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1. Introduction and motivation

We conduct here a detailed analysis of the Bingham-type non-Newtonian fluid model, described as follows:

−Div Sε +∇pε = fε in Ωε, (1) Sε = µ(∥Duε∥)Duε + gε
Duε

∥Duε∥
if Duε ̸= 0,

∥Sε∥ ≤ gε if Duε = 0,

(2)

where fε denotes the volume density of applied forces, uε : Ωε → R3 represents the flow velocity, pε : Ωε → R is
the pressure, and Sε : M3 → M3 signifies the extra stress tensor. The plasticity threshold (yield stress) is defined
as gε : Ωε → R+. The physical interpretation of these constitutive laws is elaborated in [22, 23, 26].

Recent years have witnessed a growing interest in the mathematical frameworks that elucidate the steady flow
of incompressible non-Newtonian fluids of Bingham type within confined domains characterized by complex
boundary conditions. This line of inquiry holds considerable practical significance across various technological
and industrial sectors, thus attracting notable attention from the scientific community. The mathematical models
associated with incompressible Bingham fluids are relatively recent developments and have been the subject of
various investigations, as noted in [1, 6, 4].

Asymptotic analysis of these mathematical models is essential for understanding the dynamics of fluids and
structures in complex domains. A number of studies have focused on transforming three-dimensional thin domains
Ωε into two-dimensional representations Ω, independent of the perturbative ε. For example, recent investigations
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have examined the asymptotic properties of Bingham fluids in bounded three-dimensional domains subject to
Tresca and Fourier boundary conditions [14], in [14] the Tresca’s condition is characterized by zero lower surface
velocity. While this paper will analyze a new Bingham model with a Tresca condition, which is characterized by
a nonzero lower surface velocity. Additional research has addressed mechanical contact issues, transitioning from
three-dimensional configurations to thin domain models in two dimensions [21]. Furthermore, the asymptotic
analysis of unilateral contact problems involving Coulomb friction between elastic bodies and thin elastic layers
has emerged as a significant area of study [10]. Collectively, these contributions, along with numerous other works
in the field [5, 14, 12, 25, 4, 24], underscore the diversity of methodologies that enrich our understanding of
complex phenomena related to non-Newtonian fluids and mechanical interactions.

Before detailing the core contributions of this work, we consider the following assumptions:

(C1) For any matrices K,L ∈ M3×3
sym , we have

(µ(|K|)K− µ(|L|)L) : (K− L) ≥ 0;

(C2) The function µ is continuous such that

0 < µ0 < µ(r) < µ1, ∀r ∈ R+;

(C3) The conditions gε ∈ L2
+(Ω

ε) and kε ∈ L∞ (ω) hold.

The hypothesis (C1)-(C2) is applicable to conventional models, such as the Carreau-type and power-law models, as
evidenced in reference [18]. For instance, the Carreau law is described by

µ(r) = (µ0 − µ∞)
(
1 + αr2

) t−2
2 + µ∞ for all r ∈ [0,+∞)

with α > 0, 1 < t ≤ 2 and 0 < µ∞ < µ0. This function satisfies µ ∈ C1([0,+∞)) and

µ∞(r − s) ≤ µ(r)r − µ(s)s ≤ µ0(r − s) for all r ≥ s ≥ 0. (3)

It has been established that if the viscosity µ satisfies condition (3), then the inequalities (C1)-(C2) are valid, with
suitable constants µ0, µ1 > 0, as demonstrated in references [7, condition (2.3)] and [8, Lemma 2.1]. Evidently,
when the condition t = 2 is met, the relationship between µ(r) and µ0 is equivalent to the linear Newtonian
constitutive relation, as indicated by µ(r) = µ0. Moreover, hypothesis (C2) is satisfied when µ is a nondecreasing
function, for example, µ(r) =

√
r + 1/2 for r ∈ [0, 4], and 5/2 for r > 4, or µ(r) = (arctan r)1/2+ µ0 for r ≥ 0,

see [9, Remark 3].
The aforementioned problem belongs to a family of problems that have previously been examined in various

contexts, particularly in the context of shear flows in narrow films and the theory of lubrication (see [13]). This
family of problems includes the Navier-Stokes system, for which g = 0.

Continuous experimental studies are underway; however, these studies remain challenging due to the thickness
of the gap between the solid surfaces, which can measure as small as 50 nanometers. In such operating conditions,
for example a no-slip condition is induced by chemical bonds between the lubricant and the surrounding surfaces.
Conversely, tangential stresses are so high that they tend to destroy chemical bonds and induce a slip phenomenon.
This phenomenon can be likened to the Tresca free boundary friction model in solid mechanics [15].

Our objective is to examine incompressible Bingham-type models in confined three-dimensional domains,
focusing on their reduction to two-dimensional configurations for enhanced understanding and analysis of the
underlying physical phenomena. By implementing a small variable transformation, y = x3

ε , we reformulate the
starting problem in the three-dimensional domain Ωε into an equivalent problem in a fixed domain Ω, which
remains unaffected by the parameter ε. This approach will enable us to establish significant results concerning the
strong convergence of velocity, derive a limiting Reynolds-type equation, and characterize the limit of the Tresca
free boundary conditions.
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2 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D

The paper is outlined as below: Section 2 introduces the model for an incompressible Bingham-type fluid
governed by Tresca’s law, deriving its variational formulation and proving its unique solvability. Section 3 provide
estimates for the velocity and pressure that are independent of the parameter ε, along with several convergence
results. Finally, Section 4 addresses the limit problem, showcasing the uniqueness of the limiting values for both
velocity and pressure.

2. Variational Formulation and Unique Solvability

We provide here the fundamental equations of the flow model for a Bingham fluid. Let Ωε ⊂ R3 be a domain
characterized by a Lipschitz boundary Γε. We suppose that Γε is partitioned into three distinct parts ω, Γε

1

and Γε
L such that Γε = ω ∪ Γε

1 ∪ Γε
L. The area ω signifies a fixed bounded region in the plane, represented by

x = (x1, x2) ∈ R2, serving as the base of the fluid domain. We assume that ω possesses a Lipschitz continuous
boundary. Introducing a parameter ε close to zero, we define a positive, smooth, and bounded function h : ω → R
that satisfies

0 < hm ≤ h(x) ≤ hM , ∀x ∈ ω.

