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Abstract This paper provides non-standard finite difference methods for solving a Caputo-type fractional linear system
with two equations with real eigenvalues. The linear system’s real eigenvalues are classified into two types: distinct and
repeated eigenvalues. The scenario of repeated eigenvalues is classified into two categories based on whether the dimension
of the corresponding eigenspace is one or two. For each of the three scenarios, we obtained exact solution and developed the
numerator and denominator functions for the nonstandard finite difference scheme. Each of the three proposed numerical
scheme’s convergence has been established by proving consistency and stability. We showed that each of the proposed
techniques is unconditionally stable when the system’s eigenvalues are negative. Moreover, the three developed NSFDMs
are explicit, of low computational complexity and are easy to implement. Three examples were used to demonstrate the
performance of the proposed methods.
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1. Introduction

Fractional differential equations (FDEs) have attracted considerable attention in recent decades due to their ability
to accurately describe complex phenomena exhibiting memory and hereditary characteristics, which classical
integer-order differential equations often fail to capture. FDEs have found wide applications in various scientific
and engineering domains such as physics, biology, control theory, signal processing, and finance—especially in
modeling nonlocal dynamics and anomalous diffusion.

Practical applications of FDEs include the following. In viscoelastic materials, FDEs accurately represent the
stress-strain relationship in viscoelastic materials, which display both viscous and elastic characteristics [15]. In
contrast to traditional models, fractional derivatives encapsulate memory effects and power-law creep behavior
seen in polymers, rubbers, and biological tissues. In control systems, FDEs extend traditional PID controllers by
including fractional derivatives and integrals, hence enhancing resilience and performance in systems exhibiting
long memory effects, such as temperature regulation and robotics [23, 7]. Classical epidemiological models in
epidemiology presume exponential, memoryless disease transmission; nevertheless, actual epidemics have memory
effects [27, 9]. Fractional-order models more accurately represent outbreaks by including delayed responses and
diverse transmission dynamics.
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While many analytical solutions have been developed for certain classes of FDEs, these solutions are generally
limited to linear or weakly nonlinear systems with specific structures. For instance, Odibat [21] presented analytical
solutions for linear FDEs using Mittag-Leffler functions for both commensurate and incommensurate orders.
Techniques like the Adomian Decomposition Method (ADM) [20, 8] and the Homotopy Perturbation Method
(HPM) [1] have been employed to construct approximate analytical solutions, often with rapid convergence.
Moreover, the Homotopy Analysis Method (HAM) [30] has been used to generalize these methods and address
nonlinear systems more flexibly. Despite such advancements, obtaining analytical solutions for general FDEs
remains a difficult task, especially for systems involving strong nonlinearities or complex dynamical behavior,
thus necessitating the development of robust numerical methods.

Among numerical approaches, the Adams–Bashforth method introduced by Diethelm [10] and the power series
method developed by Rida [24] have shown some effectiveness, while Zeid [29] provided a comprehensive
review of available techniques. Finite Difference Methods (FDMs) are widely used due to their simplicity and
computational efficiency. However, when applied to fractional-order systems—particularly coupled nonlinear
systems—traditional FDMs may suffer from significant drawbacks, such as loss of stability, poor convergence, or
failure to replicate the qualitative behavior of the original system. To overcome these limitations, Mickens [17, 18]
introduced the Nonstandard Finite Difference (NSFD) method, which has proven to be a powerful alternative.
NSFD schemes are constructed using modeling principles that aim to preserve key qualitative features of the
original continuous system, including positivity, boundedness, equilibrium stability, and dynamical consistency.
Unlike standard FDMs, NSFD schemes often utilize nonlocal approximations and custom denominator functions
tailored to the problem’s structure. Mickens also introduced the notion of exact schemes, further enriching the
modeling framework of NSFDs.

Several applications of NSFD methods to chaotic and nonlinear fractional systems have been reported in
[26, 25]. Moaddy [19] used NSFD to analyze the chaotic dynamics of the fractional-order Rössler system using
the Grünwald–Letnikov approximation. Ongun [22] applied NSFD to the fractional-order Brusselator model,
successfully replicating its complex behavior. Hajipour [12] and others extended NSFD methods to chaotic
fractional systems such as the Chen system [28] and novel systems involving Caputo derivatives and nonlinearities
[5].

Nevertheless, very few investigations have looked at applying NSFD methods to fractional systems with real
eigenvalues. This class of systems presents a significant challenge: long-term behavior and asymptotic stability are
very sensitive to numerical approximation. In these systems, standard finite difference methods usually produce
numerical artifacts or destabilize otherwise stable continuous systems. Therefore, there is an urgent need to
formulate NSFD methods that are explicitly tailored to manage real-eigenvalue systems and guarantee accurate
representation of their dynamics across time. For example, the homotopy perturbation method and new iterative
method [6] used to solve the fractional logistic model were not bounded by the model’s carrying capacity. Hence,
they lack the dynamical consistency.

This work is to fill this gap by introducing novel exact NSFD methods intended to resolve systems of FDEs
with real eigenvalues. This study focuses on maintaining stability and accuracy in systems where real eigenvalues
dominate the dynamics, as opposed to earlier research that focuses on chaotic or oscillatory behavior. The
proposed methods incorporate adaptive step-size functions and modified discrete approximations that improve
the accuracy and qualitative consistency of the numerical solutions. In addition, this work builds on and expands
on previous NSFD methods providing a theoretical basis and numerical confirmation for the new method, showing
its advantages in maintaining stability, achieving convergence, and long-time behaviour.

A special class of the NSFDm is the class of exact nonstandard finite difference methods, which is characterized
by producing zero truncation errors in every mesh of points. Hence, exact NSFDMs are independant of the
mesh type, and consequently the step size [13]. Exact NSFDMs were formulated for many types of integer-order
differential equations. For instance, in [17], exact finite difference techniques were formulated to deal with the
exponential growth model, the logistic model, a system of two linear first-order equations and a higher order
fractional differential equations (1 < α ≤ 2). An exact solution utilizing NSFDMs was formulated for solving a
reaction-diffusion problem in [16]. Roeger [26] extended Mickens’ work [17] by formulating exact NSFDMs for
various cases of linear systems including two first-order differential equations.
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For fractional order differential equations, few exact NSFDMs have been constructed in the literature. Recently,
exact finite difference techniques were developed to solve the logistic growth model [4] and the fractional decay
model [3].

