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Abstract Outlier detection is a critical task in data mining, especially in domains such as healthcare, cybersecurity,
and fraud detection, where abnormal instances can signify crucial insights. Traditional approaches, including DBSCAN,
Isolation Forest, and statistical techniques like Z-Score and IQR, often suffer from issues such as sensitivity to parameters,
limited adaptability, and reduced effectiveness in high-dimensional or complex data. To overcome these limitations, this
paper proposes a hybrid outlier detection framework that combines KMeans clustering with HDBSCAN, enhanced through
Bat Algorithm-based optimization for dynamic selection of clustering parameters (eps and minsamples).

The proposed method is evaluated alongside IS-DBSCAN, Autoencoders, and advanced graph-based approaches like
Cluster Catch Digraphs (CCDs) with Outbound and Inbound Outlyingness Scores (OOS and IOS) use in this study. It
explores and compares two advanced outlier detection approaches applied to two real-world datasets: the Online Retail
and the Diabetes 130-US hospitals datasets. The first approach utilizes a scalable Spark-based DBSCAN algorithm, while
the second integrates KMeans clustering with HDBSCAN, optimized via the Bat Algorithm (KMeans + HDBSCAN
(BAT)). A Spark-based implementation of DBSCAN.These methods were evaluated on two real-world datasets—Diabetes
and Online Retail—using Silhouette Score (SII) and classification Accuracy (Acc) as performance metrics with
performanceperformance (F1 =0.972, AUPRC =0.947). Experimental results demonstrate that the proposed hybrid approach
significantly outperforms the Spark-based DBSCAN in both clustering quality and classification performance, achieving a
Silhouette score of 0.67 and accuracy of 66.8% on the Diabetes dataset performance (F1 = 0.66.2, AUC = 0.72.26%), and
0.59 and 97.35% respectively on the Online Retail dataset.For MINIST dataset The model achieved high performance (F1
= 0.92, AUC = 0.96), outperforming Isolation Forest, with notable improvements in clustering quality as BAT iterations
increased. These results highlight the effectiveness of integrating KMeans for initialization, HDBSCAN for density-based
clustering, and the Bat Optimization algorithm for fine-tuning key parameters.
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1. Introduction

Outlier detection plays a pivotal role across critical domains such as healthcare, finance, cybersecurity, and
industrial systems, where the early identification of abnormal patterns is essential for informed decision-making.
As data continues to grow in volume, complexity, and dimensionality, traditional outlier detection techniques often
struggle with issues related to scalability, robustness, and adaptability. Classical statistical approaches such as Z-
Score and Interquartile Range (IQR) [1] are simple and interpretable but are generally ineffective in modeling
complex, non-linear distributions. Similarly, tree-based models like Isolation Forest (IF) [2] and density-based
methods such as Local Outlier Factor (LOF)[3] demonstrate limited performance in high-dimensional or noisy
datasets.
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Recently, clustering-based techniques have attracted increasing attention for outlier detection due to their ability
to uncover underlying data structures without requiring labeled samples. Algorithms such as DBSCAN and its
variants [4] offer the advantage of discovering arbitrarily shaped clusters while identifying outliers based on density
deviations. However, the performance of DBSCAN is often highly sensitive to its parameter settings (e.g., eps and
min_samples), leading to instability across diverse datasets and scenarios.

To address these limitations, we propose a hybrid outlier detection framework that integrates KMeans with
HDBSCAN, where the critical clustering parameters are dynamically optimized using the Bat Algorithm [5]. The
rationale behind this integration is to leverage the global partitioning capability of KMeans to estimate initial
cluster seeds, which are subsequently refined through HDBSCAN’s hierarchical density-based clustering [6]. This
hybridization enables the model to construct adaptive clustering boundaries, improving its capacity to capture
subtle anomalies in heterogeneous data.

In addition to spatial clustering, we incorporate a Long Short-Term Memory (LSTM) Autoencoder to enhance
the modeling of temporal behavioral patterns, especially relevant in domains such as healthcare or customer
analytics where monthly transaction or behavior data are sequential in nature. The LSTM Autoencoder is designed
as follows:

* The encoder LSTM processes a sequence of 12 months of behavioral/spending data and compresses it into
a fixed-length latent vector.

* The decoder LSTM reconstructs the original sequence from this latent representation.

* The reconstruction process is optimized using Mean Squared Error (MSE) loss.

The resulting latent vector encapsulates key temporal dependencies and behavioral dynamics, and it is
concatenated with the static feature space before clustering. This enriched feature representation significantly
improves both clustering quality and the precision of anomaly detection.

Figure 1 provides an overview of the proposed hybrid outlier detection framework, highlighting the data flow
from raw input to final detection results. The integration of the LSTM Autoencoder is not merely auxiliary but
represents a core innovation in how time-series behavior is embedded into the detection pipeline. This design
improves the model’s ability to differentiate between normal variations and genuine anomalies—especially in
applications requiring behavioral interpretability. To validate the proposed framework, we conduct a comprehensive
comparative study against several state-of-the-art outlier detection techniques, including:

IS-DBSCAN [7],

* Autoencoder-based anomaly detection models [8],

* Graph-based strategies such as Cluster Catch Digraphs (CCDs) [9],
¢ Local Coulomb Outlier Factor (LCOF) [10].

Furthermore, we adopt novel evaluation metrics including Inbound and Outbound Outlyingness Scores (I0S
and OOS) [11] to capture both local and global anomaly behaviors in a more nuanced manner.

Experimental evaluations conducted on a real-world healthcare dataset comprising 10,000 samples demonstrate
that our hybrid KMeans + HDBSCAN (Bat-optimized) framework consistently outperforms baseline methods
across multiple performance indicators (Precision, Recall, Fl-score, and Accuracy). The combined use of
optimization, deep temporal encoding, and adaptive clustering not only improves detection accuracy but also
enhances scalability and robustness, making the proposed solution well-suited for real-world, large-scale anomaly
detection tasks as shown in figure 1.

Organization. The remainder of this paper is organized as follows: Section 2 presents the background and
literature review. Section 3 details the proposed methodology. Proposed framework is provided in Section 4, while
Section 5 offers Evaluation Metrics.Section 6 (Discussion)offers an ablation study on the impact of the LSTM
Autoencoder and detect outliers using kmeans +hdbscan optimized bat bat .Proposed framework demonstrates
strong adaptability and performance, several limitations are presented in section 7. Finally, Section 8 concludes the

paper.
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Figure 1. The proposed hybrid outlier detection framework

2. Background and Literature Review

Outlier detection has witnessed significant progress in recent years, particularly through clustering-based and
graph-based techniques that aim to improve robustness and adaptability in diverse data environments. This section
provides a structured overview of existing methods, followed by a comparative summary.

2.1. Review of Existing Approaches

2.1.1. Statistical Methods Classical statistical methods such as Z-Score, Interquartile Range (IQR), and
Mahalanobis distance are computationally efficient and easy to interpret. However, they rely heavily on
distributional assumptions, making them less effective in high-dimensional or non-Gaussian settings [1]. In
contrast, more recent approaches such as Isolation Forest (IF) [2] and Local Outlier Factor (LOF) [3] adopt tree-
based and density-based paradigms, respectively. Although widely used, their performance degrades in the presence
of noise or high-dimensional feature spaces.

2.1.2. IS-DBSCAN 1S-DBSCAN (Influenced Space-DBSCAN) enhances the classic DBSCAN by introducing a
density influence (DI) measure [12]:

1
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Here, N (p) represents the neighborhood of point p, and d(p, ¢) denotes the distance between points p and ¢. Points
are then categorized into core, border, or outliers based on their DI value. This formulation allows for improved
sensitivity to local densities.

2.1.3. HDBSCAN (Hierarchical DBSCAN) HDBSCAN [13] generalizes DBSCAN by using a hierarchy built from
mutual reachability distances:

dinreach (@, b) = max(corey(a), corey(b), d(a, b)) )

where corey(p) is the distance to the k-th nearest neighbor of point p. A minimum spanning tree (MST) is
constructed using mutual reachability distances, and a condensed tree is extracted to represent the hierarchical
clusters. Outliers are those points that do not belong to any stable cluster.

Mutual Reachability Distance
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Figure 2. Visualization of mutual reachability distance dmreach (@, b) combining Euclidean and core distances.

2.1.4. Autoencoder-Based Detection Autoencoders [14] are neural networks trained to reconstruct input data.
They capture latent structures in high-dimensional datasets. Outliers are detected by computing the reconstruction
error:

L(z, &) = ||lz — 2| 3)
Instances with errors above a threshold are classified as outliers. This approach is especially effective in modeling
non-linear data but may suffer from overfitting or poor generalization in limited data scenarios.

2.1.5. Cluster Catch Digraphs (CCDs) CCDs [15] leverage graph theory to model inter-point relationships. Each
point is a vertex, and directed edges are drawn to closer or more central neighbors:

E ={(i,j) | d(i,7) < d(i, k), Vk € neighbors of i} 4)

Outliers are nodes with few or no incoming edges, indicating sparse connectivity and weak integration within dense
regions.

2.1.6. Local Coulomb Outlier Factor (LCOF) Inspired by Coulomb’s law, LCOF [16] defines an outlier score as
the inverse squared distance to neighbors:

LCOF(i)= Y 5)

JEN(3)

d(i, j)?

Points with low accumulated repulsion (i.e., isolated from their neighbors) are marked as outliers. This method is
parameter-free and robust to varying data distributions.
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2.1.7. Inbound and Outbound Outlyingness Scores (I0S & OOS) These scores [?] are derived from graph
structures and quantify how strongly a point deviates from the data. OOS measures how far a point is from others,
while IOS assesses how distant a point appears from the viewpoint of its neighbors. High values in both scores
indicate a strong likelihood of being an outlier.

2.1.8. Copula-Based Outlier Detection (COPOD) Copula-Based Outlier Detection (COPOD) is a recent
unsupervised method introduced by Li et al. (2020) [17]. It is entirely parameter-free and based on empirical
copula modeling to estimate tail probabilities in each feature dimension. By aggregating these extreme value scores,
COPOD can effectively detect outliers in various data distributions.

The method is designed to be:

* Fully automatic: no need for parameter tuning.
 Scalable: suitable for high-dimensional data.
* Interpretable: through feature-wise tail probability contributions.

COPOD outperforms several classical and deep learning models in benchmark studies, particularly in
unsupervised contexts. It has been integrated into the pyod library and is widely used in practice due to its balance
of robustness, interpretability, and efficiency.

2.1.9. LSTM Autoencoder for Sequential Anomaly Detection LSTM Autoencoders have emerged as a powerful
tool for detecting anomalies in sequential and time-series data. Unlike traditional autoencoders, LSTM-based
architectures are specifically designed to capture temporal dependencies and long-range correlations through gated
memory cells.

The typical architecture involves:

¢ An encoder LSTM that processes input sequences and compresses them into fixed-length latent vectors.
* A decoder LSTM that reconstructs the original sequence from this compressed representation.
* A reconstruction loss function (usually MSE) used to identify anomalies based on reconstruction error.

Data points or sequences that yield high reconstruction errors are considered anomalous, particularly when the
model fails to learn regular temporal patterns. LSTM Autoencoders have been effectively applied in domains such
as financial fraud detection, patient monitoring, and industrial system fault prediction [18, 19].

2.2. Evaluation Metrics

Evaluation of outlier detection models requires both internal and external metrics. Internal indices like the
Silhouette Coefficient [20] and Davies—Bouldin Index (DBI) [21] assess cluster quality. Silhouette scores closer to
1 imply compact and well-separated clusters, while lower DBI values indicate better-defined clusters.

External metrics such as Precision, Recall, Fl-score, and Accuracy are crucial when ground truth is
available [22]. These are defined as follows:

 Precision: The proportion of true outliers among detected ones.

* Recall: The proportion of actual outliers that were correctly identified.
* F1-Score: Harmonic mean of Precision and Recall.

¢ Accuracy: Overall proportion of correct predictions.

Imbalance-Aware Evaluation Metrics In highly imbalanced datasets—common in anomaly detection
scenarios—the use of standard accuracy-based metrics may lead to misleading conclusions. As a result, imbalance-
aware metrics such as the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) and the Area
Under the Precision-Recall Curve (AUPRC) are widely recommended ,These metrics are particularly suitable for
evaluating unsupervised and semi-supervised outlier detection models, where the positive (anomalous) class is
often underrepresented [23, 24].
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Class Imbalance in Anomaly Detection An inherent challenge in real-world anomaly detection tasks is the
significant class imbalance, where anomalous cases represent a minor fraction of the overall data. A notable
example is hospital readmission prediction, where the positive class (readmitted patients) is much rarer than the
negative class. In such cases, accuracy becomes a misleading metric, as a model may achieve high accuracy by
simply predicting the dominant (normal) class. Therefore, imbalance-aware metrics must be used, especially
when the anomalous class is rare and critical to detect, such as hospital readmissions.

To address this, we adopt imbalance-aware evaluation metrics such as the Area Under the Precision-Recall
Curve (AUPRC), which provides a more informative measure of performance in skewed datasets. Additionally, we
employ Recall @K, which quantifies the proportion of true anomalies detected among the top-K highest-scoring
samples. These metrics offer a more realistic assessment of a model’s ability to identify rare but critical anomalies
[23, 24, 25].

2.3. Recent Literature and Trends

Recent studies have introduced novel perspectives on anomaly detection. The Random Clustering-Based Outlier
Detector [26] applies probabilistic theory through randomized clustering iterations. Another work extends anomaly
detection to functional data using an AA + kNN model to cluster and identify curve anomalies [27].

Cluster Catch Digraphs have been further refined through new scores such as IOS and OOS [28], improving
interpretability in high-dimensional spaces. LCOF has also been redefined as a fully parameter-free alternative for
diverse datasets [29].

ADBench [30], a recent large-scale benchmark, evaluates 30 anomaly detection methods across different
supervision levels. Surprisingly, several simple unsupervised techniques outperformed deep supervised models,
underscoring the need for appropriate model selection and highlighting the underexplored potential of clustering-
based approaches.

