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1. Influenza (H5N1) Overview

Avian influenza (AI), triggered by an orthomyxoviridae RNA virus, is a respiratory disease that affects both birds
and mammals (see [1] for more details). The virus is classified into three primary types: A, B, and C, derived from
differences in two key proteins [4]. Among these, the (AI) virus type A is epidemiologically more signifiant and
dangerous, raising concerns due to its ecological and evolutionary implications across diverse bird and mammal
species. This virus frequently undergoes substantial changes in its immunological characteristics. According to
[5], type A avian influenza includes three subtypes AH5, AH9, and AH7, that can be transmitted to both birds and
humans. Human transmission occurs either through inhalation of airborne viral particles or contact with infected
spots. Symptoms in humans typically include fever, cough, shivers, and headaches. Despite, the virus circulates
naturally in birds, and usually results from exposure to infected excrement, often leading to severe health outcomes.

In 1998, there were 16 reported human cases and three suspected ones [6]. More recently, [7] reports that
Indonesia reported 151 cases, leading to 52 deaths, while Vietnam confirmed 119 cases with 59 deaths. In Hong
Kong in 2004, the avian influenza virus was detected in migrating birds, though no infections were found in local
poultry, pet birds, or wild birds [8]. Further, in 2023, a man from Chile contracted the virus, despite having no
underlying conditions or recent travel memory. WHO verified that a poultry farm worker in England tested positive
for the severe avian influenza AH5N1 virus in mid-May, followed by a second case in a population involved
in slaughter operations at the same farm. Concerns over the rapid global spread of avian influenza remain high.
Most studies on avian influenza complications have employed discrete-time models expressed through differential
equations. The severity of these complications varies, with some being manageable while others progressing to
a critical, incurable stage. Our research is driven by the ongoing debate surrounding the origins of the virus and
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availability of vaccines. Some theories suggest the virus is introduced via contaminated poultry imports, while
others implicate migrating birds as seasonal carriers. Typically, mathematical models in epidemiology divide the
population into distinct groups, each representing different health conditions related to the disease being studied.
These models evolve over time as the number of individuals in each group shifts with changes in their health status.
This approach is particularly important for diseases like avian influenza, measles, chickenpox, rubella, or mumps,
where the duration of illness is relatively short. As a result, the impact of birth and death rates during the outbreak
is often considered negligible. One of the fundamental models used in epidemiology is the SIR model, which
categorizes the community into Susceptible, Infected, and Recovered/Immune sub-groups. This model was first
introduced by McKendrick and Kermack in 1927 (see [15]) and has significantly influenced the study of disease
spread. Subsequent models, such as the Greenwood and Reed-Frost models, the SI model (where recovery is not
possible) [17], and more sophisticated SIR models, have expanded on this framework. Some models divide the
susceptible individuals into subgroups with various infection rates or consider varying severity levels of infection
[11]. Advanced models may also incorporate antiviral treatments and vaccination strategies [12, 13, 16]. Various
epidemiological models can be developed based on the categories considered, including the SIS model [19], which
expands the classical (SIS) epidemic model by evolving from a deterministic to a stochastic framework, formulating
it as a differential stochastic system (SDE) for the size of the infected popoulation. The SIRS model [20] introduces
Lyapunov mapping for the well-known SIR, SIS and SIRS models, thereby stating the global stability of these
models. The SEIR model [21] presents explicit Lyapunov mappings for SIR and SEIR models involving non-linear
incidence. Finally, the MSEIR model [22] introduces a novel approach to address the asymptotic dynamics of
age-structured epidemic equations and explores their applications to the MSEIR models, among others.

In our study, we examine the following categories within the MSEIHR model. The (M) class consists of
individuals with passive immunity, having acquired protective antibodies from their mothers. The (S) class includes
those who are susceptible to the disease but have not yet been exposed. The (E) class refers to individuals who have
been exposed but are not yet infectious. The (I) class represents infected persons who are capable of transmitting
the disease. The (H) class is composed of hospitalized individuals, while the (R) class includes those who have
recovered and developed lasting immunity. Now, to describe this model mathematically, we propose a continuous
mathematical model using differential equations. Initially, we will examine the local stability at both free and
endemic equilibrium points. Given that data collection often involves errors and parameter values are assumed, we
will also conduct a sensitivity analysis to identify the parameters that significantly influence the basic reproduction
ratio R0.