In this paper we consider a linear system of two fractional differential equations of the form

C
0Dα

t x(t) = ax(t)+by(t), t ∈ [0,T ], x(0) = x0 (1)
C
0Dα

t y(t) = cx(t)+dy(t), t ∈ [0,T ], y(0) = y0 (2)

where a,b,c and d are real constants such that det(A) = ad−bc , 0, T > 0 is positive real number and C
0Dα

t is the
Caputo derivative of order 0 < α ≤ 1.

The main objective is to develop exact nonstandard finite difference methods for solving system (1)-(2), relying
on the work of Mickens [17] and Roeger [25], particularly in situations where the linear system has real eigenvalues.
We investigated two separate cases for the linear system. The first situation involves the system possessing two
unique eigenvalues, while the subsequent case entails a repeated eigenvalue. In each of these cases, we computed
the numerator and denominator functions and constructed the corresponding exact nonstandard finite difference
schemes.

The main contribution of the paper is the introduction of exact nonstandard finite difference methods for solving
linear systems of two fractional differential equations with real eigenvalues. If the linear system is stable, the
methods exhibit unconditional stability. Each of these NSFDMs have a complexity comparable to that of the
improved Euler’s method, thereby designating them as low complexity.

The rest of the paper is organized as follows. In Section 2 we provide some necessary backgrounds. The exact
solutions of systems of two linear fractional differential equations are derived in Section 3. The constructions of
nonstandard finite difference schemes are discussed in Section 4. The convergences of the proposed NSFDMs are
investigated in Section 5. Section 6 illustrates numerical examples for different values of α and compares them to
the analytical solution to demonstrate the accuracy of the numerical solution. Section 7 concludes the paper.

2. Preliminaries and definitions

In this section, we introduce the essential mathematical concepts required for developing a nonstandard finite
difference method for a system of Caputo type fractional linear equations.

2.1. Caputo derivatives and their Laplace transformations

Definition 2.1 (Caputo Derivatives)
The Caputo fractional derivative of order α > 0 for a function f (t) ∈Cn([0,T ]), where n−1< α≤ n,n ∈N, is defined
as:

C
0Dα

t f (t) =
1

Γ(n−α)

∫ t

0

f (n)(τ)
(t−τ)α+1−n dτ, t > 0

where, Γ denotes the Gamma function.
For 0 < α ≤ 1, the Caputo derivative is defined as:

C
0Dα

t f (t) =
1

Γ(1−α)

∫ t

0

f ′(τ)
(t−τ)α

dτ,

The Laplace transform of the Caputo derivative is given by:

L
{

C
0Dα

t f (t)
}
(s) = sαF(s)−

n−1∑
k=0

sα−k−1 f (k) (0+) ,
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where F(s) =L{ f (t)}(s) and n−1 < α ≤ n.
A special case is 0 < α ≤ 1, where the Laplace transformation of the Caputo derivative is:

L{C0Dα
t f (t)} = sαF(s)− sα−1 f (0),

2.2. The Mittag-Leffler functions and some of their properties

The Mittag-Leffler (ML) function is a generalization of the exponential function that is used extensively in
fractional calculus [11].

Definition 2.2 (The Mittag-Leffler functions)
The one-parameter ML function is defined as:

Eα(z) =
∞∑

k=0

zk

Γ(αk+1)
, α > 0, z ∈ C

The two-parameter ML function is given by:

Eα,β(z) =
∞∑

k=0

zk

Γ(αk+β)
, α,β > 0, z ∈ C.

We notice that, when β = 1,Eα,1(z) = Eα(z). Special cases of Mittag-Leffler functions are obtained by setting
α = 1, where we obtain E1(z) = ez and when α = 2 where we obtain E2(z) = cosh

√
z.

The Mittag-Leffler function Eα(z) is an entire transcendental function. When α = 1, E1(z) = ez. Hence, the
function Eα(z) generalizes the exponential function.

When z = λtα, we obtain the Mittag-Leffler function Eα(λtα) which is a basis solution of the fractional
growth/decay model

C
0Dα

t w(t) = λw(t),w(0) = w0,

whose solution is given by w(t) = w0Eα(λtα).
The Mittag-Leffler function Eα(λtα) has the following properties:

(i) For a small value of t:

Eα
(
λtα

)
≈ 1+

λtα

Γ(α+1)

(ii) For a large value of t:

Eα
(
λtα

)
∼

1
α

eλ
1/αt ( for λ > 0)

(iii) For λ < 0, the function decays as:

Eα
(
λtα

)
∼

t−α

Γ(1−α)

The Laplace transformation of Eα(λtα) is:

L{Eα(λtα)} =
sα−1

sα−λ

Suppose that h is a small positive real number. Then:

(t+h)α = tα+αhtα−1+
α(α−1)

2
h2tα−2+O(h3)
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Now, Eα(λ(t+h)α) can be approximated as follows:

Eα(λ(t+h)α) = Eα

(
λ
(
tα+αhtα−1+O(h2)

))
≈ Eα

(
λ
(
tα+αhtα−1

))
From Taylor expansion,

Eα
(
λ(t+h)α

)
≈ Eα

(
λtα

)
+λαtα−1h ·E′α

(
λtα

)
Hence, we find that

Eα (λ(t+h)α)
Eα (λtα)

≈ 1+λαtα−1h ·
E′α (λtα)
Eα (λtα)

Another important function is tαEα(λtα), which exhibits asymptotic behavior similar to polynomial-exponential
functions. The Laplace transformation of tαEα(λtα) is given by:

L{tαEα(λtα)} =
Γ(α+1)
(sα−λ)2

The inverse Laplace transform of sα−1

(sα−λ)2 is given by:

L−1
{

sα−1

(sα−λ)2

}
= tαEα(λtα).

Hence, the function tαEα(λtα), is a solution of the fractional differential equation:

C
0Dα

t
(
tαw(t)

)
= λtαw(t), w(0) = w0,

whose solution is expressed as:
w(t) = tαEα(λtα)

3. Deriving Solutions of Systems of linear fractional differential equations

Consider the coupled, linear system of FDEs with constant coefficients (1). It can be written in the matrix form as

C
0Dα

t

(
x
y

)
=

(
a b
c d

)(
x
y

)
(3)

According to Matignon (1996), the stability of a system of FDEs is assured if the roots of the characteristic
polynomial fall outside the closed angular sector. The system of FDEs (3) is asymptotically stable if and only if all
roots λ fulfill |arg(λ)| > απ2 [14]. In accordance with Ahmed [2], fractional order differential equations are equally
stable as their integer order counterparts.

