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Abstract Orthogonal moments play a crucial role in image analysis, including applications in image reconstruction and the
extraction of consistent, robust features, making them essential for modern computational imaging. This study examines the
effectiveness and performance evaluation of orthogonal: Tchebichef moments, Krawtchouk moments, Charlier moments,
and Hahn moments for image reconstruction, feature description, and their application in image classification and object
recognition using advanced machine learning techniques. We present the construction process of orthogonal image moments.
Then the deriving of invariant moments based on Tchebichef, Krawtchouk, Charlier, and Hahn polynomials. These moments
are then employed to generate feature vectors specifically tailored for image classification and object recognition tasks. To
evaluate feature robustness, we conduct extensive classification experiments on two distinct image databases using K-Nearest
Neighbors (K-NN) and Support Vector Machine (SVM) classifiers. The results demonstrate that invariant moments are
highly effective at capturing discriminative image features and maintain reliable performance under various noise conditions,
including salt-and-pepper noise, underscoring their applicability in real-world scenarios.
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1. Introduction

Discrete orthogonal moments are sets of mathematical functions that are especially helpful for identifying
important aspects of a signal or image [1]. While, Invariant orthogonal moments are sets of mathematical functions
that are invariant to geometric transformations such as rotation, translation, and scale changing. However, in the
last decades, they have been useful for capturing significant features of an image or a signal [2, 1].

Image or signal moments are mathematical quantities that give a means of characterizing the distribution of
samples or pixel intensities in a digital image or signal. used for the first time by Hu et al. [3]. But the moments
of Hu are not orthogonal, which means that they can be easily affected by noise and redundancy. Whatever the
moments of Hu are invariant to translation, scaling, and rotation, the drawback is that they are not orthogonal. Then,
Teague et al. introduced in [4] the theory of orthogonal moments, where the image’s projection on the orthogonal
polynomial base’s elements is used to compute the moments. They have been used a lot in jobs involving image
recognition and analysis.

Numerous orthogonal moment types have been identified in the literature based on multiple polynomial bases.
These moments have been classified as discrete and continuous, with examples for ones such as; Krawtchouk
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moments [5], Tchebichef moments [6, 7], Charlier moments [8, 9], Hahn moments [10, 11], Gegenbauer moments
[12, 13], and Meixner moments [14]. And Legendre moments [15], Gegenbauer moments [12], Zernike moments
[16], and Jacobi moments [17, 18] for continuous moments. All of these moments have been specified on a uniform
lattice. On a non-uniform lattice however, other discrete moments, such as Dual Hahn moments [19] and Racah
[20], are orthogonal. In our daily lives, there are various applications of orthogonal moments in certain fields, such
as computer vision in autonomous cars [21], medical image analysis [22, 23], or facial recognition [24], object
detection and recognition [25, 26].

In this paper, we compare some existing methods for image reconstruction and image classification, by the
construction of invariant moments. These invariant moments computed for a given image and placed into a
vector are considered a set of features. For instance, in first stage: we compared the image reconstruction by
Tchebichef moments, Krawtchouk moments, Charlier moments, and Hahn moments, which are based respectively
on orthogonal Tchebichef polynomials, orthogonal Krawtchouk polynomials, orthogonal Charlier polynomials,
and orthogonal Hahn polynomials, with performance evaluation using mean square reconstruction error and peak
signal to . In second stage: we studied the invariant version of studied moments and there performances in
classification and recognition tasks, it is important that the method for deriving invariants is to formulate the
given orthogonal moments as a function of geometric ones. The next step involves fitting the descriptor vector
to a machine learning algorithm, which then trains the classification algorithm. The models used are K-Nearest
Neighbors (K-NN) and Support Vector Machines (SVM). The methods are tested and evaluated in two different
databases, as well as in the presence of salt and pepper noise.

This paper is organized as follows: Section 2 outlines a background about the studied discrete orthogonal
polynomials. After that, section 3 shows the way for construction of image moments. This is followed in Section 4
by the formulation of invariant moments derived from geometric moments, focusing on four studied moments
types: Tchebichef, Krawtchouk, Charlier, and Hahn. Section 5 presents results of image reconstruction and
classification experiments to assess performance, followed by comparisons and discussions. Finally, the paper
concludes with a summary.

2. Discrete Orthogonal Polynomials

In this section, we provide background on several well-known discrete orthogonal polynomials widely used in the
field of image analysis through moments. These polynomials form the foundation for various techniques in image
moment computation and analysis. Figure 1 Visualizes the plots of basis discrete polynomials up to order 4.

