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Abstract

Despite a variety of powerful classifiers available in machine learning today, most of them struggle with processing
large-scale real-world datasets. Usually, these datasets contain irrelevant and redundant information that can
negatively affect the model’s performance. To overcome this, feature selection has become a commonly used
strategy to improve model performance by reducing dataset size while retaining essential information. Some
feature selection techniques tend to require more information than what is provided in the given dataset, making
them impractical in some cases. Alternatively, completely data-driven methods may lose critical information, as
they can mistake vagueness or imprecision in the dataset for irrelevant or redundant features. Fuzzy-rough set
theory offers a robust paradigm for tackling uncertainties, having been utilised across various domains, with feature
selection being one of its most prominent applications. This paper presents an extensive review of feature selection
methodologies grounded in fuzzy-rough set theory, accompanied by an empirical evaluation of multiple techniques
to evaluate their effectiveness.
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1. Introduction

High-dimensional data presents a significant challenge to machine learning models, as it increases the
likelihood of models overfitting on noise and irrelevant information, thereby misclassifying data and
leading to poor performance [8,32]. Feature selection [1] attempts to solve these issues by identifying
and extracting pertinent attributes (or features) for model construction. Besides this, the process of
feature selection reduces training time, enhances interpretability, and improves classification accuracy [31].
Moreover, feature selection proves its importance across diverse fields [9,33], including credit scoring [2],
image classification [3], and medical diagnosis [33], by enhancing data quality and making the decision-
making process more precise in these critical domains. A conceptual overview of a feature selection process
is illustrated in Figure 1.

A substantial body of research has documented numerous feature selection methodologies across existing
literature, yet a significant majority fails to adequately accommodate ambiguity and data inconsistency.
These approaches may categorize such data as irrelevant and exclude it, yielding a resultant dataset
with diminished informational potency. Rough Set Theory [5] offers a robust groundwork for handling
datasets of disparate complexities without reliance on supplementary information beyond what the dataset
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provides. However, one key restriction of rough set theory is that all data should be discrete, which
diminishes its usability over real-valued data. A widely used approach for overcoming this challenge is
the discretization of numerical data, which often leads to information loss.
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Figure 1. Overview of Feature selection

To address the above limitations, Dubois and Prade [6] presented a new framework that integrates fuzzy
set theory and rough set theory into a singular, unified concept known as fuzzy-rough set theory. With
such a hybrid theory, it is possible to work with continuous and discrete simultaneously without the need
to discretize the data, which protects data against the risk of information loss in the process of reducing
the dimensionality. With the incorporation of fuzzy membership functions into rough set definitions,
fuzzy-rough set theory becomes particularly effective in feature selection tasks where data may contain
imprecise or vague information. This theory has garnered substantial attention in the research world
attributable to its capacity to process diverse data types and handle complex, uncertain data effectively.
Nonetheless, existing literature exhibits a dearth of in-depth examinations regarding feature selection
methods founded in fuzzy-rough set theory.

This paper presents a comprehensive examination of feature selection methods grounded in fuzzy-
rough set theory, beginning with fundamental theoretical principles and essential definitions. The study
concludes with an experimental evaluation across multiple datasets, assessing both the efficacy and
advancements of these methods. The investigation particularly highlights their practical utility and
demonstrated capability to handle complex, real-world datasets.

This review is structured in the following manners: Section 2 provides a comprehensive exposition on the
theoretical base of both fuzzy sets and rough sets and thus lays the ground for the subsequent examination
of fuzzy-rough set theory. Section 3 provides a critical assessment of feature selection approaches grounded
in fuzzy-rough sets. Section 4 presents a comparative experimental analysis aimed at investigating the
effectiveness of these methods. Finally, Section 5 distils the key outcomes of this study into a concise
conclusion.
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2 2 PRELIMINARIES

2. Preliminaries

In order to understand the subsequent section, the primary principles and operators of fuzzy set theory,
rough set theory, and the unified framework of fuzzy-rough set theory will be introduced.