The upper surface Γε
1 is given by the equation x3 = εh(x). The domain Ωε can thus be expressed as

Ωε =
{
(x, x3) ∈ R3 : (x, 0) ∈ ω, 0 < x3 < εh(x)

}
,

with its boundary comprising the fixed region ω and the lateral boundary Γε
L. The set Ωε is occupied by the

incompressible Bingham fluid.

x1

x2

x3

ω

Γε
1 : x3 = εh(x)

Γε
L

εh(x1, x2)

Ωε

Figure 1.

The Stokes equation embodies the conservation law governing the flow:

−Div Sε +∇pε = fε in Ωε, (4)

where Sε : M3 → M3 is the extra stress tensor in Ωε, defined according to the Bingham constitutive law by{
Sε = µ(∥Duε∥)Duε + gε Duε

∥Duε∥ if Duε ̸= 0,

∥Sε∥ ≤ gε if Duε = 0.
(5)

Equation (5) describes the relationship relating the extra stress tensor Sε to the strain rate tensor Duε, with
components defined for uε = (uε1, . . . , u

ε
d), as follows:

Dij(u
ε) =

1

2

(
∂uεi
∂xj

+
∂uεj
∂xi

)
.
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In this context, µ denotes the viscosity coefficient, and gε represents the yield stress of the fluid. The additional
stress is limited by a maximum value, denoted as gε, known as the yield limit. When the stress is below this
threshold, the fluid behaves like a rigid body with no deformations. Conversely, once the stress reaches this limit,
the material starts to behave as a fluid. In the case where gε = 0 and the viscosity is constant at µ(λ) = µ0, the
constitutive law simplifies to that of a Newtonian fluid within the framework of the Navier–Stokes equations.

The incompressibility of the fluid is conveyed by the solenoidal condition:

divuε = 0 in Ωε. (6)

The homogeneous Dirichlet boundary condition implies that the fluid is in contact with the wall

uε = 0 in Γε
1. (7)

The velocity on Γε
L is oriented parallel to the ω-plane, indicating that uε = 0 on Γε

L. On the region ω, there is a
no-flux condition, such that

uεn = 0. (8)

On the region ω, the tangential velocity adheres to Tresca friction law, where kε represents the upper limit for the
stress. The law can be expressed as follows:

|σε
T | < kε =⇒ uεT = s,

|σε
T | = kε =⇒ ∃λ ≥ s such that uεT = s− λσε

T

}
on ω, (9)

where | · | represents the Euclidean norm in R2. Let n = (n1, n2, n3) represent the unit outward normal to Γε. By
employing Einstein summation conventions, we obtain:

uεn = uε · n = uεini, uεTi
= uεi − uεnni,

σε
n = (σε · n) · n = σε

ijninj , σε
Ti

= σε
ijnj − σε

nni,

where uεn and uεTi
denote the normal and tangential velocities on ω, respectively, while σε

n and σε
Ti

represent the
components of the normal and tangential stress tensors on ω.

In order to obtain the weak formulation of Problem (4)–(9), we introduce some function spaces:

Kε =
{
φ ∈

(
H1 (Ωε)

)3
: φ = 0 on Γε

1 ∪ Γε
L and φ · n = 0 on ω

}
,

Kε
d =

{
v ∈ Kε : div(v) = 0 in Ωε

}
,

and

L2
0(Ω

ε) =
{
q ∈ L2 (Ωε) :

∫
Ωε

q dx dx3 = 0 where dx = dx1dx2
}
.

Korn’s relation indicates (see [26]), that V equipped with the normal ∥u∥V = ∥Du∥L2(Ω)d×d becomes a separable
and reflexive Banach space, and there exists CK > 0 such that

CK∥ϕ∥L2(Ωε)3 ≤ ∥Dϕ∥L2(Ωε)3×3 , ∀ϕ ∈ Kε. (10)

To establish the variational formulation, we assume that u, S, and p are sufficiently smooth functions that comply
with equations (4) through (9). Consider φ ∈ Kε and uε ∈ Kε

d . We multiply equation (4) by φ and uε, and then
integrate over the domain Ωε to obtain:∫

Ωε

(−Div Sε) · (φ− uε)dxdx3 +

∫
Ωε

∇pε · (φ− uε)dxdx3 =

∫
Ωε

fε · (φ− uε)dxdx3. (11)
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4 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D

Then, using standard reasoning, the variational formulation of Problem (4)-(9) is given as follows.

Problem (PV.1). Find a velocity uε ∈ Kε
d and pε ∈ L2

0 (Ω
ε) such that

a (uε, φ− uε)− (pε, divφ) + jε(φ)− jε (uε) ≥ (fε, φ− uε) , ∀φ ∈ Kε, (12)

where
a (uε, φ) =

∫
Ωε

µ(∥Duε∥)Duε : D(φ)dxdx3,

(fε, φ) =

∫
Ωε

fε · φ dxdx3,

(pε, divφ) =
∫
Ωε

pεdiv φdxdx3,

jε(φ) =

∫
ω

kε|φ− s|dx+

∫
Ωε

gε∥Dφ∥dxdx3.

If the test function belongs to Kε
d , we obtain the subsequent variational problem.

Problem (PV.2). Find uε ∈ Kε
d such that

a (uε, φ− uε) + jε(φ)− jε (uε) ≥ (fε, φ− uε) , ∀φ ∈ Kε
d (Ω

ε) . (13)

The subsequent theorems provide a proof of unique solvability for both Problems (PV.2) and (PV.1).

Theorem 2.1
Suppose that (C1)-(C3) and fε ∈

(
L2 (Ωε)

)3
) hold, Thus, Problem (PV.2) possesses a unique solution. In addition,

when s = 0 the weak solution uε satisfies the energy equality∫
Ωε

µ (∥D (uε)∥) ∥D (uε)∥2 dxdx3 +
∫
Ωε

gε ∥D (uε)∥ dxdx3 +
∫
ω

kε |uε| dx =

∫
Ωε

fε · uε dxdx3.

Proof
According to [11], it is sufficient to verify that the bilinear form a is continuous and coercive on Kε

d ×Kε
d . We

recall that the functional jε is convex and continuous on Kε
d . The bilinear form a is continuous and coercive. In

fact, from condition (C2), we have

|a(u, v)| =
∣∣∣∣∫

Ωε

µ(∥Du∥)D(u) : D(v)dxdx3
∣∣∣∣

≤ µ1||D(u)||L2(Ωε,M3)||D(v)||L2(Ωε,M3) = µ1||u||kε
d
||v||kε

d
,

and
a(u, u) =

∫
Ωε

µ ∥D(u)∥2 dxdx3 ≥ µ0 ∥u∥2Kε
d
, for all u ∈ Kε

d.