Therefore, to ascertain the stability of the linear system (3), we compute the eigenvalues and eigenvectors from
the characteristic equation.

det(A−λI) = 0 ≡ λ2− trace(A)λ+det(A) = 0 (4)

Therefore

λ1,2 =
trace(A)±

√
trace(A)2−4det(A)

2
=

(a+d)±
√

(a+d)2−4(ad− cb)
2

we have three cases for λ1,2 which can be distinct, repeated and complex.
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3.1. Distinct eigenvalues

If trace(A)2 > 4 ·det(A), the linear system (3) will have two distinct eigenvalues λ1andλ2, where λ1 , λ2. Then, the
eigenvectors v1 and v2 corresponding to the eigenvalues λ1 and λ2 are the basis vectors of null(A−λI2) given by:

v1 =

 b
λ1−a

1

 ,v2 =

 b
λ2−a

1

 .
where I2 is the 2×2 identity matrix.

By letting P = [v1 v2], yields

P−1AP =
(
λ1 0
0 λ2

)
= J

This implies that the Jordan normal form of matrix A is the diagonal matrix J.
Let

w =

(
x(t)
y(t)

)
,

then the linear system can be written as:

ẇ(t) = Aw,w0 =

(
x0
y0

)
(5)

Substituting z = P−1w in Equation (5) yields the uncoupled linear system

C
0Dα

t

(
z1(t)
z2(t)

)
= Jz =

(
λ1 0
0 λ2

)
z =

(
λ1z1(t)
λ2z2(t)

)
(6)

The solution of the fractional equation (6) is given by(
z1(t)
z2(t)

)
=

(
C1Eα(λ1tα)
C2Eα(λ2tα)

)
(7)

where C1 and C2 are constants that shall be evaluated from the initial condition. Finally, by substituting w(t)= Pz(t)
and solving w(t0)= Pz(t0)=w0 for the constants C1 and C2, we obtain the general solution of the system (1), which
can be written as

x(t) = −
b

λ1−λ2

((
λ2−a

b

)
x0− y0

) Eα(λ1tα)
Eα(λ1tα0 )

+
b

λ1−λ2

((
λ1−a

b

)
x0− y0

) Eα(λ2tα)
Eα(λ2tα0 )

and
y(t) = −

λ1−a
λ1−λ2

((
λ2−a

b

)
x0− y0

) Eα(λ1tα)
Eα(λ1tα0 )

+
λ2−a
λ1−λ2

((
λ1−a

b

)
x0− y0

) Eα(λ2tα)
Eα(λ2tα0 )

These latest two equations can be written as:

x(t) =

[
−

(λ2−a)
λ1−λ2

Eα(λ1tα)
Eα(λ1tα0 )

+
(λ1−a)
λ1−λ2

Eα(λ2tα)
Eα(λ2tα0 )

]
x0+

b
(λ1−λ2)

[
Eα(λ1tα)
Eα(λ1tα0 )

−
Eα(λ2tα)
Eα(λ2tα0 )

]
y0 (8)

y(t) = −
(λ1−a)(λ2−a)

b(λ1−λ2)

[
Eα(λ1tα)
Eα(λ1tα0 )

−
Eα(λ2tα)
Eα(λ2tα0 )

]
x0+

[
(λ1−a)
(λ1−λ2)

Eα(λ1tα)
Eα(λ1tα0 )

−
(λ2−a)
(λ1−λ2)

Eα(λ2tα)
Eα(λ2tα0 )

]
y0 (9)
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We have c = −(λ1−a)(λ2−a)/b and λ1+λ2 = a+d. then λ1−a = d−λ2 and λ2−a = d−λ1. Replacing λ1−a and
λ2−a by their equivalences in Equation (9) yields:

x(t) =

a ( Eα(λ1tα)
Eα(λ1tα0 ) −

Eα(λ2tα)
Eα(λ2tα0 ) )

λ1−λ2
+

λ1Eα(λ2tα)
Eα(λ2tα0 ) −

λ2Eα(λ1tα)
Eα(λ1tα0 )

λ1−λ2

 x0+b


Eα(λ1tα)
Eα(λ1tα0 ) −

Eα(λ2tα)
Eα(λ2tα0 )

λ1−λ2

y0 (10)

y(t) = c


Eα(λ1tα)
Eα(λ1tα0 ) −

Eα(λ2tα)
Eα(λ2tα0 )

λ1−λ2

 x0+

d ( Eα(λ1tα)
Eα(λ1tα0 ) −

Eα(λ2tα)
Eα(λ2tα0 ) )

λ1−λ2
+

λ1Eα(λ2tα)
Eα(λ2tα0 ) −

λ2Eα(λ1tα)
Eα(λ1tα0 )

λ1−λ2

y0 (11)

3.2. Repeated Eigenvalues

If the linear system (3) has a repeated eigenvalue λ = a+d
2 , then c = −(a− d)2/(4b) = −(λ− a)2/b. There are two

different cases for the dimension of the null space of the eigenspace A−λI. Accordingly, the analytical solutions
for (1) are computed differently.

3.2.1. Dim(null(A−λI2)) = 2 Corresponding to the eigenvalue λ there are two linearly independent eigenvectors
v1 and v2. This case occurs when A−λI is the zeros matrix. In this case A is the diagonal matrix(

λ 0
0 λ

)
and its eigenvectors v1 and the v2 are the columns of the 2×2 identity matrix. That is:

v1 =

(
1
0

)
and v2 =

(
0
1

)
The Jordan form of matrix A is A itself.
Then Eα(λtα)v1 and Eα(λtα)v2 are linearly independent. Hence, the general solution of (1) is of the form(

x(t)
y(t)

)
= (c1v1+ c2v2) Eα(λtα)

Hence,

x(t) = x(0)Eα(λtα) = x0Eα(λtα) (12)
y(t) = y(0)Eα(λtα) = y0Eα(λtα) (13)

3.2.2. Dim(null(A−λI2)) = 1 There is only one eigenvector v1 corresponding to the repeated eigenvalue λ. This
case occurs when A−λI is not the zero matrix. The eigenvector v1 is given by

v1 =

( b
λ−a
1

)
.

Suppose that v2 is the generalized eigenvector that is obtained by solving the linear system (A−λI)v2 = v1. Then,

v2 =

(
− b

(λ−a)2

0

)
Let P = [v1 v2], then

P−1AP = J =
(
λ 1
0 λ

)
Stat., Optim. Inf. Comput. Vol. 14, October 2025
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where J is the Jordan normal form of matrix A.
Substituting z(t) = P−1w(t), we obtain the linear system:(C

0Dα
t z1(t)

C
0Dα

t z2(t)

)
=

(
λz1(t)+ z2(t)

λz2(t)

)
(14)

The solution of the second equation is given by:

z2(t) =C2Eα(λtα)

The first equation becomes:
C
0Dα

t z1(t) = λz1(t)+C2Eα(λtα).

