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Abstract This paper studies the dynamics of a delayed predator-prey model with a modified Beddington-DeAngelis
response function influenced by fear factors, Allee effects, and harvesting on the predator population. This paper analyzes
the influence of parameters, namely fear factors (ω), Allee effects (m), and delay time (τ ), on the stability of the model’s
equilibrium point. First, an analysis of the existence of the model’s equilibrium point is carried out, then an analysis of the
stability and the influence of changes in the model’s parameter values and delay time that can affect the stability of the
model’s equilibrium point is carried out. The analysis indicates that the larger the parameters ω, m, and τ , the more unstable
the coexistence equilibrium point tends to be. Several numerical simulation results are used to validate the analytical results
obtained.
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1. Introduction

The study of predator-prey dynamics has become one of the main research topics in ecosystems, because it
can provide a deep understanding of the influence of various ecological factors on ecosystem sustainability. In
the ecosystem, the interaction between predators and prey is often influenced by external factors that can change
the behavior of the predator-prey system dynamics as well as its stability and the sustainability of the ecosystem
as a whole. The predator-prey model describes the dynamic interaction between two species with a pattern of
relationships that influence each other and are often influenced by several factors, namely the fear experienced
by the prey, the impact of the Allee effect on low populations, and hunting by the predator on the prey itself.
To handle more realistic interactions in conditions of varying population densities, one of the functions that
describes predator-prey interactions is the Beddington-DeAngelis function. This function describes the dynamics
of predator–prey interactions in ecosystems that consider population density. Research on the combined effects of
these factors is very important to understand how these elements interact with each other and affect the stability of
the ecosystem in the long term.

Several researchers have studied these factors and the combination of these factors in the predator prey model.
The fear effect, which reflects changes in prey behavior due to threats from predators, has been the focus of various
studies. The importance of fear factors in prey populations has received special attention in several studies, where
fear of predators can change prey behavior and significantly affect ecosystem structure. [1], [2] and [3] showed
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that fear effects can produce bifurcations, dynamic oscillations, and changes in stability patterns in predator-prey
models with Beddington–DeAngelis functional responses. In addition, these effects further enrich the dynamics
of the model when combined with other factors such as non-linear harvesting, prey protection, or predator taxis,
as described by [4], [5] and [6]. On the other hand, Allee effects, which usually occur in low-density populations,
play an important role in ecosystem stability. Studies by [7] and [8] showed that Allee effects can introduce new
bifurcation patterns and enrich population dynamics. In addition, Allee effects, which refer to the phenomenon
where low population numbers can affect the survival or reproduction rate of a population, also play a role
in population stability and sustainability in predator-prey models [9]. Meanwhile, [10] and [11] added that the
combination of fear effects and Allee effects resulted in increasingly complex stability patterns. Beyond their
short-term ecological impacts, the interaction of these factors may also provide insights into possible evolutionary
implications, such as behavioral adaptations or shifts in reproductive strategies driven by prolonged exposure to
fear and Allee effects.

Further studies by [12] and [13] showed that time delays in the predator-prey system, involving fear effects, Allee
effects, and predator hunting cooperation, resulted in interesting Hopf bifurcations and oscillatory patterns. [14]
and [15] showed that prey protection and predator taxis also contributed significantly to regulating the stability
and bifurcation of the system. Furthermore, harvesting, both in predators and prey, has a major influence on
ecosystem dynamics. Studies by [16] showed that harvesting strategies can significantly affect system stability. In
[17], [18] and [19] highlighted that combining harvesting strategies with fear effects or Allee effects can produce
rich bifurcation dynamics. While [20] and [21] showed that intraspecific competition and predator mortality rates
that depend on prey density play important roles in determining dynamic patterns. [22] added that the reproductive
Allee effect in the Leslie-Gower model can have significant implications for population stability. Hunting, as one
of the factors that can have a direct impact on predator and prey populations, is often used in analyses to describe
the influence of human activities on ecosystem balance [23] and [24].

Recent developments have focused on integrating these ecological components within unified modeling
frameworks. For example, [25] explored a model incorporating fear, Allee effects, and periodic harvesting,
uncovering complex bifurcation patterns. A review by [26] emphasized how integrated models are crucial for
understanding ecological resilience. In [27], a predator–prey model with Allee effects and harvesting effort showed
diverse bifurcation phenomena including Hopf and Bogdanov–Takens bifurcations. [28] studied memory effects in
predators and fear in prey within a time-delayed model, revealing rich oscillatory dynamics. In a toxic environment
context, [29] demonstrated that fear can significantly affect population dynamics, even in the absence of direct
predation. Furthermore, Shao and Zhao [30] analyzed the stability and Hopf bifurcation of a delayed predator–prey
system with fear and additional food, providing further insight into the complex interplay of ecological factors.

A relevant real-world example of these combined effects can be found in marine ecosystems, such as the
interaction between sardines (Sardinella spp.) and tuna (Thunnus spp.). Fear effects occur when sardines reduce
foraging activity to avoid predators, resulting in slower growth and reproduction. The Allee effect emerges
when sardine abundance drops below a threshold, weakening schooling behavior and increasing vulnerability
to predation[31]. Both species are also subject to commercial harvesting, and reproductive cycles introduce time
delays in the response of predator populations to changes in prey abundance. This complex interplay closely reflects
the ecological processes captured in our modified Beddington–DeAngelis predator–prey model.