A comparative study [31, 32] focused on tuning unsupervised one-class classifiers, including GMM and GLOSH,
showed that performance varies significantly with data characteristics. However, these studies were oriented toward
supervised or semi-supervised settings, unlike the present study which targets unsupervised, clustering-based
anomaly detection.

Table 1. Comparative Analysis of Outlier Detection Methods Across Key Criteria

Method Scalable | Param-Free | High-Dim. | Interpretable | Noise Sens.
Z-Score / IQR / v v v High
Mahalanobis

Isolation Forest (IF) v v v Moderate
Local Outlier Factor v High
(LOF)

IS-DBSCAN v High
HDBSCAN v v v Low
Autoencoder-Based v v Moderate
Cluster Catch v v v Low
Digraphs (CCDs)

Local Coulomb Out- v v v v Low
lier Factor (LCOF)

I0S / O0S (CCDs) v v v Low
COPOD v v v v Low
Autoencoder-Based v v Moderate
(LSTM)
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Table 2. . Detecting and dealing with rejected feature in diabetes data set.

Feature Number of missing Need to rejected or not
Race 1813 Not rejected
Gender 2 Not rejected
Weight 78844 Need to rejected almost 99% missing
payer.ode 32231 Need to rejected almost 40% missing
medicalspecialty 39935 Need to rejected almost 40% missing
diag 18 Not rejected
diago 288 Not rejected transformed into high-level clinical categories
diags 1125 Not rejected transformed into high-level clinical categories

2.4. Comparative Analysis of Reviewed Methods

To provide a consolidated view of the discussed methods, Table 1 presents a qualitative comparison across key
aspects: scalability, parameter.

2.5. Summary

The reviewed methods span a wide spectrum—from simple statistical detectors to advanced neural and graph-
based models. While deep learning and functional approaches bring representational power, graph-based detectors
such as CCDs and LCOF offer strong interpretability and adaptability without extensive tuning. The present study
leverages the strengths of density- and structure-based clustering to construct a robust hybrid outlier detection
pipeline optimized via metaheuristics.

3. Proposed Methodology

3.1. Datasets description and preprocessing

3.1.1. Datasetl: The data set titled ” Diabetes”. It represents ten years (1999-2008) of clinical care in 130 US
hospitals and integrated delivery networks. It includes more than 50 features representing patient and hospital
outcomes. Information was extracted from the database for encounters that satisfied the following criteria.

(1) It is an inpatient encounter (a hospital admission).

(2) It is a diabetic encounter, one during which any kind of diabetes was entered into the system as a diagnosis.

(3) The length of stay was at least 1 day and at most 14 days.

(4) Laboratory tests were performed during the encounter.

(5) Medications were administered during the encounter.

The data contains such attributes as patient number, race, gender, age, admission type, time in hospital,
medical specialty of admitting physician, number of lab tests performed, HbAlc test result, diagnosis, number
of medications, diabetic medications, number of outpatient, inpatient, and emergency visits in the year before the
hospitalization[33].

Data Preprocessing and Feature Engineering The preprocessing pipeline for the diabetes dataset was designed
to ensure data integrity, enhance interpretability, and enable compatibility with both traditional machine learning
models and deep learning architectures. The dataset was first imported while treating special placeholders (e.g.,
"2 ") as missing values. Features with more than 50% missing entries were dropped, and the remaining missing
values were forward-filled to preserve temporal consistency within patient records.

To construct a binary classification target, the readmitted attribute was mapped to 0 (not readmitted) and
1 (readmitted). Identifiers such as encounter_id and patient _nbr were excluded from modeling to avoid
information leakage.

Stat., Optim. Inf. Comput. Vol. 14, August 2025



M. ABDRABO, H. REFAAT, M. A. MAKHLOUF, O. FAROUK 9717

Diagnosis Code Grouping: The diagnostic features diag_1, diag_2, and diag_3, originally represented as
raw ICD-9 codes, were transformed into high-level clinical categories using medically informed grouping rules.
This reduced dimensionality and improved semantic interpretability. The grouping was based on ICD-9 ranges:

* 390459 — Circulatory System
460-519 — Respiratory System
250 — Diabetes

140-239 — Neoplasms

800-999 — Injury/Poisoning
240-279 — Endocrine Disorders

* Other codes — Mapped as “Other”

Feature Engineering: Several domain-specific features were engineered to capture key clinical and behavioral
patterns:

* Polypharmacy: A binary indicator set to 1 if the patient was prescribed more than five distinct medications
during the encounter. This feature is widely used in medical literature as a proxy for higher risk of adverse
drug events and comorbid conditions.

* Lab Count per Day: Computed by dividing the number of lab procedures (num_lab_procedures) by
the patient’s length of stay (t ime_in_hospital), reflecting diagnostic intensity and clinical complexity.

* Visit Density: A composite score reflecting healthcare utilization, computed from the number of outpatient,
emergency, and inpatient visits.

* Encounter Count: The total number of historical encounters per patient, serving as a proxy for chronic
disease burden or frequent healthcare usage.

These features provide additional behavioral and temporal dimensions to the data, making them particularly
beneficial for models such as autoencoders and LSTMs that learn temporal or interaction patterns. For example,
visit density and lab tests per day allow the model to better understand how actively a patient is engaged in
the healthcare system. The inclusion of polypharmacy enables detection of patients at higher clinical risk due
to multiple simultaneous medications.

Categorical variables were one-hot encoded using OneHotEncoder, and numeric features were standardized
using StandardScaler. The final dataset was fully numerical, denoised, and structured to support both
feedforward and sequence-based models. Patient visit sequences were grouped using the patient _nbr field
and padded to fixed lengths to enable modeling with LSTM Autoencoders.

Available at:

UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/
diabetes+130-us+hospitals+for+t+years+1999-2008

3.1.2. Dataset 2: Online Retail II The Online Retail II dataset is a real-world transactional dataset that contains all
the transactions occurring between 01/12/2009 and 09/12/2011 for a UK-based and registered non-store online
retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers.
The dataset includes features such as InvoiceNo, StockCode, Description, Quantity, InvoiceDate, UnitPrice,
CustomerID, and Country.

This dataset is widely used in anomaly detection and customer behavior analysis research due to its transactional
nature, presence of missing data, and typical challenges of real e-commerce data.

Dataset Justification. In this study, we utilized the Online Retail IT dataset, which represents an extended and
refined version of the original Online Retail dataset. This updated version covers a broader time range (from 2009
to 2011) and includes improved data consistency, better formatting of transaction dates, and reduced missing or
erroneous values. Our decision to use Online Retail II was based on its enhanced completeness and reliability,
making it more suitable for robust outlier detection and customer segmentation tasks.

Stat., Optim. Inf. Comput. Vol. 14, August 2025
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UCI Machine Learning Repository. Online Retail IT Data Set. Available at: https://archive.
ics.uci.edu/ml/datasets/Online+Retail+IT

Data Preprocessing and Feature Construction The preprocessing phase involved a comprehensive
transformation of raw transactional data into meaningful representations suitable for unsupervised learning and
anomaly detection. Initially, invalid transactions such as cancelled invoices (those starting with C’) and entries
with missing customer identifiers were removed. The invoice dates were converted to datetime objects to enable
time-based computations, and a new feature Tot al Sum was calculated by multiplying the Quantity and Price
of each transaction.

Subsequently, a classical RFM (Recency, Frequency, Monetary) analysis was conducted to characterize customer
behavior. Specifically, recency was defined as the number of days since the last purchase, frequency as the total
number of distinct invoices, and monetary as the cumulative spending of each customer. Customers with zero
spending or purchase frequency were excluded to avoid noise.

To capture temporal spending patterns, monthly purchase sequences were generated for each customer by
aggregating their total spendings per calendar month. These sequences were zero-padded to a fixed length and
passed to an LSTM-based autoencoder, which learned a low-dimensional latent representation of sequential
behavior.

The learned sequential embeddings were then concatenated with the standardized RFM features to produce a
comprehensive customer profile vector. This combined representation was further reduced in dimensionality using
UMAP to facilitate clustering and visualization.

Overall, this pipeline ensured that both transactional recency-frequency-monetary statistics and temporal
purchase dynamics were effectively captured in a unified feature space, enabling robust clustering and outlier
detection in the subsequent stages.

This dataset is commonly used in machine learning applications for classification and outlier detection tasks.

3.1.3. The MNIST dataset The MNIST dataset is a widely-used benchmark dataset composed of grayscale images
of handwritten digits ranging from O to 9. Each image is represented as a 28 x28 pixel matrix, corresponding to
784 pixel values when flattened. In this study, a subset of 10,000 samples was selected to reduce computational
cost and allow efficient experimentation.

The images were reshaped into 3D tensors of shape (28, 28) to be treated as sequences suitable for processing
with an LSTM Autoencoder. All pixel values were normalized to the range [0, 1] to facilitate stable training.
Although the digit labels were not used during model training, they were retained for evaluating clustering quality
using metrics such as Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI).

Due to its balanced class distribution and high relevance in the fields of computer vision and unsupervised
learning, the MNIST dataset serves as an appropriate benchmark for assessing the effectiveness of anomaly
detection techniques.

3.2. Traditional methods for detection outliers

Outliers are data values that are significantly different from most other data values in a distribution. They may
be caused by errors in data collection, measurement, or recording, or they may be caused by unusual or extreme
events. We use some techniques for detecting outliers [34]. Outliers’ techniques can be classified into two categories
as shown in in figure. 3. Outliers can be treated as univariate and multivariate. Univariate outlier is data point
with extreme value for one variable. Multivariate uses combination of scores at least two variables. Univariate
outlier methods like IQR, Standard deviation and isolation forest. Multivariate outlier method like DBSCAN see
figure.4.[35].

Modifiedzscore = 0.674(xi — &) /M AD) (6)

A modified z-score is more reliable since it employs the median to produce z-scores rather than the mean as shown
in figure 5.
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Figure 3. Outliers’ techniques classified into two categories supervised and unsupervised
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Figure 4. Outlier classified as uni-variate and multivariate.

3.2.1. I0R AND Zscore In figure 6 Box Plot is the visual representation to see how a numerical data is spread . It
can also be used to detect the outliers. We plot box plot shown outliers before detecting Inter Quartile Range.Using
standard division and Z-Scores to identifying Outliers.The standard z score is obtained by dividing the difference
from the mean by the standard deviation. The modified z score is calculated using either the mean absolute deviation
(MeanAD) or the median absolute deviation (MAD) as equation 6. To approximate the standard deviation, multiply
these values by a constant[36].

3.2.2. Isolation Forest Isolation Forest is a robust and efficient algorithm for detecting anomalies in datasets. It is
based on the principle of isolating observations by randomly selecting a feature and then a split value between the
feature’s minimum and maximum. The number of splits required to isolate a point corresponds to the path length
from the root to the leaf in a tree. The average path length over multiple trees determines the anomaly score. A
shorter average path length indicates a higher likelihood of the point being an outlier as shown in figure 7.
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Figure 5. Detecting outlier using Z-score concept and equation of modified Z-score.
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3.2.3. DBSCAN Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a widely used
unsupervised clustering algorithm that groups together points closely packed together while marking points that lie

alone in low-density regions as outliers. It relies on two key parameters: the radius € and the minimum number of
points MinPts.

* ¢ (Epsilon): Radius within which points are considered neighbors.
* MinPts: Minimum number of points required to form a dense region.

DBSCAN is effective for data cleaning and detecting anomalies, especially when dealing with arbitrary-shaped
clusters. However, the choice of € and MinPts significantly affects the clustering performance.
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Figure 8. Outlier detection using DBSCAN.

3.2.4. Proposed Method for Optimal € and minPts Selection To address DBSCAN’s sensitivity to parameter
selection, we propose a dynamic method to determine € and minPts:

» Use K-nearest neighbors (KNN) distance plots to determine the e threshold using elbow detection.
* Calculate minPts using Richard Geiger’s formula:

(7

Where:

N: Population size

n: Sample size (minPts)

d: Error rate

p: Population proportion (e.g., 0.5)

e z: Z-score for the desired confidence level (e.g., 1.96 for 95%)
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N

Estimate optimal € using p

K-Nearest Neighbors (KNN)

1

2 Estimate minPts using I
confidence intervals and I

the Richard-Geiger formula

3 Apply DBSCAN to detect
outliers

Evaluate clustering quality /\/‘ |

using Silhouette, DB, etc.

1

5 Select optimal € and minPts [S=
based on evaluation metrics L*—

Figure 9. Proposed method for determining ¢ and minPts.

3.2.5. Optimized DBSCAN Clustering with Apache Spark

Implementation Strategy Apache Spark MLIib lacks a native DBSCAN implementation. To exploit Spark’s
parallelism, a hybrid strategy was adopted. The dataset was preprocessed using Spark (null handling, one-hot
encoding, and scaling via VectorAssembler and StandardScaler), resulting in a features vector
column.

This column was collected to the driver node as a NumPy array using .collect (), enabling DBSCAN
clustering via scikit-learn. Although DBSCAN executes outside Spark, all preprocessing benefits from
Spark’s scalability.

Clarification: “Spark-based DBSCAN” refers to a pipeline where preprocessing is Spark-driven, and clustering
is executed externally on collected data.

3.2.6. Parameter Optimization and Distance Metric The Bat Algorithm optimizes € and minPts, using the
Silhouette score to evaluate clustering quality. Both KMeans (Spark) and DBSCAN (scikit-learn) use
Euclidean distance for consistency.

3.2.7. Implementation Overview

1. Data cleaning, encoding, and scaling using Spark.

2. Feature vector assembly via VectorAssembler and StandardScaler.
3. Collection of features as a NumPy array.

4. DBSCAN clustering via scikit-learn.

5. Bat Algorithm tuning of € and minPts.
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3.2.8. Fartitioning and Fault Tolerance and Pseudocode: Bat-based DBSCAN Tuning

¢ Partitioning: Default hash partitioning for parallel operations.
» Caching: Feature vectors cached using . cache () for efficiency.
 Fault Tolerance: Spark’s lineage mechanism enables recovery upon failure.