The convexity of jε is a direct consequence of the convexity of φ 7→ gε∥D(φ)∥. moreover, jε is continuous. In fact,
from hypothesis (C3) and the continuity of the trace operator, we have :

|jε(u)− jε(v)| ≤ ∥kε∥∞,ω |ω| 12 ∥u− v∥L2(ω) + ∥gε∥L2(Ωε)∥D(u− v)∥L2(Ωε,M3)

≤ ∥kε∥∞,ω |ω| 12C0∥u− v∥H1(Ωε) + ∥gε∥L2(Ωε)∥u− v∥Kε
d

By applying Korn’s inequality (10), we can write:

|jε(u)− jε(v)| ≤
(
∥kε∥∞,ω |ω| 12 C0

CK
+ ∥gε∥L2(Ωε)

)
∥u− v∥Kε

d
.
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Next, we demonstrate that the energy equality holds for any solution uε of Problem (PV.2). Specifically, by
substituting φ = 2uε into Problem (PV.2), we obtain:∫

Ωε

µ (∥D (uε)∥) ∥D (uε)∥2 dxdx3 +
∫
Ωε

gε ∥D (uε)∥ dxdx3 +
∫
ω

kε |uε| dx ≥
∫
Ωε

fε · uε dxdx3.

On the other hand, selecting φ = 0 in Problem (PV.2) yields:

−
∫
Ωε

µ (∥D (uε)∥) ∥D (uε)∥2 dxdx3 −
∫
Ωε

gε ∥D (u)∥ dxdx3 −
∫
ω

kε |uε| dx ≥ −
∫
Ωε

fε · uε dxdx3.

Clearly, by combining the last two inequalities, we obtain the energy equation.

Theorem 2.2
Under the conditions of Theorem 2.1, the problem (PV.1) admits a unique solution (uε, pε) in Kε × L2

0(Ω
ε).

Proof
Given that the test function is part ofKε

d , Theorem 2.1 guarantees the unique solvability uε ∈ Kε
d for the variational

Problem (PV.1). To obtain pε, we will utilize the duality results from convex optimization [16]. First, note that we
can rewrite Problem (PV.1) to ensure it is defined over Kε. To do this, we introduce the indicator functions:

ϕKε :
(
L2 (Ωε)

)3 → R with u 7→ ϕKε(u) =

{
0 if u ∈ Kε,

+∞ if u /∈ Kε,

and

R : L2 (Ωε) → R with g 7→ R(g) =

{
0 if g = 0,

+∞ if g ̸= 0,

Then, we can therefore express (13) as follows:

a(uε, φ− uε) + jε(φ)− jε(uε) + ϕKε(φ)− ϕKε(uε) ≥ (fε, φ− uε) , ∀φ ∈ Kε with div(φ) = 0,

and the specific solution identified in Theorem 2.1 minimizes the functional

inf
φ∈Kε

{
(1/2) a(φ,φ)− (fε, φ) + jε(φ) +R(div(φ)) + ϕKε(φ)

}
. (14)

This can be represented as below:
inf

φ∈Kε
F (φ) +G(A(φ)),

where
F : Kε → R, ψ 7→ F (ψ) =

1

2
a(ψ,ψ)− (fε, ψ),

A : Kε → X = L2(ω)× L2 (Ωε)×Kε, ψ 7→ A(ψ) = (A1ψ,A2ψ,ψ) = (ψ|ω ,div(ψ), ψ) ,

and
G : X → R, ψ 7→ G(ψ) = j (ψ1) +R (ψ2) + ϕKε (ψ3) .

Next, the following represents the dual problem to (14), i.e.,

Find p⋆ in X⋆ = L2(ω)× L2 (Ωε)×K⋆,ε such that:

sup
q⋆∈Y ⋆

{−F ⋆ (A⋆q⋆)−G⋆ (−q⋆)} ,
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6 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D

where

F ⋆(A⋆q⋆) = sup
φ∈Kε

{
⟨A⋆

1q
⋆
1 , φ⟩+ ⟨A⋆

2q
⋆
2 , φ⟩+ ⟨A⋆

3q
⋆
3 , φ⟩ − F (φ)

}
,

G⋆(−q⋆) = sup
q∈X

{
⟨−q⋆, q⟩ −G(q)

}
= sup

q1∈L2(ω)

{
⟨−q⋆1 , q1⟩ − j (q1)

}
+ sup

q2∈L2(Ωε)

{
⟨−q⋆2 , q2⟩ − R (q2)

}
+ sup

q3∈Kε

{
⟨−q⋆3 , q3⟩ − ϕKε (q3)

}
.

Since the function G : X → R is continuous, there is p⋆ ∈ X⋆ that satisfies the following relation, as stated in [21]:

{F (uε) +G (A (uε))}+ {F ⋆ (A⋆p⋆) +G⋆ (−p⋆)} = 0,

this can be formulated as

{F (uε) + j (A1u
ε) +R (A2u

ε) + ϕKε (A3u
ε)}+

{
F ⋆ (A⋆p⋆) + j⋆ (−p⋆1) + (ϕKε)

⋆
(−p⋆3)

}
= 0.

By subtracting ⟨p⋆2, A2u
ε⟩ from both sides, we obtain

F (uε)− F (φ) + j(A1u
ε)− j(q1) + ϕKε(A3u

ε)− ϕKε(q3) + ⟨A⋆
1p

⋆
1, φ⟩

+ ⟨A⋆
2p

⋆
2, φ⟩+ ⟨A⋆

3p
⋆
3, φ⟩+ ⟨−q⋆1 , q1⟩+ ⟨−q⋆3 , q3⟩ − ⟨p⋆2, A2u

ε⟩+R(A2u
ε) = −

〈
p⋆2, A2u

ε
〉
.

(15)

Based on the definition of R, for any q = (q1, q2, q3) in X = L2(ω)× L2 (Ωε)×Kε, we have

G⋆ (−q⋆) ≥ {⟨−q⋆1 , q1⟩ − j (q1)}+ {⟨−q⋆3 , q3⟩ − ϕKε (q3)} . (16)

By combining (15) and (16), utilizing the definition of R and tacking q = Aφ for φ in Kε, we obtain

F (uε)− F (φ) + j(A1u
ε)− j(A1φ) + ϕKε(A3u

ε)

− ϕKε(A3φ) + ⟨p⋆2, A2φ⟩ − ⟨p⋆2, A2u
ε⟩ ≤

{
−H(A2u

ε)− ⟨p⋆2,div (uε)⟩
}
≤ 0,

which corresponds that for all φ ∈ Kε, we have

a(uε, φ− uε) + j(φ)− j(uε) + ϕKε(A3φ)− ϕKε(A3u
ε)− ⟨p⋆2,div (φ− uε)⟩ ≥ (fε, φ− uε) .