The paper is structured as follows: Section 2 presents the formulation of the model and its basic properties. In
Section 3, we address the equilibrium points of the model. Section 4 covers the analysis of the local stability of the
equilibrium points. In Section 5, we address the sensitivity analysis of the model parameters. Section 6 presents
numerical simulations that validate the theoretical findings. Finally, we conclude by discussing the obtained results.

2. A Classical MSEIHR Model and Basic Results

We introduce MSEIHR model to represent the H5N1 spread within a population, segmented into six compartments
M, S, E, I, H, and R, where the total size N = M + S + E + I +H +R remains constant over time.

Figure 1. MSEIHR model
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We examine the following of differential system for the classical MSEIHR model:

dM(t)

dt
= b(N − S(t))− (b+ δ)M(t)

dS(t)

dt
= bS(t) + δM(t)− β S(t)E(t)

N − bS(t)

dE(t)

dt
= β S(t)E(t)

N − (α+ b+ θ)E(t)

dI(t)

dt
= αE(t)− (b+ λ) I(t)

dH(t)

dt
= λI(t)− (µ+ b)H(t)

dR(t)

dt
= µH(t) + θE(t)− bR(t).

(1)

The initial states are represented by the nonnegative constants M0, S0, E0, I0, H0, and R0. The coefficients
are defined as follows: δ is the rate of individuals leaving the M group, β the transmission rate from susceptible
to asymptomatic infected cases, b the natural death rate across all compartments, α the progression rate from
asymptomatic to symptomatic cases, λ the transmission rate from symptomatic individuals to hospitalized cases, µ
the recovery rate of hospitalized cases, and θ the recovery rate of asymptomatic cases due to strong immunity.

The (M) compartment represents individuals with passive immunity from maternal antibodies. Its population
increases by bN(t) and decreases by bS(t), reflecting natural mortality, and by δM(t) due to immunity loss. The
(S) compartment includes individuals susceptible to the disease but not yet exposed. It increases by bS(t) and
δM(t) and decreases by β S(t)E(t)

N , representing exposure through contact, and by b for natural mortality. The (E)
compartment includes exposed but non-infectious individuals. It increases by β S(t)E(t)

N and decreases by αE(t),
θE(t), and b. The (I) compartment represents infectious individuals, increasing by αE(t) and decreasing by b
and λI(t), which reflects recovery or hospitalization. The (H) compartment represents hospitalized individuals,
increasing by λI(t) and decreasing by µH(t) and b. The (R) compartment represents recovered individuals with
lasting immunity, increasing by µH(t) and θE(t) and decreasing by b.

Since the total population size N remains constant, a second set of variables is introduced to represent the
proportion of the population in each category:

m =
M

N
, s =

S

N
, e =

E

N
, i =

I

N
, h =

H

N
and r =

R

N
.

Thus, model 1 can be reformulated as:

dm(t)

dt
= b(1− s(t))− (b+ δ)m(t)

ds(t)

dt
= bs(t) + δm(t)− βs(t)e(t)− bs(t)

de(t)

dt
= βs(t)e(t)− (α+ b+ θ)e(t)

di(t)

dt
= αe(t)− (b+ λ) i(t)

dh(t)

dt
= λi(t)− (µ+ b)h(t)

dr(t)

dt
= µh(t) + θe(t)− br(t)

(2)

where the following initial values are assumed to belong in (0, 1)

m(0) = m0, e(0) = e0, s(0) = s0, i(0) = i0, h(0) = h0 and r(0) = r0. (3)
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Now, we demonstrate that all solutions of System 2 with nonnegative initial requirements remain nonnegative,
for all time. This will be confirmed through the following lemma.

Lemma 2.1 (Invariant Region)
The feasible region of System 2 is defined as Ω =

{
(m, s, e, i, h, r) ∈ R6

+ : m+ s+ e+ i+ h+ r = 1
}

.

Proof
First, we remark that we have

dm(t)

dt
+

ds(t)

dt
+

de(t)

dt
+

di(t)

dt
+

dh(t)

dt
+

dr(t)

dt

= b(1− s(t))− (b+ δ)m(t) + bs(t) + δm(t)− βs(t)e(t)− bs(t) + βs(t)e(t)

− (α+ b+ θ)e(t) + αe(t)− (b+ λ) i(t) + λi(t)− (µ+ b)h(t) + µh(t) + θe(t)− br(t)

= b− b(m(t) + s(t) + e(t) + i(t) + h(t) + r(t)).