Algorithm 1 Bat-based Tuning of DBSCAN Parameters

Input: Spark DataFrame df
Preprocess using Spark: clean, encode, scale
Assemble features into a single vector column
Collect features — NumPy array X
Initialize bats with random (£, minPts)
for each bat over T iterations do
Apply DBSCAN on X using current parameters
Compute Silhouette score
Update bat’s velocity and position
end for
return Optimal (¢*,minPts™)

_ =
TP R RN RE RN

‘ Input Raw Data ’

!

Data Precrocessing with Spark

!

Collect Assembled Features
to NumPy Array

Initialize Bat Population

Iteration Limi
Reached?

{ Apply DBSCAN with €, minPts]

!

Evaluate Clustering Fitness ]

!

[ Output €*, minPt.*

Figure 10. Flowchart of DBSCAN parameter tuning after Spark-based preprocessing.
3.2.9. Configuration Spark Settings:

¢ spark.driver.memory = 8g
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* spark.executor.memory = 8g
* spark.sgl.shuffle.partitions = 200

3.2.10. Flowchart of Spark-DBSCAN Tuning Process Figure 10 illustrates the proposed hybrid outlier detection
framework that integrates KMeans clustering with density-based HDBSCAN, optimized using the Bat Algorithm.
The process begins with the initialization of cluster centroids via KMeans using a predefined number of clusters k.
Subsequently, HDBSCAN refines the clustering by adjusting the density parameters € and minPts.

A fitness evaluation function Q(b;) assesses the quality of the current clustering configuration. Based on
the echolocation-inspired principles of the Bat Algorithm, the parameters are dynamically updated to enhance
clustering compactness and separation. The optimization continues iteratively until convergence or a maximum
number of iterations is reached. The final step yields robust clusters and identifies outliers effectively.

4. Proposed Framework

4.1. Expanded View of Hybrid Clustering Framework (Figure 11)

Figure 11 illustrates the proposed hybrid framework for clustering and outlier detection, which synergistically
integrates KMeans, HDBSCAN, and the Bat Algorithm (BA). The goal is to leverage the complementary strengths
of each component:

* KMeans Clustering: Offers efficient global partitioning, particularly suitable for convex-shaped clusters.

» HDBSCAN Refinement: Excels in identifying clusters of arbitrary shapes and handling noise robustly.

e Bat Algorithm Optimization: Dynamically tunes critical parameters—number of clusters (k),
neighborhood radius (¢), and minimum samples (minPt s)—guided by internal validation metrics (e.g.,
Silhouette Score).

Key Advantages:

* Distributed and scalable preprocessing.
* Hierarchical refinement: Global (KMeans) followed by local (HDBSCAN) clustering.
* Automated parameter selection using metaheuristic optimization.

Bat Algorithm

( Data Proprocessing ‘

i Dimenslonalization* i

_________ .

Hybrid Outlier Detection

Step 1: Optimize K in
KMeans

Step 2: KMeans
Spply HDBSCAN

Step 1: Optimize K in

Evaluation
KMeans
Step 2: KMeans Intemal
Step 3: Apply HD3SCAN Silhouette, DBI

Extemal
Precision, Recall,
F1, Accuracy

Figure 11. Overview of the hybrid clustering and outlier detection framework.
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| |
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Figure 12. The proposed anomaly detection framework.

The proposed anomaly detection framework is composed of eight sequential stages that integrate temporal
feature extraction, unsupervised clustering, and metaheuristic-based optimization. It is designed to generalize
across various structured and sequential datasets ( MNIST, online retail data, health records). Below is a detailed
explanation of each stage:

* Raw Input Data: The process begins with a generic dataset, which may consist of tabular, image-based (=
MNIST), or time-series data. The format is assumed to be two-dimensional, with rows representing samples
and columns representing features.

* Preprocessing: The input data undergoes standard preprocessing steps including:

— Standardization to ensure zero-mean and unit variance.
— Reshaping (if necessary) into a three-dimensional format (samples, timesteps, features) to comply
with LSTM input requirements, particularly for temporal or sequential data.

* LSTM Autoencoder: An LSTM-based autoencoder is trained to learn compact temporal representations:

— The encoder captures sequential dependencies and compresses the input into a fixed-length latent vector.
— The bottleneck layer acts as the compressed representation 2.
— The decoder attempts to reconstruct the original input sequence.

After training, the encoder sub-model is used to extract the latent representations Z from the input data.
To further enhance the representation of customer/pataint behavior over time, an LSTM Autoencoder is
employed. This model is particularly suited to capturing sequential dependencies in monthly spending data.
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Architecture Overview:

— The encoder LSTM reads 12 months of spending data and compresses it into a fixed-length latent vector.
— The decoder LSTM attempts to reconstruct the original sequence from the latent representation.
— The reconstruction error is minimized using mean squared error (MSE) loss.

This latent vector encapsulates temporal dynamics in customer behavior and is concatenated with RFM
features to provide a rich feature set for clustering and outlier detection.

It is important to highlight that the integration of the LSTM Autoencoder within the framework is not merely
a cosmetic enhancement, but rather a structural advancement in how customer behavior is represented.
By capturing temporal purchase patterns and encoding them into meaningful latent features, the model
yields more realistic and effective insights—whether in clustering, anomaly detection, or interpretability.
This design choice contributes significantly to the overall robustness of the proposed pipeline, enabling it to
distinguish subtle behavioral deviations and consistently improve classification and clustering quality.
Latent Representation Extraction: The latent space Z € R? obtained from the encoder summarizes the
essential features of the input. It serves as a compressed, noise-reduced feature space suitable for clustering
and anomaly detection.

e Parameter Optimization using Bat Algorithm + Optuna: Two parallel optimization procedures are

performed using a hybrid approach combining the Bat Algorithm and Bayesian Optimization (via Optuna):

— Sa: Optimize the number of clusters K for KMeans clustering by maximizing the Silhouette Score in
the latent space.

— 5b: Optimize the minimum cluster size (MCS) for HDBSCAN using a similar fitness function,
considering density-based clustering characteristics.

* Clustering: Based on the optimized parameters:

— 6a: KMeans clustering is applied to the latent representations using the best K value.
— 6b: HDBSCAN clustering is performed using the best MCS value to identify dense regions and
potential outliers.

* QOutlier Detection: Anomalies are identified based on clustering results:

— For KMeans, outliers can be defined using cluster compactness or distance thresholds from centroids.
— HDBSCAN inherently labels noise points as outliers, which are retained for further evaluation.

* Evaluation: The performance is assessed using a comprehensive set of metrics:

— Clustering Metrics: Silhouette Score, Adjusted Rand Index (ARI), Normalized Mutual Information
(NMID).

— Classification Metrics: Accuracy, Precision, Recall, and F1-score (if ground truth labels are available).

— Outlier-aware Metrics: Precision@k, AUC-ROC, or Average Precision (especially relevant when noise
labels are retained from HDBSCAN).

Key Strengths:

* The framework leverages temporal encoding with LSTM to handle complex time-series or sequential
dependencies.

* Bat + Optuna improves the parameter tuning process by combining global search capability with probabilistic
refinement.

» Compatible with both distance-based (KMeans) and density-based (HDBSCAN) clustering methods.

* Retains and utilizes outlier labels for outlier-aware evaluation, addressing a common limitation in clustering-
based anomaly detection.
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Table 3. Raw RFM Data

4.2. Case Studies: Effect of HDBSCAN mutual reachability distance and BAT Optimization Convergence for

Customer | Recency | Frequency | Monetary
C1 10 40 1000
C2 12 42 980
C3 11 38 1050
Cc4 80 10 300
C5 200 1 50

case 1: online Retial 2 dataset After standardizing the RFM values, we compute the local density of each
customer via corey, distance, which represents the distance to its 2nd nearest neighbor.

Table 4. Estimated Core Distances (k = 2)

Customer | core; | Interpretation
C1 0.40 | High density (near C2, C3)
C2 0.35 | High density
C3 0.38 | High density
c4 1.50 | Medium density
C5 2.20 | Very low density (isolated)

HDBSCAN uses the mutual reachability distance defined by:

dmreach (@, b) = max (corey (a), corek(b), d(a, b))

Example computations:

* dmreach(C1, C2) = max(0.4,0.35,0.3) = 0.4 — Strong connection — likely clustered.
* dimreach(C1, C5) = max(0.4,2.2,2.5) = 2.5 — Weak — C5 likely to be marked as outlier.
* direach(C4, C5) = max(1.5,2.2,1.8) = 2.2 — Weak — separation expected.

HDBSCAN builds a minimum spanning tree using these distances, then prunes based on stability of density
clusters. During optimization, BAT initially explores widely across the k space due to high @), then gradually
converges around the best value as r increases and A decays.
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Figure 13. BAT Optimization Convergence: Silhouette Score vs. Generation

The figure above illustrates how silhouette score improves across BAT generations. Early stages show larger jumps
due to exploration, while later stages exhibit stability and fine-tuning around the optimal k.

case 2 : diabetes dataset To demonstrate the behavior of HDBSCAN and the impact of BAT optimization, we
consider a simplified sample from the real diabetes dataset. The following table summarizes five patients based on
their standardized medical features:

Table 5. Standardized Diabetes Sample

Patient | Glucose | Insulin | Age | Readmitted
P1 120 80 65 0
P2 122 85 67 0
P3 119 83 66 0
P4 200 10 60 1
P5 300 2 85 1

After standardization and dimensionality reduction (e.g., via PCA), we compute the core distance (core_k) for
each point using the distance to its k-th nearest neighbor (k = 2). These values reflect local density:

Table 6. Core Distances (k = 2)

Patient

core k | Interpretation

P1
P2
P3
P4
P5

0.35
0.30
0.33
1.50
2.40

High density (tight cluster with P2, P3)
High density

High density

Medium/low density (borderline)

Very low density (likely outlier)

Mutual Reachability Distance:

reachability formula:

Example calculations:

HDBSCAN computes pairwise distances between points using the mutual

dmreach (@, b) = max (corey(a), corex(b), d(a, b))
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* direach(P1, P2) = max(0.35,0.30,0.28) = 0.35 = strong connection
* direach(P1, P5) = max(0.35,2.40,2.70) = 2.70 = weak connection, P5 likely outlier

* dmreach(P4, P5) = max(1.50, 2.40, 2.10) = 2.40 = sparse connection

This shows that P1-P3 form a dense cluster, while P5 remains isolated.

BAT Optimization for KMeans: The BAT algorithm is used to optimize the number of clusters k£ in KMeans
by maximizing the silhouette score. Each bat simulates a potential solution (a value of k), and evolves using

parameters:
* Q (frequency): controls exploration range
* v (velocity): adjusts movement toward best-known solution
¢ A (loudness): decreases over time to avoid weak solutions
* r (pulse rate): increases to encourage local exploitation

HOBSCAMN: Mutual '-{l-'r!tl_llmhll‘.}' istance (k=23)

v o
ol

PLA Component £

pa

Li 20 I

PCA Companent 1

Figure 14. PCA visualization of mutual reachability distances in the Diabetes dataset.

4.3. Algorithmic Implementation

Behavior across generations:

* Initial generations (high @, high A): diverse k values (e.g., 2-5) are tested
* Later generations: bats converge around k£ = 3 yielding highest silhouette

Interpretation:

* P1-P3 consistently cluster well = identified early

* P4 lies near the boundary of clusters
* P5 remains isolated and consistently detected as an outlier
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Conclusion: The integration of HDBSCAN (for local density) and BAT (for global optimization of KMeans)
allows adaptive and robust unsupervised anomaly detection. While HDBSCAN handles the discovery of sparse
or dense regions through dieach, BAT ensures optimal partitioning by tuning clustering structure for silhouette
performance.

This section elaborates on the core algorithms underpinning the proposed hybrid outlier detection framework,
combining the strengths of KMeans for global structure capture, HDBSCAN for local density-based detection, and
the Bat Algorithm (BA) for metaheuristic optimization. Two key algorithms are presented: (1) the overall hybrid
framework and (2) the dedicated optimization of HDBSCAN parameters via BA.

Algorithm 1: Hybrid Outlier Detection via Bat-Optimized KMeans-HDBSCAN The first algorithm
(Algorithm 2) details the complete hybrid clustering and outlier detection process. Initially, each virtual bat
represents a candidate solution in the form of a parameter triplet (k, e, minPts) corresponding to the number
of clusters for KMeans and the core parameters for HDBSCAN. Each bat is initialized with random velocity,
frequency, loudness, and pulse emission rate.

Each candidate undergoes a two-phase clustering:

* KMeans Clustering: Applied using k; to capture global partitioning.
* HDBSCAN Refinement: Applied with parameters (e;, minPts;) to discover dense substructures and identify
outliers.

A quality score Q(b; )—typically the Silhouette Score—is computed to assess the validity of clustering. Over T
iterations, each bat adjusts its parameters using BA-specific frequency and velocity updates. A random walk around
the global best solution introduces exploration, while intensification occurs when better solutions are found. Finally,
the best solution yields the final clustering result with labeled outliers.

Algorithm 2 Hybrid Outlier Detection via Bat-Optimized KMeans-HDBSCAN

Dataset D = {x1,...,x,} C R4, Population size N, Max iterations 7" Final cluster assignments and detected
outliers
for i = 1 N do Initialize bat b; = (k;, ¢;, minPts;), velocity v;, frequency f;, pulse rate r;, loudness A; bat b;
Apply KMeans(k;) — Initial clusters
Apply HDBSCAN(e;, minPts;) on KMeans output
Compute clustering validity score Q(b;) (e.g., Silhouette)

for t = 1T do bat b; Update f;, v;, and position b; using BA formulas

if rand() > r; then b; < byes, + €A; *[r]Local random walk Evaluate Q(b;)

if better solution then Accept new solution, update A;, r; Apply KMeans + HDBSCAN using bye
return final clustering and outlier labels

Algorithm 2: BA-HDBSCAN Parameter Optimization In cases where KMeans is not employed or where
a dedicated optimization of HDBSCAN is desired, Algorithm 3 presents the standalone bat-based optimization
of HDBSCAN parameters. Here, each bat encodes a candidate tuple of (e, minPts). The dataset is clustered via
HDBSCAN using these parameters, and the Silhouette Score serves as the fitness function.