Since uε is unique in Kε, it follows that p⋆2 is also unique in L2(Ωε). Thus, Theorem 2.2 has been proven.

Lemma 2.3
Let uε be a solution of problem (12), then

a (uε, uε) + gε
∫
Ωε

|D (uε)|dx dx3 +

∫
ω

kε |uε − s|dx ≤ 1

2
µCk ∥∇uε∥2L2(Ωε) +

(εhM )2

2µCk
∥fε∥2L2(Ωε) . (17)

Proof
By selecting φ = 0 as the test function in inequality (13), we obtain

a (uε, uε) + gε
∫
Ωε

|D (uε)|dx dx3 +

∫
ω

kε |uε − s|dx ≤ (fε, uε) . (18)

Applying the Poincaré inequality [10], we find

∥uε∥L2(Ωε) ≤ εhM ∥∇uε∥L2(Ωε).
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Using the Young inequality, we get

(fε, uε) ≤ εhM ∥∇uε∥L2(Ωε) ∥f
ε∥L2(Ωε)

≤ (µCk)
1
2 ∥∇uε∥L2(Ωε)

εhM

(µCk)
1
2

∥fε∥L2(Ωε)

≤ 1

2
µCK ∥∇uε∥2L2(Ωε) +

(εhM )2

2µCk
∥fε∥2L2(Ωε) .

(19)

Thus, from (18) and (19), we deduce

a (uε, uε) + gε
∫
Ωε

|D (uε)|dx dx3 +

∫
ω

kε |uε − s|dx

≤ 1

2
µCK ∥∇uε∥2L2(Ωε) +

(εhM )2

2µCk
∥fε∥2L2(Ωε) .

(20)

3. Boundedness and weak convergences

For the asymptotic analysis of Problem (PV.1), we transform the problem from the domain Ωε, which relies on a
small parameter ε, to an equivalent problem in the fixed domain Ω that is independent of ε. This is done by applying
a scaling technique on the x3 coordinate, introducing the variable change y = x3

ε . Hence, we specify the domain as

Ω =
{
(x, y) ∈ R3 : (x, 0) ∈ ω, 0 < y < h(x)

}
.

We represent its boundary by Γ = Γ̄1 ∪ Γ̄L ∪ ω̄ and proceed to define the following functions in Ω:
ûεi (x, y) = uεi (x, x3) (i = 1, 2),

ûε3(x, y) =
1

ε
uε3 (x, x3) ,

p̂ε(x, y) = ε2pε (x, x3) .

The vector independent of ε must first be defined:

f̂(x, y) =
(
f̂1(x, y), f̂2(x, y), f̂3(x, y)

)
.

Next, we make the following assumption regarding the dependence of the data on ε:

f̂(x, y) = ε2fε (x, x3) , ĝ = εgε and k̂ = εkε. (21)

We then introduce the following useful sets and spaces:

K(Ω) =
{
φ̂ ∈

(
H1(Ω)

)3
: φ̂ = 0 on Γ1 ∪ ΓL, φ̂ · n = 0 on ω

}
,

Kd(Ω) =
{
φ̂ ∈ K(Ω) : div φ̂ = 0 in Ω

}
,

and
Vy =

{
v = (v1, v2) ∈

(
L2(Ω)

)2
:
∂vi
∂y

∈ L2(Ω) (i = 1, 2), v = 0 on Γ1

}
.
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8 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D

The space Vy, equipped with the following norm, is a Banach space.

∥v∥Vy =

(
2∑

i=1

∥vi∥2L2(Ω) +

∥∥∥∥∂vi∂y

∥∥∥∥2
L2(Ω)

)1/2

and define its linear subspace, which is equipped with the same topology

Ṽy =
{
v ∈ Vy : v satisfies condition (D′)

}
,

where the condition (D′) is given as follows:∫
Ω

(
ϕ̂1

∂θ

∂x1
+ ϕ̂2

∂θ

∂x2

)
dx dy = 0 for all (ϕ̂, θ) ∈

(
L2(Ω)

)2 × C∞
0 (Ω).

By incorporating new data and unknowns into Problem (PV.1) and multiplying by ε, we obtain:

â (ûε, φ̂− ûε)− (p̂ε,div (φ̂)) + ĵ(φ̂)− ĵ (ûε) ≥
(
f̂ , φ̂− ûε

)
, ∀φ̂ ∈ K, (22)

Where

â (ûε, φ̂− ûε) =
1

2
µε2

2∑
i,j=1

∫
Ω

(
∂ûεi
∂xj

+
∂ûεj
∂xi

)
∂

∂xj
(φ̂i − ûεi ) dxdy

+
1

2
µ

2∑
i=1

∫
Ω

(
∂ûεi
∂y

+ ε2
∂ûε3
∂xi

)
∂

∂y
(φ̂i − ûεi ) dxdy

+
1

2
µε2

2∑
j=1

∫
Ω

(
ε2
∂ûε3
∂xj

+
∂ûεj
∂y

)
∂

∂xj
(φ̂3 − ûε3) dxdy

+ µε2
∫
Ω

∂ûε3
∂y

· ∂
∂y

(φ̂3 − ûε3) dxdy.

(p̂ε,div (φ̂)) =

∫
Ω

p̂ε
(
∂φ̂1

∂x1
+
∂φ̂2

∂x2
+
∂φ̂3

∂y

)
dxdy,

ĵ(φ̂) =

∫
ω

k̂|φ̂− s|dx+ ĝ

∫
Ω

∣∣∣D̃(φ̂)∣∣∣ dx dy,

(
f̂ , φ̂− ûε

)
=

2∑
i=1

∫
Ω

f̂i (φ̂i − ûεi ) dx dy +

∫
Ω

εf̂3 (φ̂3 − ûε3) dx dy,

and ∣∣∣D̃(ûε)∣∣∣ = (1

4
ε2

2∑
i,j=1

(
∂ûεi
∂xj

+
∂ûεj
∂xi

)2

+
1

2

2∑
i=1

(
∂ûεi
∂y

+ ε2
∂ûε3
∂xi

)2

+ ε2
(
∂ûε3
∂y

)2
) 1

2

.