This article examines the impact of fear, Allee effects, and harvesting in a predator-prey model with a
Beddington–DeAngelis response function. This model allows to explore how these factors interact and influence
the stability and dynamics of populations in an ecosystem. This research also includes an analysis of how an
imbalance between predators and prey can arise as a result of excessive hunting or fear faced by the prey population
[32]. Thus, the developed model provides a deeper understanding of the interactions between populations in more
complex ecosystems. In this article, the combined impact of fear, Allee effects, and harvesting in a predator-prey
model with a modified Beddington–DeAngelis response function is explored. Analytical and numerical approaches
will be used to analyze these factors that influence the stability, bifurcation, and sustainability of the predator-prey
model. In this paper, we study a predator-prey model with a modified Beddington–DeAngelis response function
affected by fear, allee effects, predator harvesting, and time delays. We are interested in studying the stability of
the equilibrium points of the model affected by these factors. In the next section, we present a predator-prey model
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with a modified Beddington–DeAngelis response function. In section 3, we analyze the positivity and finiteness of
the solution. In section 4, we investigate the existence and local stability of the equilibrium points of the model. In
section 5, we investigate a bifurcation analysis representing a Hopf bifurcation for the proposed model. The last
section presents numerical simulations to validate and further explore our analytical findings.

2. Model Assumptions and Formulation

This article examines the stability of a predator–prey model with a Beddington–DeAngelis response function,
influenced by fear effects, Allee effects, nonlinear harvesting, and time delay. The model captures essential
ecological dynamics such as inhibition, exploitation, predator saturation, and delayed predator reproduction. In
constructing the model, several ecological and mathematical assumptions are made to ensure biological relevance
and analytical tractability.

2.1. Model Assumptions

The model represents the interaction dynamics between two biological populations prey x(t) and predator y(t)
using a system of nonlinear differential equations with time delay. The key assumptions underlying the model are:

• The populations x(t) and y(t) are assumed to be homogeneous, with no age structure or spatial distribution.
• The system is considered closed, with no immigration, emigration, or interaction with external populations.
• The time delay τ , representing predator gestation, is treated as fixed and deterministic, although real

ecological systems may exhibit stochastic variation.
• The nonlinear rational form x2y2

a+bx2+cy2 captures a saturating predator functional response, where prey
swarming behavior reduces predation efficiency at high prey densities.

These idealizations facilitate the analysis of dynamic behaviors such as stability, oscillations, and bifurcations.
With appropriate parameter calibration, the model offers a biologically meaningful approximation for real-world
predator-prey systems.

2.2. Model Formulation

The biological motivations behind each component of the model are as follows:

• Fear effect: Reduces the reproductive rate of the prey in response to predator presence, modeling behavioral
stress or avoidance, as discussed in Yang & Jin (2022) [28].

• Allee effect: Incorporated additively in the prey’s growth term to reflect lower reproduction at low population
densities, based on Shao et al. (2024) [27].

• Harvesting: Predator harvesting is represented using a nonlinear saturating function Ey
1+δy , capturing

diminishing returns at high predator densities, following Aldila & Adhyarini (2020) [25].
• Predator functional response: The interaction follows a modified Beddington–DeAngelis type functional

response, incorporating prey protection, yielding a Holling type III form.

The original Beddington–DeAngelis functional response is:

f(x, y) =
βxy

a+ bx+ cy

which is modified to account for prey protection as:

f(x, y) =
β(1− n)x2y2

a+ bx2 + cy2
.

The nonlinear harvesting function applied to the predator population is:

Ey

1 + δy
.
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2.2.1. Model Without Delay The predator–prey system without delay is given by:

dx

dt
=

rx

1 + ωy

(
1− x

K

)
(x−m)− β1 (1− n)x2y2

a+ bx2 + cy2

dy

dt
=

β2 (1− n)x2y2

a+ bx2 + cy2
− α1y − α2y

2 − Ey

1 + δy
, (1)

where x(t) and y(t) denote the prey and predator population sizes at time t, respectively, and the initial conditions
are x(0) ≥ 0, y(0) ≥ 0.
2.2.2. Model With Time Delay To reflect the biological delay in converting consumed prey into predator

offspring (e.g., due to gestation), a discrete time delay τ is incorporated into the predator’s growth term. The
delayed model is formulated as:

dx

dt
=

rx

1 + ωy

(
1− x

K

)
(x−m)− β1 (1− n)x2y2

a+ bx2 + cy2

dy

dt
=

β2 (1− n)x2(t− τ)y2(t− τ)

a+ bx2(t− τ) + cy2(t− τ)
− α1y − α2y

2 − Ey

1 + δy
, (2)

with initial conditions:
x(t) = ϕ1(t) ≥ 0, y(t) = ϕ2(t) ≥ 0, t ∈ [−τ, 0].

Model Parameters The parameters of the model are defined as follows:

Table 1. Parameter definitions

Simbol Deskripsi
r Intrinsic growth rate of the prey population
K Environmental carrying capacity for prey
ω Level of fear effect experienced by prey
m Allee threshold; if x < m, prey growth may become negative
β1, β2 Interaction and conversion rates between prey and predator
α1 Natural death rate of the predator
α2 Intraspecific competition-induced death rate in the predator
E Harvesting effort
δ Saturation parameter in the harvesting function
a, b, c Parameters in the functional response
n Prey protection factor
τ Time delay representing predator gestation period

This model serves as a framework to analyze how various ecological and behavioral factors—such as fear, low-
density effects, nonlinear harvesting, and reproductive delay—impact the stability and dynamics of predator–prey
systems.

3. Basic properties of the model

In this section, the positive invariance and boundedness solution of the model are explained.