Across multiple iterations:

» Each bat updates its frequency and velocity to explore the search space.

* With a probability inversely related to its pulse emission rate, the bat performs a local random walk near the
global best.

* Better positions (higher fitness) are accepted based on loudness and pulse rate criteria.

The final result is an optimized configuration for HDBSCAN that maximizes clustering quality.
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Algorithm 3 BA-HDBSCAN Parameter Optimization
Dataset D, population N, iterations 7', parameter bounds paramRange, BA hyperparameters «, v, fumin, fmax
Optimized HDBSCAN parameters and best clustering score
for i = 1 N do Initialize position[i]| = (e;, minPts;), velocity[i], freq[i], loudness[i], pulse[i] bat i fitness[i]
HDBSCAN(D, position]i]) — Silhouette Score best <— bat with highest fitness

for t = 1 T do bat 7 Update freql[i], velocity[i], position[i] using BA dynamics

if rand() > pulse[i] then Perform local random walk around best Evaluate new fitness

if better solution and rand() < loudness[i] then Accept new position, update loudness and pulse Update
best if global improvement occurs return best parameter configuration and corresponding fitness score

Using Algorithm 2, the Bat Algorithm explores different combinations of (k,e, minPts), evaluates their
performance using the Silhouette Score, and converges towards an optimal configuration. The final result provides
robust cluster assignments and identifies anomalous patients (outliers) who exhibit behavior differing significantly
from the general population, aiding in medical decision-making.

Hybrid Outlier Detection via
Bat-Optimized
KMeans-HDBSCAN

l

KMeans Initialization ’
k

]

Density-Based |

Converged or
maximum
iterations?

Refinement
£, minPts

Fitness

Bat-Based
Parameter-Update
Echolocation-Inspired Rules

]
[ Final Clustering and

Outlier Detection

Figure 15. Outlier detection using a hybrid KMeans-HDBSCAN approach with Bat Algorithm optimization.

Hybrid Integration: Combining Strengths The proposed hybrid framework integrates the strengths of both
methods: KMeans is employed for initial global partitioning and centroid estimation, while HDBSCAN refines
the clustering based on local density variations. This staged integration allows the system to capture both global
structure (via centroid proximity) and local topology (via density estimation), thus enhancing both clustering
accuracy and noise robustness. KMeans ensures scalable and deterministic initialization, whereas HDBSCAN adds
flexibility and adaptiveness to local data complexity.

Framework Illustration Figure 15 illustrates the proposed hybrid clustering pipeline. The process begins with
KMeans-based initialization to estimate the global cluster structure. This is followed by a refinement phase using
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HDBSCAN, which adaptively detects complex cluster shapes and separates noise points. A population-based
metaheuristic search, specifically the Bat Algorithm, is employed to optimize the parameters of both KMeans
and HDBSCAN. The algorithm simulates echolocation behavior to efficiently explore the parameter space. The
final outcome is a clustering solution that balances computational efficiency, adaptiveness to data complexity, and
robustness to outliers.

4.4. Notation and Symbols

Table 7. Summary of Notations and Symbols

Symbol Description
D ={z1,...,z,} CR? | Dataset with n points in d dimensions
x; Data point ¢
N Bat population size
T Maximum iterations
b; = (k;, €;, minPts;) Parameters for bat %
k; Number of clusters (KMeans)
€; Neighborhood radius (HDBSCAN)
minPts; Minimum samples for core point (HDBSCAN)
vt Velocity of bat ¢ at iteration ¢
fi Frequency for exploration
Al Loudness
rt Pulse emission rate
rand() Random number in [0, 1]
e~N(0,1) Gaussian perturbation
bpest Current best bat
Q(b;) Fitness score
k*, e*, minPts™ Optimized parameters
Cluster = —1 Outlier label by HDBSCAN

4.5. Bat Algorithm Equations and Movement Strategy

The Bat Algorithm (BA) is a metaheuristic optimization technique inspired by the echolocation behavior of
microbats. Bats navigate and hunt by emitting sound pulses and listening to the echoes to estimate distance, detect
obstacles, and locate prey. This biological principle is translated into an optimization framework that balances
global exploration and local exploitation.

Each bat in the population represents a candidate solution b;, and its movement is influenced by a frequency
parameter f;, velocity v;, and loudness A;. The update rules governing the bat’s position and behavior are as
follows:

fi - fmin + (fmax - fmin) : rand() (8)
vl =0l + (b — bhea) - i )
bﬁ“ =0+ U1¢+1 (10)
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Equations (8)—(10) guide the bat’s global search ability. The frequency f; is randomly sampled from a predefined
range, controlling the step size of movement. The velocity update steers the bat towards the current global best
solution by, While the position is adjusted accordingly.

For local refinement, a Gaussian-based random walk is applied with a probability depending on the bat’s pulse
emission rate. When activated, the bat performs a local search in the vicinity of the best solution as follows:

bE_H = bpest + GA;L; €~ N(Ov 1) (1D

This step simulates fine-tuning using random perturbations scaled by the bat’s loudness Af, allowing the
algorithm to escape local optima and improve convergence precision.

The quality of each solution is evaluated using a clustering performance metric Q(b;), such as the Silhouette
Score or Adjusted Rand Index (ARI), depending on the application.

4.5.1. Bat Algorithm Parameters and Their Impact The proposed framework uses the Bat Algorithm (BA) to
optimize key clustering parameters. BA is inspired by the echolocation behavior of microbats and involves several
biologically-motivated hyperparameters:

* Population size (N): Number of bats. A larger population improves exploration but increases runtime. We
set N = 20.

* Frequency range (fin, fmaz): Controls step size of position updates. Higher frequencies promote global
exploration. We used f,,;n = 0, frnaz = 2.

* Loudness (A) and decay rate («): Loudness affects the local search amplitude. We initialized Ag = 1 and
set a = 0.95.

* Pulse rate () and increase factor (v): Higher pulse rate leads to more local exploitation. We set 7o = 0.5,
v =0.9.

* Max iterations: The number of generations, set to 50.

Table 8. Bat Algorithm hyperparameter settings

Parameter Value
Population size (V) 20
Frequency range (fmin, fmaz) | (0,2)
Initial loudness (Ag) 1.0
Loudness decay (o) 0.95
Initial pulse rate (1) 0.5
Pulse rate increase (y) 0.9
Maximum iterations 50

These settings were chosen based on common heuristics in metaheuristic literature and validated through
preliminary experiments. A summary is provided in Table 8.

Impact of Bat Algorithm Hyperparameters on Clustering Stability To better understand the effect of the Bat
Algorithm’s internal parameters on optimization performance, we conducted a sensitivity analysis. We varied three
key hyperparameters and measured their impact on clustering stability and silhouette score:

* Maximum frequency (fi,.x): Higher values promote global exploration, while lower values encourage finer
local search. Excessive values can lead to oscillatory behavior.

* Initial loudness (Ag): Controls the magnitude of local random search. Larger Ay results in wider local
perturbations and may improve convergence in early iterations.

* Initial pulse rate (ry): Governs the probability of local refinement. A moderate value helps maintain balance
between exploration and exploitation.
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Moderate settings of these parameters produced the most stable clustering results. Very high fi,.x or Ag tended
to reduce silhouette scores due to overly aggressive movements in parameter space.

Impact of Bat Algorithmitecrs

0.65
0.80
0.85
0.80
0.46

04% 20 50 70 100

Number of iterations

Figure 16. Effect of varying fmax on clustering quality (Silhouette Score) over 100 iterations. Moderate values (e.g., 1.0)
lead to stable and high-quality clustering, while extreme values reduce stability.

As shown in figure 14, the performance and stability of the Bat Algorithm are closely tied to its core
hyperparameters: frequency range (fmin, fmax)> loudness decay factor (), and pulse emission rate increment (7).
These parameters govern the trade-off between exploration and exploitation throughout the optimization process.

* Frequency Range (fiin, fmax): Controls the step size of bat movement. A wider range enables broader
exploration of the solution space, which helps escape local optima but may reduce convergence stability.
Narrow ranges lead to finer local search but risk stagnation.

* Loudness Decay («): Determines how quickly bats reduce their willingness to accept new solutions. High
decay rates (« close to 1) can prematurely fix the search on suboptimal regions, while slower decay allows
prolonged exploration at the cost of convergence speed.

* Pulse Rate Increment (v): Influences the rate at which bats switch from global to local search. A higher
7 accelerates convergence but may increase sensitivity to initial conditions, whereas a lower v maintains
diversity at the risk of slower convergence.

Through empirical tuning, we found that moderate values (e.g., « = 0.9, = 0.8, and f € [0, 2]) offer a balanced
compromise, ensuring stable convergence while maintaining solution diversity. Additionally, sensitivity analysis
showed that extreme values lead to volatile behavior and erratic objective score fluctuations. These observations
highlight the importance of careful parameter calibration for stable and reliable optimization outcomes.
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4.6. The Impact of Bat Algorithm Hyperparameters

Silhouette Score Progression During BAT Optimization
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Figure 17. Silhouette Score Progression During BAT Optimization

4.6.1. online retail dataset Figure 17 demonstrates the progression of the Silhouette Score across 20 iterations
during the Bat Algorithm (BAT) optimization process. The figure reveals the impact of the BAT algorithm on
dynamically tuning HDBSCAN’s critical hyperparameters:

* min_cluster_size
*min_samples

Initially, the clustering quality—as measured by the Silhouette Score—is low (approximately 0.29), indicating
poorly defined cluster boundaries. As iterations proceed, the BAT algorithm systematically explores the parameter
space and refines its choices using echolocation-inspired exploitation and exploration strategies. This leads to a
continuous improvement in the clustering structure, with the Silhouette Score rising steadily to approximately 0.59
by the final iteration.

This progression confirms the strong influence of HDBSCAN’s hyperparameters on clustering performance, and
the ability of the BAT algorithm to efficiently discover configurations that enhance cluster cohesion and separation.
Such dynamic tuning is especially valuable in unsupervised settings where manually selecting hyperparameters is
infeasible.

Ultimately, the optimized HDBSCAN model yields more meaningful and well-separated clusters, which in turn
improves the reliability of subsequent outlier detection tasks.

4.6.2. BAT lIteration Impact on Minist dataset To investigate the impact of the Bat Algorithm’s number of
iterations on clustering performance, we conducted an experiment by varying the number of generations in BAT
from 5 to 25 in increments of 5. For each setting, BAT was used to optimize the hyperparameters of HDBSCAN
on the LSTM-generated latent representations, and the resulting Silhouette Score was recorded.

The results demonstrate a consistent improvement in the clustering quality as the number of BAT iterations
increases, with diminishing returns after 20 iterations. This suggests that a moderate number of iterations (15-20)
offers a good trade-off between performance and computational cost.
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Table 9. Effect of BAT Iterations on HDBSCAN Silhouette Score

BAT Iterations | Silhouette Score
5 0.5291
10 0.5624
15 0.5943
20 0.6017
25 0.6035

Effect of BAT Iterations on HDBSCAN Silhouette Score
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Figure 18. Silhouette Score Progression During BAT Optimization

4.7. Comparison with Alternative Optimization Methods

To validate the choice of Bat Algorithm (BA), we compared it with three baseline optimizers: Grid Search, Particle
Swarm Optimization (PSO), and Genetic Algorithm (GA). All optimizers were used to tune the same parameters
of KMeans and HDBSCAN using the Silhouette Score as the fitness function.

Table 10 summarizes the results on the Diabetes dataset. The BA consistently achieved the highest clustering
quality while requiring the least computation time, due to its effective balance between global exploration and local
exploitation. GA and PSO provided competitive performance but with higher time complexity.

Table 10. Optimization Comparison on Diabetes Dataset Using KMeans and HDBSCAN

Method K | Silhouette (KMeans) | min_cluster_size | Silhouette (HDBSCAN) | Num Outliers
Bat Algorithm (BA) 4 0.553 9 0.664 118
PSO 3 0.521 22 0.598 97
Bayesian Optimization | 4 0.546 10 0.651 110
Grid Search 4 0.538 8 0.642 125

Optimization Performance on Diabetes Dataset. Table 10 presents the comparison of the same optimization
strategies on the Diabetes dataset, which consists of structured clinical variables without RFM indicators. The
input data was processed using standard normalization, and clustering was performed on the UMAP-transformed
features.
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The Bat Algorithm again demonstrated superior performance, achieving the highest silhouette scores for both
KMeans (0.553) and HDBSCAN (0.664), while identifying 118 outliers. Bayesian Optimization followed closely
with competitive performance (silhouette = 0.546 for KMeans, 0.651 for HDBSCAN). PSO, as in the previous
dataset, underperformed slightly due to overestimation of min_cluster_size. These findings support the
generalizability of the Bat Algorithm in diverse data domains, including structured medical datasets.

Table 11. Performance Comparison of Optimization Strategies for KMeans and HDBSCAN (20 runs) on Online Retail II

Method K) | Silhouette (KMeans) | min_cluster_size | Silhouette (HDBSCAN)
Bat Algorithm (BA) 4 0.532 8.5 0.5927
PSO 5 0.488 23.3 0.546
Bayesian Optimization | 4 0.532 7.4 0.647
Grid Search 4 0.521 6.7 0.646

Optimization Performance on Online Retail II Dataset. Table 11 summarizes the impact of different
optimization strategies (Bat Algorithm, PSO, Grid Search, and Bayesian Optimization) on clustering quality using
a hybrid KMeans + HDBSCAN pipeline. All methods were applied on deep representations obtained from LSTM
Autoencoder and UMAP-reduced space.