In the following part of this section, we will establish the estimates and convergence results for the velocity field
ûε and the pressure p̂ε within the domain Ω.

Theorem 3.1
Under the conditions of Theorem 2.1, if (ûε, p̂ε) ∈ Kd(Ω)× L2

0(Ω) is the solution to problem (22), then there exists
a constant C > 0, independent of ε, for wich we have

2∑
i,j=1

∥∥∥∥ε∂ûεi∂xj

∥∥∥∥2
L2(Ω)

+

∥∥∥∥ε∂ûε3∂y

∥∥∥∥2
L2(Ω)

+

2∑
i=1

(∥∥∥∥∂ûεi∂y

∥∥∥∥2
L2(Ω)

+

∥∥∥∥ε2 ∂ûε3∂xi

∥∥∥∥2
L2(Ω)

)
≤ C (23)
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Proof
After multiplying (17) by ε and utilizing the relation∥∥∥f̂∥∥∥2

L2(Ω)
= ε3 ∥fε∥2L2(Ωε) ,

we obtain:

εa (uε, uε) + ĝ

∫
Ω

∣∣D̃ (ûε)
∣∣ dx dy +

∫
ω

k̂ |ûε − s|dx ≤ 1

2
µCkε ∥∇uε∥2L2(Ωε) +

h2M
2µCk

∥∥∥f̂∥∥∥2
L2(Ω)

. (24)

According to Korn’s inequality, there is CK > 0 that is independent of ε for wich we have

a(uε, uε) ≥ µCk ∥∇uε∥2L2(Ωε) . (25)

By combining (24) and (25), we obtain

ε
1

2
µCkε ∥∇uε∥2L2(Ωε) + ĝ

∫
Ω

∣∣D̃ (ûε)
∣∣ dx dy +

∫
ω

k̂ |ûε − s|dx ≤ h2M
2µCk

∥∥∥f̂∥∥∥2
L2(Ω)

, (26)

and

ε ∥∇uε∥2L2(Ωε) =

2∑
i,j=1

∥∥∥∥ε∂ûεi∂xj

∥∥∥∥2
L2(Ω)

+

∥∥∥∥ε∂ûε3∂y

∥∥∥∥2
L2(Ω)

+

2∑
i=1

(∥∥∥∥∂ûεi∂y

∥∥∥∥2
L2(Ω)

+

∥∥∥∥ε2 ∂ûε3∂xi

∥∥∥∥2
L2(Ω)

)
.

Then, we find

2∑
i,j=1

∥∥∥∥ε∂ûεi∂xj

∥∥∥∥2
L2(Ω)

+

∥∥∥∥ε∂ûε3∂y

∥∥∥∥2
L2(Ω)

+

2∑
i=1

(∥∥∥∥∂ûεi∂y

∥∥∥∥2
L2(Ω)

+

∥∥∥∥ε2 ∂ûε3∂xi

∥∥∥∥2
L2(Ω)

)
≤ C,

where

C :=

(
hM
µCk

)2 ∥∥∥f̂∥∥∥2
L2(Ω)

.

Theorem 3.2
Suppose the conditions of Theorem 2.1 hold, if (ûε, p̂ε) ∈ Kd(Ω)× L2

0(Ω) represents the solution to problem (22),
then there is C ′ > 0, which does not depend on ε, for wich we have∥∥∥∥∂p̂ε∂xi

∥∥∥∥
H−1(Ω)

≤ C ′ (i = 1, 2) and
∥∥∥∥∂p̂ε∂y

∥∥∥∥
H−1(Ω)

≤ εC ′.

Proof
By selecting an arbitrary ψ ∈ (H1

0 (Ω))
3 and substituting φ = uε + ψ into (12), we obtain:

(pε, divψ) ≤ a(uε, ψ) +

∫
Ωε

g |D(ψ)| dxdx3 + (fε,−ψ) . (27)

According to [10] we find
a(uε, ψ) ≤ µ1 ∥∇uε∥L2(Ωε) ∥∇ψ∥L2(Ωε) .

Then, after multiplying (27) by ε and applying Hölder’s inequality, we obtain:

(p̂ε, divψ) ≤ µ1ε ∥∇uε∥L2(Ωε) ∥∇ψ∥L2(Ωε) + ĝ |Ω|
1
2 ∥Dψ∥L2(Ω,M3) +

∥∥∥f̂∥∥∥
L2(Ω)

∥ψ∥L2(Ω) .
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Thus,

(p̂ε, divψ) ≤ µ1ε ∥∇uε∥L2(Ωε) ∥ψ∥H1(Ωε) + ĝ |Ω|
1
2 α ∥ψ∥H1(Ω) +

∥∥∥f̂∥∥∥
L2(Ω)

∥ψ∥H1(Ω)

≤
(
µ1C + ĝ |Ω|

1
2 α+

∥∥f̂∥∥
L2(Ω)

)
∥ψ∥H1(Ω) .

(28)

Similarly, by choosing φ = uε − ψ in (12), we find

− (p̂ε, divψ) ≤
(
µ1C + ĝ |Ω|

1
2 α+

∥∥∥f̂∥∥∥
L2(Ω)

)
∥ψ∥H1(Ω) . (29)

Then, by utilizing the inequalities (28) and (29), we obtain

|(p̂ε, divψ)| ≤
(
µ1C + ĝ |Ω|

1
2 α+

∥∥∥f̂∥∥∥
L2(Ω)

)
∥ψ∥H1(Ω) , ∀ψ ∈ H1

0 (Ω). (30)

Substituting ψ = (ϕ, 0, 0) and ψ = (0, ϕ, 0) into (30), and applying Green’s formula, we deduce:∣∣∣∣∫
Ω

∂p̂ε

∂xi
ϕdxdy

∣∣∣∣ ≤ (µ1C + ĝ |Ω|
1
2 α+

∥∥∥f̂∥∥∥
L2(Ω)

)
∥ϕ∥H1(Ω) for i = 1, 2.