Thus, to get b− b(m(t) + s(t) + e(t) + i(t) + h(t) + r(t)) = 0, we must impose

m(t) + s(t) + e(t) + i(t) + h(t) + r(t) = 1.

Theorem 2.2 (Positivity)
If m0, s0, e0, i0, h0 and r0 are non-negative, the solutions

(
m(t), s(t), e(t), i(t), h(t), r(t)

)
of System 2 will stay

nonnegative for each t > 0.

Proof
We have

ds(t)

dt
= δm(t)− βs(t)e(t) = δm(t)− Z(t)s(t), (4)

where
Z(t) = βe(t).

We multiply the equation (4) by exp
( ∫ t

0

Z(s) ds
)

to infer

ds(t)

dt
∗ exp

( ∫ t

0

Z(s) ds
)
= [δm(t)− Z(t)s(t)] ∗ exp

( ∫ t

0

Z(s) ds
)
, (5)

which yields that

ds(t)

dt
∗ exp

( ∫ t

0

Z(s) ds
)
+ Z(t)s(t) ∗ exp

( ∫ t

0

Z(s) ds
)
= δm(t) ∗ exp

( ∫ t

0

Z(s) ds
)
. (6)

Hence, we deduce
d

dt

[
s(t) ∗ exp

( ∫ t

0

Z(s) ds
)]

= δm(t) ∗ exp
( ∫ t

0

Z(s) ds
)
. (7)

Taking next the integral with respect to s from 0 to t, we get

s(t) ∗ exp
[∫ t

0

Z(s) ds

]
= s(0) + δ ∗

∫ t

0

m(w)

(
exp

(∫ N

0

Z(s) ds

))
dw. (8)
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4 MATHEMATICAL MODELLING AND ANALYSIS OF INFLUENZA (H5N1)

Multiply this relation by exp
[
−
∫ t

0

Z(s) ds
]
, we get

s(t)− s(0) ∗ exp
(
−
∫ t

0

Z(s) ds

)

= δ ∗ exp
(
−
∫ t

0

Z(s) ds

)
∗
∫ t

0

m(w)

(
exp

(∫ w

0

Z(s) ds

))
dw.

Thus, the solution s(t) is non-negative, since

s(t) = s(0) ∗ exp
[
−
∫ t

0

Z(s) ds

]

+ δ ∗ exp
(
−
∫ t

0

Z(s)ds

)
∗
∫ t

0

m(w)

(
exp

(∫ w

0

Z(s)ds

))
dw ≥ 0.

In a similar manner, from the other equations in System 2, we have m(t) ≥ 0, e(t) ≥ 0, i(t) ≥ 0, and r(t) ≥ 0 for
all t ≥ 0. Consequently, the solutions m(t), s(t), e(t), i(t), h(t), and r(t) of System 2 stay non-negative for t ≥ 0.

The first three relations in System 2 do not involve i, h, and r. Therefore, the dynamics of System 2 is equivalent
to 

dm(t)

dt
= b(1− s)− (b+ δ)m

ds(t)

dt
= bs+ δm− βse− bs = δm− βse

de(t)

dt
= βse− (α+ b+ θ)e.

(9)

3. Analysis of Stability and Model Sensitivity

We distinguish two equilibrium points for this model: the disease-free equilibria point and the disease-present
equilibrium point. To find these equilibria points, we set the right-hand side of equation (9) equal to 0. The disease-
free equilibrium, E0

ef (0, 1, 0), occurs when the virus is absent (m = e = 0). The disease-present equilibrium,
E∗

eq = (m∗, s∗, e∗), is reached when the disease is present (s ̸= 0 and e ̸= 0), where:

m∗ =
βb− b(α+ b+ θ)

β(b+ δ)
, s∗ =

α+ b+ θ

β
, e∗ =

δb

β(b+ δ)
(

β

α+ b+ θ
− 1) , R0 =

β

α+ b+ θ
.

Note that the number R0 indicates the expected number of new infections that a solitary infected person could
cause in a population of individuals who have not yet been infected. A high value of R0 suggests a higher potential
for an epidemic. We will now explore the local stability of E0

ef and E∗
eq. We will start by analyzing the local stability

of the disease-free equilibrium E0
ef.

