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Abstract Malaria remains a persistent global health challenge, with its burden concentrated in Sub-Saharan Africa and
other endemic regions where transmission is sustained by interactions between human and mosquito populations. Despite
progress in prevention and treatment, the emergence of partial immunity, asymptomatic carriers, and insecticide resistance
complicates control efforts. In this study, we formulate and analyze a nonlinear compartmental model that incorporates a
vaccination class alongside traditional malaria interventions. The model’s mathematical properties are established by proving
the positivity and boundedness of solutions, and by deriving the disease-free and endemic equilibria. Using the Diekmann-
Heesterbeek-Metz Next Generation Matrix approach, we obtain the effective reproduction number and conduct rigorous
local and global stability analyses of both equilibria. Furthermore, local sensitivity analysis is performed to identify key
parameters driving transmission, highlighting the roles of vaccine uptake, waning immunity, mosquito–human contact rate,
and vaccine efficacy. Numerical simulations illustrate the epidemiological impact of vaccination, showing that increased
vaccine coverage substantially reduces infection prevalence and sustains lower transmission levels. To complement this, we
extend the analysis with a cost-effectiveness evaluation of three optimal control strategies combining insecticide-treated nets,
diagnostic surveillance, and environmental sanitation. The results show that while single or dual interventions moderately
reduce infections, the integrated triple-intervention strategy together with the vaccinated compartment achieves the greatest
epidemiological impact while also being the most cost-effective, yielding the lowest ACER and a negative ICER, indicating
cost savings. These findings emphasize that vaccination, when combined with other interventions, not only reduces malaria
burden but also represents an economically justified approach to sustainable control.
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1. Introduction

Malaria is a disease that is caused by protozoan parasites, a member of Plasmodium genus family and it is highly
infectious. Plasmodium falciparum is the most virulent member of this family and it accounts for the majority
of malaria-related motalities worldwide. Susceptible individuals contract malaria when they are bitten by female
Anopheles mosquitoes carrying the infection, leading to severe illnesses in some individuals. The first sign of
malaria infection usually occur between 10− 15 days after coming in contact with the the parasite. However,
other forms of transmission occasionally occur, including through blood transfusion, needle sharing, nosocomial
infection, organ transplantation, or vertical transmission from mother to fetus [56, 57, 58]

Malaria is widespread in various regions, including large areas of Africa, Latin America, parts of the Caribbean,
Eastern Europe, the South Pacific, and significant portions of Asia, such as South Asia, Southeast Asia, and the

∗Correspondence to: Miswanto Miswanto (Email: miswanto@fst.unair.ac.id). Department of Mathematics, Faculty of Sciences and
Technology, Airlangga University, Surabaya, Indonesia

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



AYODEJI SUNDAY AFOLABI AND MISWANTO MISWANTO 1

Middle East. These regions have favorable conditions for mosquito breeding and are considered endemic to the
disease due to the continuous presence of the disease. About 50% of the population of the world are vulnerable to
malaria transmission. In regions where malaria is endemic, some individuals develop partial immunity over time
due to repeated exposure to the parasite. It should be noted that this partial immunity does not offer complete
protection, it however significantly lowers the likelihood of severity of the disease and chances of death from
the infections. Many of the individuals who have acquired partial immunity exhibit no visible symptoms despite
carrying the parasite. This can complicate detection and control efforts, as asymptomatic individuals can still
contribute to the transmission of malaria. Most malaria-related deaths occur in young children in high-transmission
areas, such as West Africa because their immune system are not fully developed. In these areas, children under five
are particularly vulnerable to severe malaria and malaria-related deaths. Consequently, the need for an effective
strategy aimed at reaching the most vulnerable populations has been introduced [58, 59]