Within the theoretical frameworks examined in this paper, a dataset is represented as tuple (U, A)
called information system [5], where U is the set of objects called the universe and A is the set of features
in order that for every feature c € A, ¢: U — V.. Here, V, represents the set of possible values that feature
¢ can take.

2.1. FPuzzy Set Theory

Fuzzy set theory is a theoretical framework proposed by Lotfi Zadeh in 1965. Inspired by human reasoning,
it generalizes the classical set theory, by allowing an element to have a membership degree in multiple sets
rather than being restricted to inclusion or exclusion within a single set. It excels at managing imprecision
and uncertainty in data due to its reasoning flexibility. The utility of this theory shows in scenarios where
classical set theory proves insufficient when dealing with complex, nuanced real-world data.

Definition 1 ( [13]). A fuzzy set can be conceptually represented through a collection of ordered pairs:
A={(z,pa(x)) |z €U}

The function pa(z) is called the membership function for A, mapping each element of the universe U to
a membership degree in the range [0.1].

In order to facilitate the manipulation of fuzzy sets, various operations have been created. The
commonly applied fuzzy set operations are listed in Table 1, as detailed in this work [10].

Operator Definition
Intersection pwang(z) = min(pa(x), pp(x))
Union pau(x) = max(ua(z), pp(r))
Complement pr(r) =1—pa(x)

Table 1. Fuzzy Set Operators

2.2. Fuzzy Relations

A fuzzy relation R may be represented as a fuzzy set over the Cartesian product of the universe U, mapping
each ordered pair (z, y) from U x U to the interval [0, 1]. The membership value R(z,y) assigned to each
pair indicates the degree of association between the elements x and y under the specified relation R.

Let R denote a fuzzy relation on the Cartesian product U x U. In this work [7], R is referred to as a
fuzzy T-similarity relation on U for all z,y € U if R satisfies:

o Risreflexive & R(z,z) =1
o R is symmetric & R(z,y) = R(y,x)
e R is T-transitive & R(x,z) > T(R(z,y), R(y, 2))

In the particular case where triangular norm T = min then R is fuzzy equivalence relation on U.
Furthermore, they defined a fuzzy relation over any subset J C A by:

R; = ﬂ Ra,. (1)

ar€J
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2.3 Rough Set Theory 3

Example of Fuzzy Similarity Relation

There are numerous fuzzy similarity relations proposed in the literature. In this article, we adopt a
commonly used definition for numerical attributes. Given a numerical attribute a, the fuzzy similarity
relation Rq(x;,2;) between two instances x; and x; is defined as:

ja(z:) — a(zy) o)

Ro(wi, ;) =1— max(a) — min(a)

This relation quantifies the similarity between instances based on their attribute values, where the
value of R, (z;,x;) lies in the interval [0, 1]; a value of 1 indicates complete similarity, while 0 indicates
no similarity.

Example:
Consider an information system that contains two features a; and as:

U a1 a9

1 2.0 10.0
x2 3.5 120
x3 4.0 14.0
Using Equation 2, the fuzzy similarity relations for the two features are calculated as:
Ry, (z1,72) =1 — % =0.25, R, (z1,72) =1~ 22‘75 =0.5
RCLl(.’L'l,l'g):l*@:O.O, Raz(wl,.%'g):l*?g 0.0
Ra1 (.732,373) =1- 50 — 075, RaZ(CEQ,l’g) =1- 20 0.5
These can be represented in matrix form as:
1 025 0 1 05 0
R,y =1025 1 0.75 Ry, =105 1 05
0 07 1 0 05 1

By applying Equation 1, we can calculate the fuzzy similarity relation over the subset {a1,as2}:

1 min(0.25,0.5) = 0.25 min(0.0,0.0) = 0.0 1025 00
Ria, a0y = |0.25 1 min(0.75,0.5) = 0.5| = [0.25 1 0.5
0.0 0.5 1 00 05 1

This matrix represents the fuzzy similarity between instances x1,x2,x3 based on the combination of
features a; and as.