2.1. Tchebichef polynomials

The Tchebichef polynomials of order n and discrete variable x are given by using hypergeometric function as in
table 3. Where, x = 1, 2, . . . , N and 3F2(.) is the hypergeometric function defined by the following relation:

3F2(a1, a2, a3; b1, b2;x) =

+∞∑
k=0

(a1)k(a2)k(a3)k
(b1)k(b2)k

xk

k!
(1)

with, (a)k is the ascending factorial symbol known as the Pochhammer symbol defined by [27]:

(a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1) (2)

The polynomials tp(x) have the following recurrence relation, concerning the variable x [28]:

tp(x) = αp(x)tp(x− 1) + βp(x)tp(x− 2), x = 2, 3, . . . ,
N

2
(3)
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Where p = 1, 2, . . . N , and α and β are two functions given as:

αp(x) =
−p(p+ 1)− (2x− 1)(x−N − 1)− x

x(N − x)
(4)

βp(x) =
(x− 1)(x−N − 1)

x(N − x)
(5)

The following equations can be used to get the moments in x = 0 and x = 2 for the initialization of the recursion
equation (3) [28].

tp(0) = −
√

N − p

n+ p

√
2p+ 1

2p− 1
tp−1(0) (6)

tp(1) = tp(0)

(
1 +

p(1 + P )

1−N

)
(7)

To reduce the algorithm complexity at the moment calculation level or at the reconstruction level, the symmetry
property of orthogonal moments can be applied by [28]:

tp(N − 1− x) = (−1)ptp(x) (8)

2.2. Krawtchouk polynomials

The definition of Krawtchouk polynomials for the n− th order is defined as in table 3. Where x, n = 1, 2, . . . , N ,
0 ⩽ p ⩽ 1 and 3F1is the hypergeometric function, defined as:

3F1(a; b; c, x) =

+∞∑
k=0

(a)k(b)k
((c)k

xk

k!
(9)

and with (a)k is the Pochhammer symbol defined before, and the functions with weight function for the Krawtchouk
polynomials is given in table 2. The recurrence relation in three terms for the normalized and weighted Krawtchouk
polynomials is as follows [29]:

p(n−N)k̂
(p,N)
n+1 (x) = An[p(N − 2n)− x+ n]]k̂(p,N)

n (x)−Bn(1− p)k̂
(p,N)
n−1 (x) (10)

Where,

An =

√
(1− p)(n+ 1)

(p(N − n)
; Bn =

√
(1− p)2(n+ 1)n

(p2(N − n)(N − n+ 1)
(11)

Such that, the initialization values of recurrence relation (10) as in [29] are:

k̂
(p,N)
0 (x) =

√
ωk(p,N, x); k̂

(p,N)
1 (x) =

(
1− 1

p×N
x

)√
ωk(p,N, x) (12)

2.3. Charlier polynomials

On the other hand, Charlier polynomials are defined up to the nth order according to Zhu et al. [30] by the
following equation in table 3. The generalized hyper-geometric function 2F0 is defined as follows: n is the order
of polynomials; a1 is the Charlier polynomial parameter, which is a positive real number.

2F0(a; b, x) =

+∞∑
k=0

(a)k(b)k
xk

k!
(13)

The Pochhammer symbol, (a)k, was originally provided previously in 2.
Charlier’s discrete orthogonal polynomials satisfy the following three-term recurrence relation with respect to n

Stat., Optim. Inf. Comput. Vol. x, Month 202x



A. BOURZIK, B. BOUIKHALENE, J. EL-MEKKAOUI AND A. HJOUJI 3

[31]:

ĉ
(a1)
n+1(x) =

a1 − x+ n+ 1

a1

√
a1
n
ĉ(a1)
n (x)−

√
n− 1

n
ĉ
(a1)
n−1(x) (14)

The initialization values are as follows [31]:

ĉ
(a1)
0 (x) =

√
ωc(a1, x)

σc(a1, 0)2
; ĉ

(a1)
1 (x) =

a1 − x

a1

√
ωc(a1, x)

σc(a1, 1)2
(15)

2.4. Hahn polynomials

The Hahn polynomials of order n, are defined on a nonuniform lattice according to [11, 32] by the following
equation in table 3. Where x, n = 1, 2, . . . , N is the order of moments and α, β are positive integers. and 3F2is the
known generalized hyper-geometric function, defined as:

3F2(a, b, c; d, e;x) =

+∞∑
k=0

(a)k(b)k((c)k
(e)k(d)k

xk

k!
(16)

Therefore to achieve numerical stability, a set of weighted Hahn polynomials are introduced in [5]:

Ĥ(α,β,N)
n (x) = H(α,β,N)

n (x)

√
ωh(α, β,N, x)

σh(α, β,N, n)
(17)

Where, ωh(α, β,N, x) and σh(α, β,N, n) are the weight and squared norm functions defined in table 2.
The three term recurrence relation in the n-direction for the normalized and weighted Hahn polynomials is given
as follows [30]:

Ĥ(α,β,N)
n (x) =

AB

E
Ĥ

(α,β,N)
n−1 (x) +

CD

E
Ĥ

(α,β,N)
n−2 (x) (18)

Where the parameters A, B, C , D and E are given in table 1. And the initialization of recurrence relation in 32 is
as follows [30]:

Ĥ
(α,β,N)
0 (x) =

√
ωh(α, β,N, x)

σh(α, β,N, 0)
(19)

Ĥ
(α,β,N)
1 (x) = (x(α+ β + 2)− (β + 1)(N − 1))×

√
ωh(α, β,N, x)

σh(α, β,N, 1)
(20)

3. Construction of Image Moments

This section outlines the process of computing image moments. We construct orthogonal moments for three types
of images: binary, grayscale, and color, detailing the unique considerations and methods used for each image type.