3.1. Positive Invariance

Proposition 1. For the non-negative initial conditions (ϕi, i = 1, 2), defined on [0,+∞), there exists a non-negative
solution of system (2).
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Proof: We know that the survival of populations depends on the positivity of the system’s solution. By integrating,
it follows from the model (2) that

x(t) = x(0)exp

(∫ t

0

(
rx

1 + ωy

(
1− x

K

)
(x−m)− β1 (1− n)x2y2

a+ bx2 + cy2

)
ds

)

y(t) = y(0)exp

(∫ t

0

(
β2 (1− n)x2(t− τ)y2(t− τ)

a+ bx2(t− τ) + cy2(t− τ)
− α1y − α2y

2 − Ey

1 + δy

)
ds

)
Hence, the solution (x(t), y(t)) of model (2) with initial condition x(0) ≥ 0 and y(0) ≥ 0 remains positive.

3.2. Boundedness

Theorem 2. Prey and predator population of the system (2) is always bounded from above.

Proof. Let w = x(t− τ) + β1

β2
y. For any η > 0 we have

dw
dt + ηw = rx(t−τ)

1+ωy(t−τ)

(
1− x(t−τ)

K

)
(x(t− τ)−m)− β1

β2

(
α1y − α2y

2 − Ey
1+δy

)
+ η

[
x(t− τ) + β1

β2
y
]
,

≤ rx(t− τ)
(
1− x(t−τ)

k

)
(x(t− τ)−m) + ηx(t− τ) + β1

β2

[
(η − α1 − E) y − α2y

2
]

≤
r
[(
K−m+

√
(K−m)2−3K(m−η)

)(
K−m+

√
(K−m)2−3K(m−η)

)(
K−m+

√
(K−m)2−3K(m−η)

)]2
27K + m2

4α2
.

Then, dwdt + ηw ≤M

where M =
r
[(
K−m+

√
(K−m)2−3K(m−η)

)(
K−m+

√
(K−m)2−3K(m−η)

)(
K−m+

√
(K−m)2−3K(m−η)

)]2
27K + m2

4α2

By use of Gronwall’s inequality[36] application , we get

0 ≤ w(t) ≤ M

η

(
1− e−ηt

)
+ w1(0)e

−ηt

Consequently, as t→ ∞ =⇒ 0 < w(t) < M
η . This suggests that any solution for the systems represented by (2)

is bounded.

4. Equilibria and their local stability

4.1. Equilibria

In this section, the existence of equilibrium points in the systems (2) is analyzed. Based on the analytical study,
three equilibrium points were obtained, namely population extinction (E0(0, 0)) and predator-free equilibrium
points E1 (K, 0) and E2 (m, 0). The equilibrium points were obtained based on the solution of:

rx

1 + ωy

(
1− x

K

)
(x−m)− β1 (1− n)x2y2

a+ bx2 + cy2
= 0

β2 (1− n)x2(t− τ)y2(t− τ)

a+ bx2(t− τ) + cy2(t− τ)
− α1y − α2y

2 − Ey

1 + δy
= 0

The equilibrium point of coexistence, namely E∗ (x∗, y∗) is a solution to the equation above with x∗ ̸= 0 and
y∗ ̸= 0. Basically, it is the intersection point in the positive quadrant of the system of equations above. Based on
the system of equations above, it can be seen that the coexistence equilibrium point depends on the parameter
values. Therefore, the system of equations above must be solved to obtain the coexistence equilibrium point, but
it is impossible to show the analytical solution of the system of equations. Therefore, numerical calculations are
needed to obtain the coexistence equilibrium point.
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4.2. Analysis of local stability and bifurcations

Within this part, we examine the local stability of each of the system’s four possible equilibrium points both with
and without delay. Additionally, look into how the parameter τ , ω and m affects the system (2).

4.3. E0(0, 0)

The Jacobian matrix at E0(0, 0), which is given by

JE0 =

[
−rm 0
0 −α1 − E

]
The eigenvalues of this matrix are −rm,−α1 − E. Hence E0 is always stable equilibrium point.

4.4. E1 (K, 0)

The Jacobian matrix at E1, which is given by

JE1
=

 r (m− 2mK +K) 0

0 −α1 − E


The eigenvalues of this matrix are r (m− 2mK +K) and −α1 − E. The predator-free equilibrium point E1 to

the system (2) is asymptotically stable for all τ if m+K < 2mK Otherwise, it will be unstable.

4.5. E2 (m, 0)

The Jacobian matrix at E2, which is given by

JE2 =

 rm2
(
2− 3

K

)
+ rm 0

0 −α1 − E


The eigenvalues of this matrix are rm2

(
2− 3

K

)
+ rm and −α1 − E. The predator-free equilibrium point E2 to

the system (2) is asymptotically stable for all τ if m
(
2− 3

K

)
+ 1 < 0 Otherwise, it will be unstable.