Malaria remains a persistent epidemiological issue, especially in tropical and subtropical zones, where its
transmission dynamics are strongly influenced by factors such as ecological and climatic changes. In view of
this, scientists from different fields including mathematicians have come up with different strategies to curtail
malaria in different regions of the world. A number of mathematical models that can help to check the prevalence
of malaria have been developed over the years [1, 2, 8, 13, 17, 20, 21, 23, 24, 34, 36, 38, 39, 41, 42, 43, 44, 45,
61, 63, 64, 68, 72, 82, 83, 84]. [40] studied the history and effects of mathematical models for the transmission
dynamics and control of malaria for over a century. This study became necessary due to the fact that malaria
continue to thrive and post a significant threat to human health, contributing to rising mortality and morbidity rates,
driven by environmental changes and socio-economic factors that influence vector ecology, transmission dynamics,
and healthcare accessibility. Hence, existing malaria models were critically examined in order to determine their
effectiveness in representing host-parasite dynamics. A hierarchical framework of deterministic mathematical
models with varying levels of complexity was generated and the modeling strategies adopted were examined.
Findings from these reviews may guide researchers in developing more appropriate models that capture current
realities such as resistance, vaccination etc. [52] proposed a seven-dimensional ordinary differential equation
(ODE) model that described the transmission dynamics of Plasmodium falciparum malaria between humans
and mosquito subpopulations with non-linear infection forces denoted by saturated incidence rates. The research
identified the region where the model remains epidemiologically viable. Numerical simulations were conducted
in order to determine the behaviors of the model classes under certain conditions. [5] developed a mathematical
model for malaria and vector subpopulations incorperating traditional malaria intervention measures implemented
by proactive individuals. The study demonstrated that the importation of malaria cases had a potential of altering
the reproductive number, (R0), thereby influencing local epidemiological patterns. Consequently, the findings
suggested that full vigilance in implementing both WHO-endorsed and traditional malaria intervention measures
represented the most effective strategy for fighting the influence of malaria importation.

A malaria model incorporating temperature dependence and the developmental stages of mosquitoes was
developed and analyzed. The model parameters were expressed as periodic functions. The vector and effective
reproduction numbers associated with the model were obtained. Whenever the two reproduction numbers surpass
one, the system exhibited a minimum of one positive periodic solution and the disease persisted. Numerical
simulations were carried out using monthly mean temperature values from Burkina Faso and the results agreed
favourably well with the theoretical findings [71] .

[33] modeled the growth rate of awareness programs targeting the population as being proportional to the
number of unaware infected individuals. It was assumed that, based on these awareness campaigns, individuals
who were infected with the disease became aware of their condition thereby adopting behavioral modifications
that limit their exposure to mosquitoes. The model was simulated using Runge−Kutta method and the results
indicated a substantial increase in the population of susceptible individuals and a decrease in the number of infected
mosquitoes. [73] assumed that there was no vertical transmission and that all the newborns were vulnerable to
malaria infection. The results revealed that the population of susceptible individuals would continue to increase
because of new births and immune waning of the recovered population. Thus, the authors asserted that malaria
would continue to be increasingly endemic.
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[7] formulated a mathematical model consisting of some control strategies that would significantly reduce the
number of infected individuals and mosquito population. The numerical simulation revealed the optimal level
needed to minimize the incidence rate. [51] proposed and explored the transmission dynamics of malaria within
a population using a non-linear mathematical model. The stability theory of differential equations was used to
analyze the model. The model was extended to an OCP by incorporating three time-dependent control measures
- bed nets, treatment and insecticides. Optimal control theory was employed to characterize the control variables.
Fourth-order forward-backward Runge-Kutta method was adopted for the solution of the extended model. The
impacts of these control strategies on the prevalence of malaria-infected individuals were analyzed. Different
combination of the control strategies investigated.