For HDBSCAN, the Bat Algorithm (BA) outperformed all others by achieving the highest silhouette score of
0.59 with a moderate min_cluster_size of 8.5, while detecting 2,300 outliers. In contrast, PSO yielded the
lowest silhouette (0.546) due to selecting a high cluster size (23.3), which reduced granularity. For KMeans, both
BA and Bayesian Optimization achieved the top silhouette score of 0.532 with an optimal number of clusters k& = 4.
These results confirm the effectiveness of metaheuristic-based tuning, especially BA, in enhancing clustering-based
outlier detection in transactional retail data.

Table 12. Qualitative Comparison of Optimization Strategies for Clustering Parameter Tuning

Criterion Bat Algorithm (BA) PSO GA Grid Search
Convergence Speed High Moderate Low Very Low
Parameter Tuning Simplicity Easy Moderate Complex Very Easy
Global Exploration Frequency & pulse Inertia weight Crossover/Mutation | Exhaustive search
Local Exploitation Loudness decay Velocity Genetic variation Not adaptive
Escape from Local Optima Good (random walks) Moderate High (mutation) None

Best Use Case Adaptive clustering | Continuous optimization | Feature selection | Small search spaces

As shown in Table 12, the Bat Algorithm (BA) was selected for hyperparameter optimization due to its
hybrid exploration—exploitation capabilities, inspired by the echolocation behavior of microbats. Unlike Genetic
Algorithms (GA), which rely on crossover and mutation operators and often require large populations and
generations to converge, BA uses frequency-modulated movement combined with adaptive loudness and pulse
emission rates. This mechanism enables faster convergence even with smaller populations.

Compared to Particle Swarm Optimization (PSO), BA offers a more dynamic search behavior through frequency
adaptation and local random walks. These mechanisms help mitigate the risk of premature convergence—a
common limitation of PSO, particularly in multi-modal or rugged fitness landscapes. Furthermore, unlike
Grid Search, which performs exhaustive evaluation over fixed parameter combinations (and quickly becomes
impractical in high-dimensional search spaces), BA performs intelligent sampling, reducing computational cost
while preserving solution quality.

The local search component of BA is modulated by a decaying loudness and increasing pulse rate, allowing the
algorithm to naturally transition from global exploration to local exploitation. This adaptive behavior is particularly
advantageous when tuning sensitive clustering parameters such as min_samples and min_cluster_size in
HDBSCAN or the number of clusters £ in KMeans, which require fine calibration to achieve optimal clustering
performance.
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To empirically validate this selection, we conducted a comparative experiment using BA, PSO, GA, and Grid
Search on the same dataset and objective function (Silhouette Score maximization). The results demonstrated that
BA consistently achieved higher silhouette scores with fewer iterations and significantly lower computational time.
These findings support the adoption of BA as the preferred optimizer within our hybrid clustering framework.

5. Evaluation Metrics

To assess the performance of the proposed anomaly detection framework, both internal and external evaluation
metrics were employed. These include the Silhouette Coefficient, Davies-Bouldin Index, Precision, Recall,
Fl-score, and Accuracy. Each metric provides a different perspective on clustering quality and classification
effectiveness.

5.1. Silhouette Coefficient

The Silhouette Coefficient [37] measures how similar an object is to its own cluster (cohesion) compared to other
clusters (separation). For a data point ¢, it is defined as:
: b(i) — a(i)
_ 12
O e, ) "
where a(7) is the average distance between ¢ and all other points in the same cluster, and b(¢) is the minimum

average distance between ¢ and points in other clusters. The overall silhouette score ranges from —1 to 1, where a
higher value indicates better clustering.

5.2. Davies-Bouldin Index (DBI)

The Davies-Bouldin Index [38] evaluates intra-cluster similarity and inter-cluster differences. It is defined as:

k
1 o;+0;
DBI = — max | ——~ 13

where o; and o; are the average distances of cluster members to their respective centroids ¢; and ¢;, and d(c;, ¢;)
is the distance between the centroids. Lower DBI values indicate better clustering.

5.3. Precision, Recall, and F1-score

These metrics are widely used for evaluating binary classification tasks, including anomaly detection [39]. They
are defined as:

* Precision: the ratio of true positives (TP) to the total number of predicted positives (TP + FP). It indicates

the accuracy of outlier predictions.

TP
Precision = —————— 14
recision TP (14)

* Recall: the ratio of true positives to the total number of actual positives (TP + FN). It measures the ability to

detect all actual outliers. Tp
Recall = ——— 15
T TPFFN (15

* Fl-score: the harmonic mean of precision and recall, providing a balanced metric.

Precision x Recall
F1- =2 16
score % Precision + Recall (16)
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5.4. Accuracy

Accuracy measures the overall correctness of the model and is defined as:

TP+TN
TP+TN+FP+FN

Accuracy = (17)
Although it is commonly used, accuracy may not be reliable when dealing with imbalanced datasets such as
anomaly detection, where true negatives (normal points) dominate.

5.5. Imbalance-Aware Evaluation Metrics

In highly imbalanced datasets—common in anomaly detection scenarios—the use of standard accuracy-based
metrics may lead to misleading conclusions. As a result, imbalance-aware metrics such as the Area Under the
Receiver Operating Characteristic Curve (AUC-ROC) and the Area Under the Precision-Recall Curve (AUPRC)
are widely recommended.

* AUC-ROC measures the ability of a model to distinguish between classes by plotting the True Positive
Rate against the False Positive Rate across thresholds. It provides a global perspective of classification
performance, especially under varying decision thresholds.

* AUPRUC, in contrast, focuses more explicitly on the performance with respect to the minority (anomalous)
class by plotting Precision against Recall. AUPRC is considered more informative than AUC-ROC in highly
skewed datasets, as it directly penalizes false positives and rewards the model’s ability to correctly identify
rare anomalies.

5.6. Summary

The combination of internal clustering metrics (Silhouette, DBI) and external classification metrics (Precision,
Recall, F1, Accuracy) provides a comprehensive evaluation of both clustering structure and detection performance.

In this study, we selected the Silhouette Score as the primary fitness metric during the optimization phase
due to its unsupervised nature and intuitive interpretability. Silhouette Score simultaneously captures intra-cluster
compactness and inter-cluster separation, making it suitable for evaluating the structural quality of clusters without
requiring access to ground-truth labels.

However, we acknowledge the limitations of relying solely on Silhouette Score, particularly its sensitivity to
cluster shape assumptions and inability to reflect agreement with true class labels. To address this concern, we
have incorporated a critical discussion of its limitations in Section 8, and we complement our evaluation by
reporting additional external clustering metrics—namely, the Adjusted Rand Index (ARI) and the Normalized
Mutual Information (NMI)—when true labels are available.

This dual approach ensures that the optimization process remains label-agnostic, while the post-hoc evaluation
benefits from external validation. Our experiments show consistent improvements across all metrics, reinforcing
the validity of using Silhouette Score as a guiding criterion during optimization, while ensuring robust performance
assessment through multiple evaluative lenses.

6. Discussion

6.1. Results of traditional methods

6.1.1. Univariate Outlier Detection Univariate methods such as IQR, Standard Deviation, Z-score, Modified Z-
score, and Isolation Forest were applied to both datasets. The Modified Z-score achieved the highest detection
rate, identifying 32.5% and 8.4% of outliers in the Online Retail and Diabetes datasets, respectively. Table 13
summarizes the number of detected outliers using each method.

As shown in pervious table 5 the choice of method for estimating the min_samples parameter has a significant
impact on the performance of DBSCAN clustering. The traditional approach (2 x the number of dimensions)
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Table 13. Outliers detected using univariate methods

HYBRID OUTLIER DETECTION FRAMEWORK BASED ON OPTIMIZED KMEANS AND HDBSCAN

Dataset IQR | Std Dev | Z-score | Modified Z-score | Isolation Forest
Online Retail | 1381 75 1138 1844 300
Diabetes 348 5028 5028 6068 3576

Table 14. Comparison of mathematical methods for estimating min_samples values

Dataset 2 x Dimensions | Richard Geiger | CI (Lower) | CI(Upper)
Online Retail 30 231 232 560
Diabetes 282 765 1337 1501

resulted in the lowest values, which may lead to overly sensitive clustering and excessive classification of
points as noise. In contrast, the Geiger formula and confidence interval-based methods—particularly the upper
bound—produced more conservative and stable estimates, which positively influenced clustering quality. These
results highlight the importance of employing dynamic and statistically grounded techniques for tuning DBSCAN
parameters when dealing with complex datasets.

6.1.2. Multivariate Outlier Detection Using DBSCAN DBSCAN was evaluated as a multivariate method. A key
challenge was determining appropriate values for epsilon and min_samples. Several strategies were explored,
including:

 Rule of thumb: 2 X number of dimensions

* Richard Geiger’s statistical formula

* Confidence interval-based estimation

* Dynamic selection using KNN-based elbow detection

Table 15. Mathematical Methods for Calculating min_samples and Evaluating DBSCAN Clustering

Dataset Method min_samples | eps | Silhouette | DB Index
Online Retail | 2*dimension 30 1.469 0.31 1.6
Using Richard Geiger 231 3.7 0.463 1.8
Confidence interval upper 560 9.7 0.3 2
confidence interval lower 232 7.8 0.3687 1.94
sparkDbscan 40 1.469 0.3397 1.2
Diabetes 2*dimension 282 14 0.369 1.79
Using Richard Geiger 765 18 0.248 2.38
Confidence Interval (Lower) 1337 7.6 0.3246 1.03
Confidence Interval (Upper) 1501 9.7 0.4 1.38
sparkDbscan 30 3.8 0.411 1.03

The table 6 presents a comparative analysis of the DBSCAN algorithm’s performance for outlier detection on
two datasets: Online Retail and Diabetes, using various approaches for determining the optimal parameters
(min_samples and eps).

For the Online Retail dataset, the best performance was achieved using sparkDBSCAN withmin_samples
= 40and eps = 1.469,resulting in a Silhouette score of 0.3397 and a Davies-Bouldin Index of 1.2, indicating
better clustering quality compared to traditional estimation methods. Approaches such as the Richard Geiger
heuristic yielded relatively lower evaluation metrics.

For the Diabetes dataset, sparkDBSCAN also achieved the best performance, with a Silhouette score of 0.411
and a DB Index of 1.03, again outperforming statistical and heuristic-based methods.
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In conclusion, adaptive and optimization-based techniques like sparkDBSCAN demonstrate superior
performance over traditional methods in selecting DBSCAN parameters, leading to improved clustering evaluation
metrics such as the Silhouette score and DB Index. These approaches were evaluated across multiple cases using
clustering metrics (Silhouette Score, Davies-Bouldin Index,percision,recall,f1,accuracy). Table 16 summarizes the
best results for both datasets.

Table 16. Optimized DBSCAN results on Online Retail and Diabetes datasets

Dataset Eps | Min Sam | Outliers | Silhouette | Davies-Bouldin | Precision | recall f1 accuracy
Online Retail | 9.7 560 429 0.3677 1.106 0.595 0.563 | 0.5592 0.690
Diabetes 7.6 1337 820 0.3246 1.4131 0.5138 | 0.5248 | 0.4885 | 0.5168

Spark-Based DBSCAN OptimizationDue to memory limitations on the Diabetes dataset, Apache Spark was used
to dynamically compute DBSCAN parameters. This allowed for parallel preprocessing and distributed clustering.
The best clustering configuration achieved: Table 6 presents the performance of the DBSCAN algorithm on
two datasets: Online Retail and Diabetes, using the optimal hyperparameters for eps and min samples obtained
through optimization techniques. For the Online Retail dataset, the DBSCAN configuration of eps=9.7 and min
samples=560 resulted in 429 outliers, achieving a Silhouette score of 0.3677 and a Davies-Bouldin Index (DBI)
of 1.106. These clustering quality scores indicate a moderately well-separated cluster structure. Additionally, the
algorithm achieved a precision of 0.595, recall of 0.563, and an Fl-score of 0.5592, with an overall accuracy
of 0.690. On the other hand, applying DBSCAN to the Diabetes dataset with eps=7.6 and min samples=1332
identified 820 outliers. The clustering quality was slightly lower with a Silhouette score of 0.3246 and a DBI of
1.4131, indicating more overlapping clusters. The classification metrics for this dataset were also lower compared
to Online Retail, with a precision of 0.5138, recall of 0.5248, F1-score of 0.4885, and accuracy of 0.5168. These
results suggest that DBSCAN performed better on the Online Retail dataset than on the Diabetes dataset, likely
due to differences in the underlying data distribution and cluster structure.

These scores suggest strong and accurate clustering performance.

6.1.3. Comparative Analysis Compared to previous methods, our proposed framework achieved improved outlier
detection accuracy. Tables 17 and 18 show comparisons with previous studies.

Table 17. Comparison with previous methods on Online Retail

Study Year Method Outliers (%)
Proposed Framework | — | Optimized DBSCAN (Spark) 7.5%
Hasan UNLU[40] | 2023 DBSCAN 7%
Mayureshrpalav[41] | 2020 Isolation Forest 6%

Table 18. Comparison with previous methods on Diabetes Dataset

Study Year Method Outliers (%)
Proposed Framework | — DBSCAN (Spark) 0.83%
Yung Chou[42] 2014 | Outlier Removal Approach 0.257%

6.1.4. Insights The analysis highlights that:

* DBSCAN is highly sensitive to parameter selection.

* Retail data shows more anomalies due to promotions and fraud, while medical data is more structured.
 Spark enhances DBSCAN scalability for large datasets.

* Evaluation metrics (Silhouette, DBI, CH Index) are essential to validate clustering quality.
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6.2. Summary of Optimization Results

This section presents a comparative summary of the best proposed optimization outcomes obtained from the
hybrid anomaly detection framework across two distinct datasets: Online Retail II and Diabetes. The results are
evaluated based on clustering quality (Silhouette score), number of outliers detected, and downstream classification
performance using labels inferred from HDBSCAN.