4.6. Co-existing equilibrium E∗ (x∗, y∗)

The Jacobian matrix at E∗, which is given by

JE =

[
j1 j2

j3e
−λτ j4 + j5e

−λτ

]
,

where

j1 =
r
(
−m+ 2(1 +m)x∗ − 3x2

∗
K

)
1 + ωy∗

−
2β1 (1− n)x∗y

2
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

2 ,

j2 = − rωx∗
(1 + ωy∗)2

(
1− x∗

k

)
(x∗ −m)−

2β1 (1− n)x2∗y∗
(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

2

j3 =
2β2 (1− n)x∗y

2
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

2 , j4 = −α1 − 2α2y∗ −
E

(1 + δy∗)
2

j5 =
2β2 (1− n)x2∗y∗

(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

2 ,

and λ is the characteristic value derived from the linearization of the delayed system.
Here, our primary goal is to examine how time delay affects the dynamic behaviour of system (2) at the interior
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equilibrium point when prey and predators are present. The system’s characteristic equation at E∗ is as follows:

λ2 + p1λ+ p2 + (p3λ+ p4) e
−λτ = 0, (3)

where p1 =
r
(
−m+ 2(1 +m)x∗ − 3x2

∗
K

)
1 + ωy∗

−
2β1 (1− n)x∗y

2
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

2 − α1 − 2α2y∗ −
E

(1 + δy∗)
2

p2 =

r
(
−m+ 2(1 +m)x∗ − 3x2

∗
K

)
1 + ωy∗

−
2β1 (1− n)x∗y

2
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

2

(−α1 − 2α2y∗ −
E

(1 + δy∗)
2

)
,

p3 = −
2β2 (1− n)x2∗y∗

(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

2

p4 =

r
(
−m+ 2(1 +m)x∗ − 3x2

∗
K

)
1 + ωy∗

(2β2 (1− n)x2∗y∗
(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

2

)

+

(
rωx∗

(1 + ωy∗)2

(
1− x∗

k

)
(x∗ −m)

)(
2β2 (1− n)x∗y

2
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

2

)
.

Case I (τ = 0)

When τ = 0 that is, there is no time delay, the characteristic equation becomes

λ2 + (p1 + p3)λ+ p2 + p4 = 0, (4)

The Routh-Hurwitz criteria is applied to the above equation (4), and E∗ is asymptotically stable if the following
condition holds (H1) : p1 + p3 > 0 and p2 + p4 > 0.

Case II (τ > 0)

To obtain the periodic solution of (1), we substitute λ = iσ(σ > 0) in (3), and by equating the real and imaginary
parts, we get the following equations:

p4 cosστ + p3σ sinστ + p2 = σ2, and p3σ cosστ − p4 sinστ + p1σ = 0 (5)

which gives σ4 +
(
p21 − 2p2 − p23

)
σ2 + p22 − p24 = 0. (6)

(H2) : it is assumed that σ∗ is a positive root of equation (3).
From above equations (5), we have

τk =
1

σ∗
arctan

[
σ∗
(
p2p3 − p1p4 − p3σ

2
∗
)

p5p3 + (p2p4 − p4)σ2
∗

]
+

2kπ

σ∗
, k = 0, 1, 2, 3...

We shall now examine the Hopf bifurcation’s transversality condition. Differentiating of (3) with respect to τ and
after simple calculations leads to

ℜ
[
dλ

dτ

]−1

λ=iσ∗,τ=τ∗

=
(2p4 − p1p3)σ

2
∗cosσ∗τ∗ +

(
p3σ

2
∗ + p1p4

)
σ∗ sinσ∗τ∗ − p23σ

2
∗

p23σ
4
∗ + p24σ

2
∗

.

Therefore, the transversality condition ℜ
[
dλ
dτ

]
λ=iσ∗,τ=τ∗

> 0 holds as if (H3) : (2p4 − p1p3)σ
2
∗cosσ∗τ∗ +(

p3σ
2
∗ + p1p4

)
σ∗ sinσ∗τ∗ − p23σ

2
∗ > 0.

Thus, we can state the following theorem.

Theorem 3. Suppose that the conditions (H1), (H2), (H3) hold for system (1). Interior equilibrium point
E∗ (x∗, y∗) is locally asymptotically stable when τ ∈ [0, τ∗) and a Hopf-bifurcation occurs at the equilibrium point
E∗ when τ = τ∗.
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5. Direction and stability of Hopf-bifurcation

In this section, we analyze the direction, stability, and period of the periodic solutions bifurcating from the
positive equilibrium at the critical delay value τ = τ∗. The method we use is based on the center manifold theory
and normal form calculation developed by Hassard et al. [33]. The following theorem summarizes the main results
regarding the direction, stability, and period of the bifurcating periodic solutions.

Theorem 4. If ν1 > 0(ν1 < 0) for the model system (1), then the Hopf bifurcation is supercritical (subcritical). The
bifurcating periodic solutions are stable (unstable) if ν2 < 0 (ν2 > 0). The bifurcating periodic solutions increase
(fall) if T >, 0(T < 0).The following parameters are derived in the proof:

B1(0) =
i

2τ∗σ∗

(
h11h20 − 2|h11|2 −

|h02|2

3

)
+
h21
2
, ν1 = −ℜ(B1(0))

ℜ(λ′(τ∗))
,

ν2 = 2ℜ (B1(0)) , T = −ℑ (B1(0)) + ν1ℑ(λ
′
(τ∗))

τ∗σ∗
.

Proof: In keeping with Hassard’s idea[33], the centre manifold theorem and normal form theory have been used
to investigate the stability of bifurcated periodic solutions as well as the direction of the Hopf bifurcation.
Let τ = τ∗ + η, η ∈ R, then η = 0 is the Hopf bifurcation value of system (1). Rescaling the time delay t→ ( tτ ),
then system (1) can be re-written as

ẇ(t) = Lηwt + f(η, wt), (7)

where w(t) = (w1(t), w2(t))
T ∈ R3, wt(θ) = w(t+ θ) and Lµ : C → R3, f : R× C → R3 are given by

Lηwt = (τ∗ + η)

(
j1 j2
0 j4

)(
w1t(0)
w2t(0)

)
+ (τ∗ + η)

(
0 0
j3 j5

)(
w1t(−1)
w2t(−1)

)
, (8)

f(η, wt) = (τ∗ + η)

(
a30w

3
1t(0) + a11w1t(0)w2t(0) + a21w

2
1t(0)w2t(0) + . . .

b30w
3
1t(−1) + b11w1t(−1)w2t(−1) + b02w

2
2t(−1) + . . .