1.1. Malaria Vaccines and its Effects

In 2021, World Health Organization (WHO) endorsed RTS,S/AS01 (RTS,S) vaccine for malaria prevention in
children living in regions with moderate to high Plasmodium falciparum transmission. At least one dose of this
vaccine was administered to over 2 million children in Ghana, Kenya, and Malawi under the supervision of
WHO. A comprehensive evaluation revealed a significant reduction in severe malaria cases and a 13% reduction
in early childhood mortality in regions where the RTS,S vaccine was administered compared to areas without
its introduction [55]. [62] studied the implementation of RTS,S/AS01 malaria vaccine in sub-Saharan Africa
(SSA). It was noted that 30 out of the 34 countries in SSA have requested GAVI for financial support and
access to the vaccine and 20 out of the 30 countries have been approved. However, the implementation of the
vaccine has been limited to only the three pilot countries designated by the WHO - Kenya, Ghana and Malawi
and only two non-pilot countries Burkina Faso and Cameroon. In view of this, [26] proposed a mathematical
model that captured the administration of this vaccine for children in Kenya, Ghana, and Malawi. In addition
to the incorporation of vaccinated class into the model, the inflow of infected immigrants was also considered.
The model analysis indicated that when there were no infected immigrant, the disease-free equilibrium point
(DFE) was globally symptomatically stable (GAS) when R0 < 1. However, the model exhibited only endemic
equilibrium states with the influx of infected immigrants. Sensitivity analysis of R0 indicated the importance of
reducing human-vector contact. The results showed that increasing children’s vaccination rate and elimination of
infected human inflows could help to achieve a malaria-free population. The analysis and simulation of the optimal
control problem (OCP) demonstrated that the most effective measure of eliminating malaria is the combined use
of vaccination, personal protective measures, and treatment contingent upon the complete cessation of infected
immigrant inflows. [69] formulated a two-group malaria model structured by age, incorporating vaccination for
children under 5 years. The existence of multiple endemic equilibria was explored using Descartes’ rule of signs.
A global sensitivity analysis (GSA) of R0 together with the response functions of the vaccination compartment
was conducted using partial rank correlation coefficients embedded in Latin Hypercube Sampling. Optimal control
theory was employed to obtain the best combination of control strategies for minimizing malaria transmission.
In a community, the simultaneous implementation of the three intervention measures could significantly enhance
malaria control efforts. The importance of such strategies has been reinforced by recent developments in malaria
prevention. In October 2023, WHO recommended R21/Matrix-M malaria vaccine as a second safe and effective
option for malaria prevention. The availability of 2 malaria vaccines is expected to increase supply and make
broad-scale deployment across Africa and beyond possible [62, 57].

2. Model Formulation and Analysis

A malaria model represented by the system of ten ODEs that captures the dynamics of malaria transmission
between human and mosquito populations is proposed. The human population is divided into Susceptible (Sh),
Vaccinated (Vh), Exposed (Eh), Asymptomatic Infected (Ah), Infected (Ih), Treated (Th), Recovered (Rh) while
the mosquitoes population is partitioned into Susceptible (Sm), Exposed (Em) and Infected (Im). The total human
population, Nh(t), is expressed as

Nh(t) = Sh + Vh + Eh +Ah + Ih + Th +Rh. (2.1)
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Table 2.1. Model Parameter

Parameter Description
αh Recruitment rate into susceptible humans
αm Recruitment rate into susceptible mosquitoes
µh Human natural death rate
µm Mosquito natural death rate
δh Human disease-induced death rate
ωh Rate of loss of immunity of recovered humans
βhm Probability of mosquitoes becoming infected
βmh Probability of humans becoming infected
νh Vaccine uptake rate
ϵ Contact rate of mosquito to human
ξh Vaccine waning
σh Vaccine efficacy
ϑh Transition rate from exposed to asymptomatic individuals
κh Transition rate from exposed to infected individuals
κm Transition rate from exposed to infected mosquitoes
τh Transition rate from asymptomatic to infected individuals
φh Transition rate from asymptomatic to recovered individuals
γh Transition rate from infected to treated individuals
η Drug efficacy
ρh Recovery rate

Similarly, the total mosquito population, Nm(t), is given by

Nm(t) = Sm + Em + Im. (2.2)

The forces of infection λh and λm are defined as

λh =
βhmϵIm
Nh

and λm =
βmhϵIh
Nh

where βhm represents the probability of effective transmission of malaria from infected humans to susceptible
mosquitoes as a result of contact rate of mosquito to human given by ϵ. Similarly, βmh denotes the probability of
effective transmission of malaria from infected mosquitoes to susceptible humans.