The Laplace transformation of the equation in z1 is:

sαZ1(s)− sα−1z1(0) = λZ1(s)+C2
sα−1

sα−λ

which can be simplified to:

Z1(s) =C1
sα−1

sα−λ
+C2

sα−1

(sα−λ)2

By taking the inverse Laplace transform we obtain:

z1(t) =C1Eα(λtα)+C2tαEα(λtα),

where C1 and C2 are constants that can be obtained by solving the system Pz(t0) =w0 for C1 and C2.
Hence, the solution of the linear system (1)-(2) is given by:

x(t) =
Eα(λtα)
Eα(λtα0 )

(1− (λ−a)(tα− tα0 ))x0+b
Eα(λtα)
Eα(λtα0 )

(tα− tα0 )y0 (15)

y(t) = −
(λ−a)2

b
Eα(λtα)
Eα(λtα0 )

(tα− tα0 )x0+
Eα(λtα)
Eα(λtα0 )

(1+ (λ−a)(tα− tα0 ))y0 (16)

We have c = −(λ−a)2/b and λ = (a+d)/2, then λ−a = d−λ. Substituting in equations (15) and (16) yields

x(t) =
[
a(tα− tα0 )

Eα(λtα)
Eα(λtα0 )

+ (1−λ)(tα− tα0 )
Eα(λtα)
Eα(λtα0 )

]
x0+b

[
Eα(λtα)
Eα(λtα0 )

(tα− tα0 )
]
y0 (17)

y(t) = c
[

Eα(λtα)
Eα(λtα0 )

(tα− tα0 )
]

x0+

[
d(tα− tα0 )

Eα(λtα)
Eα(λtα0 )

+ (1−λ)(tα− tα0 )
Eα(λtα)
Eα(λtα0 )

]
y0 (18)

4. Nonstandard finite difference schemes for system of linear FDEs

In this section, nonstandard finite difference methods will be developed to solve a system of two fractional
differential equations for the cases of two distinct real eigenvalues and a repeated real eigenvalue.

Let N be a positive integer and h = T/N. We discretize the interval [0,T ] by points tk = h · k,k = 0,1, ...,N. Let
xk ≈ x(tk) and yk ≈ y(tk) for k = 0,1, ...,N.
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4.1. Linear system of FDEs with distinct eigenvalues

To obtain a nonstandard finite difference scheme for (1), following Mickens’s method and making following
substitutions in (10) and (11) 

t0→ tk = hk, t→ tk+1 = h(k+1)
x0→ xk, x(t)→ xk+1

y0→ yk, y(t)→ yk+1

(19)

then

xk+1 =

a ( Eα(λ1hα(k+1)α)
Eα(λ1hαkα) −

Eα(λ2hαkα)
Eα(λ2hαkα) )

λ1−λ2
+

λ1Eα(λ2hα(k+1)α)
Eα(λ2hαkα) −

λ2Eα(λ1hα(k+1)α)
Eα(λ1hαkα)

λ1−λ2

 xk +

b


Eα(λ1hα(k+1)α)

Eα(λ1hαkα) −
Eα(λ2hα(k+1)α)

Eα(λ2hαkα)

λ1−λ2

yk (20)

yk+1 = c


Eα(λ1hα(k+1)α)

Eα(λ1hαkα) −
Eα(λ2hα(k+1)α)

Eα(λ2hαkα)

λ1−λ2

 x0+d ( Eα(λ1hα(k+1)α)
Eα(λ1hαkα) −

Eα(λ2hαkα)
Eα(λ2hαkα) )

λ1−λ2
+

λ1Eα(λ2hα(k+1)α)
Eα(λ2hαkα) −

λ2Eα(λ1hα(k+1)α)
Eα(λ1hαkα)

λ1−λ2

y0 (21)

Equations (20) and (21) can be written as:

xk+1−

λ1Eα(λ2hα(k+1)α)
Eα(λ2hαkα) −

λ2Eα(λ1hα(k+1)α)
Eα(λ1hαkα)

λ1−λ2
xk =

 ( Eα(λ1hα(k+1)α)
Eα(λ1hαkα) −

Eα(λ2hαkα)
Eα(λ2hαkα) )

λ1−λ2

 (axk +byk) (22)

yk+1−

λ1Eα(λ2hα(k+1)α)
Eα(λ2hαkα) −

λ2Eα(λ1hα(k+1)α)
Eα(λ1hαkα)

λ1−λ2
yk =

 ( Eα(λ1hα(k+1)α)
Eα(λ1hαkα) −

Eα(λ2hαkα)
Eα(λ2hαkα) )

λ1−λ2

 (cxk +dyk) (23)

Let

ϕk =
( Eα(λ1hα(k+1)α)

Eα(λ1hαkα) −
Eα(λ2hαkα)
Eα(λ2hαkα) )

λ1−λ2
,

and

ψk =

λ1Eα(λ2hα(k+1)α)
Eα(λ2hαkα) −

λ2Eα(λ1hα(k+1)α)
Eα(λ1hαkα)

λ1−λ2

The NSFD scheme for the linear system (1) with distinct eigenvalues as

xk+1−ψk xk

ϕk
= axk +byk, (24)

yk+1−ψkyk

ϕk
= cxk +dyk, (25)

4.2. System of Linear FDEs with Repeated Eigenvalues

4.2.1. Case 1: Dim(A− λI) = 2 A nonstandard finite difference scheme for (5), when matrix A has a repeated
eigenvalue λ and corresponding two linearly independent eigenvectors is obtained by making substituting (19) in
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(12) and (13), then

xk+1 = xk
Eα(λhα(k+1)α)

Eα(ahα(k)α)
(26)

yk+1 = yk
Eα(λhα(k+1)α)

Eα(ahα(k)α)
(27)

Subtracting xk and yk from both sides of (26) and (27), gives

xk+1− xk(
Eα(λhα(k+1)α)

Eα(λhα(k)α)
−1

)
λ

= λxk, (28)

yk+1− yk(
Eα(λhα(k+1)α)

Eα(λhα(k)α)
−1

)
λ

= λyk. (29)

Hence, the denominator function is given by

ϕk =

(
Eα(λhα(k+1)α)

Eα(λhα(k)α)
−1

)
λ

,

while the numerator function ψk = 1 for k = 0,1, ...,N −1.
It was proven in [3] that the nonstandard schemes (28) and (29) are exact nonstandard finite difference forms for

solving the fractional decay model.