)
(9)

where

a11 = −
rω
(
−m+ 2(1 +m)x∗ − 3x2

∗
K

)
(1 + ωy∗)

2 +
4β1 (1− n)x∗y∗

(
a+ 2cy2∗

)
(a+ bx2∗ + cy2∗)

2

−
8β1c (1− n)x∗y

3
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

3 , a21 = −
rω
(
2(1 +m)− 6x∗

K

)
(1 + ωy∗)

2 +
4β1 (1− n) y∗

(
a+ 2cy2∗

)
(a+ bx2∗ + cy2∗)

2

+
48bcβ1 (1− n)x2∗y

3
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

4 −
8β1 (1− n) y∗

[
2bx2∗

(
a+ 2cy2∗

)
+ cy2∗

(
3a+ 5cy2∗

)]
(a+ bx2∗ + cy2∗)

3

a12 =
rω2

(
−m+ 2(1 +m)x∗ − 3x2

∗
K

)
(1 + ωy∗)

2 −
8β1c (1− n)x∗y

2
∗
[
2
(
a+ 2cy2∗

)
+ y2∗

(
3a+ 5cy2∗

)]
(a+ bx2∗ + cy2∗)

3
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+
4β1 (1− n)x∗

(
a+ 6cy2∗

)
(a+ bx2∗ + cy2∗)

2 +
48c2β1 (1− n)x∗y

4
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

4 , a20 = − 6rx∗
K (1 + ωy∗)

+
2β1 (1− n) y2∗

(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

2 −
8bβ1 (1− n)x2∗y∗

(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

3 , a30 = − 6r

K (1 + ωy∗)

−
24bβ1 (1− n)x∗y

2
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

3 +
48b2β1 (1− n)x3∗y

2
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

4

a02 =
2rω2x∗

(1 + ωy∗)3

(
1− x∗

k

)
(x∗ −m) +

2β1 (1− n)x2∗
(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

2 −
8cβ1 (1− n)x2∗y∗

(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

3

a03 = − 6rω3x∗
(1 + ωy∗)4

(
1− x∗

k

)
(x∗ −m)−

24cβ1 (1− n) y∗x
2
∗
(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

3 +
48c2β1 (1− n) y3∗x

2
∗
(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

4

b11 =
4β2 (1− n)x∗y∗

(
a+ 2cy2∗

)
(a+ bx2∗ + cy2∗)

2 −
8β2c (1− n)x∗y

3
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

3

b21 =
4β2 (1− n) y∗

(
a+ 2cy2∗

)
(a+ bx2∗ + cy2∗)

2 +
48bcβ2 (1− n)x2∗y

3
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

4

−
8β2 (1− n) y∗

[
2bx2∗

(
a+ 2cy2∗

)
+ cy2∗

(
3a+ 5cy2∗

)]
(a+ bx2∗ + cy2∗)

3

b12 =
4β2 (1− n)x∗

(
a+ 6cy2∗

)
(a+ bx2∗ + cy2∗)

2 +
48c2β2 (1− n)x∗y

4
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

4

−
8β2c (1− n)x∗y

2
∗
[
2
(
a+ 2cy2∗

)
+ y2∗

(
3a+ 5cy2∗

)]
(a+ bx2∗ + cy2∗)

3

b20 =
2β2 (1− n) y2∗

(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

2 −
8bβ2 (1− n)x2∗y∗

(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

3

b30 = −
24bβ2 (1− n)x∗y

2
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

3 +
48b2β2 (1− n)x3∗y

2
∗
(
a+ cy2∗

)
(a+ bx2∗ + cy2∗)

4

b02 =
2β2 (1− n)x2∗

(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

2 −
8cβ2 (1− n)x2∗y∗

(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

3

b03 = −
24cβ2 (1− n) y∗x

2
∗
(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

3 +
48c2β2 (1− n) y3∗x

2
∗
(
a+ bx2∗

)
(a+ bx2∗ + cy2∗)

4

c02 = −α− E

(1 + δy∗)
3 , c03 = − E

(1 + δy∗)
4

According to Riesz representation theorem [34], there exists a 2× 2 matrix µ(θ, η), θ ∈ [−1, 0], such that

Lηϕ =

∫ 0

−1

dµ(θ, η)ϕ(θ), for ϕ ∈ C = C([−1, 0], R3), (10)

In fact we can choose

µ(θ, η) = (τ∗ + η)

[
j1 j2
0 j4

]
δ(θ) + (τ∗ + η)

[
0 0
j3 j5

]
δ(θ + 1), (11)
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where δ is the Dirac delta function. For ϕ ∈ C([−1, 0], R3), define

A1(η)ϕ =

{
dϕ(θ)
dθ , −1 ≤ θ < 0∫ 0

−1
dµ(θ, η)ϕ(θ), θ = 0

and A2(η)ϕ =

{
0 − 1 ≤ θ < 0,

f(η, ϕ) θ = 0.
(12)

Then (1) is equivalent to the abstract differential equation

ẇ(t) = A1ηwt +A2(η)wt, where wt(θ) = w(t+ θ), θ ∈ [−1, 0] (13)

For ψ ∈ C1([0, 1], (R2)∗), define A∗
1ψ(s) =

{
−dψ(s)

ds 0 < s ≤ 1,∫ 0

−1
dηT (s, 0)ψ(−s) s = 0.