2.1. Model Assumptions

1. Homogeneity of the Populations: The human population is homogeneously mixed. This implies that there
is an equal chance of interaction amongst individuals in the population. This assumption also applies to the
vector population, implying random and uniform interactions between mosquitoes.

2. Vaccination and Immunity: Malaria vaccines reduce the likelihood of susceptible individuals becoming
infected or transitioning to other states of infection. It is noted that since the vaccine is not 100% efficacious,
a small proportion of the vaccinated individuals will transit to other state of the infection. Recovered humans
have partial immunity, which wanes over time, transitioning them back to the susceptible population.

3. Transmission Assumption: Malaria is transmitted from infected humans and mosquitoes to susceptible
humans.

4. Natural Death: All individuals within the human and vector populations, regardless of their compartmental
classification, are subject to natural mortality. However, only humans within the infected and treated
compartments experience an additional disease-induced mortality rate.

5. No Recovery for Infected Mosquitoes: Infected mosquitoes do not undergo recovery from the disease;
therefore, they remain infectious for the entirety of their lifespan, unless mortality occurs due to natural or
disease-induced factors.
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The flowchart for the proposed model dynamics is as given below:

Sh(t) Vh(t) Eh(t) Ah(t) Ih(t) Th(t) Rh(t)

Sm(t) Em(t) Im(t)

νh (1− σh)λh ϑh τh ηγh ρh

λm κm

αh

αm

µh µh µh µh µhδh µhδh µm

µm µm µm

ξh

λh

κh

φh

ωh

γh(1− η)

The model is represented by the non-linear system of ODEs below:

dSh

dt = αh + whRh + ξhVh − νhSh − λhSh − µhSh
dVh

dt = νhSh − (1− σh)λhVh − ξhVh − µhVh
dEh

dt = λhSh + (1− σh)λhVh − ϑhEh − κhEh − µhEh
dAh

dt = ϑhEh − τhAh − φhAh − µhAh
dIh
dt = κhEh + τhAh − γhIh − (δh + µh)Ih
dTh

dt = ηγhIh − ρhTh − (δh + µh)Th
dRh

dt = φhAh + γh(1− η)Ih + ρhTh − whRh − µhRh
dSm

dt = αm − λmSm − µmSm
dEm

dt = λmSm − κmEm − µmEm
dIm
dt = κmEm − µmIm

(2.3)

with the initial conditions

Sh(t) > 0, Vh(t) ≥ 0, Eh(t) ≥ 0, Ah(t) ≥ 0, Ih(t) > 0, Th(t) ≥ 0, Rh(t), Sm(t) > 0, Em(t) ≥ 0, Im(t) > 0.
(2.4)

2.1.1. Positivity of solutions The positivity of solutions for the malaria system 2.3 will be verified for all non-
negative initial conditions of the compartments at t > 0. The proof demonstrating the non-negativity of the
solutions for all state variables of system 2.3 is presented below for all t > 0,

Theorem 1
Given that the initial conditions 2.4 of system 2.3, there exists

(
Sh(0), Vh(0), Eh(0), Ah(0), Ih(0), Th(0), Rh(0),

Sm(0), Em(0), Im(0) > 0
)
: (0, inf) −→ (0, inf) which solves system 2.3.
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Proof
Assume that t̂ = sup{Sh(0) > 0, Vh(0) > 0, Eh(0) > 0, Ah(0) > 0, Ih(0) > 0, Th(0) > 0, Rh(0) > 0, Sm(0) >
0, Em(0) > 0, Im(0) > 0, this implies that t̂ > 0

It follows that
dSh(t)

dt
≥ − (νh + µh + λh)Sh (2.5)

Employing separation of variables, it follows that

dSh(t)

Sh(t)
≥ − (νh + µh + λh) dt (2.6)

Upon integrating 2.6 and using the initial condition, we arrive at

Sh(t) ≥ Sh(0)e
−((νh+µh)t+

∫ t
0
λh(ζ)dζ) ≥ 0, ∀ t ≥ 0.