Theorem 3.1 (Illness-free equilibria)
The disease-free equilibrium E0

ef

(
0, 1, 0

)
of System 9 is asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof
First, the Jacobian at the point Eef is given by the matrix below

J(Eef ) =


−(b+ δ) −b 0

δ −βE
N −βS

N

0 βE
N

βS
N − (α+ b+ θ)

 .
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For the disease-free equilibrium, the Jacobian matrix is

J(E0
ef ) =

−(b+ δ) −b 0

δ 0 −β

0 0 β − α− b− θ

 .

The J(E0
ef ) eigenvalues are determined by det(J(E0

ef)− λI) = 0, and they are

λ1 = β − α− b− θ , λ2 =
−A−

√
A2 − 4B

2
, λ3 =

−A+
√
A2 − 4B

2
,

where
A = b+ δ and B = bδ.

Then, if R0 < 1, the disease-free equilibrium is locally asymptotically stable and, unstable when R0 > 1.

Next, we examine the local stability of the disease-present equilibrium. To do this, impose the conditions

dm(t)

dt
= 0 ,

ds(t)

dt
= 0 and

de(t)

dt
= 0.

From these, we find m∗ = b
b+δ

(
1− 1

R0

)
. Substituting this into the second equation of System (9) yields

s∗ =
1

R0
,

Additionally, the third equation of System 9 provides

e∗ =
δb

β(b+ δ
(R0 − 1).

Consider the theorem below, regarding the local stability of the disease-present equilibrium.

Theorem 3.2 (Disease-present equilibrium)
If R0 > 1, the disease-present equilibrium E∗

eq is locally asymptotically stable and, unstable when R0 ≤ 1.

Proof
Let E∗

eq(S
∗, E∗, I∗) denote the disease-present equilibrium of Model 9, where

S∗ ̸= 0, E∗ ̸= 0 and I∗ ̸= 0.

The Jacobian at the point E∗
eq is the matrix below:

J(E∗
eq) =


−(b+ δ) −b 0

δ − δb
b+δ (R0 − 1) − β

R0

0 δb
b+δ (R0 − 1) β

R0
− (α+ b+ θ)

 .

We find that the characteristic equation of J(E∗
eq) is as below:

φ(ζ) = ζ3 + a1ζ
2 + a2ζ + a3,
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6 MATHEMATICAL MODELLING AND ANALYSIS OF INFLUENZA (H5N1)

where
a1 = b+ δ +

δb

b+ δ
(R0 − 1) > 0,

a2 = δb (R0 − 1) +
δb(α+ b+ θ)

b+ δ
(R0 − 1) + δb > 0,

a3 = δb (α+ b+ θ) (R0 − 1).

By utilizing the Routh-Hurwitz criterion, Model 9 is locally asymptotically stable for

a1 > 0 , a2 > 0 , a3 > 0 and a1a2 > a3.

Thus, the disease-present equilibrium E∗
eq of System 9 is locally asymptotically stable for R0 > 1.

4. Global Stability of the MSEIHR model

To attests to the global asymptotic stability of System 9, we employ Lyapunov function properties at both the
disease-present equilibria and the disease-free equilibrium. We first deal with the disease-free equilibrium E0

ef .

Theorem 4.1 (Disease-free equilibrium)
The disease-free equilibrium E0

ef is asymptotically globally stable in Ω if and only if R0 ≤ 1, and unstable for
R0 > 1.

Proof
Introduce Lyapunov map V : Γ → R defined by V (m, s, e) = e so that

Γ =
{
(m, s, e) ∈ Γ : m > 0, s > 0, e > 0

}
.

Hence, the derivative of a Lyapunov map is given as below:

dV (m, s, e)

dt
=

de

dt
=
(
βs− (α+ b+ θ)

)
e

=
(
R0(α+ b+ θ)− (α+ θ + b)

)
e =

(
α+ θ + b) (R0 − 1

)
e.

Thus, we have
dV (m, s, e)

dt
≤ 0 ⇐⇒ R0 ≤ 1 and

dV

dt
= 0 ⇐⇒ e = 0.

By employing LaSalle’s invariance principale [23], it yields that E0
ef is globally asymptotically stable in Γ.

The final result here concerns the global stability of the disease-present equilibrium E∗
eq.

Theorem 4.2 (Disease-present equilibrium)
The disease-present equilibrium E∗

eq is globally asymptotically stable if R0 > 1.