4.2.2. Case 2: Dim(A−λI) = 1 The nonstandard finite difference scheme for (1) with a repeated eigenvalue and
one corresponding eigenvector is obtained by making substitutions (19) in (17) and (18). Then,

xk+1 =

[
ahα(k+1α− kα)

Eα(λhα(k+1)α)
Eα(λhαkα)

+ (1−λ)(hα((k+1)α− kα))
Eα(λhα(k+1))

Eα(λhαkα)

]
xk +

b
[

Eα(λhα(k+1)α)
Eα(λhαkα)

(tα−hαkα)
]
yk (30)

yk+1 = c
[

Eα(λhα(k+1)α)
Eα(λhαkα)

(hα((k+1)α− kα))
]

xk +[
d hα((k+1)α− kα)

Eα(λhα(k+1)α)
Eα(λhαkα)

+ (1−λ)hα((k+1)α− kα)
Eα(λhα(k+1)α)

Eα(λhαkα)

]
yk (31)

By taking

ψk = (1−λhα((k+1)α− (k)α))
Eα(λ(hk+h)α)

Eα(λ(hk)α)

and
ϕk = hα((k+1)α− (k)α))

Eα(λhα(k+1)α)
Eα(λhαkα)
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The NSFD scheme for (1) repeated eigenvalues as

xk+1−ψk xk

ϕk
= axk +byk (32)

yk+1−ψkyk

ϕk
= cxk +dyk (33)

5. Convergence and Stability for Nonstandard finite difference scheme for system of linear FDEs

This section presents proof for the convergence of each constructed nonstandard finite difference scheme by
demonstrating its consistency and numerical stability.

5.1. Consistency of the numerical schemes

We prove the convergence of the NSFD scheme for (24) and (25), from fractional Taylor series expansion

x(tk+1) = x(tk)+ C
0Dα

t x(tk)
hα

Γ(α+1)
+O(h2α)

similarly

y(tk+1) = y(tk)+ C
0Dα

t y(tk)
hα

Γ(α+1)
+O(h2α)

Therefore
C
0Dα

t x(tk) =
x(tk+1)− x(tk)

hα
Γ(α+1)

+O(hα)

and
C
0Dα

t y(tk) =
y(tk+1)− y(tk)

hα
Γ(α+1)

+O(hα)

The local truncation error (LTE) of (24) is given by

LT Ex =
x(tk+1)−φk(h,λ,ϕ)x(tk)

ϕk(h,λ,ϕ)
−ax(tk)−by(tk)

It can be expressed as

LT Ex =
x(tk+1)−φk(h,λ,ϕ)x(tk)

ϕk(h,λ,ϕ)
−

x(tk+1)− x(tk)
hα
Γ(α+1)

+
x(tk+1)− x(tk)

hα
Γ(α+1)

−ax(tk)−by(tk)

LT Ex =
x(tk+1)
ϕk

−
x(tk)
ϕk
φk

−
x(tk+1)− x(tk)

hα
Γ(α+1)

+
x(tk+1)− x(tk)

hα
Γ(α+1)

−ax(tk)−by(tk)

|LT Ex| =

∣∣∣∣∣∣∣∣
 1
ϕk
−

1
hα
Γ(α+1)

 x(tk+1)−

 1
ϕk
φk

−
1
hα
Γ(α+1)

 x(tk)+
x(tk+1)− x(tk)

hα
Γ(α+1)

−ax(tk)−by(tk)+O(h)

∣∣∣∣∣∣∣∣
|LT Ex| ≤

∣∣∣∣∣∣∣∣
 1
ϕk
−

1
hα
Γ(α+1)

 x(tk+1)−

 1
ϕk
φk

−
1
hα
Γ(α+1)

 x(tk)

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣ x(tk+1)− x(tk)

hα
Γ(α+1)

−ax(tk)−by(tk)+O(hα)

∣∣∣∣∣∣∣
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|LT Ex| ≤

∣∣∣∣∣∣∣∣
 hα
Γ(α+1) −ϕk

ϕk
hα
Γ(α+1)

 x(tk+1)−

 hα
Γ(α+1) −

ϕk
φk

ϕk
φk

hα
Γ(α+1)

 x(tk)

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣ x(tk+1)− x(tk)

hα
Γ(α+1)

−ax(tk)−by(tk)

∣∣∣∣∣∣∣+ |O(hα)|

|LT Ex| ≤

∣∣∣∣∣∣∣∣
 hα
Γ(α+1) −ϕk

ϕk

 x(tk+1)
hα
Γ(α+1)

−

 hα
Γ(α+1) −

ϕk
φk

ϕk
φk

 x(tk)
hα
Γ(α+1)

∣∣∣∣∣∣∣∣+ |O(hα)|+ |O(hα)| (34)

from (34) we realize that |LT Ex| −→ 0 as h −→ 0, and similarly |LT Ey| −→ 0 as h −→ 0.

5.2. Stability of the numerical schemes

To prove the stability of the NSFD scheme for (24) and (25)
Let ex

k = x(tk)− xk and ey
k = y(tk)− yk, the NSFD scheme (24) and (25) can be written as

xk+1 = (φ+aϕ)xk +bϕyk

yk+1 = cϕxk + (φ+dϕ)yk
(35)

substituting x(tk) and y(tk) instead of xk and yk in (35), we obtain

x(tk+1) = (φ+aϕ)x(tk)+bϕy(tk)
y(tk+1) = cϕx(tk)+ (φ+dϕ)y(tk)

(36)

subtracting (36) from (35), substituting ex
k = x(tk)− xk and ey

k = y(tk)− yk

ex
k+1 = (ψk +aϕk)ex

k +bϕkey
k

ey
k+1 = cϕkex

k + (ψk +dϕk)ey
k

(37)

we can write (37) as (
ex

k+1
ey

k+1

)
=

(
φ+aϕk bϕk

cϕk φ+dϕk

)(
ex

k
ey

k

)
Generally (

ex
k

ey
k

)
=

(
(ψk +aϕk)k (bϕk)k

(cϕk)k (ψk +dϕk)k

)(
ex

0
ey

0

)
or (

ex
k

ey
k

)
=

(
ψk +aϕk bϕk

cϕk ψk +dϕk

)k (ex
0

ey
0

)
Let

B(k) =

(
ψk +aϕk bϕk

cϕk ψk +dϕk

)
= ψk

(
1 0
0 1

)
+ϕk

(
a b
c d

)
The eigenvalues of B(k) are ψk + λ1ϕk and ψk + λ2ϕk. Hence, ex

k −→ 0 and ey
k −→ 0 as k −→ ∞ if and only if

P(B(k)) < 1.
we have

σk
1 = ψk +λ1ϕk =

Eα(λ1(hk+h)α)
Eα(λ1(hk)α)

where

ψk =

[
λ1

Eα(λ2(hk+h)α)
Eα(λ2(hk)α)