Similarly, 

Vh(t) ≥ Vh(0)e
−(ξh+µh)t+

∫ t
0
(1−σh)λh(ζ)dζ ≥ 0, ∀ t ≥ 0,

Eh(t) ≥ Eh(0)e
−(ϑh+κh+µh)t ≥ 0, ∀ t ≥ 0,

Ah(t) ≥ Ah(0)e
−(τh+φh+µh)t ≥ 0, ∀ t ≥ 0,

Ih(t) ≥ Ih(0)e
−(γh+δh+µh)t ≥ 0, ∀ t ≥ 0,

Th(t) ≥ Th(0)e
−(ρh+δh+µh)t ≥ 0, ∀ t ≥ 0,

Rh(t) ≥ Rh(0)e
−(wh+µh)t ≥ 0, ∀ t ≥ 0,

Sm(t) ≥ Sm(0)e−(µm)t+
∫ t
0
λm(ζ)dζ ≥ 0, ∀ t ≥ 0,

Em(t) ≥ Em(0)e−(κm+µm)t ≥ 0, ∀ t ≥ 0,

Im(t) ≥ Im(0)e−µmt ≥ 0, ∀ t ≥ 0,

2.1.2. The Invariant Region The invariant region (Ω) associated with system 2.3 is defined as the region within the
state space where the model variables, representing population sizes or concentrations, remain non-negative and
bounded, ensuring biological feasibility. To construct this invariant region, it is necessary to determine the subset
of the state space where the population sizes remain constrained within biologically meaningful limits and exhibit
bounded behavior over time.

Theorem 2
Let Sh(t), Vh(t), Eh(t), Ah(t), Ih(t), Th(t), Rh(t), Sm(t), Em(t), Im(t) be the solutions of system 2.3 with initial
conditions (Sh(0), Vh(0), Eh(0), Ah(0), Ih(0), Th(0), Rh(0), Sm(0), Em(0), Im(0)). The compact set

Ω ={(Sh(t), Vh(t), Eh(t), Ah(t), Ih(t), Th(t), Rh(t), Sm(t), Em(t), Im(t)) ∈ R10
+ : Nh ≤ αh

µh
, Nm ≤ αm

µm
}

(2.7)

attracts all solutions in R10
+ and is positively invariant.

Proof
We define a region within the non-negative orthant R10

+ that contains uniformly bounded solutions to the model
2.3, encompassing the human and mosquito populations. In view of these populations given in equations 2.1 and
2.2 respectively, we have

dNh
dt

=
dSh
dt

+
dVh
dt

+
dEh
dt

+
dAh
dt

+
dIh
dt

+
dTh
dt

+
dRh
dt

(2.8)

and
dNm
dt

=
dSm
dt

+
dEm
dt

+
dIm
dt

(2.9)
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In the context of model 2.3, equation 2.8 becomes

dNh
dt

= αh − µhNh − δhIh − δhTh ≤ αh − µhNh (2.10)

Equation 2.10 implies that dNh

dt ≤ 0. Thus, the region Ω represents a set that is positively invariant. By solving
equation 2.10, we derive

Nh(t) → αh

µh
as t→ ∞

Thus, Nh(t) ∈ [0, αh

µh
].

Similarly; Nm(t) ∈ [0, αm

µm
].

2.2. The Equilibrium Points
2.2.1. The Disease-Free Equilibrium Point (DFE): At the DFE, no infection or recovery occurs. Consequently, all
the compartments associated with infection: Eh, Ah, Ih, Th, Rh, Em, Im are set to zero in model 2.3. By solving
the remaining compartments at equilibrium, we derive the DFE as

E0
=

(
S
0
h =

αh(ξh + µh)

µh(ξh + νh + µh)
, V

0
h =

αhνh

µh(ξh + νh + µh)
, E

0
h = 0, A

0
h = 0, I

0
h = 0, T

0
h = 0, R

0
h = 0, S

0
m =

αm

µm
, E

0
m = 0, I

0
m = 0

)
. (2.11)

2.3. Local Asymptomatic Stability Analysis

2.3.1. The Effective Reproduction Number In a completely susceptible population, the effective reproduction
number, Re, is defined as the expected number of secondary cases generated by an infected individual during
its infectious period. It corresponds to the spectral radius of the next generation matrix G = FV −1 associated with
model 2.3, where:

F =



0 0 0 0 0 βhmϵ Sh+(1−σh)βhmϵ Vh

Nh

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 βmhϵ Sm

Nh
0 0 0

0 0 0 0 0 0


(2.12)

V =



ϑh + κh + µh 0 0 0 0 0

−ϑh τh + ψh + µh 0 0 0 0

−κh −τh γh + δh + µh 0 0 0

0 0 −η γh ρh + δh + µh 0 0

0 0 0 0 κm + µm 0

0 0 0 0 −κm µm


(2.13)

where k1 = νh + µh, k2 = σh + ξh + µh, k3 = ϑh + κh + µh, k4 = τh + φh + µh, k5 = γh + δh + µh, k6 = ρh +
δh + µh, k7 = wh + µh, k8 = µm, k9 = κm + µm and k10 = µm. Hence, the Re for the system 2.3 is given by

Re = ρ(FV −1) =
√

RhRm =

√
βmh βhm αm κm µh

(
ϑhτh + k4κh

) (
(σh − 1)νh − µh − ξh

)
ϵ2

αh k23k
2
4k

2
5 k9 µ

2
m (ξh + νh + µh)2

(2.14)

where

Rh =
βmh µh

(
ϑhτh + k4κh

)
ϵ

αh k23 k
2
4 k

2
5 (ξh + νh + µh)2

(2.15)
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Rm =
βhm αm κm k9

(
(σh − 1)νh − µh − ξh

)
ϵ

µ2
m k9

(2.16)

Therefore, malaria can be completely eliminated from the population if Re < 1, as stated in the following theorem:

2.4. Stability Analysis of the Disease free Equilibrium

Theorem 3
The DFE, E0, of model (2.3) and represented by Equation (2.11), will be locally-asymptotically stable (LAS) when
Re < 1, and unstable when Re > 1.

Proof
To prove Theorem (3), we derive the Jacobian matrix of model (2.3) at E0 as

J(E0) =



−k1 ξh 0 0 0 0 ωh 0 0 −βhmϵ αh(ξh+µh)(νh+µh)(σh+ξh+µh)
µh(ξh+νh+µh)αh(σh+ξh+µh+νh)

νh −k2 0 0 0 0 0 0 0 (−1+σh)βhmϵ νh(νh+µh)(σh+ξh+µh)
µh(ξh+νh+µh)(σh+ξh+µh+νh)

0 0 −k3 0 0 0 0 0 0 − (νh+µh)ϵ (σh+ξh+µh)(−αh(ξh+µh)+(−1+σh)αhνh)βhm

µh(ξh+νh+µh)αh(σh+ξh+µh+νh)

0 0 ϑh −k4 0 0 0 0 0 0

0 0 κh τh −k5 0 0 0 0 0

0 0 0 0 η γh −k6 0 0 0 0

0 0 0 φh γh (1− η) ρh −k7 0 0 0

0 0 0 0 −βmhϵ αm(νh+µh)(σh+ξh+µh)
µmαh(σh+ξh+µh+νh)

0 0 −k8 0 0

0 0 0 0 βmhϵ αm(νh+µh)(σh+ξh+µh)
µmαh(σh+ξh+µh+νh)

0 0 0 −k9 0

0 0 0 0 0 0 0 0 κm −k10



(2.17)

The first five eigenvalues of the Jacobian matrix (2.17) are given as

λ∗i =


−k1
−k2
−k6
−k7
−k8

 (2.18)

The following sub-matrix can be used to obtain the remaining eigenvalues

J =



−k3 0 0 0 − (νh+µh)ϵ (σh+ξh+µh)(−αh(ξh+µh)+(−1+σh)αhνh)βhm

µh(ξh+νh+µh)αh(σh+ξh+µh+νh)

ϑh −k4 0 0 0

κh τh −k5 0 0

0 0 βmhϵ αm(νh+µh)(σh+ξh+µh)
µmαh(σh+ξh+µh+νh)

−k9 0

0 0 0 κm −k10


(2.19)