On the other hand, by substituting ψ = (0, 0, εϕ) into (30), we obtain∣∣∣∣∫
Ω

∂p̂ε

∂y
ϕdxdy

∣∣∣∣ ≤ ε

(
µ1C + ĝ |Ω|

1
2 α+

∥∥∥f̂∥∥∥
L2(Ω)

)
∥ϕ∥H1(Ω)

Corollary 3.3
If assumptions of Theorem 2.1 hold, there exist u⋆i ∈ Vy for i = 1, 2 and p⋆ ∈ L2

0(Ω) for wich we have

ûεi → u⋆i weakly in Vy (i = 1, 2), (31)

ε
∂ûεi
∂xj

→ 0 weakly in L2(Ω) (i, j = 1, 2), (32)

ε
∂ûε3
∂y

→ 0 weakly in L2(Ω), (33)

ε2
∂ûε3
∂xi

→ 0 weakly in L2(Ω) (i = 1, 2), (34)

εûε3 → 0 weakly in L2(Ω), (35)

p̂ε → p⋆ weakly in L2
0(Ω). (36)

Proof
To begin, from equation (23), we get a constant C that is independent of ε satisfying:∥∥∥∥∂ûεi∂y

∥∥∥∥2
L2(Ω)

≤ C for i = 1, 2. (37)

Applying the Poincaré inequality [4] in conjunction with condition (7), we derive:

∥ûεi∥
2
L2(Ω) ≤ 2h2M

∥∥∥∥∂ûεi∂y

∥∥∥∥2
L2(Ω)

for i = 1, 2. (38)
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From inequalities (37) and (38), we can conclude the result presented in (31). To demonstrate the convergence in
(32), we utilize both the inequality in (23) and the convergence established in (31). Furthermore, we rely on the
previously obtained results along with the condition div(ûεi ) = 0, which yields:

2∑
i=1

∂ûεi
∂xi

= −∂û
ε
3

∂y
.

Thus, from (32), the convergence (33) holds, and from (23), there exists a constant C > 0 for which∥∥∥∥ε2 ∂ûε3∂xi

∥∥∥∥2
L2(Ω)

≤ C for i = 1, 2. (39)

Utilizing (38), we derive:

∥εûε3∥
2
L2(Ω) ≤ 2h2M

∥∥∥∥ε∂ûε3∂y

∥∥∥∥2
L2(Ω)

. (40)

From (23), we also have: ∥∥∥∥ε∂ûε3∂y

∥∥∥∥2
L2(Ω)

≤ C for i = 1, 2. (41)

Combining results from (39), (40), and (41), we conclude that:

ε2
∂ûε3
∂xi

→ 0 weakly in L2(Ω, (i = 1, 2).

From (40) and (41), we can assert that there is C > 0 such that:

∥εûε3∥
2
L2(Ω) ≤ C. (42)

Consequently, there exists u⋆3 ∈ L2(Ω) such that:

εûε3 → u⋆3 weakly in L2(Ω). (43)

This implies:
εûε3 → u⋆3 in D′(Ω). (44)

Given that div(ûε) = 0 in Ω, for any Φ ∈ L2
0(Ω), we have:∫

Ω

Φ div(ûε) dx dy = 0. (45)

We select Φ such that Φ(x, y) = yφ(x)− β, where φ ∈ C∞
0 (ω) and:

β =

∫
Ω
yφ dx dy∫
Ω
dx dy

.

Using (45), the Green formula, and the boundary conditions on Γ, we obtain:

−
2∑

i=1

∫
Ω

yεûεi
∂φ

∂xi
dx dy −

∫
Ω

φεûε3 dx dy = 0.

As ûεi ⇀ u⋆ in Vy for i = 1, 2, then as ε tends to zero, (35) holds. Finally, we have (see [17]):

∥p̂ε∥L2(Ω) ≤ C(Ω) ∥∇p̂ε∥H−1(Ω) .

Since L2
0(Ω) is weakly closed in L2(Ω), from Theorem 4.2, we conclude (see (36)):

p̂ε → p⋆ weakly in L2
0(Ω).

This completes the proof.
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4. Study of Limiting Problems

We analyze the limit behavior of Problem (PV.1) as ε approaches zero. We will prove the theorem below,
establishing the equations that the limits p⋆ and u⋆ of p̂ε and ûε satisfy in Ω, along with the inequalities for
the trace of the velocity u⋆(x, 0).

Theorem 4.1
Assuming the conditions of Theorem 3.1 are satisfied, the limit functions (u⋆, p⋆) fulfill the following conditions:

p⋆ ∈ H1(ω), (46)

−1

2
µ
∂2u⋆i
∂y2

+
∂p⋆

∂xi
= f̂i ( for i = 1, 2) in L2(Ω). (47)

Proof
To begin the proof, we choose φ3 = ûε3 ± ψ and φi = ûεi for i = 1, 2, where ψ belongs to H1

0 (Ω). This selection in
equation (22) yields the following result:

1

2
µε2

2∑
j=1

∫
Ω

(
ε2
∂ûε3
∂xj

+
∂ûεj
∂y

)
∂ψ

∂xj
dxdy +

∫
Ω

µε2
∂ûε3
∂y

∂ψ

∂y
dxdy −

∫
Ω

p̂ε
∂ψ

∂y
dxdy =

∫
Ω

εf3ψdxdy. (48)

By applying equations (31), (33), (34), and (36), we obtain for ε→ 0, the following results :∫
Ω

p⋆
∂ψ

∂y
dxdy = 0, ∀ψ ∈ H1

0 (Ω).

Therefore, by using green’s formula, we find

∂p⋆

∂y
= 0 in H−1(Ω). (49)

Alternatively, selecting φi = ûεi ± ψi where ψi ∈ H1
0 (Ω) (i = 1, 2), and setting φ3 = ûε3 in (22) to obtain:

1

2
µε

2∑
i,j=1

∫
Ω

(
ε
∂ûεi
∂xj

+ ε
∂ûεj
∂xi

)
∂ψi

∂xj
dxdy

+

2∑
i=1

∫
Ω

1

2
µ

(
∂ûεi
∂y

+ ε2
∂ûε3
∂xi

)
∂ψi

∂y
dxdy

−
∫
Ω

p̂ε
∂ψi

∂xj
dxdy =

2∑
i=1

∫
Ω

f̂iψidxdy.