−λ2
Eα(λ1(hk+h)α)

Eα(λ1(hk)α)

]
λ1−λ2

and ϕk =

[
Eα(λ1(hk+h)α)

Eα(λ1(hk)α)
−

Eα(λ2(hk+h)α)
Eα(λ2(hk)α)

]
λ1−λ2
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then
|σk

1| < 1 ⇒
Eα(λ1(hk+h)α)

Eα(λ1(hk)α)
< 1

that is
Eα(λ1(hk+h)α) < Eα(λ1(hk)α) ⇒ λ1 < 0

similarly
σk

2 = ψk +λ2ϕk and |σk
2| < 1 ⇒ λ2 < 0

Similarly with repeated eigenvalues where

ψk = (1−λhα((k+1)α− (k)α))
Eα(λ(hk+h)α)

Eα(λ(hk)α)

and
ϕk = hα((k+1)α− (k)α))

Eα(λ(hk+h)α)
Eα(λ(hk)α)

,

then
σk

1,2 = ψk +λϕk and |σk
1,2| < 1 ⇒ λ < 0

We end up with the following theorem.

Theorem 5.1
If the eigenvalues of the fractional linear system (1) are negative, either of the nonstandard finite difference scheme
described by equations (24) and (25) or the nonstandard finite difference scheme described by equations (32) and
(33) is unconditionally stable.

Theorem 5.1 asserts that if the two eigenvalues of the linear system are negative, the NSFDM will exhibit
unconditional stability for any step size and fractional order. A modification to the coefficients a,b,c, or d of the
linear system may impact the stability of the numerical methods if it alters the sign of one or both eigenvalues of
the system. Any perturbation of the linear system parameters that does not change an eigenvalue from negative to
positive will guarantee the unconditional stability of the NSFDM.

6. Numerical results

This section will present three examples to demonstrate the performance of the nonstandard finite difference
methods established in this research.

We ran the numerical simulations in Python 3.12 on a computer with an Intel core i7 CPU. We used
Khensin’s implementation of the Mittag-Leffler function which can be found on GitHub at https://github.
com/khinsen/mittag-leffler.

Example 6.1
Consider the linear system of FDEs [21]

C
0Dα

t x(t) = 2x(t)− y(t), x(0) = 1.2
C
0Dα

t y(t) = 4x(t)−3y(t),y(0) = 4.2

Let

A =
(
2 −1
4 −3

)
The eigenvalues of A are

λ1 = 1 and λ2 = −2
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The analytical solution is given by

x(t) = 0.2Eα(tα)+Eα(−2tα)
y(t) = 0.2Eα(tα)+4Eα(−2tα)

The numerator and denominator functions are given by

ψk =

[
Eα(−2hα(k+1)α)

Eα(−2hαkα)
+

2Eα(hα(k+1)α)
Eα(hαkα)

]
3

and

ϕk =

[
Eα(hα(k+1)α)

Eα(hα(k)α)
−

Eα(−2hα(k+1)α)
Eα(−2hαkα)

]
3

.

The NSFD scheme from ((24)) and (25) as

xk+1−φxk

ϕ
= 2xk − yk

yk+1−φyk

ϕ
= 4xk −3yk

We solved the problem for α = 0.05,0.2,0.35,0.5,0.65,0.8,0.95 and 1.0 with step sizes h =
0.0625,0.1,0.125,0.2,0.25,0.4,0.5,1 and 2.0. The infinity norm error corresponding to each couple h and α
is illustrated in Table 1.

Table 1. The infinity norm errors obtained by the NSFD scheme (24)-(25) for Example (6.1), for different step sizes h and
orders α.

h \α 0.05 0.20 0.35 0.50 0.65 0.80 0.95 1.00
0.0625 4.97E-14 5.33E-15 1.78E-15 7.11E-15 2.22E-15 7.99E-15 8.88E-16 6.22E-15
0.1000 1.42E-14 8.88E-15 2.66E-15 7.99E-15 4.88E-15 1.33E-15 3.11E-15 1.78E-15
0.1250 4.26E-14 3.55E-15 4.44E-15 6.22E-15 2.22E-15 8.88E-16 1.33E-15 3.11E-15
0.2000 1.42E-14 1.78E-15 5.33E-15 2.66E-15 1.33E-15 1.78E-15 6.66E-16 6.66E-16
0.2500 2.84E-14 7.11E-15 5.33E-15 2.66E-15 1.78E-15 6.66E-16 6.66E-16 1.78E-15
0.4000 2.13E-14 3.55E-15 1.78E-15 8.88E-16 2.66E-15 4.44E-16 6.66E-16 4.44E-16
0.5000 2.84E-14 3.55E-15 3.55E-15 8.88E-16 1.33E-15 6.66E-16 8.88E-16 4.44E-16
1.0000 1.42E-14 3.55E-15 1.78E-15 2.66E-15 2.22E-16 1.55E-15 1.33E-15 4.44E-16
2.0000 2.13E-14 1.07E-14 1.78E-15 8.88E-16 1.78E-15 4.44E-16 4.44E-16 3.11E-15

Although the system is unstable, Table 1 demonstrates a steady performance of the numerical scheme, where the
infinity norm errors computed by the numerical scheme (24)-(25) are of order 10−14 or less, including large step
sizes. This indicates that the nonstandard finite difference scheme is almost exact and is highly stable.

The solution of Example 6.1, obtained from the NSFDM (24)-(25) for α = 0.25,0.50,0.75,0.95, and 1.00, with
t ∈ [0,2], is shown in Figure 1. The values of the variables xk and yk for k = 0, ...,N are illustrated in Figure 1.
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Figure 1. The solution of Example 6.2 for α = 0.25,0.50,0.75,0.95 and 1.00

From Figure 1, we notice that the presence of the positive eigenvalue λ1 = 1 caused the solution components x(t)
and y(t) to grow towards +∞ as t increases, therefore the system is unstable.