Proof
Take the Lyapunov map V : Γ → R given by

V (m, s) =
m∗

b

(
m−m∗ ln

( m

m∗

))
+ s∗

(
s− s∗ ln

( s

s∗

))
,

where
Γ =

{
(m, s) ∈ Γ : m > 0, s > 0

}
,
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and
V (m, s) =

m∗

b

(
m−m∗ ln

( m

m∗

))
+ s∗

(
s− s∗ ln

( s

s∗

))
Then, the derivative of the mapping V is

dV (m, s)

dt
=

m∗

b
(m−m∗)

(b(1− s)

m
− (b+ δ)

)
+ s∗(s− s∗)

(δm
s

− βe
)

=
m∗

b
(m−m∗)

(b(1− s)

m
− b(1− s∗)

m∗

)
+ s∗(s− s∗)

(δm
s

− δm∗

s∗
)

=
m∗

b
(m−m∗)

( b
m

− b

m∗ − bs

m
+

bs∗

m∗

)
+ s∗δ(s− s∗)

(ms∗ − sm∗

ss∗
)

=
m∗

b
(m−m∗)

(b(m∗ −m)

mm∗ +
b(ms∗ − sm∗)

mm∗

)
+ s∗δ(s− s∗)

(ms∗ − sm∗

ss∗
)

= −m∗ (m−m∗)2

mm∗ +m∗(m−m∗)(
ms∗ − sm∗

mm∗ ) + s∗δ(s− s∗)
(ms∗ − sm∗

ss∗
)

= −m∗ (m−m∗)2

mm∗ + (ms∗ − sm∗)(s∗δ
s− s∗

ss∗
+m∗m−m∗

mm∗ )

= −m∗ (m−m∗)2

mm∗ + (ms∗ − sm∗)(s∗δ(
1

s∗
− 1

s
) +m∗(

1

m∗ − 1

m
))

= −m∗ (m−m∗)2

mm∗ + (ms∗ − sm∗)(
s∗δ

s
(
s

s∗
− 1) +

m∗

m
(
m

m∗ − 1))

= −m∗ (m−m∗)2

mm∗ +ms(
s∗

s
− m∗

m
)(
s∗δ

s
(
s

s∗
− 1) +

m∗

m
(
m

m∗ − 1))

= −m∗ (m−m∗)2

mm∗ +ms(
s∗

s
− 1− (

m∗

m
− 1))(

s∗δ

s
(
s

s∗
− 1) +

m∗

m
(
m

m∗ − 1))

= −m∗ (m−m∗)2

mm∗ +ms(
s∗δ

s
(
s∗

s
− 1)(

s

s∗
− 1) +

m∗

m
(
s∗

s
− 1)(

m

m∗ − 1)

− s∗

s
(
m∗

m
− 1)(

s

s∗
− 1)− m∗

m
(
m∗

m
− 1)(

m

m∗ − 1))

= −m∗ (m−m∗)2

mm∗ +ms(−s∗δ

s
(
(s− s∗)2

ss∗
) +

m∗

m
(
(m−m∗)2

mm∗ )

− m∗

m

(s− s∗)(m−m∗)

sm∗ +
s∗

s

(s− s∗)(m−m∗)

ms∗
)

= −m∗ (m−m∗)2

mm∗ − ms∗δ

ss∗
(s− s∗)2 +

m∗s

mm∗ (m−m∗)2 − m∗

m∗ (s− s∗)(m−m∗)

+
s∗

s∗
(s− s∗)(m−m∗)

= −m∗ (m−m∗)2

mm∗ − ms∗δ

ss∗
(s− s∗)2 +

m∗s

mm∗ (m−m∗)2

+ (s− s∗)(m−m∗)(
s∗

s∗
− m∗

m∗ )

=
m∗

mm∗ (s− 1)(m−m∗)2 − ms∗δ

ss∗
(s− s∗)2 +

m∗s

mm∗ (m−m∗)2

+ (s− s∗)(m−m∗)(
s∗

s∗
− m∗

m∗ )
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8 MATHEMATICAL MODELLING AND ANALYSIS OF INFLUENZA (H5N1)

So, we have

dV (m, s)

dt
= − m∗

mm∗ (1− s)(m−m∗)2 − ms∗δ

ss∗
(s− s∗)2

= − 1

m
(1− s)(m−m∗)2 − mδ

s
(s− s∗)2 ≤ 0.