3.1. For binary and grayscale images

Consider a M ×N rectangular grid of pixels with M-rows and N-columns that represents the image f(x, y). To
keep things simple, we use a picture with an equal number of rows and columns that is N ×N in size. However,
for a given image of size N ×N , with values in the range [0, N − 1] for x and y, let N be a positive integer. The
following formula is used to define the orthogonal image moments noted OMs:

OMnm =

N−1∑
x=0

N−1∑
y=0

OPn(x)OPm(y)f(x, y) (21)
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Table 1. Data for descret Hahn polynomials

A = x− α− β + 2N − 2

4
− (β2 − α2)(α+ β + 2N)

4(α+ β + 2n− 2)(α+ β + 2n)

B =

√
n(α+ β + n)(α+ β + 2n+ 1)

(N − n)(α+ n)(β + n)(α+ β + 2n− 1)(α+ β +N + n)

C = − (α+ n− 1)(β + n− 1)(α+ β +N + n− 1)(N − n+ 1))

(α+ β + 2n− 2)(α+ β + 2n− 1)

D =

√
n(n− 1)(α+ β + n)(α+ β + n− 1)(α+ β + 2n− 1)

(α+ n)(β + n)(α+ n− 1)(β + n− 1)(N − n+ 1)(N − n)

×
√

1

(α+ β + 2n− 3)(α+ β +N + n)(α+ β +N + n− 1)

E =
n(α+ β + n)

(α+ β + 2n− 1)(α+ β + 2n)

Table 2. Data for some discrete orthogonal polynomials.

Polynomial Symbol Weight function Squared norm function

Tchebichef [28] tn(x) ωt = 1 σt(n,N) =
∑N

n=1{tn(x)}2 =
N(1− 12

N2
)(1− 22

N2
) . . . 1− n2

N2
)

2n+ 1

Krawtchouk [5] k
(p)
n (x) ωk(p,N, x) =

(
x

N

)
px(1− p)N−x σk(p,N, n) =

(
p− 1

p

)n
n!

(−N)n

Charlier [8] c
(a1)
n (x) ωc(a1, x) =

e−a1ax1
x!

σc(a1, n) =
n!

an1

Hahn [11] h
(α,β)
n (x) ωh(α, β,N, x) =

Γ(β + 1 + x)Γ(N − x+ α)

Γ(x+ 1)Γ(N − x)
σh(α, β,N, n) =

(α+ β + n+ 1)NΓ(β + 1 + n)Γ(α+ 1 + n)

(2n+ α+ β + 1)Γ(n+ 1)Γ(N − n)

Table 3. Hypergeometric form for some discrete orthogonal polynomials.

Polynomial Hyper-geometric function
Tchebichef [28] tp(x) = (1−N)n3F2(−n− x, 1 + n; 1, 1−N ; 1)

Krawtchouk [5] k
(p,N)
n (x) = 2F1(−n,−x;−N ;

1

p
)

Charlier [30] c
(a1)
n (x) = 2F0(−n,−x; ;

−1

a1
)

Hahn [11] h
(α,β,N)
n (x) = 3F2(−n, n+ α+ β + 1,−x;α+ 1,−N ; 1)

Where, OP represent orthogonal polynomials such as Tchebichef, Krawtchouk, Charlier, Hahn. It is important
to observe that these polynomials are orthogonal in order to eliminate redundancy and less sensitive to noise.
However, they verify the following orthogonality condition:

N−1∑
x=1

ωp(.)OPn(x)OPm(x) = σp(.)δnm (22)

Where, ωp(.) is the weight function, and σp(.) is the square norm function for the used polynomial basis, the table
2 represent the weight and squared norm functions for some orthogonal polynomials. And δnm is the Kronecker
symbol given by:

δnm =

{
1 if n = m;

0 elswhere
; (23)

Whereas, in order to attain numerical stability, a set of weighted polynomials are introduced by as follow:

ÔPn(x) = OPn(x)

√
ωp(.)

σp(.)
(24)
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Figure 1. Discrete orthogonal polynomials as a function of 60 samples from order 0 to 4.