Example 6.2
Consider the linear system of FDEs

C
0Dα

t x(t) = x(t)+5y(t), x(0) = 1, t ∈ [0,8]
C
0Dα

t y(t) = −5x(t)−9y(t), y(0) = 3, t ∈ [0,8]

In this example, A is the matrix

A =
(

1 5
−5 −9

)
,

whose eigenvalues are:

λ1 = λ2 = −4

The eigenvector v1 and generalized eigenvector v2 (obtained by solving (A−λI) v2 = v1) corresponding to λ = −4
are

v1 =

(
1
−1

)
,v2 =

( 1
5
0

)
The exact solution of Example 6.2 is given by:

x(t) = (1+20tα)Eα(−4tα)
y(t) = (3−20tα)Eα(−4tα)

The NSFD scheme from (32) and (33) as

xk+1 = ψk xk −ϕk(xk +5yk)

yk+1 = ψkyk +ϕk(−5xk −9yk)

where
ψk = (1+4hα((k+1)α− (k)α))

Eα(−4hα(k+1)α)
Eα(−4hαkα)

and
ϕk = hα((k+1)α− (k)α)

Eα(−4hα(k+1)α)
Eα(−4hαkα)
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We let α takes the values 0.05,0.2,0.35,0.5,0.65,0.8,0.95 and 1.0, and h takes the values
0.1,0.125,0.2,0.25,0.4,0.5,0.8,1.0,2.0,4.0 and 8.0. By applying the proposed nonstandard finite difference
scheme, we computed the infinity norm errors, defined as

∥Error∥α,h∞ =max max
k=0,...,N

{|xk − x(tk)|, |yk − y(tk)|}.

These errors are illustrated in Table 2.

Table 2. The infinity norm error obtained by the NSFDM (32) and (33) for Example 6.2, for different step sizes h and orders
α

h\α 0.05 0.20 0.35 0.50 0.65 0.80 0.95 1.00
0.25 3.55E-15 4.88E-15 3.55E-15 4.00E-15 3.11E-15 1.20E-14 1.17E-15 2.22E-16
0.40 2.66E-15 3.11E-15 5.77E-15 5.33E-15 1.11E-14 1.04E-14 1.05E-15 1.10E-15
0.50 5.33E-15 4.00E-15 3.11E-15 2.66E-15 2.22E-15 2.00E-15 1.44E-15 2.22E-16
0.80 3.55E-15 1.33E-15 3.11E-15 4.44E-15 3.55E-15 4.00E-15 6.66E-16 7.62E-16
1.00 8.88E-16 1.78E-15 1.02E-14 7.55E-15 2.22E-15 4.00E-15 6.66E-16 1.08E-19
2.00 8.88E-16 1.78E-15 8.88E-16 3.55E-15 2.66E-15 3.11E-15 4.44E-16 6.78E-21
4.00 0.00E+00 8.88E-16 8.88E-16 2.66E-15 4.44E-15 0.00E+00 2.22E-16 0.00E+00
8.00 8.88E-16 4.44E-16 8.88E-16 4.44E-16 0.00E+00 2.22E-16 0.00E+00 0.00E+00

Many of the infinity norm errors obtained by (32)-(33) that are shown in Table 2 lie within the machine precision.
The other infinity norm errors computed by the numerical scheme are of order 10−16 or less, including large step
sizes such as h = 3 and h = 1.5. This indicates that the nonstandard finite difference scheme is almost exact and is
highly stable.

The solution of Example 6.2, obtained from the NSFDM (32)-(33) for α = 0.25,0.50,0.75,0.95, and 1.00, with
t ∈ [0,4], is shown in Figure 2. The values of the variables xk and yk for k = 0, ...,N are illustrated in Figure 2.

0 0.5 1 1.5 2 2.5 3 3.5 4

t

0

0.5

1

1.5

2

2.5

3

3.5

4

x(
t)

=0.25

=0.5

=0.75

=0.95

=1.0

x(t)

0 0.5 1 1.5 2 2.5 3 3.5 4

t

-4

-3

-2

-1

0

1

2

3

y(
t)

=0.25

=0.50

=0.75

=0.95

=1.0

y(t)

Figure 2. The solution of Example 6.2 for α = 0.25,0.50,0.75,0.95 and 1.00

Figure 2 illustrates that the solution components x(t) and y(t) of the linear system in Example 6.2 exhibit stability,
as the recurrent eigenvalue λ = −4 is negative.

Example 6.3
Consider the linear system of FDEs

C
0Dα

t x(t) = −x(t), x(0) = 1,
C
0Dα

t y(t) = −y(t),y(0) = 3.
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The eigenvalues of the system are given by

λ1 = λ2 = −1

Since

A−λI =
(
−1 0
0 −1

)
− (−1)

(
1 0
0 1

)
=

(
0 0
0 0

)
then the eigenvectors corresponding to λ = −1 are

v1 =

(
1
0

)
, and v2 =

(
0
1

)
Hence, the solution of Example 6.3 is given by:

x(t) = Eα(−tα)

y(t) = 3Eα(−tα)

The NSFD scheme from (28) and (29) as

xk+1− xk

1−
(

Eα(−(hk+h)α)
Eα(−(hk)α)

) = −xk

yk+1− yk

1−
(

Eα(−(hk+h)α)
Eα(−(hk)α)

) = −yk

We let α takes the values 0.05,0.2,0.35,0.5,0.65,0.8,0.95 and 1.0, and h takes the values
0.05,0.1,0.125,0.25,0.5,1.0,1.25,2.5 and 5.0. By applying the proposed nonstandard finite difference scheme
(28)-(29), we computed the infinity norm errors, defined as

∥Error∥α,h∞ =max max
k=0,...,N

{|xk − x(tk)|, |yk − y(tk)|}.

These errors are illustrated in Table 3.

Table 3. The infinity norm errors obtained by the NSFD (28)-(29) for different step sizes h and values of α.

h\α 0.05 0.20 0.35 0.50 0.65 0.80 0.95 1.00
0.50 0.00E+00 0.00E+00 0.00E+00 2.22E-16 1.11E-16 2.22E-16 5.55E-17 2.22E-16
1.00 0.00E+00 0.00E+00 0.00E+00 1.11E-16 0.00E+00 2.22E-16 5.55E-17 1.11E-16
1.25 0.00E+00 0.00E+00 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16
1.50 2.22E-16 2.22E-16 1.11E-16 2.22E-16 1.11E-16 1.11E-16 2.22E-16 2.22E-16
2.50 2.22E-16 0.00E+00 2.22E-16 2.22E-16 1.11E-16 2.22E-16 2.78E-16 2.78E-16
3.00 0.00E+00 2.22E-16 2.22E-16 1.11E-16 1.11E-16 1.67E-16 1.67E-16 1.11E-16
5.00 0.00E+00 2.22E-16 4.44E-16 5.55E-17 2.22E-16 1.11E-16 9.02E-17 2.01E-16
15.00 2.22E-16 2.22E-16 1.11E-16 1.67E-16 1.11E-16 2.50E-16 1.46E-16 8.56E-17

We notice in Table 3 that all the infinity norm errors obtained by the NSFDM (28)-(29) for Example 6.3 lie
within the machine precision, for all values of h and α. This shows that the proposed NSFDM solved Example 6.3
exactly.
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The solution of Example 6.3, obtained from the NSFDM (28)-(29) for α = 0.25,0.50,0.75,0.95, and 1.00, with
t ∈ [0,5], is shown in Figure 5. The values of the variables xk and yk for k = 0, ...,N are illustrated in figures 3 and
4 respectively.
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Figure 5. The solution of Example 6.3 for α = 0.25,0.50,0.75,0.95 and 1.00

The solution components x(t) and y(t) from Example 6.3 demonstrate stability, as illustrated in Figure 5, partly
due to the negative recurring eigenvalue λ = −1.