The chareacteristic equation of matrix 2.19 is given as

α5λ
5 + α4λ

4 + α3λ
3 + α2λ

2 + α1λ+ α0 = 0 (2.20)

where
α5 = 1

(k10k3k4k5 + k10k3k4k9 + k10k3k5k9 + k10k4k5k9 + k3k4k5k9)−R2
e (2.21)
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α0 = µmk3k4k5k9(1−R2
e) (2.22)

Based on the Routh-Hurwitz criterion [49], for the matrix J to have all eigenvalues real and negative, it must
satisfy the conditions

1. all coefficients αi are positive, and

2. the Hurwitz matrices Hi are positive for i = 2, 3, 4 and 5.

It is obvious that α2, α3, α4, α5 are positive since all the associated term are positive.If the Re < 1, then equations
2.21 and 2.22, imply that α0 > 0. and α1 > 0. This shows that the DFE is stable since Re < 1 and it reveals that
malaria infection can be curtail. Given the follwoing Hurwitz matrices from the characteristic equation 2.20: H1 =

α4 > 0, H2 = det

(
α4 α2

α5 α3

)
> 0,H3 = det

 α4 α2 α0

α5 α3 α1

0 α4 α2

 > 0, H4 = det


α4 α2 α0 0
α5 α3 α1 0
0 α4 α2 α0

0 α5 α3 α1

 > 0,

H5 = det


α4 α2 α0 0 0
α5 α3 α1 0 0
0 α4 α2 α0 0
0 α5 α3 α1 0
0 0 α4 α2 α0

 > 0.

Since Hi > 0,∀ i = 1, . . . , 5, this confirms the stability of the system. When Re < 1, the eigenvalues of matrix
(2.19) are both real and negative, implying that the DFE, E0, is LAS. On the other hand, if Re > 1, the eigenvalues
become unstable, resulting in the instability of E0. Furthermore, by the Poincaré-Lyapunov theorem, since the two
conditions above are satisfied and jacobian J(E0) has all eigenvalues with negative real parts, as demonstrated in
(2.18), E0 is confirmed to be locally asymptotically stable.

2.5. Global Asymptotic Stability (GAS)

The Disease-Free Equilibrium (DFE) for global asymptotic stability of system 2.3 is analyzed through the
application of the Lyapunov direct method, as outlined in [11, 35, 75]. By constructing an appropriate Lyapunov
function, we show that the DFE is GAS if Re < 1. This ensures that, regardless of the initial conditions, the
population will tend to the DFE over time, meaning that the disease will eventually be eradicated in the system:{

dU
dt = F(U,V)
dV
dt = G(U,V)

(2.23)

where the uninfected population is denoted by U = (Sh, Vh, Rh, Sm) and V = (Eh, Ah, Ih, Th, Em, Im) represents
the infected population. Thus, the point E0 = (U∗, 0) is said to be GAS if Re < 1.

Theorem 4
The DFE is said to be GAS in Ω = (Sh(t), Vh(t), Eh(t), Ah(t), Ih(t), Th(t), Rh(t), Sm(t), Em(t), Im(t)) ∈ R10

+ if
Re<1 and the two conditions below are satisfied:

1. C1: dUdt = F(U,0), E0 is GAS

2. C2: G(X,Y) = AV −G∗(U, V ), G∗(U, V ) ≥ 0 for (U, V ) ∈ Ω

Proof
For C1, model 2.3 gives

F(U,0) =


αh + whRh + ξhVh − νhSh − µhSh

νhSh − ξhVh − µhVh

ϑhAh + γh(1− η)Ih + ρhTh − whRh − µhRh

αm − µmSm

(2.24)
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Thus, E0 =
(
S0
h = αh(ξh+µh)