Consequently, using just the moment up to nmax, the reconstructed image f̂(x, y) from OMs at a maximum order
nmax is obtained using the following relation [28]:

f̂(x, y) =

nmax−1∑
i=1

nmax−1∑
j=1

OPi(x)OMijOPj(y) (25)

3.2. For color images

For a color image fcolor(x, y) defined on three square channels N ×N × 3. We compute the moments for each
color channel of a color image [33]. Let a color image fcolor(x, y) be represented by the red (R), green (G), and
blue (B), which are primary color channels, color image can be given as the following equation:

fcolor(x, y) =

(
fR(x, y), fG(x, y), fB(x, y)

)
. (26)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



6 DISCRETE ORTHOGONAL MOMENT DESCRIPTORS APPLIED IN IMAGE CLASSIFICATION

In the multi-channel OMs framework, OMs of each color component is computed. Hence, the set of OMs of color
image is represented by:

OMnm(fcolor) =

(
OMR(fR), OMG(fG), OMB(fB)

)
(27)

Next, given k ∈ {R,G,B}, the multi-channel orthogonal moments are defined as follows:

OMnm(fk) =

N−1∑
x=0

N−1∑
y=0

OP (p,N)
n (x)OP (a1)

m (y)fk(x, y) (28)

The color image is reconstructed using the following method if the value of the maximum order of moments,
nmax, is the same for each component image:

f̂k(x, y) =

nmax−1∑
i=1

nmax−1∑
j=1

OPi(x)OMij(fk)OPj(y) (29)

The reconstructed color image f̂color(x, y) is the set of reconstructed color components of R, G, and B channels
where:

f̂color(x, y) =

(
f̂R(x, y), f̂G(x, y), f̂B(x, y)

)
. (30)

3.3. Algorithm

To decrease the complexity and enhance the speed of calculation time of 2-dimensional OMs of order n for image
f we are using the matrix formulation in table 4.

Table 4. Matrix formulation for fast OMs computing

Orthogonal Moments computation Reconstructed image

OMnm = ÔP
T

n × f × ÔPm f̂ = ÔPn ×OMnm × ÔP
T

m

Where,

ÔPn =
[
ÔP 0(x), ÔP 1(x), . . . , ÔPn−1(x)

]
ÔPm =

[
ÔP 0(y), ÔP 1(y), . . . , ÔPm−1(y)

] (31)

denote the matrices of discrete ÔPn are orthogonal polynomials computed respectively up to the orders n and m.
In Algorithm 1, we provide a summary of the procedures involved in calculating orthogonal moments OMs, with
respect to order n for a given image f(x, y).

Algorithm 1 Computation of Orthogonal Moments (OMs)

Input: Input image f(x, y) and desired moment order n.
1: Compute orthogonal polynomials (OPs) up to order n using the recurrence relation.
2: Calculate Orthogonal Moments (OMs) for the input image using the matrix formulation provided in table 4.
3: Compute the f̂(x, y) using the calculated OMs using the matrix formulation.
4: Determine the error MSE between f̂(x, y) and f(x, y).

Output: Reconstructed f̂(x, y) image, Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE).
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4. Invariability of Moments

In this section, we will show the very used technique to construct the invariant moments by making a relation with
the known geometric ones.

4.1. Invariant geometric moments

For a digital image f(x, y) with size N ×N , the geometric moments of order n+m are defined using discrete
sum approximation as:

GMnm =

N−1∑
x=0

N−1∑
y=0

xnymf(x, y) (32)

However, we can acquire translation invariants by moving the coordinate origin to the centroid of the image. Such
that, µnm are the central geometric moments defined by Teague et al. in [4] by:

µnm =

N−1∑
x=0

N−1∑
y=0

(x− x0)
n(y − y0)

mf(x, y) (33)

Where, x0 =
m10

m00
, y0 =

m10

m00
.

Then, the invariant to rotation are achieved by the conversion of the inertia principal axes system from the
Cartesian coordinate system. The transformation relation is expressed as follows:

x′ = xcos(θ) + ysin(θ), y′ = ycos(θ)− xsin(θ) (34)

With, θ angle obtained by :

θ =
1

2
tan−1

(
2µ11

µ20 − µ02

)
(35)

The invariant to image translation and rotation is held using the following global equation.

µ̂ij =

N−1∑
x=0

N−1∑
y=0

((x− x0)cos(θ) + (y − y0)sin(θ))
i × ((y − y0)cos(θ)− (x− x0)sin(θ))

jf(x, y) (36)

Scale-invariant of µij are accomplished by the normalization of each moment, where the normalized central
geometric moment GMInm of order n+m is defined as:

GMInm =
µ̂nm

µ̂γ
nm

(37)

Where the γ =
n+m+ 2

2
.

Note that the set of invariant geometric moments GMIs by rotation, scaling and translation can be written as [3]:

GMInm =
1

(GM00)γ

N−1∑
x=0

M−1∑
y=0

[(x− x)cos(θ) + (y − y)sin(θ)]n × [((y − y)cos(θ)− (x− x)sin(θ)]m (38)

With,

x =
MG10

MG00
; y =

MG01

MG00
(39)

And,

γ =
n+m

2
+ 1; θ =

1

2

2µ11

µ20 − µ02
(40)
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Such that µnm are the central geometric moments defined by:

µnm =

N−1∑
x=0

M−1∑
y=0

(x− x)n(y − y)mf(x, y) (41)

It is known that the relation between geometric moments and invariante ones is given by:

Vnm =

n∑
p=0

m∑
q=0

(n, p) (m, q)

(
N ×M

2

) p+q
2 +1

×
(
N

2

)(n−p)

×
(
M

2

)(m−q)

×GMIpq (42)

4.2. Invariant orthogonal moments

There are numerous types of moments defined based on the choice of polynomial basis. In this study, we will
explore specific examples of invariant orthogonal moments (OMIs) and their invariance to three primary geometric
transformations: translation, rotation, and scaling by forming them as a function of invariant geometric moments
GMIs.