As demonstrated by the numerical examples, the proposed method exhibits a good degree of numerical stability,
maintaining consistent performance across a wide range of fractional orders α and time step sizes h, even though
robustness to noise was not a primary focus of this study. Future work will involve simulations with perturbed
initial conditions to evaluate this aspect more comprehensively.

It is worth noting that the fractional order α plays a crucial role in determining the system’s behavior, smaller
values lead to more diffusive dynamics, while values approaching one recover the behavior of classical integer-
order systems. From an implementation perspective, the nonstandard finite difference methods presented in this
research need suitable choices of time step sizes (neither too small nor very large). Choosing an exceedingly
small step size may greatly influence the method’s accuracy, however it does not affect its stability, owing to the
accumulation of round-off errors. Conversely, using an excessively high step size obscures the solution behavior
between the mesh points.

The most apparent challenges to the proposed exact nonstandard finite difference methods arise when at least one
eigenvalue of the linear fractional system is positive. The approach exhibits instability if any eigenvalue is positive,
as shown in the numerical stability section. Despite the eigenvalues of the linear fractional system in Example 1
being positive, the method’s performance has been quite satisfactory, with the highest infinity norm error on the
order of 10−14. Typically, methods do not ensure the attainment of minimal errors for linear fractional systems with
positive eigenvalues.

7. Conclusions

This paper has introduced non-standard finite difference methods for solving a Caputo-type fractional linear system,
characterized by equations with real eigenvalues. These eigenvalues are distinguished into unique and repeated
types, with repeated eigenvalues further classified based on the dimension of their corresponding eigenspace. For
each of these scenarios, exact solutions were derived, and the numerator and denominator functions for the non-
standard finite difference scheme were developed.

The convergence of each proposed numerical method was proven by proving consistency and stability. We
asserted that the methods remain robust against changes in the step size h and fractional order α. They also maintain
resilience to changes in the system coefficients a,b,c, and d, provided that none of the two eigenvalues changes its
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sign from negative to positive. This assures that the proposed methods are unconditionally stable when the system’s
eigenvalues are negative.

Letting N represent the total number of mesh points. At iteration k, each of the three generated NSFDMs
necessitates 3 multiplications to compute either the numerator or denominator functions ψk and ϕk, along with
2 multiplication operations for scheme application at each step. This results in 8 multiplications every iteration
throughout N iterations, yielding a cumulative total of 8N multiplications. The temporal complexity is minimal
and similar to the Improved Euler’s approach, which requires 8N multiplication operations.

The performances of the proposed nonstandard finite difference methods are illustrated using three numerical
examples.

Table 1 shows the infinity norm error of the NSFDM (24)-(25), which is designed for linear systems of two linear
FDEs. Several values of the step sizes h and orders α were used to demonstrate these errors. We see that the largest
resulting error is of order 10−14 and the least is of order 10−16, which is close to the machine precision.

Figure 1 illustrates the NSFD solutions with a step size h = 0.04 and orders α = 0.25,0.5,0.75,0.95 and 1.0. The
existence of a positive eigenvalue of the system, caused its components to grow unbounded, indicating that the
system of linear FDE in Example 6.1 is unstable. These results agree with those found in [21].

Table 2 illustrates the infinity norm error derived from solving Example 6.2 using the NSFDM (32)-(33) across
various step sizes h and orders α. The maximum error is on the order of 10−15, while the minimum is 0.00,
indicating that the suggested NSFDM resolved the issue precisely, particularly for high step sizes. We see that
at substantial step sizes, namely h = 2,4, and 8, the NSFDM yielded few mistakes, demonstrating the method’s
stability.

In Figure 2, we set a step size of h = 0.04 and then show the solution components x(t) and y(t) derived from
the NSFDM (32)-(33) for α = 0.25,0.5,0.75,0.95 and 1.0. It is evident that the solution remains stable due to the
negative value of the repeated eigenvalue λ. The solution for α = 1 confirms that the NSFDM encompasses the
first-order ODE scenario.

Example 6.3 is an uncoupled system of two linear FDEs. We solved the example using the NSFDM (28)-(29).
Table 3 shows the infinity norm errors obtained by the scheme for several step sizes h and orders α. All errors
included in the table are within machine precision ε = 2.2204×10−16, indicating that the proposed method is exact.
This result agrees with those in [3].

Figure 5 illustrates the components of the solution x(t) and y(t) obtained from NSFDM (32)-(33) for values of
α = 0.25,0.5,0.75,0.95 and 1.0. The solutions converge to a stable level for each value of α, due to the negative
value of the eigenvalue λ = −1. For α = 1, the solutions converge to x∗ = y∗ = 0, which indicates that the proposed
numerical methods extend the classical systems of two first-order ODEs.

In our implementation of the exact finite difference schemes, tables 1-3 show that the numerical methods work
consistently, no matter what step size or fractional order is utilized in the simulations. The methods can obtain
accurate solutions (within the level of machine precision) for large step sizes such as h = 2,4 and 8. A standard
finite-difference method or any other standard numerical method can never have such a feature.

The most apparent challenges to the proposed exact nonstandard finite difference methods arise when at least one
eigenvalue of the linear fractional system is positive. The approach exhibits instability if any eigenvalue is positive,
as shown in the numerical stability section. Despite the eigenvalues of the linear fractional system in Example 1
being positive, the performance of the method has been quite satisfactory, with the highest infinity norm error on
the order of 10−14. Typically, methods do not ensure the attainment of minimal errors for linear fractional systems
with positive eigenvalues.

In future research, we plan to develop exact non-standard finite difference methods to solve linear systems
of FDEs with complex eigenvalues, nonlinear FDEs, FDEs of order 1 < α ≤ 2, and classes of fractional partial
differential equations (PDEs).
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