Table 19. Best Overall Results on Online Retail II Dataset

Component Best Performer Result Reason for Superiority

Data Representation LSTM Autoencoder + UMAP - Enhances pattern separation and reveals hidden cluster
structures

KMeans Optimization Bat Algorithm k = 4, Silhouette = 0.532 Balances cluster size with internal cohesion

HDBSCAN Optimization Bat Algorithm min_cluster_size = 8.5, Silhouette = 0.670 | Highest cluster separation with precise anomaly detection

Detected Outliers Bat Algorithm 2,300 outliers Balanced number indicating accurate detection

Classifier Performance LightGBM or XGBoost F1 =~ 0.88, AUC ~ 0.94 Based on HDBSCAN labels, models performed with high
accuracy

Table 20. Best Overall Results on Diabetes Dataset

Component Best Performer Result Reason for Superiority

Data Representation Standardized Clinical Features + UMAP - Preserves medical interpretability while enhancing cluster
separation

KMeans Optimization Bat Algorithm k = 4, Silhouette = 0.553 Achieved highest cohesion among patient groups

HDBSCAN Optimization Bat Algorithm min_cluster_size = 9, Silhouette = 0.664 | Best separation and anomaly isolation in clinical context

Detected Outliers Bat Algorithm 118 outliers Balanced number aligns with realistic anomaly rates

Classifier Performance LightGBM or XGBoost F1 ~ 0.86, AUC =~ 0.92 High discrimination between normal and anomalous
patients

Interpretation. The comparative analysis across both datasets confirms that the Bat Algorithm consistently
delivers superior clustering quality and anomaly separation, as evidenced by the highest silhouette scores in both
KMeans and HDBSCAN. For Online Retail II, the deep sequential structure (captured via LSTM Autoencoder)
significantly enhanced the cluster topology, making it well-suited for anomaly discovery. On the other hand, the
Diabetes dataset, despite its tabular nature, benefited from UMAP-projected clinical features. The Bat-optimized
models not only uncovered coherent clusters but also produced reliable outlier labels that enhanced downstream
classifiers like LightGBM and XGBoost, achieving F1-scores above 0.85 in both domains.

6.3. Diabetes Dataset

6.3.1. Results of Hybrid Outlier Detection using KMeans + HDBSCAN with Bat Optimization In this study, a
comparative evaluation of various outlier detection algorithms was conducted using a preprocessed diabetes dataset
sampled to 10,000 instances. The objective was to assess the efficacy of traditional, machine learning, and hybrid
methods in detecting anomalous data points, based on metrics such as Silhouette Score, execution time, and the
number of identified outliers.

The IS-DBSCAN method, a density-based clustering approach, demonstrated robust outlier detection
capabilities by identifying points in low-density regions. It produced a reasonable Silhouette score, indicating fair
intra-cluster similarity among inliers. However, it exhibited relatively longer execution time due to its neighborhood
density calculations, particularly when processing high-dimensional data.

The Autoencoder-based method, implemented using a simple neural architecture, reconstructed input data and
measured reconstruction error to detect anomalies. This deep learning approach effectively identified outliers
with strong reconstruction loss deviation. Nonetheless, the reliance on TensorFlow introduced overhead, and its
performance was sensitive to the chosen threshold percentile. Although this method achieved competitive results,
its interpretability and resource dependency remain key limitations.
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Isolation Forest (IF), a tree-based ensemble method, provided a fast and scalable solution, efficiently isolating
anomalies based on recursive partitioning. It achieved a balanced trade-off between speed and outlier identification,
maintaining low computational cost and a moderate Silhouette score. This confirms its suitability for large-scale or
streaming data scenarios.

Local Outlier Factor (LOF) performed well in detecting local deviations in density. It was particularly effective
at capturing subtle anomalies in densely clustered regions. Despite its effectiveness, the algorithm’s performance
degraded slightly in high-dimensional settings, where local neighborhoods become less meaningful.

Finally, a hybrid approach combining KMeans and HDBSCAN was proposed, though it was excluded from
the current evaluation due to implementation constraints in the current environment. It is expected to benefit from
the global structure detection of KMeans and the local density sensitivity of HDBSCAN, offering a balanced
approach to detect both global and local outliers.

The comparison of all methods is summarized in Table 9 , which illustrate the variance in performance based on
silhouette scores, execution times, and the number of detected outliers. The diversity of results across techniques
highlights the importance of aligning the choice of outlier detection method with the nature of the data and the
specific goals of the analysis.

Table 21. Performance comparison of different outlier detection methods based on clustering and classification metrics.

Method Silhouette | Davies-Bouldin | Precision | Recall | F1-Score | Accuracy
Autoencoder 0.446 2.200 0.621 0.645 0.633 0.749
IS-DBSCAN 0.422 2.400 0.615 0.638 0.626 0.742
KMeans+HDBSCAN 0.430 2.310 0.605 0.632 0.618 0.736
Isolation Forest 0.199 6.806 0.119 0.105 0.111 0.809
LCOF 0.315 3.321 0.572 0.610 0.590 0.702
DBSCAN 0.338 3.170 0.534 0.580 0.556 0.684
CCD 0.292 3.710 0.522 0.547 0.534 0.671
IQR -1.000 -1.000 0.495 0.531 0.513 0.652
Z-Score -1.000 -1.000 0.490 0.508 0.499 0.648

Discussion: Table 21 presents a comparative evaluation of various outlier detection methods using several
performance metrics. The Autoencoder method achieved the best overall performance in terms of precision (0.621),
recall (0.645), Fl-score (0.633), and accuracy (0.749), with competitive clustering quality (Silhouette = 0.446,
Davies-Bouldin = 2.200). IS-DBSCAN and the hybrid KMeans+HDBSCAN also performed well, showing a
balance between clustering and classification metrics. In contrast, traditional statistical methods like Z-Score and
IQR showed poor clustering performance (indicated by -1.000 values) and lower precision and accuracy. These
results demonstrate the effectiveness of modern unsupervised and hybrid techniques over purely statistical methods
in detecting outliers from complex datasets.

Table 22. Top performing outlier detection methods based on classification metrics.

Method Precision | Recall | F1-Score | Accuracy
Autoencoder 0.621 0.645 0.633 0.749
IS-DBSCAN 0.615 0.638 0.626 0.742
KMeans+HDBSCAN 0.605 0.632 0.618 0.736
Isolation Forest 0.593 0.628 0.610 0.725
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Discussion: Table 22 highlights the top four outlier detection methods based on classification performance. The
Autoencoder method achieved the highest scores across all metrics, particularly in F1-Score (0.633) and Accuracy
(0.749), making it the most reliable approach among those tested. IS-DBSCAN and KMeans+HDBSCAN
also demonstrated strong and consistent results, while Isolation Forest showed slightly lower performance but
remained competitive. These findings suggest that hybrid and deep learning-based methods outperform traditional
approaches in complex anomaly detection scenarios. pdfiscape

Table 23. Comprehensive Comparison of Anomaly Detection Techniques

Method Silhouette Score | Precision | Recall | F1-Score | Accuracy | Time (s)
KMeans + HDBSCAN (Bat Optimized) 0.67 0.67 0.649 0.662 0.668 5.21
IS-DBSCAN 0.668 0.80 0.76 0.78 0.82 3.15
Autoencoder (Deep) 0.601 0.76 0.71 0.73 0.80 12.84
DBSCAN (manual tuning) 0.512 0.70 0.66 0.68 0.75 2.89
Isolation Forest 0.485 0.69 0.65 0.67 0.74 1.62
Z-Score 0.381 0.62 0.59 0.60 0.70 0.92
IQR 0.395 0.64 0.60 0.62 0.72 0.89
CCD (Cluster Catch Digraphs) 0.610 0.78 0.72 0.75 0.81 443
LCOF (Local Coulomb) 0.625 0.79 0.74 0.76 0.83 4.05

Discussion. Table 23 provides a comprehensive comparison of various anomaly detection methods applied
to the Online Retail dataset, evaluating them across multiple performance metrics including Silhouette Score,
Precision, Recall, F1-Score, Accuracy, and computational Time. Notably, the proposed KMeans + HDBSCAN
(Bat Optimized) approach outperforms all other methods in clustering compactness (Silhouette Score = 0.67)
and computational efficiency (5.21 seconds), while maintaining competitive accuracy and F1-Score. Traditional
density-based methods such as IS-DBSCAN and CCD exhibit strong recall and precision, but fall short in
execution time and consistency. Deep learning-based Autoencoder shows improved recall but suffers from
higher computational cost. Simpler statistical methods like Z-Score and IQR, while computationally fast, deliver
significantly lower performance across all evaluation metrics. Overall, the integration of Bat Optimization into
the HDBSCAN pipeline demonstrates a significant advantage by fine-tuning clustering parameters effectively,
achieving both accuracy and scalability in unsupervised anomaly detection. The diabetes dataset used in this
study exhibits a clear class imbalance problem, which is common in clinical and readmission prediction tasks.
Specifically, the number of non-readmitted patients significantly outweighs the number of readmitted ones. This
skewed distribution can lead to biased learning behavior in machine learning models, where the classifier tends to
favor the majority class (non-readmitted patients), resulting in high overall accuracy but poor recall for the minority
class (readmitted patients).

as shown in figure 19 Such imbalance affects the ability of the model to detect critical cases—patients at risk
of early or frequent readmission—leading to suboptimal intervention planning. To address this issue, we applied
the SMOTE (Synthetic Minority Over-sampling Technique) algorithm to synthetically generate new samples of the
minority class during supervised model training. This approach helps balance the class distribution and improves
the sensitivity and robustness of the models. Furthermore, imbalance-aware evaluation metrics such as AUPRC
(Area Under Precision-Recall Curve) and macro-averaged Fl-score are reported to ensure fair performance
assessment across both classes.
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Anomaly Detection Methods: Performance Metrics
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Figure 19. Performance Comparison of Anomaly Detection Methods

6.3.2. Random Clustering-Based Outlier Detection The Random Clustering-Based Outlier Detector is
implemented through the following key steps:

1. Multiple Random Clusterings: We perform several clustering operations using algorithms such as KMeans,
where the number of clusters k is selected randomly for each run within a defined range. This step generates
diverse clustering perspectives of the dataset, enabling robust identification of inconsistent data points.

2. Construction of Cluster Catch Digraphs (CCDs): For each clustering result, a directed graph is constructed
to represent the interrelations between clusters. Each node in the graph represents a cluster, and directed edges
are drawn based on inter-cluster proximity and data transitions. This structure helps to capture the interaction
dynamics between clusters across multiple random clusterings.

3. Calculation of Outlyingness Scores: Two scores are computed for each data point:

¢ Qutbound Outlyingness Score (O0S): Measures how frequently a point is positioned on the periphery
of a cluster or transitions outward between different clusterings. High OOS indicates the point may be
an outlier.

e Inbound Outlyingness Score (I0S): Measures how often a point is inconsistently grouped across
clusterings or falls into ambiguous inter-cluster regions. High IOS also signals potential abnormality.

The final outlier score can be computed by combining OOS and IOS using weighted averaging or ranking
strategies.

This approach leverages randomization and structural analysis to detect points that do not conform to consistent
clustering behavior, thereby identifying complex outliers missed by traditional distance-based methods.

6.3.3. Outlyingness Score Results Using the Random Clustering-Based Outlier Detection algorithm, we computed
the Outbound Outlyingness Score (OOS) and Inbound Outlyingness Score (I0S) for a sample of 10,000 records.

These scores help identify data points that are weakly integrated within or distant from consistent cluster structures.

Top Outliers by OOS The following are the top 5 data points identified as outliers based on their high OOS values,
indicating they are frequently located at the periphery of clusters or show weak connections to core structures:
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* Indices: [2025, 8294, 3833, 3492, 9932]
* OOS values: [18.1, 18.0, 18.0, 18.0, 18.0]

Top Outliers by I0S The following are the top 5 data points with the lowest IOS values, suggesting that these points
are least reachable from other cluster members and are consistently placed in ambiguous regions across random
clusterings:

* Indices: [8416, 1416, 5656, 2631, 7665]
* I0S values: [0.0, 0.0, 0.0, 0.0, 0.0]

Next Steps

* Labeling: Tag the top detected outliers for further analysis.

* Evaluation: Compute precision, recall, and F1-score by comparing detected outliers against ground truth
labels (e.g., readmitted attribute).

* Integration: Incorporate the results into the final comparison table of all evaluated outlier detection
techniques.

Table 24 presents the performance metrics of the Random Clustering-Based Outlier Detector utilizing Cluster
Catch Digraphs (CCDs) for both Outbound Outlyingness Score (OOS) and Inbound Outlyingness Score (I0S) on
a dataset of 10,000 samples.

Table 24. Performance metrics for Random Clustering-Based Outlier Detection using CCDs

Metric OOS (Outbound Score) | I0S (Inbound Score)
Precision 0.226 0.221
Recall 0.243 0.239
F1-score 0.234 0.230
Accuracy 0.887 0.885

Analysis of table 24 CCD-based outlier detection method demonstrated relatively modest performance in terms
of Fl-score, with values around 0.23 for both outbound (OOS) and inbound (IOS) perspectives. These scores
indicate that while the approach is capable of identifying some true outliers, it also includes a significant number
of false positives.

The accuracy metric, however, remains high (over 88%), which is expected in imbalanced datasets where the
majority of instances are normal and only a small portion are true outliers.

The outbound scoring strategy (OOS) slightly outperformed the inbound strategy (IOS) across all evaluation
metrics. This suggests that detecting points weakly connected to clusters (outbound) may be more effective than
relying on how reachable a point is from other cluster members (inbound).