2.3. Rough Set Theory

Rough Set Theory, introduced by Zdizistaw Pawlak in the 1980s, has been extensively utilized as a
methodological tool by researchers to elicit data dependencies and to effect attribute reduction in datasets
independently, devoid of supplementary information. Particularly created for datasets characterised by
discrete features, aiming to reduce dimensionality by identifying a subset of features termed reduct that
provides a minimal yet informative representation of the original data. We recall some key definitions
from [14].

Let (U, A) be an information system. For any subset J C A, there is an associated equivalence relation
IND(J):

IND(J) = {(z,y) € U* |Vc € J, c(z) = c(y)} (3)
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IND(J) is known as J-indiscernibility relation, where objects that belong to IND(J) are indistinguishable
with respect to J. This indiscernibility relation generates partitions of the universe U, denoted as
U/IND(J).

Given a subset K of the universe U, where U = {x1,...,2,}, the set K can be approximated utilizing
the information contained in set J by generating the J-lower and J-upper approximations of K as follows:

JK ={zy, | [zr]s C K} (4)

and
JK = {x, | [xx]s N K # 0} (5)

where [x]; represent the equivalence classes of the J-indiscernibility relation. Objects in JK can be
classified with absolute certainty as elements of set K, whereas objects in JK can be classified as potential
elements of set K within the constraints of knowledge base J [5].

The discovery of dependencies among attributes is one of the central tasks of data analysis. RST offers a
prominent tool employed for this purpose, the dependency function, which quantifies the degree to which
a set of attributes E depends on another set J. The dependency between J and FE is expressed as [15]:

_ [POS,;(E)|
v1(E) = T (6)
where:
POS,(E)= |J JK (7)
KeU/E

Here, | - | denotes the cardinality of a set. The value of v;(FE) is always situated in the interval [0, 1]. A
value nearer to 1 suggests that F is highly dependent on J, while a value closer to 0 suggests a weaker
dependence of E on J.

2.4. Fuzzy-Rough Set Theory

Fuzzy-rough set theory, proposed by Dubois and Prade, extends the traditional framework of rough set
theory by incorporating the concept of a membership function from fuzzy set theory. This integration
makes it possible to utilze the definitions of rough set theory in various types of data such as continued,
discrete, and mixed datasets and not be limited only to discrete data.

Let (U, A) denote a fuzzy decision system, where the attribute set A is composed of a union of conditional
attribute set C and decision attribute set D. A fuzzy decision system is a type of fuzzy information system
equipped with decision attributes.

In this context, the foundational work of Dubois and Prade [6] introduces key definitions related to
fuzzy-rough sets, particularly in describing the lower and upper approximations of a fuzzy set X based
on a T-similarity relation R, as follows:

RpX(z) = [nf max {1-Rp(z,y), X(y)} (8)
RpX(z) = sup min {Rp(z,y), X (y)} (9)

The function Rz X (x) measures the degree to which z certainly belongs to the fuzzy set X, based on the
knowledge contained in B, while RpX (z) measures the degree to which z possibly belongs to X, also
based on the knowledge contained in B.

Furthermore, given B C C. The fuzzy positive region of ID with respect to B is defined as:
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2.5 Fuzzy Entropy 5

POSp(D) = |J RpX (10)
XeU/D

Building on the definition of the fuzzy positive region, this groundbreaking work [11] defines the fuzzy
dependency function as follows:

(D) = 2zeu P%SB(D)(UC) (11)

Similar to the dependency function in rough set theory framework, when the value of ~((ID) approaches
1, it indicates a strong dependency between the decision variable D and the feature subset C. Conversely,
a value closer to 0 suggests a weaker dependency.