4.2.1. Tchebichef invariant moments The Tchebichef polynomials can be expanded using power series [34] by the
following relation:

t̂n(x) =

p∑
k=0

C(p, k)(−x)k (43)

Where, C(p, k) is a function given by:

C(p, k) =
(−1)p√
σ(p,N)

(p+ k)!

(p− k)!(k!)2
(N −K − 1)!

(N − p− 1)!
(44)

and (x)k are the Pochhammer symbol, that can be given as a function of first kind Stirling function as follow:

(x)k =

k∑
i=0

(−1)k−is1(k, i)x
i (45)

Where, the first kind Stirling numbers are given by:

s1(k, i) = s1(k − 1, i− 1)− (k − 1)s1(k − 1, i) (46)

Where, s1(0, 0) = 1, s1(0, i) = 0 and s1(k, 0) = 0. After some substituting equations the scaled Tchebichef
polynomials are [34]:

t̂p(x) =

p∑
k=0

k∑
i=0

C(p, k)(−1)k−is1(k, i)x
i =

p∑
i=0

B(i)xi (47)

And, B(i) =
∑p

k=i(−1)kC(p, k)s1(k, i).

In order to express the Tchebichef moments as a linear combination of geometric moments, the above equation
is used so the TMs becomes:

TMnm =

n∑
i=1

m∑
j=1

B(i)B(j)GMij (48)

Where, GMnm are the known geometric moments given before in the equation 32. The rotation, translation, and
scaling invariants of Tchebichef moments can be formed using the correspondence with invariants of geometric
moments [4].
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Replacing geometric moments GMij on the equation 48 with invariant geometric ones νij , the rotation,
translation and scaling Tchebichef moments invariant’s TMInm are obtained according to [35] as the following:

TMInm =

n∑
i=0

m∑
j=0

B(i)B(j)GMIij (49)

4.2.2. Krawtchouk invariant moments The Krawtchouk polynomials can be written according to to Zhi et al. [36],
by the following equation:

k(p,N)
n (x) =

n∑
i=0

α
(p)
n,ix

i (50)

Where,

α
(p)
n,i =

n∑
k=i

(−1)kn!(N − k)!

N !k!(n− k)!pk
s(k, i) (51)

For expressing Krawtchouk moments as in function of geometric ones the equation 50, is used to formulate
Krawtchouk moments as follow citezhi2018translation:

KMnm =

n∑
i=0

m∑
j=0

α
(p)
n,iα

(p)
m,jGMij (52)

Then, it can be easily derive the Krawtchouk moments invariant’s (KMIs) from the geometric ones as follow;

KMInm =

n∑
x=0

m∑
y=0

α(p)
n,xα

(p)
m,yVnm (53)

4.2.3. Charlier invariant moments The same for charlier polynomials which can be obtained by [37]:

cn(x) =

n∑
i=0

β
(a1)
n,i xi (54)

Where,

βn,i =

n∑
k=i

n!

(n− k)!k!(n− k)!(−a1)k
s(k, i) (55)

where, s(k, i) are the Stirling numbers defined in 46. Then the CMs for an image f(x, y) can be written as follow:

CMnm =

N−1∑
x=0

N−1∑
y=0

cn(x)cm(y)f(x, y) =

n∑
x=0

m∑
y=0

βn,xβm,yGMx,y(f) (56)

then it can be easily derive the Charlier moments invariant’s (CMIs) from the geometric ones as follow [37];

CMInm =

n∑
x=0

m∑
y=0

βn,xβm,yVnm (57)
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4.2.4. Hahn invariant moments According to [38] Hahn polynomials can be written also as the following:

hα,β
n (x) = Aβ

n

n∑
k=0

Bα,β
n,k < x >k (58)

Where,

Aβ
n =

(−1)n(β + 1)n(N − n)n
n!

(59)

and,

Bα,β
n,k =

(−n)k(n+ α+ β + 1)k
(−1)kk!(β + 1)k(1−N)k

(60)

with, < x >k=
∑k

i=0 s(k, i)x
i the HPs becomes:

hα,β
n (x) = Aβ

n

n∑
k=0

Bα,β
n,k

k∑
i=0

s(k, i)xi =

n∑
i=0

ϕα,β
n,i x

i (61)

where, ϕα,β
n,i = Aβ

n

∑n−1
k=0 B

α,β
n,n−k

∑k
i=0 s(n− k, i)

Then the HMs for an image f(x, y) can be written as follow:

HMnm =

N−1∑
x=0

N−1∑
y=0

hα,β
n (x)hα,β

m (y)f(x, y) =

n∑
x=0

m∑
y=0

ϕα,β
n,xϕ

α,β
m,yGMx,y(f) (62)

After that, it can be easily derive the Hahn moments invariant’s (HMIs) orders up to n+m from the geometric
ones as follow;

HMInm =

n∑
x=0

m∑
y=0

ϕα,β
n,xϕ

α,β
m,yVnm (63)

Vnm has a combination to invariant geometric moments in equation 42.