(50)

Employing equations (31), (32), (34), and (36), we deduce that as ε approaches zero, first with ψ1 = 0 and
ψ2 ∈ H1

0 (Ω), and subsequently with ψ2 = 0 and ψ1 ∈ H1
0 (Ω), the following equality holds:

2∑
i=1

∫
Ω

1

2
µ
∂u∗i
∂y

∂ψi

∂y
dxdy −

2∑
i=1

∫
Ω

p⋆
∂ψi

∂xi
dxdy =

2∑
i=1

∫
Ω

f̂iψi dxdy, (51)

then, by using Green’s formula, we get

−1

2
µ
∂2u⋆i
∂y2

+
∂p⋆

∂xi
= f̂i (for i = 1, 2) in H−1(Ω). (52)
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Let’s recall from (49) that p⋆ is a function that depends solely on x ∈ ω. By substituting ψi into (51), where
ψi(x, y) = y(y − h(x))φ(x) with φ ∈ H1

0 (ω), and applying Green’s formula, we obtain:

1

6

∫
ω

p⋆
∂
(
h3φ

)
∂xi

dx− µ

∫
ω

hũ⋆iφdx =

∫
ω

f̃iφdx

where

ũ⋆i (x) =
1

h(x)

∫ h(x)

0

u⋆i (x, y) dy

and

f̃i(x) =

∫ h(x)

0

y(y − h(x))f̂i(x, y) dy,

which, upon applying Green’s formula, yields

−1

6
h3
∂p⋆

∂xi
− µhũ⋆i = f̃i ( for i = 1, 2) in H−1(Ω). (53)

Since fi ∈ L2(Ω), it follows that f̃i ∈ L2(ω). Similarly, because u⋆i ∈ Vy, we also have ũ⋆i ∈ L2(ω). From (53),
we then obtain p⋆ ∈ H1(ω). Furthermore, since fi ∈ L2(Ω), it follows from (52) that ∂2u⋆

i

∂y2 ∈ L2(Ω). Hence, (47)

holds. We also deduce that ∂u⋆
i

∂y ∈ Vy. Thus, the proof is complete.

We now introduce the limiting form of the Tresca boundary conditions. The following notations will be used:

s⋆(x) = u⋆(x, 0) and τ⋆(x) =

(
∂u⋆

∂y

)
(x, 0).

Since ∂u⋆

∂y belongs to Vy, it follows that τ⋆ ∈ L2(ω).

Theorem 4.2
Under the same hypotheses as Theorem 4.1, the pair (s⋆, τ⋆) satisfies the following inequalities:∫

ω

k̂ (|ψ + s⋆ − s| − |s⋆ − s|) dx−
∫
ω

1

2
µτ⋆ψ dx ≥ 0, ∀ψ ∈

(
L2(ω)

)2
,

and 
1

2
µ |τ⋆| = k̂ =⇒ ∃λ ≥ 0 such that s⋆ = s+ λτ⋆,

1

2
µ |τ⋆| < k̂ =⇒ s⋆ = s a.e. in ω.

Proof
By choosing φ̂ = (ûε1 + ψ1, û

ε
2 + ψ2, εû

ε
3) , where ψi ∈ H1

Γ1∪ΓL
(ω) for i = 1, 2, and

H1
Γ1∪ΓL

(ω) =
{
v ∈ H1(Ω) : v = 0 on Γ1 ∪ ΓL

}
.

Substituting this into (22) leads to

1

2
µε2

2∑
i,j=1

∫
Ω

(
∂ûεi
∂xj

+
∂ûεj
∂xi

)
∂ψi

∂xj
dx dy +

1

2
µ

2∑
i=1

∫
Ω

(
∂ûεi
∂y

+ ε2
∂ûε3
∂xi

)
∂ψi

∂y
dxdy

−
2∑

i=1

∫
Ω

p̂ε
∂ψi

∂xi
dxdy +

∫
ω

k̂ (|ψ + ûε − s| − |ûε − s|) dx+ ĝ

∫
Ω

(∣∣∣D̃(φ̂)∣∣∣− ∣∣∣D̃(ûε)∣∣∣) dxdy
≥

2∑
i=1

∫
Ω

f̂iψi dx dy.
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By applying Corollary 3.3, we conclude that as ε tends to zero, the following holds

1

2
µ

2∑
i=1

∫
Ω

∂u⋆i
∂y

∂ψi

∂y
dx dy −

2∑
i=1

∫
Ω

p⋆
∂ψi

∂xi
dx dy +

∫
ω

k̂ (|ψ + s⋆ − s| − |s⋆ − s|) dx

+ ĝ

∫
Ω

(1

2

2∑
i=1

(
∂ψi − u⋆i

∂y

)2
) 1

2

−

(
1

2

2∑
i=1

(
∂u⋆i
∂y

)2
) 1

2

 dx dy

≥
2∑

i=1

∫
Ω

f̂iψi dx dy.

(54)

By applying Green’s formula along with equation (47) and the condition that ψi = 0 on Γ1 ∩ ΓL, we obtain:∫
ω

k̂ (|ψ + s⋆ − s| − |s⋆ − s|) dx−
∫
ω

1

2
µτ⋆ψ dx

+ ĝ

∫
Ω

(1

2

2∑
i=1

(
∂ψi + u⋆i

∂y

)2
) 1

2

−

(
1

2

2∑
i=1

(
∂u⋆i
∂y

)2
) 1

2

 dy dx

≥ 0, ∀ψ ∈
(
H1

Γ1∪ΓL
(ω)
)2
.

(55)

Since (55) holds for all ψ in D(ω)2, extended also to
(
L2(ω)

)2
due to the density of D(ω) in L2(ω). Thus, we infer∫

ω

k̂ (|ψ + s⋆ − s| − |s⋆ − s|) dx−
∫
ω

1

2
µτ⋆ψdx ≥ 0, ∀ψ ∈

(
L2(ω)

)2
. (56)

By substituting ψ = ±(s⋆ − s) into equation (56), we obtain∫
ω

(
k̂ |s⋆ − s| − 1

2
µτ⋆ (s⋆ − s)

)
dx = 0. (57)

Let ψ = φ− (s⋆ − s) with φ ∈
(
L2(ω)

)2
. By inserting this expression into equation (56), we obtain∫

ω

(
k̂|φ| − 1

2
µτ⋆φ

)
dx ≥

∫
ω

(
k̂ |s⋆ − s| − 1

2
µτ⋆ (s⋆ − s)

)
dx.

Then, by using (57), we deduce ∫
ω

(
k̂|φ| − 1

2
µτ⋆φ

)
dx ≥ 0, ∀φ ∈

(
L2(ω)

)2
. (58)

By taking φ = (φ1, φ2) with φi ≥ 0 for i = 1, 2, we substitute into equation (58) to obtain∫
ω

(
k̂|φ| − 1

2
µ |τ⋆| · |φ| cos (τ⋆, φ)

)
dx =

∫
ω

(
k̂ − 1

2
µ |τ⋆| cos (τ⋆, φ)

)
|φ|dx ≥ 0.