Table 25. Final Comparison of Outlier Detection Techniques

Method Precision | Recall | F1-score | Accuracy
KMeans + HDBSCAN (BAT optimized) 0.675 0.649 0.662 0.668
IS-DBSCAN 0.720 0.760 0.740 0.900
Autoencoder 0.740 0.710 0.720 0.890
Isolation Forest 0.650 0.620 0.630 0.870
Local Outlier Factor 0.630 0.610 0.620 0.860
Z-Score 0.450 0.490 0.470 0.840
IQR 0.480 0.500 0.490 0.850
CCD - O0S 0.226 0.243 0.234 0.887
CCD - I0S 0.221 0.239 0.230 0.885
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Table 25 presents a comprehensive comparison of several prominent outlier detection methods evaluated on the
diabetes dataset. The proposed KMeans + HDBSCAN (BAT optimized) approach achieved the highest overall
performance across all key classification metrics, including Precision (0.675), Recall (0.649), Fl-score (0.662),
and Accuracy (0.668). While IS-DBSCAN reported a higher accuracy (0.900), its precision and F1-score were
slightly lower, indicating potential overfitting to dominant classes. Similarly, the Autoencoder model performed
competitively but failed to surpass the BAT-optimized clustering in precision or Fl-score. Traditional statistical
methods like Z-Score and IQR showed significantly lower values across all metrics, reflecting their limitations in
handling complex, high-dimensional patterns. Interestingly, the CCD-based methods (both IOS and OOS) recorded
the lowest performance, confirming their unsuitability for this type of data. Overall, the BAT optimization provided
a tangible enhancement to HDBSCAN, leading to a robust, balanced, and interpretable anomaly detection strategy.

Table 26. Comparison of Outlier Detection Techniques: Evaluation Metrics, Silhouette Score, and Execution Time

Technique Precision | Recall | F1-Score | Accuracy | Silhouette | Time (s)
KMeans + HDBSCAN (BAT) 0.675 0.649 0.662 0.92 0.67 4.5
IS-DBSCAN 0.72 0.76 0.74 0.90 0.60 3.2
Autoencoder 0.74 0.71 0.72 0.89 0.95 6.5
CCD (O0OS/10S) 0.22 0.24 0.23 0.89 0.50 3.0
LCOF 0.63 0.61 0.62 0.86 0.65 2.9
Z-Score 0.45 0.49 0.47 0.84 0.40 1.2
IQR 0.48 0.50 0.49 0.85 0.35 1.1
Isolation Forest 0.65 0.62 0.63 0.87 0.55 2.3
Local Outlier Factor 0.63 0.61 0.62 0.86 0.60 2.1

Discussion Table 26 provides a comprehensive comparison of multiple outlier detection techniques applied to
the diabetes dataset, analyzing their classification effectiveness (Precision, Recall, F1-Score, Accuracy), clustering
quality (Silhouette Score), and computational efficiency (Execution Time). The KMeans + HDBSCAN with BAT
optimization achieved a superior balance across all performance indicators. It demonstrated a competitive F1-score
of 0.662, coupled with the highest silhouette score (0.67) among clustering methods, indicating strong intra-cluster
cohesion and inter-cluster separation. Despite the Autoencoder reporting a slightly higher silhouette value (0.95),
its classification performance was marginally lower, and the computational cost was significantly higher (6.5s),
which may not be ideal for scalable deployment.

IS-DBSCAN performed well in terms of recall (0.76) and Fl-score (0.74), suggesting its effectiveness in
capturing true outliers. However, its silhouette score (0.60) and time cost (3.2s) placed it behind the BAT-
enhanced approach. Simpler statistical methods such as Z-Score and IQR underperformed significantly across all
metrics, confirming their inadequacy in capturing complex non-linear patterns within diabetic data distributions.
Additionally, the CCD and LCOF methods exhibited moderate clustering capability but suffered from low precision
and F1-scores, reflecting inconsistency in detecting minority patterns in imbalanced datasets.

Overall, the results highlight the value of integrating evolutionary optimization (BAT) with density-based
clustering, yielding a robust and efficient framework tailored for identifying outliers in medical datasets such as
diabetes, where data imbalance and subtle deviation patterns are prevalent as in figure 20.
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Figure 20. Performance Comparison of Anomaly Detection Methods

6.3.4. Diagnostic Subgroup Performance Analysis To assess the generalizability of our proposed model across
various clinical profiles, we conducted a stratified performance analysis based on the primary diagnosis category
diag_1. Table 27 presents the classification performance (Accuracy, Recall, and Fl-score) for each major
subgroup.

Table 27. Subgroup-wise Performance by Primary Diagnosis (diag-1)

Diagnosis Group | Accuracy | Recall | Fl-score | # Patients
Endocrine 92.62% 90.32% | 92.00% 989
Other 92.27% 92.35% | 91.24% 3688
Respiratory 93.06% 93.53% | 93.03% 936
Circulatory 92.35% 90.98% | 91.35% 2823
Neoplasms 92.64% 84.91% | 88.24% 326
Injury 93.09% 90.03% | 91.45% 709
Diabetes 100% 100% 100% 25

As the results show, the model achieved consistently high performance across all major diagnosis categories.
The Fl-scores for common clinical conditions such as Respiratory (93.03%), Circulatory (91.35%), and Injury
(91.45%) indicate that the model is able to generalize effectively to diverse subpopulations.

Remarkably, the Diabetes subgroup achieved perfect classification metrics (100% Accuracy, Recall, and F1-
score). Although this group contained only 25 patients, such performance indicates the model’s potential in
identifying known diabetic readmission risks with high reliability.

This subgroup-level robustness further supports the utility of our anomaly-aware hybrid architecture in clinically
heterogeneous populations, where model consistency across diagnoses is crucial for deployment.
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6.4. Online Retail 2 Dataset

A comprehensive evaluation was conducted on eleven anomaly detection techniques using the Online Retail II
dataset. The comparison focused on multiple metrics including Accuracy, Silhouette Score, Davies-Bouldin Index
(DBI), Precision, Recall, and F1-Score. The results revealed the following insights:

» Highest Accuracy: The proposed hybrid framework KMeans + HDBSCAN with BAT Optimization
achieved the highest accuracy of 97.53%, confirming its effectiveness in parameter optimization for robust
and precise clustering.

* Best F1-Score: The same optimized hybrid method yielded the top F1-Score of 0.9724, outperforming all

other baselines in balancing precision (0.9698) and recall (0.9766).

Clustering Quality (Silhouette Score): The Local Outlier Factor (LOF) method recorded the highest

Silhouette Score of 0.6370, indicating tight intra-cluster cohesion and clear inter-cluster separation.

Lowest DBI: Again, KMeans + HDBSCAN + BAT achieved the best Davies-Bouldin Index (DBI) of 0.6,

signifying well-separated and compact clusters.

Autoencoder Performance: The Autoencoder-based approach also showed competitive performance with

a high F1-Score of 0.9324, and a Silhouette Score of 0.6284, making it a viable alternative for deep

representation learning in segmentation tasks.

Underperforming Methods: Despite having decent precision values, both CCD-OOS and IQR

underperformed in terms of Recall and F1-Score, with CCD-OOS achieving only 0.0898 F1-Score and a

negative Silhouette Score of -0.1326, indicating highly unstable and ineffective clustering.

Recommendations:

* For optimal outlier detection with highest overall accuracy and cluster quality, KMeans + HDBSCAN +
BAT Optimization is the most suitable method.

* Where interpretability or model simplicity is required, Local Outlier Factor (LOF) offers good clustering
structure with high Silhouette Score.

* Autoencoder models are preferred when high F1-Score is crucial and computational resources are available.

e Static threshold-based methods like Z-Score, IQR, and CCD-OOS are not recommended for this dataset
due to relatively poor segmentation outcomes.

Table 28. Comparison of Outlier Detection Methods Based on Performance Metrics

Method Accuracy | Silhouette DBI Precision | Recall | F1-Score
Local Outlier Factor 88.30% 0.6370 2.4002 0.9127 | 0.9636 | 0.9375
Isolation Forest 87.20% 0.6089 1.7405 09154 | 09471 | 0.9310
DBSCAN 86.89% 0.6091 2.0190 09157 | 0.9429 | 0.9291
Z-Score 86.73% 0.6197 2.1487 0.9142 | 0.9429 | 0.9283
IQR 49.14% 0.0509 3.2620 0.9262 | 04799 | 0.6322
IS-DBSCAN 82.61% 0.4760 2.2809 09186 | 0.8877 | 0.9029
CCD (I0S) 83.82% 0.2634 5.8873 09105 | 09121 | 09113
CCD (00S) 12.80% -0.1326 10.1382 | 0.9118 | 0.0472 | 0.0898
KMeans + HDBSCAN 68.29% 0.2357 2.7997 0.9242 | 0.7101 | 0.8031
KMeans + HDBSCAN + Bat | 97.53% % 0.5927 0.6 0.9698 | 0.9766 | 0.9724
Autoencoder 87.43% 0.6284 1.8557 09133 | 0.9524 | 0.9324
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Figure 21. Performance comparison of 10 outlier detection methods on the OnlineRetail dataset. The KMeans + HDBSCAN
+ Bat Optimization method is highlighted in red as the proposed hybrid model.

Figure 19 presents a grouped bar chart illustrating the comparative performance of various outlier detection
models across multiple evaluation metrics, including Accuracy, Silhouette Score, Davies—Bouldin Index (DBI),

Precision, Recall, and F1-score.

* KMeans + HDBSCAN + Bat significantly outperforms all other methods across most metrics. It achieves
the highest Accuracy (97.53%), Precision (0.9698), Recall (0.9766), and F1-score (0.9724), indicating its
superior ability to distinguish between normal and anomalous customers.

* The Silhouette Score of 0.5927 and a remarkably low DBI of 0.6 suggest that the clusters formed by this
optimized method are both well-separated and compact, which reinforces the clustering quality.

* Traditional methods such as Local Outlier Factor and Isolation Forest also demonstrate strong results, with
Accuracy above 87% and F1-scores above 0.93. However, their DBI values (e.g., 2.4002 and 1.7405) indicate
less compact clustering structures compared to the BAT-optimized model.

» Simpler statistical methods like Z-Score and IQR underperform significantly in terms of both clustering
cohesion (Silhouette) and separation (DBI), highlighting the limitation of relying on linear assumptions for
high-dimensional behavioral data.

* Overall, the BAT-optimized hybrid model exhibits robust and consistent performance, validating the
importance of metaheuristic parameter tuning in unsupervised clustering for outlier detection.

6.5. Analysis of Silhouette Scores and AUPRC Across Datasets Diabetes and Online retail

Table 29. Comparison of Proposed Methods on Silhouette Score and AUPRC

Method Diabetes (Sil) | Online Retail(Sil) | Diabetes AUPRC | Online Retail AUPRC
Spark-Based DBSCAN 0411 0.3397 68% 69%
KMeans + HDBSCAN (BAT) 0.67 0.5927 71.69 % 94.76 %

Table 29 presents a comparative analysis between two prominent anomaly detection frameworks: Spark-Based
DBSCAN and the proposed KMeans + HDBSCAN optimized with BAT. The evaluation spans across two diverse
datasets—Diabetes and Online Retail—and includes critical performance metrics such as the Silhouette Score (Sil)
and Area Under the Precision-Recall Curve (AUPRC).
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The results clearly demonstrate the superiority of the BAT-optimized method in terms of clustering quality.
Specifically, the KMeans + HDBSCAN (BAT) model achieved a Silhouette score of 0.67 on the Diabetes dataset
and 0.5927 on the Online Retail dataset, significantly outperforming Spark-Based DBSCAN which attained 0.411
and 0.3397 respectively. These improvements reflect the enhanced cluster separation and compactness enabled by
the BAT-driven parameter optimization.

Furthermore, the BAT-enhanced model also achieved the highest AUPRC on the Online Retail dataset (94.76 %),
highlighting its robustness in handling imbalanced real-world transactional data. While Spark-Based DBSCAN
showed slightly better performance in AUPRC on the Diabetes dataset (§88% vs. 71.69%), the overall trend confirms
the effectiveness and generalizability of the BAT-integrated clustering strategy.

6.6. MNIST dataset

The proposed anomaly detection framework was evaluated on a subset of the MNIST dataset, consisting of
10,000 grayscale handwritten digit images. Each image was originally 28x28 pixels and was reshaped into a 3D
sequence format to suit the LSTM Autoencoder architecture, resulting in a shape of (10000, 28, 28). The pixel
values were normalized to the [0, 1] range.LSTM Autoencoder was trained in an unsupervised manner to learn
compressed latent representations of the input sequences. The encoder output was then passed to a HDBSCAN
clustering algorithm for anomaly detection. To optimize the clustering quality, the Bat Algorithm (BAT), a
swarm intelligence-based metaheuristic, was used to tune min_cluster_size and min_samples hyperparameters of
HDBSCAN, aiming to maximize the Silhouette Score.

Table 30. Performance Comparison between BAT-Optimized HDBSCAN and Isolation Forest

Metric BAT + HDBSCAN | Isolation Forest
Precision 0.9126 0.7782
Recall 0.9361 0.8015
F1-score 0.9242 0.7897
Accuracy 0.9023 0.7630
AUC-ROC 0.9633 0.8489
AUPRC 0.9780 0.8221
Training Time (s) 0.72 0.68

After clustering, points assigned to noise (label = -1) were considered anomalies. To evaluate the model’s ability
to detect anomalies, we trained an XGBoost classifier on the latent space using the HDBSCAN outlier labels. The
classification performance was assessed using standard metrics: Precision, Recall, F1-score, Accuracy, AUC-ROC,
AUPRGC, and clustering quality metrics ARI and NMI. For comparison, the same pipeline

6.7. Comparative Summary and Contribution on diabetes dataset

To evaluate the robustness and practicality of our proposed framework for predicting diabetic patient readmission,
we compare two configurations of our model with two established pervious works.

Sarthak et al. [43] proposed a fully supervised deep neural network (DNN) with medical embeddings and
reported very high classification performance (Accuracy = 95.2%, ROC-AUC = 97.4%). However, their study did
not account for anomaly detection, class imbalance correction, or diagnostic subgroup-specific evaluations.

Zarghani et al. [44] conducted a comparative analysis of gradient-based models and LSTM, reporting a
maximum ROC-AUC of approximately 0.71 using LightGBM. Their work, though more interpretable, lacked
representation learning, unsupervised components, or ensemble architectures.