2.5. Fuzzy Entropy

Fuzzy entropy, a metric developed by De Luca and Termini drawing upon Shannon’s entropy [16], serves
as a quantitative indicator of the degree of fuzziness within data. Specifically, it reflects the average
quantifiable information resident within data that underpins object classification. According to this
work [17], the fuzzy entropy H is given by:

-2 Z prilog(pi) + (1 — pi) log(1 — ps)) (12)

3

where p; represents the membership function of the fuzzy set, and log denotes the base 10 logarithm.

3. Fuzzy Rough Set for Selecting Features

Fuzzy rough set theory has become widespread in such fields as data mining, pattern recognition, and
decision-making. Especially, this theory has witnessed quite significant development in feature selection,
leading to a number of efficient and handy methodologies, capable of operating noisy and large-scale
datasets. Quite a significant number of feature selection studies, based on the fuzzy rough set theory, has
proved that efficient dimensionality reduction is possible without the loss of information.

3.1. Feature Selection techniques foundationed on Fuzzy Rough Set

Chouchoulas and Shen’s seminal work, as reported [18], pioneered the application of rough set theory
for feature selection. Through the introduction of the QUICKREDUCT algorithm, they devised a
computational framework that harnesses a dependency function to isolate a reduct. Despite its efficacy,
QUICKREDUCT is constrained by its discrete data constrictions and fails to ensure the identification
of an optimal minimal subset. Hence, Jensen and Shen’s [20] Fuzzy Rough Feature Selection (FRFS)
algorithm, as illustrated in Algorithm 1, was promulgated to mitigate these limitations. FRFS uses a
fuzzy-rough dependency function and selects relevant features iteratively based on it. Meaning features are
incrementally included only when they increase the dependency measure, thereby conclusively determining
the optimal subset.

This methodology constituted a substantial improvement in the application of fuzzy rough sets to
feature selection, allowing for the management of datasets comprising both discrete and real-valued
attributes. Nonetheless, the approach’s efficacy deteriorates as dataset size increase, resulting in escalating
processing durations, thereby compromising its operational efficiency. The primary impediment to this
methodology’s effectiveness is the substantial algorithmic complexity of the Cartesian product of fuzzy
equivalence classes within the algorithm.
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6 3 FUZZY ROUGH SET FOR SELECTING FEATURES

Algorithm 1: FRFS [20]
Input: Decision system DS
Output: R: the selected feature subset
(1) B 05 Yoest 4 05 Vowews

g T + R;

) ryl/)rev — ’Y{)cst;

) for eachae (C—R)do;

) if 'Y;{U{a}(D) > vp(D) then ;
) T + RU{a};

) ryl/)est — V%(D)v

) R+ T;

0) until 7o = Vprevi

11) return R;

In [20], Jensen and Shen introduced the Fuzzy Discernibility Matrix (FDM) algorithm, utilizing the
fuzzy discernibility matrix for feature selection, which employs this criterion to identify reducts through
evaluation of each feature’s role in class differentiation. However, FDM is becoming computationally
expensive as datasets grow bigger. Chen et al. [21] proposed the Sample Pair Selection (SPS) algorithm,
which focuses solely on the essential elements deduced from the fuzzy discernibility matrix, by utilizing
discernibility relations to facilate the identification of reducts by reducing drastically the computational
complexity and considering only those elements that are essential for effective classification.

Other recent work on fuzzy dependency functions includes the Max-Relevance Max-Significance
algorithm (MRMS) [22], which draws on principles of the Max-Relevance Min-Redundancy algorithm
[23]. Notably, the MRMS algorithm is designed to simultaneously enhance both the relevance and
the significance of the extracted attributes. Zhang et al. [25] introduce the Filter-Wrapper Approach
Reduction Algorithm (FWARA), an instance-based feature selection method. Unlike conventional
approaches that operate on the entire dataset, FWARA employs a two-stage selection process: it first
identifies an initial feature subset by computing the fuzzy dependency function using only representative
instances - the most discriminative data points determined through fuzzy relations; then it performs
wrapper-based backward elimination, where a classifier iteratively refines the feature subset to retain the
combination yielding the highest classification accuracy.The MRMS and FWARA algorithms are formally
presented in Algorithms 2 and 3, respectively.