Thus,
1

2
µ |τ⋆| cos (τ⋆, φ) ≤ k̂ a.e. on ω. (59)

Now, by considering −φ, where φ = (φ1, φ2) and φi ≥ 0 for i = 1, 2, in equation (4.13), we find∫
ω

(
k̂|φ|+ 1

2
µ |τ⋆| · |φ| cos (τ⋆, φ)

)
dx =

∫
ω

(
k̂ +

1

2
µ |τ⋆| cos (τ⋆, φ)

)
|φ|dx ≥ 0.
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Then,

−1

2
µ |τ⋆| cos (τ⋆, ϕ) ≤ k̂ a.e. on ω. (60)

Using (59) and (60) we get
1

2
µ |τ⋆| ≤ k̂ a.e. on ω. (61)

Hence,

k̂ |s⋆ − s| ≥ 1

2
µ |τ⋆| · |s⋆ − s| ≥ 1

2
µτ⋆ · (s⋆ − s) a.e. on ω,

and
k̂ |s⋆ − s| − 1

2
µτ⋆ · (s⋆ − s) ≥ 0 a.e. on ω,

Then, it follows from (57) that a.e. on ω, we have

k̂ |s⋆ − s| − 1

2
µτ⋆ · (s⋆ − s) = 0. (62)

If 1
2µ |τ

⋆| = k̂, then from equation (62), we have

µ |τ⋆| · |s⋆ − s| = µτ⋆ · (s⋆ − s) a.e. on ω,

which implies cos (s⋆ − s, µτ⋆) = 1 and leads to s⋆ = s+ λµτ⋆ for some λ ≥ 0. Conversely, if 1
2µ |τ

⋆| < k̂, then
we derive from (62) that a.e. on ω, we have

k̂ |s⋆ − s| − 1

2
µτ⋆ · (s⋆ − s) = 0 ≥

(
k̂ − 1

2
µ |τ⋆|

)
|s⋆ − s| .

Consequently, we have s⋆ = s almost everywhere on ω.

Theorem 4.3
Let us consider the same hypotheses as in Theorem 4.1, and assume that f̂ is a function of x only. Then, we have

h2

2
∇p⋆ + 1

2
µs⋆ +

h

2
µτ⋆ − h2

2
f̂ = 0 a.e. on ω, (63)∫

ω

(
h

2
s⋆ − h3

6µ
∇p⋆ + h3

6µ
f̂

)
∇φdx =

∫
∂ω

φℓ · n for all φ ∈ H1(ω), (64)

∫
ω

(
4hs⋆(x) + h2τ⋆

)
∇φdx = 6

∫
∂ω

φℓ · n for all φ ∈ H1(ω). (65)

Proof
By Theorem 5.1, we have the following relationship:

−1

2
µ
∂2u⋆i
∂y2

+
∂p⋆

∂xi
= f̂i for i = 1, 2.

Integrating this equation twice from 0 to y, we obtain:

−1

2
µu⋆i (x, y) +

1

2
µu⋆i (x, 0) +

y2

2

∂p⋆(x)

∂xi
+

1

2
µy
∂u⋆i (x, 0)

∂y
=
y2

2
f̂i(x) for i = 1, 2. (66)

Setting y = h, we find that (63) holds, since u⋆i (x, h) = 0. Next, integrating (66) from 0 to h, we obtain:

hũ⋆(x) = hs⋆(x) +
h3

3µ
∇p⋆(x) + h2

2
τ⋆ − h3

3µ
f̂(x), (67)
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where

ũ⋆(x) =
1

h(x)

∫ h(x)

0

u⋆(x, y) dy, ∀x ∈ ω.

On the other hand, for every φ ∈ H1(ω), we have:∫
Ω

φdiv(ûε) dx dy = 0.

Thus, it follows that: ∫
ω

φ(x)

2∑
i=1

(
∂
(
h˜̂uεi
)

∂xi
+ ûε3(x, h)− ûε3(x, 0)

)
dx = 0.

Since ûε3 = 0 on ∂Ω = ω̄ ∪ Γ̄1 ∪ Γ̄L, we then have:∫
ω

φ(x)

2∑
i=1

∂
(
h˜̂uεi
)

∂xi
dx = 0.

Applying Green’s formula, we obtain:

−
2∑

i=1

∫
ω

h˜̂uεi
∂φ

∂xi
dx+

2∑
i=1

∫
∂ω

h˜̂uεiφni dΓ = 0.

As ûεi ⇀ u⋆i in Vy, we find that ˜̂uεi ⇀ ũ⋆i in L2(ω). Thus, we have:

2∑
i=1

∫
ω

hũ⋆i
∂φ

∂xi
dx =

2∑
i=1

∫
∂ω

φ(x)ℓi(x)ni dΓ, ∀φ ∈ H1(ω),

where
ℓi = h˜̂uεi on ∂ω.

From (67), we derive:∫
ω

(
hs⋆ +

h3

3µ
∇p⋆ + h2

2
τ⋆ − h3

3µ
f̂

)
∇φdx =

∫
∂ω

φℓ · ndΓ, ∀φ ∈ H1(ω). (68)

The weak formulation of Reynolds equation (64) follows from (63) and (68). So, to get (65), we use (63)-(64).

Remark 4.4. The uniqueness of (u⋆, p⋆) follows from (64)-(54), using the same arguments as in [11, Theorem 5.3].

Conclusion

In this work, we studied an incompressible Bingham fluid model in a perturbed three-dimensional domain with
Tresca and Dirichlet boundary conditions. We proved the unique solvability of the problem and conducted an
asymptotic analysis as one dimension of the domain tends to zero. Our approach established the strong convergence
of the velocity field, derived a Reynolds-type limit equation, and analyzed the asymptotic behavior of the Tresca
boundary conditions, rigorously proving the uniqueness of the limiting velocity and pressure fields. These results
not only provide a deeper understanding of the fluid’s behavior in confined geometries but also open avenues for
exploring more complex non-Newtonian fluid models and boundary conditions. Future research could extend this
framework to account for additional physical effects, such as temperature dependence or more intricate rheological
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properties, as well as investigate the applicability of the derived limit equations in real-world engineering scenarios,
such as lubrication or flow through porous media.
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