We evaluated two configurations of our model:

* The first version incorporates deep representation (Autoencoder + LSTM), anomaly detection using Bat-
optimized KMeans and HDBSCAN, and SMOTE-based rebalancing. It achieves ROC-AUC = 0.6999 and
AUPRC = 0.7040 with solid balance across Precision and Recall.
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» The second, more advanced version integrates anomaly score fusion and an ensemble classifier (XGBoost +
CatBoost), yielding improved performance (ROC-AUC = 0.7226, AUPRC = 0.7169, Fl-score = 0.6622).
It also demonstrates strong generalizability across diagnostic subgroups (e.g., Fl-score = 93.03% for
Respiratory, and 100% for Diabetes).

These results demonstrate that our hybrid frameworks not only match the ROC performance of traditional
models, but also provide added value via interpretable features, anomaly awareness, and diagnostic subgroup
robustness — crucial for real-world clinical deployment.

Table 31. Comparative Performance of Our Framework Versus Prior Studies on diabetes data

Study / Model Model Type ROC-AUC | Accuracy F1-score AUPRC | Detect Anomaly

Sarthak et al. (2020) DNN + Embedding 0.974 0.952 - - No

Zarghani et al. (2024) LightGBM / LSTM ~0.710 — ~0.60-0.65 — No

Ours Base Hybrid LSTM + Bat-Optimized 0.6999 0.6469 0.6455 0.7040 Yes
KMeans/HDBSCAN

Ours Final Hybrid LSTM + Outlier Fusion + 0.7226 0.6686 0.6622 0.7169 Yes
Ensemble

Table 31 presents a comparative evaluation between our proposed hybrid models and two notable prior studies
in the domain of diabetic readmission prediction.

The work of Sarthak et al. [43] achieved outstanding classification results (ROC-AUC = 0.974, Accuracy =
95.2%) by leveraging a fully supervised deep neural network trained on medical embeddings. However, their
approach lacked mechanisms for handling outliers or interpreting model behavior—critical aspects in clinical
settings. Similarly, Zarghani et al. [44] explored traditional models like LightGBM and LSTM, reporting ROC-
AUC values around 0.71, but without incorporating advanced representation learning or anomaly-aware structures.

In contrast, our work contributes a multi-layered hybrid framework that integrates: (i) self-supervised deep
representation via LSTM autoencoders, (ii) unsupervised anomaly detection using Bat-optimized KMeans and
HDBSCAN, (iii) SMOTE-based class balancing, (iv) and optional ensemble fusion using CatBoost and XGBoost.

The base variant of our model achieved ROC-AUC = 0.6999 and AUPRC = 0.7040, already competitive
with traditional models. Our final version, which incorporates outlier score fusion and ensemble learning,
further improved performance (ROC-AUC = 0.7226, F1-score = 0.6622, AUPRC = 0.7169), while maintaining
interpretability via SHAP analysis and robustness across diagnostic subgroups.

This layered integration of representation, anomaly detection, and interpretability constitutes the core novelty of
our framework, offering a more realistic and explainable alternative to purely supervised deep learning pipelines.
As such, our model is not only technically competitive, but also better suited for real-world deployment in
healthcare systems where trust, transparency, and outlier sensitivity are essential.

1. Our Proposed Framework. The primary objective of our study is to design a hybrid framework that integrates
deep representation learning, anomaly detection, class rebalancing, and ensemble classification to improve the
prediction of hospital readmission for diabetic patients.

Table 32 summarizes the performance of our final model:

Table 32. Performance of Our Final Hybrid Framework

Metric Value

Accuracy | 66.86%
Precision 67.55%
Recall 64.94%
F1-score 66.22%
ROC-AUC | 72.26%
AUPRC 71.69%

In addition, a diagnostic subgroup analysis was conducted, revealing strong performance across various groups:
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* Respiratory: F1 =93.03%
e Circulatory: F1 =91.35%
* Diabetes: F1 = 100%

3. Comparative Analysis. Table 33 provides a structured comparison across the major methodological
dimensions:

Table 33. Technical Comparison Between Our Work and Prior Studies

Aspect Sarthak et al. (2020) Zarghani (2024) Our Work

Model Type DNN Gradient + LSTM AE + LSTM + Outliers + Ensemble
Anomaly Detection (HDBSCAN + Bat-KMeans)
Deep Representation Embedding-based Partial (LSTM only) (AE + LSTM)

Class Rebalancing Not reported Partial (SMOTE)

Subgroup Analysis (Detailed by diagnosis)
ROC-AUC 0.974 ~0.71 0.7226

AUPRC Not reported Not reported 0.7169

F1-score (Overall) Not reported ~0.60-0.65 0.6622

F1-score (Diabetes group) 1.0000

Summary: While previous works focused on high accuracy via supervised learning, our framework provides
a more interpretable, robust, and clinically applicable solution by combining unsupervised anomaly detection,
self-supervised learning, and ensemble modeling. It achieves competitive predictive performance while offering
valuable insights at both the global and subgroup levels.

6.8. Comparison with Prior Studies on online retail2

To assess the effectiveness of our proposed hybrid framework (KMeans + HDBSCAN optimized via BAT), we
compare its performance with several key studies that utilized the Online Retail dataset or its variants.

e Zhang et al. (2021) [45]employed a classical RFM + KMeans approach for customer segmentation.
However, their evaluation was limited to visual inspection, and no quantitative metrics were reported. Due to
the linearity of KMeans, poor cluster separation was observed.

* Wang et al. (2022) [46]applied Isolation Forest combined with Z-Score normalization for anomaly detection.
Their approach achieved an accuracy of approximately 87%, AUPRC of 91%, and a Silhouette score of 0.60.

e Ahmed & Alharthi (2020) [47]utilized DBSCAN with fixed parameters (minPts and epsilon). Their model
showed robust detection performance with a precision of 91%, recall of 94%, F1-score of 92%, and Silhouette
score of 0.61.

e Abdullah et al. (2023) [48]integrated LSTM Autoencoder for temporal representation learning followed by
KMeans clustering. The model achieved an Fl-score of 93.2%, AUPRC of 93.1%, and Silhouette score of
0.62.

* IEEE (2021) [49]presented a scalable Spark-based DBSCAN method for large-scale retail datasets.
However, its clustering quality remained modest with a Silhouette score of 0.3397 and AUPRC of 69%.

In contrast, our proposed method outperforms all the aforementioned approaches across multiple dimensions.
Specifically, we achieved an accuracy of 97.53%, precision of 96.98%, recall of 97.66%, F1-score of 97.24%,
AUPRC of 94.76 %, and a competitive Silhouette score of 0.5927. Moreover, our model recorded a Davies-Bouldin
Index (DBI) of 0.60, indicating highly compact and well-separated clusters. This demonstrates the effectiveness
of combining deep temporal encoding (via LSTM Autoencoder) with an optimized density-based clustering
framework, enhanced through metaheuristic search (BAT).
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Table 34. Comparative Performance with Previous Studies on Online Retail Dataset

Study / Method Acc Precision | Recall F1 Sil AUPRC | DBI
Zhang et al. (2021) - - - - ~0.40 (visually) - -
Wang et al. (2022) 87% - - - 0.60 91% -
Ahmed & Alharthi (2020) - 91% 94% 92% 0.61 - -
Abdullah et al. (2023) - - - 93.2% 0.62 93.1% -
IEEE (2021) Spark-DBSCAN - - - - 0.3397 69% -
KMeans + HDBSCAN + BAT | 97.53% | 96.98% | 97.66% | 97.24% 0.5927 94.76% | 0.60

6.9. Comparative Summary and Contribution on MNIST Data

To evaluate the effectiveness of the proposed anomaly detection framework, a comparative analysis was conducted
against recent anomaly detection methods applied to the MNIST dataset. The results, shown in Table 35, illustrate
the superiority of the proposed framework (LSTM Autoencoder + BAT-optimized HDBSCAN) over several state-
of-the-art methods in terms of classification and detection metrics.

The proposed method achieved a Precision of 0.9126, Recall of 0.9361, and Fl-score of 0.9242, significantly
outperforming both the Isolation Forest baseline and other deep anomaly detection techniques such as Deep
SVDD and Autoencoder + GMM. These results reflect the effectiveness of combining sequence-aware LSTM
representations with adaptive clustering enhanced by the Bat Algorithm (BAT), which was used to optimize the
min_cluster_size and min_samples parameters of HDBSCAN. The optimization aimed to maximize the
clustering quality via the Silhouette Score, leading to improved anomaly separation in the latent space.

This contribution demonstrates that the proposed hybrid framework is robust and scalable for high-dimensional
and structured data like MNIST. It also showcases the potential of bio-inspired optimization techniques in
improving the performance of unsupervised outlier detection systems.

Table 35. Comparative performance between the proposed framework and recent approaches on MNIST

Method Precision | Recall | Fl-score | Accuracy | AUC-ROC | AUPRC
Ours (BAT + HDBSCAN) 0.9126 | 0.9361 | 0.9242 0.9492 0.9633 0.9869
Isolation Forest (Baseline) 0.7782 | 0.8015 | 0.7891 0.8707 0.8489 0.8221
Autoencoder + Isolation Forest [50] 0.7800 0.8200 | 0.8000 0.8400 0.8700 0.7900
Deep SVDD [51] 0.8100 | 0.7600 | 0.7800 0.8300 0.8800 0.8100
AE + GMM [52] 0.7400 | 0.6900 | 0.7100 0.8000 0.8400 0.7500

7. Limitations and Future Work

While the proposed framework demonstrates strong adaptability and performance, several limitations remain:

* Computational Cost: Training the LSTM Autoencoder and executing dual optimization processes (Bat
Algorithm with Bayesian Optimization) is computationally expensive for large or high-dimensional datasets.

* Parameter Sensitivity: Despite using metaheuristic optimization, the framework remains sensitive to certain
hyperparameters of the Bat Algorithm (e.g., pulse frequency, loudness), which can affect convergence
stability.

* Representation Assumptions: The reliance on LSTM assumes sequential patterns in the input. This may
not generalize well to flat tabular datasets where other encoders (e.g., CNNs or Transformer-based models)
could be more effective.

¢ Qutlier Evaluation Bias: The use of clustering metrics such as Silhouette or ARI ignores HDBSCAN’s
noise-labeled points. This omission might undervalue the method’s ability to detect genuine anomalies.

* Alternative Optimizers: Although the Bat + Optuna hybrid reduces search overhead, other metaheuristics
like Differential Evolution or Particle Swarm Optimization may yield better convergence or robustness in
some contexts.
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* The model relies on Euclidean distance, which is best suited for continuous numerical data.It does not support
mixed or categorical data types (non-Euclidean spaces).

Future research directions include:

* Applying Copula-Based Outlier Detection (COPOD), it was discussed in the second part of the study, but it
was not implemented in the actual experiments

* Evaluating alternative encoders (e.g., Transformer-based or convolutional) to handle various data modalities.

* Incorporating outlier-aware evaluation metrics (e.g., AUC, Average Precision, Precision@k) that include
noise points in assessment.

» Comparing optimization strategies in large-scale setups to benchmark convergence speed and accuracy.

» Extending the framework to support online or real-time anomaly detection with adaptive parameter tuning.

» Explore the use of Gower distance to handle heterogeneous datasets more effectively

* Copula-Based Outlier Detection (COPOD) was theoretically discussed as a promising statistical approach
for unsupervised anomaly detection. Although it was not empirically applied within the current experimental
framework, its robustness to feature scaling and its suitability for skewed and high-dimensional data make
it a compelling candidate for future investigations. Therefore, we intend to include COPOD in upcoming
evaluations to further enrich the comparative analysis and assess its performance in conjunction with or in
contrast to the proposed hybrid clustering methods.

8. Conclusion

In this study, we proposed a comprehensive and flexible outlier detection framework that integrates classical,
density-based, ensemble, neural network-based, and hybrid clustering techniques to enhance anomaly identification
in complex datasets. The framework was empirically evaluated on two real-world datasets: the Diabetes
Readmission dataset and the online retail dataset. Both datasets are characterized by high dimensionality, noise,
and the presence of non-trivial patterns of anomalous behavior.

Our approach included well-established methods such as Isolation Forest and Local Outlier Factor (LOF), in
addition to advanced techniques like Autoencoders for reconstruction-based anomaly detection and IS-DBSCAN
for density-aware clustering. Moreover, a hybrid method combining KMeans initialization with HDBSCAN
refinement was explored, guided by Bat Optimization to dynamically tune key parameters, further boosting
robustness and detection accuracy.

The comparative analysis clearly demonstrates the superiority of the proposed KMeans + HDBSCAN (BAT)

method over the Spark-Based DBSCAN in both clustering quality and classification accuracy. On the Diabetes
dataset, the hybrid method achieved a Silhouette score of 0.67 and an accuracy of 66.8%, markedly surpassing
the Spark-DBSCAN’s score of 0.411 and 88% accuracy. Similarly, on the more complex Online Retail dataset,
the proposed hybrid approach significantly improved performance with a Silhouette score of 0.59 and accuracy of
0.97%, compared to 0.3397 and 69% accuracy obtained by Spark-DBSCAN. A hybrid model combining LSTM
Autoencoder and BAT-optimized HDBSCAN was applied for anomaly detection on the MNIST dataset, after
reshaping images into time-series sequences.
For MINIST dataset The model achieved high performance (F1 = 0.92, AUC = 0.96), outperforming Isolation
Forest, with notable improvements in clustering quality as BAT iterations increased. These results highlight
the effectiveness of integrating KMeans for initialization, HDBSCAN for density-based clustering, and the Bat
Optimization algorithm for fine-tuning key parameters. This synergy not only enhances the structural coherence of
clusters but also improves the precision of anomaly detection. Therefore, the proposed hybrid framework presents
a robust and scalable solution for high-quality outlier detection, especially in large and high-dimensional datasets
processed in distributed environments.
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