(14)

For ϕ ∈ C([0, 1], R2) and ψ ∈ C1([0, 1], (R3)∗), define a bilinear inner product

< ψ, ϕ >= ψ̄(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0

ψT (ξ − θ)dη(θ)ϕ(ξ)dξ, (15)

where µ(θ) = µ(θ, 0), A1 = A1(0) and A∗ are adjoint operators. Here ±iσ∗τ∗ are the eigenvalues of A1(0), and
they are also eigenvalues of A∗

1. Here S(θ) = (1, γ1)
T eiσ∗τ∗θ (θ ∈ [−1, 0]) and S∗(q) = 1

D (1, γ∗1)
T eiσ∗τ∗q (q ∈

[−1, 0]) are the eigenvectors of A1(0) and A∗
1 corresponding to the eigenvalues iσ∗τ∗ and −iσ∗τ∗ respectively.

Then A1(0)S(θ) = iτ∗σ∗S(θ). Then it follows from the definition of A1(0) and A∗
1 in 11, (12), 13 and using a

computation process similar to Song and Wei [35], we obtain

γ1 =
b21e

−iσ∗τ∗

iσ − a22 − b22e−iσ∗τ∗
, γ∗1 = − b21

b22 + (a11 + iσ) e−iσ∗τ∗
, .

In order to assure that < S∗(q), S(θ) >= 1 and < S∗(q), S̄(θ) >= 0, we need to determine the value of D. Hence,
from < S∗(q), S(θ) >= 1, we have

D̄ =1 + γ1γ̄∗1 + τ∗e
−iσ∗τ∗ (b22γ1γ

∗
1 + b21γ

∗
1) . (16)

Following the algorithm explained in Hassard[33] and using a computation process similar to Song and Wei [35],
which is used to obtain the properties of Hopf-bifurcation, we obtain

h20 =
τ∗
D̄

[
a20 + γ21a02 + γ1a11 + γ̄∗1

[
e−2iσ∗τ∗

(
b11γ1 + b20 + b02γ

2
1

)
+ γ21c02

]]
.

h11 =
τ∗
D̄

[
2a20 + 2γ1γ̄1a02 + a11 (γ1 + γ̄1) + γ̄∗1 (2b20 + 2γ1γ̄1(b02 + c02) + b11 (γ1 + γ̄1))

]
.

h02 =
τ∗
D̄

[
a20 + γ̄1

2a02 + γ̄1a11 + γ̄∗1
[
e−2iσ∗τ∗

(
b11γ̄1 + b20 + b02γ̄1

2
)
+ γ̄1

2c02
]]

h21 =
τ∗
D̄

[
3a30 + a11

(
W

(2)
11 (0) +

1

2
W

(2)
20 (0) +

1

2
γ̄1W

(1)
20 (0) + γ1W

(1)
11 (0)

)
+ 3γ21 γ̄1a03

+a20

(
2W

(1)
11 (0) +W

(1)
20 (0)

)
+ a02

(
2γ1W

(2)
11 (0) + γ̄1W

(2)
20 (0)

)
+ a21 (2γ1 + γ̄1)

+a12
(
2γ1γ̄1 + γ21

)
+ γ̄∗13e

−iσ∗τ∗
(
b30 + γ21 γ̄1b03

)
+ γ̄∗1b02

(
2W

(2)
11 (−1)e−iσ∗τ∗ +W

(2)
20 (−1)eiσ∗τ∗

)
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+γ̄∗1b20

(
2W

(1)
11 (−1)e−iσ∗τ∗ +W

(1)
20 (−1)eiσ∗τ∗

)
+ γ̄∗1b21e

−iσ∗τ∗ (γ̄1 + 2γ1)

+γ̄∗1b12e
−iσ∗τ∗

(
2γ1γ̄1 + γ21

)
+ b2γ̄∗1

(
2γ1W

(2)
11 (0) + γ̄1W

(2)
20 (0)

)
+ 3γ̄∗1γ1γ̄1c03

+γ̄∗1b11

(
e−iω∗τ∗

(
γ1W

(1)
11 (−1) +W

(2)
11 (−1)

)
+

1

2
e−iω∗τ∗

(
γ̄1W

(1)
20 (−1) +

1

2
W

(2)
20 (−1)

))]
.

where W20(θ) =
ih20
ω∗τ∗

S(0)eiθω∗τ∗ +
ih̄02
3ω∗τ∗

S̄(0)e−iθω∗τ∗ + C1e
2iθω∗τ∗ ,

W11(θ) = − ih11
ω∗τ∗

S(0)eiθω∗τ∗ +
ih̄11
ω∗τ∗

S̄(0)e−iθω0τ0 + C2,

and C1 = (C1
1 , C

2
1 )
T , and C2 = (C1

2 , C
2
2 )
T both are constant vectors in R2. After calculation, we get C1 =

2D−1
1 D2 and C2 = 2D−1

3 D4 with

D1 =

[
2iω∗ − a11 −a12

−b21 2iω∗ − a22

]
, D2 =

[
a20 + γ21a02 + γ1a11

e−2iω∗τ∗
(
b11γ1 + b20 + b02γ

2
1

)
+ γ21c02

]
,

D3 =

[
−a11 −a12
−a21 −a22

]
, D4 =

[
2a20 + 2γ1γ̄1a02 + a11 (γ1 + γ̄1)

e−2iω∗τ∗
(
b11γ̄1 + b20 + b02γ̄1

2
)
+ γ̄1

2c02

]
.