In Algorithm 2, the explanation of computation of orthogonal moments invariants OMIs based on making a
relation between discrete moments and geometric ones.

Algorithm 2 Computation of Orthogonal Moment’s Invariants (OMIs)

Input: Input image f(x, y) and desired moment order n,m.
1: Compute invariant geometric moments GMInm for order n,m using the equation 38.
2: Compute function Vnm that makes relation between GMnm and GMInm in equation 42.
3: Compute invariant moments for order n,m using the formulation as geometric ones using 48,or 53, or 53,or

53 depending on the type of invariant moments desired.
4: Do the same thing for all the orders required in vector 66.

Output: Vector that contains the OMIs features of image f .

5. Evaluation and Results

Discrete orthogonal moments OMs, have demonstrated significant practical utility across various real-world
domains beyond synthetic datasets. In medical imaging, particularly in tumor detection using MRI and CT
scans, OMs like Zernike moments have been used to extract rotation- and scale-invariant features that enhance
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(a) (b) (c)

Figure 2. The test images : (a) Gray scale ”Cameraman” of size 500× 500. (b): Color ”Texture” image of size 1024× 1024.
(c): Binary ”Deer” image of size 200× 200.

tumor classification accuracy and aid in precise boundary delineation [39]. In the domain of autonomous driving,
Tchebichef moments have been employed for robust road sign recognition under challenging conditions, leading to
improved accuracy and faster inference in embedded systems [40]. These applications underscore the advantages
of OMs, including their orthogonality, invariance to geometric transformations, computational efficiency, and
interpretability, making them highly effective in practical, real-world scenarios. In this section, we apply these
moments to image classification and object recognition.

The following results are divided into two parts to effectively evaluate the performance of the studied discrete
orthogonal moments. The first part presents experimental results for reconstructing a given image, while the second
part focuses on applying these moments in image classification and object recognition tasks using machine learning.

It is crucial to select the appropriate parameters for orthogonal moments based on parametric polynomials, such
as Krawtchouk, Charlier, and Hahn polynomials. Specifically, for Krawtchouk polynomials, the parameter p should
be set to 0.5, and for Charlier polynomials, the parameter a1 should be set to 10. These values are commonly used
in the literature, and gives the best performance. We have a research on parameter optimization for Krawtchouk
and Charlier is presented in [9]. For Hahn polynomials, setting both α = 10 and β = 10 provides also the best
performance, as demonstrated in [10].

5.1. Image reconstruction by OMs

In order to prove the efficiency of orthogonal moments (OMs) for image analysis, the inverse procedure of
construction of orthogonal moments can be done. Where the original image in figure 2 can be reconstructed using
just the computed moments like given in equation 25. The evaluation is considered the mean square reconstruction
error given in the following relation:

MSE =
1

N2

N∑
x=1

N∑
y=1

(
f̂(x, y)− f(x, y)

)2

(64)

In the following we will consider three type of images: Binary, grayscal, and color images.
For color images, we will assume that the MSE is the mean of the MSEs along the three channels R, G, and

B, where MSE(fcolor) =
MSE(fR)+MSE(fG)+MSE(fB)

3 . The reconstruction error for each channel is given as
follows:

MSE(fk) =
1

N2

N∑
x=1

N∑
y=1

(
f̂k(x, y)− fk(x, y)

)2

(65)

Where, k ∈ {R,G,B}.
Figures 3 shows the compared TMs, KMs, CMs and HMs’s MSE as a function applied for binary, gray scale and

color image. From the curves the MSE decrease while the order of moments as well. KMs are failed in some high
orders. Where, TMs gives the best accuracy followed by HMs and CMs.
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Figure 3. MSE as function of OMs orders for : (a): ”Deer” binary image, (b): ”Cameraman” grayscaled image, (c): ”Texture”
color image .

In the figure 4, it is shown the computing time for reconstruction of previous moments (TMs, KMs, CMs, and
HMs) as a function of polynomial orders. The computing time grows exponentially with the order. This is much
clearer for CMs and HMs. So far, KMs’s computing time is the brief one for binary and grayscale images, followed
by TMs.

5.2. Classification results

This section discusses applying the theoretical framework for classification problem. Using Equations 66, we
meticulously compute the invariant orthogonal moments of different types noted OMIs for orders up to 3. we
could choose more features, but to enhance computational efficiency, we limited our selection to moments’ order
up to 3.