Additionally, we obtain
dV (m, s)

dt
= 0 ⇐⇒ m = m∗ and s = s∗.

Employing LaSalle’s principle, the disease-present equilibrium E∗
eq is globally asymptotically stable in Γ.

5. A MSEIHR Model Sensitivity

Sensitivity analysis is employed to assess the effectiveness of a model with respect to parameter values, helping us
identify which parameters significantly affect the reproduction number R0. This is particularly important given the
potential errors in data collection and the assumptions made about parameter values. By the method outlined by
Chitnis [3], we determine the forward sensitivity indices of R0. Specifically, we define the sensitivity index as

ΥR0
n =

∂R0

∂n
∗ n

R0
.

This represents the sensitivity of R0, relating to the parameter n. Hence, we can write

R0 =
β

α+ b+ θ
, ΥR0

β = 1 , ΥR0
α = − α

α+ b+ θ
, ΥR0

θ = − θ

α+ b+ θ
and ΥR0

b = − b

α+ b+ θ
.

From this analysis, we observe that R0 is most sensitive to variation in β. An increase in β will result in a
proportional increase in R0, while a decrease in β will cause R0 to decrease proportionally. Conversely, parameters
such as α, b, and θ are inversely related to R0. Thus, an increase in any of these coefficients will lead to a decrease
in R0.

Parameter Rates description index of sensitivity
β Effective transmission 1
α Transmission E to I −0.0833

θ Propagation E to H −0.25

b Natural death −0.6666
Table 1. Academic parameters for Model 2.1

6. Numerical Simulation and Interpretations

We present the numerical solutions of our model for various parameters, with a total population size of

M + S + E + I +H +R = 30000.

We start by examining the disease-free equilibrium, using numerical simulation of System 1 to confirm our findings.
Specifically, by estimating the parameters as N = 30000, β = 0.05, α = 0.01, λ = 0.09, θ = 0.03, δ = 0.09 and
b = 0.08, we find that the basic reproduction term is R0 = 0.3846 < 1. Under these conditions, the disease-free
equilibrium E0

ef of System 1 is locally asymptotically stable. The following observations are derived from the
obtained figures (a)-(e), which use different initial values for the variables M0, S0 and E0, we obtained the
following remarks:
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1. The population with passive immunity decreases and tends to 0 (see Figure 2).
2. The size of the susceptible population increases and approaches the total population size, S0 = 2.104 (see

Figure 3).
3. The exposed cases number decreases to 0 (see Figure 4).
4. The number of symptomatic infected persons and carriers decreases to 0 (see Figure 5).
5. The hospitalized number decreases to 0 (see Figure 6).
6. The number of recovered cases initially increases, then decreases to 0 (see Figure 7).

Consequently, the solution curves converge to the equilibrium (0, S0, 0) when R0 < 1, indicating that the proposed
model is locally asymptotically stable.

Figure 2

Figure 3

We now turn our attention to the endemic equilibrium point. Considering the parameters N = 30000, δ = 0.09,
β = 0.7, α = 0.01, µ = 0.05, λ = 0.09, θ = 0.03, b = 0.08 and with R0 = 5.3846 > 1, we find that the equilibrium
point associated with the influenza (H5N1) disease, E∗

eq, in System (1) is globally asymptotically stable. For this
scenario, we notice that

1. The population with passive immunity increases and tends to M∗ = 7.5e+ 03 (Figure 8).
2. The susceptible individuals number increases and converges toward the value S∗ = 3.7e+ 03 (Figure 9).
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Figure 4

Figure 5

Figure 6
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Figure 7

Figure 8

Figure 9
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Figure 10

Figure 11

Figure 12
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Figure 13

3. The number of exposed cases converges toward the value E∗ = 5.5e+ 03 (Figure 10).
4. The infected individuals number converges toward I∗ = 5.5e+ 02 (Figure 11).
5. The hospitalized individuals number decreases and approaches the value H∗ = 2.5e+ 02 (Figure 12).
6. The recovered individuals number decreases and tends toward the value R∗ = 2.4e+ 03 (Figure 13).

Conclusion

Epidemic models are crucial globally as they enable health officials to understand disease transmission and
formulate strategies for controlling outbreaks. In our study, we designed appropriate MSEIHR model, for influenza
(H5N1) and identified the number, R0, as a principal factor in understanding the disease’s spread. Through stability
analysis, we investigated the model to assess its local stability.
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