Numerous fuzzy rough feature selection methods employ upper and lower approximations of a fuzzy set
based on similarity relation. For instance, Wang et al. [24] have developed a parameterized fuzzy relation.
Thus, a new dependency function is formed on which a heuristic algorithm called NFRS is developed.
The NFRS algorithm guarantees the best dependence of a sample’s class with low uncertainty but
maintains the inter-feature interactions which may lead to the under-specified features having important
discriminative information.

Building on these foundations, De Luca and Termini [17] extended Shannon entropy towards fuzzy
rough sets, enabling the effective extraction of information from fuzzy sets. Hu et al. [35] presented
a fuzzy entropy-based approach named FEAR to measure the ability of fuzzy relations to distinguish
among objects, as illustrated in Algorithm 4. Much later, Pasi Luukka [30] proposed a feature selection
technique that employs fuzzy entropy coupled with a similarity classifier, called the FSFEmSC algorithm.
In this approach, feature removal is guided by their entropy values, assuming that features having the
highest entropy contribute the least to class discrimination, while the most informative features have the
lowest entropy values. Additionally, Wang et al. [26] proposed a Dynamic Interaction Feature Selection
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Algorithm 2: MRMS [22]
Input: Decision system DS
Output: R: reduct of the attributes A
(1) R+ 0;

)
)
)
) repeat ;
) for each A; € C and A; € R construct FEPM Mg, A
) Compute opa;,4,3(D, Aj) = via,,4,3(D) = ya,(D);
if opa. a1 (D,A;) =0 for any A; € R, then remove A, from C;
{Ai, A5} J J
) From remaining A; € C, select feature maximizing:
(1-w)
5|

> otana(D.4))
A;€S

wy(a, (D) +

(10)  Add selected A; to S and update C +— C\ {4, };
(11) until C = @ or |R| = d desired number of features;
(12) return R;

Algorithm 3: FWARA [25]

Input: Decision system DS, one minimal fuzzy granular rule set R*(A, D), and the representative
instance set U*.

Output: Reduct B of (U, AU D).

(1) Initialize B < @, threshold < —1;

(2) Compute 74 (D);

(3) for each a € A\ B, compute v5 ., (D);

(4) Let a;, be the attribute satisfying:

VBU{a;,} (D) = Jnax YBufay(D)

if ’YBU{MO}(D) > threshold, then update:
B+ BU{a;,}, threshold «+ WEU{MO}(D)

(5) if threshold < ~v% (D), go to Step (3); otherwise, output B and proceed:;

(6) Proceed by applying a wrapper-based phase to refine the selected subset B. In this phase,
different combinations of features in B are evaluated using a classifier, and the subset yielding
the highest classification accuracy is retained as the final optimal feature subset.

method based on fuzzy entropy (DIFS-FRS), which selects features based on their relevancy, redundancy,
and taking into consideration the interaction between features. Later, an incremental feature selection
algorithm was developed by Dong et al. [28] for dynamic datasets, termed as ASIRA. It can handle
the increases of both the number of samples and features simultaneously. However, this method is still
suffering from its computation burden when datasets expand.

Most recently, Zhao et al. [29] devised a consistency approximation framework through their
CAIFS algorithm to augment incremental feature selection. This framework is leveraged to accelerate
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8 4 EXPERIMENTAL EVALUATION

Algorithm 4: FEAR [35]

Input: Decision system DS

Output: One reduct red of DS

Step 1: For all a € A, compute the equivalence relation;
Step 2: red « 0;

Step 3: foreach a;, € C'\ red do

L H; < SIG(a;,red, d);

Step 4: Let a such that SIG(a,red, d) = max;(H;);
Step 5: if SIG(a,red,d) > 0 then

red «+ red U {a};
L Go to Step 3;

else
| return red;

computational efficiency through a tri-accelerator mechanism, which involves two major steps: identifying
the most informative samples, followed by feature evaluation using the significance measure. Hence, this
approach not only improves the model performance but also reduces the time complexity challenges
encountered in large-scale and high-dimensional datasets.