V =
[
OMI0,2(f), OMI2,0(f), OMI1,2(f), OMI2,1(f), OMI3,0(f), OMI0,3(f)

]
(66)

The following image databases are used in classification experiments,

• The Handwritten Digits dataset, comprised of 1000 artificial grayscale images of handwritten digits, is a
condensed version of the dataset found in [here]. It is a portion of the well-known MNIST data collection,
which can be found at [41] and contains 70, 000 in handwritten digits. Every 28-by-28 pixel image has a
label attached that indicates the digit it represents, ranging from 0 to 9. But in addition, the image has been
translated a specific distance and rotated at a specific degree. For each category, there are 100 photographs
in the datastore. For every category, there are 70 samples in the training set. The exam makes use of the
remaining pictures. Handwritten digits that are part of the database are displayed in Figure 5.
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Figure 4. Computing Time of discrete orthogonal moments OMs for : (a): Binary image, (b): Garyscale image and (c): Color
image as a function of OMs orders.

Figure 5. The samples of MNSIT dataset before the preprocessing.

• The second image database located in [42], which is the Columbia Object Image Library COIL− 20
database, which has 1440 128× 128 images spread out as 72 images for each item. Nonetheless, the
classification model is trained using 45 images from each item category, while additional images are used
for testing. The photographs of the objects considered in this database are displayed in Figure 6.
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Figure 6. Object considered in COIL-20 database.

• The third database is the Columbia Object Image Library (COIL-100) database, available in [43]. With total
number of images equal 7200, categorized as 72 images for each object; however, all the images in this
database are in color type, and images in this database have a size of 128× I28. For training of classification
models 50 images per category are used, and the rest for test. Figure 7 illustrate the images of objects
considered in this database.

Figure 7. Object considered in COIL-100 database.

We apply the following classification criteria to assess the performance of the proposed invariants with respect
to recognition accuracy [44, 45].

Accuracy =
Number of correctly classified images

Number of images used in the test
× 100% (67)

Machine learning models provide the basis of the classification methods. Among them are Support Vector
Machine (SVM) [46] and k-nearest neighbors (k-NN) [47].
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Figure 8. Architecture of classification model using OMIs.

We integrate these models because they are popular choices for classification tasks, including those involving
features obtained from orthogonal moments, due to the following considerations:

- Feature Representation: Orthogonal moments are often used in image analysis and pattern recognition
because they can represent shapes and patterns effectively. The choice of SVM or k-NN can be influenced
by how well these features capture the distinguishing characteristics of different classes.

- Performance Evaluation: The effectiveness of SVM or k-NN with orthogonal moment features can depend
on the specific application, dataset, and feature representation. Its often useful to experiment with multiple
classifiers and evaluate their performance using metrics such as accuracy, precision.

However, These models have the following attributes:
The comparison’s k-NN model has a fine configuration, with the number of nearest neighbors fixed to one.

The distance measure used is Euclidean distance. Since the distance weights are set to equal, it may be assumed
that each neighbor has an equal influence on the classification outcome. Enabling data standardization guarantees
consistent feature scaling, which enhances model performance and makes correct distance calculations easier.

As well as, to ensure flexibility in response to the intrinsic structure of the data, the support vector machine
(SVM) model used in this comparison makes use of a quadratic kernel function with an automated kernel scale.
By building classifiers for every pair of classes and combining their results, the model effectively handles multiple
classes using a one-vs-one multiclass approach. The characteristics are rescaled to have a zero mean and a one
standard deviation when data standardization is enabled. The figure 8 illustrates the structure of the classification
model.

In order to compare between the studied invariant moments, we take into consideration the elapsed time for
reconstruction of the feature vector in (66). Table ?? demonstrates the elapsed time for extracting the features by
computing the vector V for all the images in the dataset. This time is computed for each of the studied invariant
moments (TMIs, KMIs, CMIs, and HMIs) applied to the feature extraction from the three datasets used. The results
are shown in table 5. We note that elapsed time is proportional to the size of database implemented (number of
images) and size of the image (dimensions). Where the computational time is increasing with the number and size
of images. Nevertheless, CMIs give the best elapsed time over all the other methods. However, the computation
is implemented on a personal computer equipped with an Intel Core i5 CPU (2.4 GHz–2.5 GHz) and 8 GB of
RAM. However, it is possible to enhance the computational time by parallelization of tasks or using of image
block representation (IBR) [48].

The results in Table 6 show that the validation accuracy of both K-Nearest Neighbors (K-NN) and Support
Vector Machine (SVM) models varies across moment types and datasets, with SVM generally achieving higher
accuracy than K-NN. For the MNIST and COIL-20 databases, CMIs and HMIs provide the best performance for
both models, particularly with SVM, indicating that these moment types capture features well for these datasets.
In the more complex COIL-100 database, accuracy decreases overall, especially for K-NN with TMIs and RMIs,
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Table 5. CPU Elapsed time of TMIs, KMIs, CMIs and HMIs for: part of MNIST, COIL-20, and COIL-100 dataset.

Database Elapsed time in seconds (s)
TMIs KMIs CMIs HMIs

Part of MNIST dataset (1000 images of size 28× 28) 1111.080158 342.0464 4.379137 5337.920088
COIL-20 dataset (1440 images of size 128× 128) 1660.300723 363.8819 25.525063 7602.949929
COIL-100 dataset (7200 images of size 128× 128) 8108.490066 1229.257177 121.644441 39404.108683

Table 6. The validation accuracy of used machine learning classification models using the compared moments, applied to
three different databases.