Therefore, each hij can be expressed by the parameters and delay. Thus, we compute the following values:

B1(0) =
i

2τ∗ω∗

(
h11h20 − 2|h11|2 −

|h02|2

3

)
+
h21
2
, ν1 = −ℜ(B1(0))

ℜ(λ′(τ∗))
,

ν2 = 2ℜ (B1(0)) , T = −ℑ (B1(0)) + ν1ℑ(λ
′
(τ∗))

τ∗ω∗
.

All constants such asB1(0) are computed explicitly using the center manifold functionW , its derivatives, and the
nonlinear terms in f(η, wt), following the formulas in Hassard et al. [32]. This concludes the theoretical derivation
of the Hopf bifurcation properties. In the next section, we verify these analytical results via numerical simulations.

6. Numerical simulation

Using the MATLAB programme, we run a few numerical simulations in this part to validate
and expand on our analytical result. Taking default values of following set of parameters, say Q1:
r = 3.0,K = 2, n = 0.1, a = 0.2, b = 0.2, c = 1.0, β1 = 1.1, β2 = 1.8, α1 = 0.2, α2 = 1.2, δ = 0.8, E = 0.3
with starting point x(0) = y(0) = 1.

The parameters τ (gestation time delay), ω (cost of fear) and m (Allee factor) will vary during the computational
simulations. Taking τ = 1.0, ω = 2.8,m = 0.1 with the collection of parameters value Q1, there exists a co-
existing equilibrium point E∗(0.9539, 2.473). Additionally, meet the requirements in Theorem 5.1, and we’ll be
able to determine the critical delay of τ = 0.96, at which a Hopf-bifurcation displays itself. Accordingly, the
system (1) is unstable if τ = 1.4 > 0.96 (see Figure 2) and asymptotically stable at E∗ for τ = 0.8 < 0.96 (see
Figure 1). For the set of parameters values Q1, the parameteric bifurcation diagram for all populations is shown
in Figure 3, and it displays the way the system evolves when τ ’s numerical values fluctuate within [0.7, 1.3]. It
suggests that the behaviour of the system will fluctuate via a Hopf bifurcation point at τ∗ = 0.98 if we raise the
value of the τ parameter.

Now, in the presence of a time delay, the set of parameters chosen in Q1 with the initial condition
x(0) = y(0) = 1 while setting fear factor (ω) as the bifurcation parameter. Now preserving values of other
parameters in Q1 with τ = 1.2,m = 0.1, and for ω = 2 the co-existing equilibrium point E∗(0.9539, 2.473) is
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asymptotically stable, which is shown in Figure 4. Now if we increase the value of parameter ω, then for system
(2) leads to a Hopf-bifurcation and critical value of ω is ω∗ = 2.45. Further increment in the value of ω then system
becomes unstable, which is shown in Figure 5. For the provided set of factors values Q1 with m = 0.1, Figure
6’s parameteric bifurcation diagram for all populations shows how the system evolves when ω’s numerical values
oscillate within [2.0, 3.2] in the presence fixed gestation time delay τ = 1.2. It is anticipated that changes in the ω
parameter would result in behavioural oscillations in the system via a Hopf bifurcation point at ω∗ = 2.45.

Similarly setting Allee factor (m) as the bifurcation parameter. Now preserving values of other parameters in
Q1 with τ = 0.9, ω = 3.2, and for m = 0.05 the co-existing equilibrium point E∗(0.9539, 2.473) is asymptotically
stable, which is shown in Figure 7. Now if we increase the value of parameter m, then for system (2) leads to a
Hopf-bifurcation and critical value of m is m∗ = 0.07. Further increment in the value of m then system becomes
unstable, which is shown in Figure 9. For the provided set of factors values Q1 with ω = 3.2, Figure 9’s parameteric
bifurcation diagram for all populations shows how the system evolves when ω’s numerical values oscillate within
[0.05, 0.15] in the presence fixed gestation time delay τ = 0.9. It is anticipated that changes in the m parameter
would result in behavioural oscillations in the system via a Hopf bifurcation point at m∗ = 0.07. In addition,
Figures 10 and 11 demonstrate the effects of increasing the harvesting parameter E while keeping τ = 0.9 fixed;
initially at E = 0.4, the coexistence equilibrium E∗ remains stable, but as E increases to 0.9, the equilibrium loses
stability and the system exhibits sustained periodic oscillations. This transition is evidenced by the phase portrait
in Figure 10, where trajectories spiral away from E∗ to form a stable limit cycle, and by the time series in Figure
11 showing persistent oscillations in prey and predator populations. These results indicate that increases in E, like
variations inm, can induce a Hopf bifurcation, causing the system to shift from a stable equilibrium to stable cyclic
dynamics.

7. Conclusion

Predator harvest, Allee effects, and prey fear of predators are the three components that are considered in this
article’s analysis of a predator-prey model with a Beddington–DeAngelis response function. Additionally, a time
delay that represents the predator’s gestation delay is included.

We determined the presence of equilibria and given their positive conditions for the suggested delayed model
(2). There are four potential non-negative equilibria in this prey-predator model, and we also offer a thorough
examination of the stability of each of these systems. Because both prey and predator populations are originally
available, E0 is always stable among them. We see that equilibrium point E1 of the system (2) is asymptotically
stable for all τ if m+K < 2mK. Otherwise, it will be unstable. Also, equilibrium point E2 of the system (2) is
asymptotically stable for all τ if m

(
2− 3

K

)
+ 1 < 0. Otherwise, it will be unstable.