3.2. Summary

The development of fuzzy rough set-based feature selection has provided powerful tools for handling
dimensionality reduction, primarily underpinned by the discernibility matrix, dependency degree, and
fuzzy entropy theoretical frameworks.

o Discernibility matrix-based approaches aim to reduce the dimensionality of datasets by removing
those attributes that fail to discern between decision classes.

e« Dependency degree-based strategies determines the importance of each feature, based on
quantifying the dependency between attributes and decision attributes.

e Fuzzy entropy-based methodologies, which are based on the principle of information entropy for
the purpose of refine feature selection by quantifying the information gained from fuzzy sets.

A summary of the categorization, advantages, and limitations of the fuzzy rough set-based feature
selection methods reviewed in this paper is presented in Table 2.

4. Experimental Evaluation

In this section, we compare the performance of several fuzzy rough set-based algorithms in terms of
subset optimality and classification accuracy. The experiments were conducted on a system equipped
with an Intel(R) Core(TM) i7-8650U processor (4.20 GHz), 16 GB of RAM, and running the Windows
11 operating system. All algorithms were implemented and executed using Python version 3.12.7.

4.1. Experimental Analysis

The performance of four methods—FRFS, FEAR, FWARA, and MRMS—is evaluated. The experiments
mainly focus on selecting the best feature subset using these methods and comparing them in terms of
computational time, the cardinality of the selected feature subsets, and the classification performance of
the selected subsets. To accomplish this, six datasets were downloaded from the UCI Machine Learning
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Experimental Analysis

Table 2. Summary of Fuzzy Rough Set-Based Feature Selection Methods

Method Category Advantages Limitations
FRFS [20] Dependency-based  Handles  mixed data; High computational cost
selects  only  features due to Cartesian prod-
improving dependency uct of fuzzy equivalence
classes; less efficient on
large datasets
FDM [20] Discernibility- Identifies reducts using Computationally
based class-distinguishing expensive for large-scale
features data
SPS [21] Discernibility- Reduces complexity by May ignore weak but use-
based selecting only essential ful features
discernibility elements
MRMS [22] Dependency-based  Balances relevance and sig- Can be sensitive to the
nificance; controls redun- choice of the membership
dancy function
FWARA [25] Dependency-based  Efficient two-stage pro- The performance is
cess; high accuracy with classifier-dependent  and
reduced subsets unsuitable for large-scale
data
NFRS [24] Parameterized Reduces uncertainty while Risk of selecting under-
Dependency preserving interactions specified features
FEAR [35] Fuzzy entropy- Measures  discrimination Performance decreases
based ability via fuzzy entropy with dataset size due to
entropy dilution
FSFEmSC [30] Fuzzy entropy- Simple and  effective Assumes high-entropy fea-
based entropy-based filter with tures are non-informative,
similarity classifier which may not always hold
DIFS-FRS [26] Fuzzy entropy- Considers feature Computationally demand-
based relevance, redundancy, ing as feature space grows
and interaction
ASIRA [28] Discernability- Handles dynamic datasets High computational cost in
based with increasing size large-scale dynamic envi-
ronments
CAIFS [29] Dependency-based  Fast and consistent Relies heavily on sample

selection via tri-accelerator
mechanism

quality and
thresholds

significance

Repository [34] and OpenML [46]. The datasets are briefly described in Table 3. Prior to analysis, a simple
preprocessing step was applied where any missing values were replaced by the mean of the respective

feature, as all datasets are numeric.

