method Kvasir PH2 ISIC2017

Dice IoU Dice IoU Dice IoU

Random Pruning 0.7647 0.6622 0.8342 0.7244 0.8267 0.7451
BN Magnitude Pruning 0.3946 0.2666 0.6638 0.5375 0.8017 0.7202
DDROP 0.7819 0.6822 0.8869 0.8034 0.8353 0.7543

Through these results we see that DDROP creates more accurate models at the same pruning ratio of other
techniques when evaluating on the task of image segmentation.

4.5. Computational Complexity

The added operations performed by DDROP during training is studied in this section, we present the average batch
processing times for several models with and without DDROP. Table 5 compares these times, and Figure 2 visually
illustrates the impact of DDROP on training speed.

Table 5. Comparison of batch processing times with and without DDROP for various models

Model No DDROP (ms/batch) DDROP (ms/batch) ∆

ResNet18 28 30 +7.14%
ResNet34 32 35 +9.38%
ResNet50 35 40 +14.29%
VGG11 BN 25 27 +8.00%
VGG13 BN 26 28 +7.69%

The results indicate that DDROP introduces a modest increase in training time, averaging around 9% across
different models. The most significant overhead is observed in ResNet50, with a 14.29% increase. Figure 2 shows
that while DDROP adds some computational complexity, the impact on training speed remains relatively minor
and consistent across various architectures.
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Figure 3. The results of sensitivity analysis on the CIFAR-10 dataset

In summary, the additional computational cost of implementing DDROP is manageable and represents a
reasonable trade-off for its benefits in enhancing model performance.

4.6. Ablation Study

4.6.1. Hyperparameters To quantify the impact of the key hyperparameters λ, pmin, and pmax across different
model architectures, we conducted extensive ablation studies on both CIFAR-10 and CIFAR-100 datasets using
ResNet-18 and ResNet-50 models. The experiments systematically varied one parameter while keeping others
fixed to isolate their individual effects on model performance. Figure 3 and Figure 4 show the fine-tuned accuracy
CIFAR-10 and CIFAR-100 respectively.

For CIFAR-100, we observe that moderate regularization (λ = 0.001) combined with a full pruning range
(pmin = 0.6, pmax = 1.0) leads to suboptimal pruned accuracy (e.g., 1.78% for ResNet18), but models recover
strongly on post-pruning evaluation (accuracy up to 64.20%). Notably, smaller values of λ (e.g., 10−4 or 10−5) lead
to slightly better post-pruning accuracies (e.g., 68.39% for ResNet50), despite lower pruned model performance.
High λ values (e.g., 0.1) significantly degrade both pruned and post-pruning accuracies.
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Figure 4. The results of sensitivity analysis on the CIFAR-100 dataset

Interestingly, tuning pmin also plays a critical role. For example, in ResNet18 on CIFAR-100, increasing pmin
from 0.0 to 0.5 leads to a steady drop in pruned accuracy, but post-pruning accuracy remains relatively stable
around 63%, suggesting resilience to aggressive pruning in the recovery phase.

On CIFAR-10, the models demonstrate greater robustness. ResNet18 achieves accuracy up to 84.48% after
pruning with pmin = 0.6 and λ = 0.001, showing minimal degradation from the unpruned baseline. Here, the
pruned model performance is significantly higher than in CIFAR-100, indicating the relative ease of the CIFAR-10
task under structural pruning.

In summary, effective recovery is achievable with appropriate combinations of λ and pruning range, especially
when using lower regularization and tuning pmin. The CIFAR-10 dataset exhibits greater tolerance to aggressive
pruning than CIFAR-100, suggesting the importance of dataset complexity in pruning strategies.

4.6.2. Probability Scheduling We test how scheduling the parameters pmin and pmax effects the final accuracy.
We train the model with DDROP for 200 epochs, the probabilities are scheduled from an initial value of 1 (meaning
all neurons are preserved), and reduced each epoch. We compare the results as applied to ResNet50 on CIFAR-10
and CIFAR-100, and using similar parameters to previous sections, except for the LR scheduler, where we used a
one-cycle cosine scheduler. Table 6 shows the results of these experiments.

Table 6. Accuracy comparison of different scheduling methods on CIFAR-10 and CIFAR-100 with ResNet50.

Schedule CIFAR-10 (%) CIFAR-100 (%)

Constant 86.05 68.67
Linear 86.77 69.93
Cosine 87.68 69.90

The results show that both methods significantly improve the accuracy of the models. We see that the cosine
scheduler significantly outperforms the linear scheduler on CIFAR-10, but yields slighltly lower accuracy on
CIFAR-100.

5. Conclusion

This study introduces a dynamic dropout (DDROP) method that aims promote sparsity in DNNs by adaptively
pruning neurons or filters based on their importance scores. DDROP utilizes a rank-based approach to dynamically
calculate dropout probabilities, enhancing the probability of pruning less significant neurons. This method
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successfully maintains critical characteristics while enhancing sparsity. The integration of ℓ1 regularization on
BatchNorm weights improves this process by enabling the suppression of non-significant neurons. Future works
may explore the use of DDROP in diverse network architectures and tasks, such as semantic segmentation, object
detection and speech recognition. Additionally, investigating the correlation between pruning aggressiveness and
model generalization could provide important insights into the power and utility of dynamic sparsity in neural
networks.
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