We have obtained the sufficient and necessary conditions for the stability and instability of the interior
equilibrium when τ = 0 as well as when τ > 0. It has been shown that, under some conditions, the time delay τ
may destabilise the co-existing equilibrium of the system (2) and cause the population to fluctuate. The system (2)
undergoes a Hopf-bifurcation, and it is discovered that the system is locally asymptotically stable when the time
delay is sufficiently minimal. When there is a fixed gestation time delay, we looked at the fear effect that predators
concurrently impose on prey species. Hopf-bifurcation is experienced by the delayed system (2), and its critical
value is ω∗, where Hopf-bifurcation takes place at E∗. In this case, the delayed system is unstable if ω > ω∗. As ω
decreases below ω∗, the system stabilises and remains stable for further decreases in ω.

Similarly, with a fixed gestation time delay and a fixed value of the fear parameter, we examined the Allee effect
imposed on prey species. The Allee parameter m destabilises the co-existing equilibrium of the system (2) and
causes the population to fluctuate. Hopf-bifurcation is experienced by the delayed system (2), and its critical value
is m∗, where Hopf-bifurcation takes place at E∗. In this case, the delayed system is unstable if m > m∗. As m
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Figure 1. Show that for the set of parameters chosen in Q1 with starting point x(0) = y(0) = 1, E∗ is locally asymptotically
stable when τ = 0.8(< 0.96 = τ∗). (a) The solution graph of x, and y of the system (2). (b) The phase space graph of the
system (2).
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Figure 2. For the set of parameters chosen in Q1 with starting point x(0) = y(0) = 1, the coexistence equilibrium E∗ loses
its stability when τ = 1.4(> 0.96 = τ∗). Both the Figures (a) and (b) display periodic oscillations and ultimately a stable
limit cycle around the E∗ when τ = 1.4.
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Figure 3. Diagram illustrating the prey and predator populations’ bifurcation in terms of delay with respect to the bifurcating
parameter, τ (bifurcation at τ∗ = 0.96)for the parameter set Q1 with starting point x(0) = y(0) = 1.

decreases below m∗, the system stabilises and remains stable for further decreases in m.

Although evolutionary processes are not explicitly included in the current model, the dynamics revealed in
this study, particularly those driven by prolonged fear effects and strong Allee thresholds, impact prey evolution.
Long-term exposure to predation risk may lead to behavioral or reproductive adaptations in prey populations,
while persistent Allee effects may influence the evolution of group behavior or reproductive strategies. These
aspects are beyond the scope of the current analysis but provide meaningful directions for future research aimed at
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Figure 4. Taking τ = 1.2 with value of parameters chosen in Q1 with starting point x(0) = y(0) = 1, E∗ is locally
asymptotically stable when fear term ω = 2(< 2.45 = ω∗). (a) The solution graph of x, and y of the system (2). (b) The
phase space graph of the system (2).
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Figure 5. Taking τ = 1.2 with value of parameters chosen in Q1 with starting point x(0) = y(0) = 1,, the coexistence
equilibrium E∗ loses its stability when ω = 3.2(> 2.45 = ω∗). Both the Figures (a) and (b) display periodic oscillations
and ultimately a stable limit cycle around the E∗.
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Figure 6. Diagram illustrating the prey and predator populations’ bifurcation in terms of fear factor with respect to the
bifurcating parameter, ω (bifurcation at ω∗ = 2.45)for the parameter set Q1 with starting point x(0) = y(0) = 1.

bridging ecological dynamics with evolutionary theory.

The findings of this study have important implications for ecological management, such as designing
sustainable harvesting strategies and understanding population persistence under predation risk and Allee effects.
Incorporating these factors into management plans could help maintain ecosystem stability.
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Figure 7. Taking τ = 0.9, ω = 3.2 with value of parameters chosen in Q1 with starting point x(0) = y(0) = 1, E∗ is locally
asymptotically stable when Allee effect m = 0.05(< 0.07 = m∗). (a) The solution graph of x and y of the system (2). (b)
The phase space graph of the system (2).
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Figure 8. Taking τ = 0.9, ω = 3.2 with value of parameters chosen in Q1 with starting point x(0) = y(0) = 1, the coexistence
equilibrium E∗ loses its stability when m = 0.15(> 0.07 = m∗). Both the Figures (a) and (b) display periodic oscillations
and ultimately a stable limit cycle around the E∗.
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Figure 9. Diagram illustrating the prey and predator populations’ bifurcation in terms of Allee parameter with respect to the
bifurcating parameter, m for the parameter set Q1 with starting point x(0) = y(0) = 1.

To enhance the applicability of the model in real ecosystems, future work should include parameter estimation
based on ecological data and empirical validation to assess the model’s predictive accuracy. Further research could
also explore evolutionary dynamics explicitly, incorporate additional ecological interactions, and investigate the
role of environmental variability and stochastic effects on predator-prey dynamics.
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(a) (b)

Figure 10. Taking τ = 0.9, ω = 3.2 with value of parameters chosen in Q1 with starting point x(0) = y(0) = 1, E∗ is locally
asymptotically stable when harvesting effort E = 0.4. (a) The solution graph of x and y of the system (2). (b) The phase
space graph of the system (2).

(a) (b)

Figure 11. Taking τ = 0.9, ω = 3.2 with value of parameters chosen in Q1 with starting point x(0) = y(0) = 1, the
coexistence equilibrium E∗ loses its stability when harvesting effort E = 0.9. Both the Figures (a) and (b) display periodic
oscillations and ultimately a stable limit cycle around the E∗.
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