Performance assessment was conducted using 5-fold cross-validation with an 80% — 20% train-test split
per fold, where for each fold, the feature selection methods were applied to the training partition, and
the selected features were evaluated using both a K-Nearest Neighbors (KNN, K = 3) classifier and a

Support Vector Machine (SVM) classifier on the test partition.

Stat., Optim. Inf. Comput.
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10 4 EXPERIMENTAL EVALUATION

Table 3. Characteristics of the datasets used in the study

Dataset Objects Features Number of Classes  Source
Sonar 207 60 2 UCI
Glass 214 9 6 UCI
Tonosphere 230 34 2 UCI
WDBC 569 30 2 UcCI
Colon 62 2000 2 OpenML
Prostate 149 12600 2 OpenML

4.2. Experimental Results

To compare the effectiveness of the chosen fuzzy-rough-set feature methods, we analyzed their performance
across six diverse datasets, where an assessment of the algorithms was conducted in terms of classification
accuracy, size of the selected feature subset, dimensionality reduction rate, and execution time. Tables 4
and 5 present the average classification accuracies and the cardinalities of the selected feature subsets
obtained by each method using SVM and 3NN, respectively.

Table 4. Comparison of feature selection methods across datasets using SVM classifier

- FRFS FEAR FWARA MRMS
Dataset Original Accuracy
|R| Accuracy |R| Accuracy |R| Accuracy |R| Accuracy

Sonar 75.05 45 79.83 38 75.53 18 79.20 49 75.49
Glass 60.78 9 60.78 6 61.72 9 60.78 8 63.99
Tonosphere 88.29 30 86.90 30 88.31 26 90.66 9 86.03
WDBC 94.90 22 95.60 25 96.48 22 96.60 14 95.60
Colon 66.02 22 98.37 4 62.95 5 77.06 14 95.60
Prostate 86.23 - - 18 55.90 - - 20 90.23

Table 5. Comparison of feature selection methods across datasets using 3NN classifier

.. FRFS FEAR FWARA MRMS
Dataset Original Accuracy
|R| Accuracy |R| Accuracy |R| Accuracy |R| Accuracy

Sonar 81.72 24 82.20 38 82.23 18 76.45 50 80.82
Glass 65.43 7 67.79 7 68.76 9 65.43 8 74.31
Tonosphere 84.89 8 88.89 12 88.33 26 86.74 7 88.02
WDBC 91.91 24 92.26 28 99.36 22 95.67 26 92.79
Colon 72.82 17 75.51 12 64.36 ) 92.17 10 81.92
Prostate 76.33 - - 42 53.00 - - 20 87.14

Figure 3 provides a visual overview of the feature reduction capability of each method. It can be
observed that the majority of methods significantly reduce the number of features while preserving or
even improving accuracy. Additionally, Table 6 reports the average running time for each method per
fold, revealing that FRFS and FWARA are computationally more efficient than FEAR and MRMS on
most datasets.
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Figure 2. Accuracy improvement after feature selection: performance comparison using SVM and 3NN classifiers.

Table 6. Average running time (seconds) of finding one reduct (per fold)

Dataset FRFS FEAR FWARA MRMS

Sonar 14.37 28.04 15.84 9.55
Glass 0.06 4.44 12.16 3.19
Tonosphere  7.10 29.62 18.13 37.62
WDBC 12.27 76.31 19.32 62.90
Colon 14.87 76.28 15.41 41.31
Prostate - 1361.28 - 692.44

The comparative evaluation of the methods highlights several performance trends where it can be
observed from the results that FRFS consistently improves SVM accuracy (up to +4.8% over baseline),
especially in low-dimensional settings. However, it fails to generate valid subsets for the high-dimensional
Prostate dataset. In the other hand the FEAR shows superior performance with 3NN, yielding up to
+3.9% accuracy gain, demonstrating the advantage of its entropy-driven criteria in neighborhood-based
classification. For the filter-wrapper FWARA method, it can be seen that it achieves the most substantial
dimensionality reduction (approximately 82% fewer features on average).However, FWARA'’s performance
varies across classifiers, which can be explained by the method’s dependency on the classifier used. In
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Figure 3. Feature reduction results of all methods for SVM and 3NN classifiers.
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Figure 4. Comparative performance of feature selection methods using SVM (a) and 3NN (b) classifiers.

contrast, MRMS is compatible with all the datasets that were studied and ensures consistent accuracy
improvements for both classifiers (SVM: 4+3.1%, 3NN: +2.9%).