Database The trained model Validation accuracy in %
TMIs KMIs CMIs HMIs

The set of MNIST Database K-Nearest Neighbors (K-NN) 89.6% 98.9% 97.7% 96.6%
Support Vector Machine (SVM) 93.1% 98.7% 97.3% 96.7%

The COIL-20 Database K-Nearest Neighbors (K-NN) 70.4% 88.3% 93.6% 92.4%
Support Vector Machine (SVM) 78.2% 90.1% 93.6% 91.8%

The COIL-100 Database K-Nearest Neighbors (K-NN) 45.9% 78.3% 89.4% 89.2%
Support Vector Machine (SVM) 52.1% 78.2% 88.2% 86.8%

but CMIs and HMIs still yield relatively high accuracy, especially for SVM. This suggests that CMIs and HMIs
are the most effective moment types for image classification tasks across different datasets, with SVM performing
consistently well.

Table 7. Classification accuracy of the K-NN and SVM models using TMIs, KMIs, and CMIs moments for the of MNIST,
COIL-20 and COIL-100 databases in the absence and presence of salt and pepper noise.

Database Classification model Invariant moments Free-noise Salt & Pepper noise
2% 3% 4%

The set of MNIST Database

KNN

TMIs 87.0% 52.7% 54.7% 47.7%
KMIs 96.3% 43.7% 36.7% 32.0%
CMIs 97.3% 39.3% 30.3% 30.0%
HMIs 97.0% 39.3% 34.7% 36.0%

SVM

TMIs 90.3% 58.0% 56.3% 51.0%
KMIs 96.3% 46.7% 37.0% 44.3%
CMIs 98.7% 44.3% 39.7% 38.3%
HMIs 97.0% 51.7% 42.0% 39.3%

COIL-20 Database

KNN

TMIs 69.8% 84.8% 81.1% 75.9%
KMIs 86.9% 87.4% 86.1% 87.6%
CMIs 97.2% 94.1% 93.3% 93. %
HMIs 100.0% 94.1% 94.6% 76.9%

SVM

TMIs 78.9% 88.3% 81.1% 79.8%
KMIs 90.4% 89.1% 90.6% 88.1%
CMIs 94.4% 92.4% 91.5% 93.5 %
HMIs 97.1% 90.7% 93.5% 75.4%

COIL-100 Database

KNN

TMIs 48.4% - - -
KMIs 80.2% 78.4% 78.0% 76.6%
CMIs 91.9% 88.5% 86.8% 84.8%
HMIs 68.3% 62.7% 55.1% 47.2%

SVM

TMIs 52.9% - - -
KMIs 79.2% 76.5% 76.2% 75.5%
CMIs 90.4% 86.4% 85.3% 84.2%
HMIs 68.4% 53.2% 43.1% 35.8%
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The table 7 presents classification accuracy results for K-NN and Support SVM models using four types of
invariant moments: TMIs, KMIs, CMIs and HMIs. The results are shown for three datasets, part of MNIST, COIL-
100, and COIL-20, under conditions with and without salt and pepper noise.
In summary, CMIs provide the highest classification accuracy and resilience to noise across both MNIST and
COIL-20 datasets, with SVM models generally outperforming K-NN models. KMIs offer moderate performance,
better than TMIs but lower than CMIs and HMIs, and also demonstrate decent resilience to noise. TMIs have the
lowest accuracy, particularly noticeable in the COIL-100 dataset, and show significant performance degradation
under noisy conditions. Overall, CMIs are the most effective invariant moments for classification tasks, followed
by HMIs, and then KMIs, with TMIs being the least effective, especially in the presence of noise.

From the results presented earlier, we can conclude that the effectiveness of invariant orthogonal moments in
terms of classification accuracy is significantly enhanced when combined with machine learning algorithms. This
improvement is notable when compared to other recent studies that rely on traditional methods focusing solely
on similarity and distance metrics between features, such as in [49]. However, the method proposed in [49] is
based on constructing invariants using geometric techniques, which can be computationally intensive. Furthermore,
this approach may face limitations when dealing with non-rigid deformations beyond the three basic geometric
transformations, where deep learning methods could serve as more flexible and robust alternatives.

6. Conclusion

In this study, we have demonstrated the efficacy of and performance of orthogonal moments for image
reconstruction, as well as, the robustness of their invariants in image classification and object recognition tasks.
By introducing orthogonal moments derived from Tchebichef, Krawtchouk, Charlier, and Hahn polynomials, we
explained their computational methods and utilized them to construct feature vectors tailored for each image. These
feature vectors were then employed in classification tasks using popular machine learning algorithms, including K-
Nearest Neighbors (K-NN) and Support Vector Machine (SVM), to improve classification performance. Our results
highlight the robustness of invariant moments in capturing discriminative image features, even in challenging
conditions with salt-and-pepper noise, reinforcing their value for reliable recognition and classification in noisy
environments. Furthermore, these orthogonal moments hold promising potential for diverse applications, such as
medical imaging and biometric identification, where precise and resilient feature extraction is critical.
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