These results demonstrate that the optimal method depends on dataset characteristics. Methods
like FRFS and FWARA tend to be more compatible with smaller datasets, while FEAR and MRMS
generally serve as reliable default choices for diverse datasets. However, although FEAR is designed to
handle larger datasets, its performance tends to decline as the significance calculated by fuzzy entropy
becomes less distinct when the dataset size increases, leading to a potential loss of discriminatory power.
with FRFS/FEAR preferred for accuracy-focused applications on small datasets, FWARA for maximal
reduction when validated, and MRMS as a reliable default choice for diverse datasets.

4.3. Statistical significance test

To evaluate whether the performance differences among the four feature selection methods (FRFS, FEAR,
FWARA, MRMS) are statistically significant, we conducted the non-parametric Friedman test, followed
by the computation of Kendall’s coefficient of concordance (W) to assess the level of agreement in the
rankings. The test was applied using both SVM and 3NN classifiers. The results are presented in Table 7.

Table 7. Comparative Friedman test results for SVM and 3NN classifiers

Classifier Kendall’'s W y? (Q) df p-value

SVM 0.071 1.063 3 0.786
3NN 0.104 1.560 3 0.669

As shown in Table 7, for the SVM classifier, the Friedman test yields a test statistic of x? = 1.063 with
3 degrees of freedom and a p-value of 0.786. Similarly, for the 3NN classifier, the test yields y? = 1.560
with a p-value of 0.669. Both p-values are well above the commonly used significance threshold of 0.05,
indicating that there is no statistically significant difference in the classification accuracies across the four
feature selection methods.

Furthermore, the Kendall’s W values are 0.071 for SVM and 0.104 for 3NN, which suggest a very
weak level of agreement in the ranking of methods across datasets. This further supports the notion that
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the methods perform inconsistently across datasets and classifiers, and no single method consistently
outperforms the others.

3NN Accuracy Rankings

SVM Accuracy Rankings
FWARA
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FRFS 260

e _ o

200

FEAR

100 125 1.50 175 200 225 250 275 300 o 10 15
Average Rank Average Rank

20 25 30

(a) SVM Rankings (b) 3NN Rankings

Figure 5. Diagrams comparing average ranks of feature selection methods for SVM (a) and 3NN (b) classifiers.

These findings suggest that while the methods may differ in certain datasets, their overall performance
is statistically comparable, and the choice of method may need to be guided by dataset-specific
characteristics rather than global performance superiority.

5. Conclusion

While numerous techniques for fuzzy rough feature selection have been developed, ongoing research into
fuzzy rough sets remains crucial to address the evolving challenges posed by real-world applications. This
paper reviews some of these methods, highlighting their significance, potential, and the advancements that
this field has witnessed. The inherent complexity of real-world problems necessitates continuous refinement
and advancement in fuzzy rough set theory (FRST) and its associated feature selection methodologies.
Despite being a relatively new field, FRST has already demonstrated impressive capabilities, particularly
in its ability to process diverse data types—discrete, continuous, or mixed—without requiring additional
information. By relying solely on the intrinsic structure of the data, FRST proves its strength in extracting
meaningful information with minimal representation of knowledge in data, making it a highly effective
tool for dimensionality reduction. Its capacity to preserve information in the data and improve the quality
of data underscores its potential as a robust and versatile approach to feature selection, paving the way
for further exploration and innovation in this domain.
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