µh(ξh+νh+µh)
, V 0
h = αhνh

µh(ξh+νh+µh)
, E0

h = 0, A0
h = 0, I0h = 0, T 0

h = 0, R0
h = 0, S0

m = αm

µm
,

E0
m = 0, I0m = 0

)
is GAS for dUdt = F(U,0). By adopting the technique of integrating factor, we have

dSh
dt

+ (νh + µh)Sh = αh + ξhVh + whRh

d

dt

(
She

(νh+µh)t
)
= αhe

(νh+µh)t + (ξhVh + ωhRh)e
(νh+µh)t

She
(νh+µh)t = αh

∫
e(νh+µh)tdt+

∫
(ξhVh + ωhRh)e

(νh+µh)tdt

She
(νh+µh)t =

αhe
(νh+µh)t

(νh + µh)
+

∫
(ξhVh + ωhRh)e

(νh+µh)tdt

Sh =
αh

(νh + µh)
+
ξhVh + ωhRh
νh + µh

e−(νh+µh)t −
∫

ξhV
′

h + ωhR
′

h

νh + µh
e(νh+µh)tdt

Hence, Sh(t) → αh

(νh+µh)
as t→ ∞.

Using a similar approach, Sm(t) → αm

µm
as t→ ∞. Thus, this implies that equation 2.24 is globally convergent

in Ω
For C2:

G(X,Y) =



λhSh + (1− σh)λhVh − ϑhEh − κhEh − µhEh

ϑhEh − τhAh − φhAh − µhAh

κhEh + τhAh − γhIh − (δh + µh)Ih

ηγhIh − ρhTh − (δh + µh)Th

λmSm − κmEm − µmEm

κmEm − µmIm

(2.25)

= AV −G∗(U, V )

where

A =



−ϑh − κh − µh 0 0 0 0 0
ϑh −τh − φh − µh 0 0 0 0

κh τh −γh − δh − µh 0 0 0

0 0 ηγh −ρh − δh − µh 0 0

0 0 0 0 −κm − µm 0

0 0 0 0 κm −µm


and

G∗(U,V) =



−(λhSh + (1− σh)λhVh)

0
0

0

−λmSm
0


Condition C2 is not satisfied since G∗(U,V) ≤ 0. Hence, for Re < 1, E0 = (U∗, 0) may not be Globally
Asymptomatically Stable.
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2.5.1. The Endemic Equilibrium Point (EEP) All disease states in model 2.3 are considered positive at the
EEP. In view of this, when S∗∗

h in the model 2.3 is positive, then a unique EEP exists. This is equivalent
to having Re > 1. Thus, the EEP is defined as E1 = (S∗∗

h , V
∗∗
h , E∗∗

h , A
∗∗
h , I

∗∗
h , T ∗∗

h , R∗∗
h , S

∗∗
m , E

∗∗
m , I

∗∗
m ) and it

satisfies dSh

dt = dVh

dt = dEh

dt = dAh

dt = dIh
dt = dTh

dt = dRh

dt = dSm

dt = dEm

dt = dIm
dt = 0. In view of the complex nature

of system 2.3, all the state variables are represented in terms of the forces of infection λ∗∗h and λ∗∗m at the steady
state. Accordingly,



S
∗
h∗ =

k6k5αhk4
(
(σh − 1)λ∗∗

h − k2
)
k7k3

k6λ
∗∗
h

(k4κh + ψhτh)wh

(
(σh − 1)λ∗∗

h
+ νhσh − νh − k2

)
γh (1 − η) + A (σh − 1)λ∗∗

h
2 + Bλ∗∗

h
− k3k4k5k6k7 (−k1k2 + νhξh)

V
∗
h ∗ =

νhk3k4k6k5k7αh

k6λ
∗∗
h

(k4κh + ψhτh)wh

(
(σh − 1)λ∗∗

h
+ νhσh − νh − k2

)
γh (1 − η) + A (σh − 1)λ∗∗

h
2 + Bλ∗∗

h
− k3k4k5k6k7 (−k1k2 + νhξh)

E
∗
h∗ =

k4λ
∗∗
h

(
k2 + λ∗∗

h + νh − λ∗∗
h σh − νhσh

)
k6k5k7αh

k6λ
∗∗
h

(k4κh + ψhτh)wh

(
(σh − 1)λ∗∗

h
+ νhσh − νh − k2

)
γh (1 − η) + A (σh − 1)λ∗∗

h
2 + Bλ∗∗

h
− k3k4k5k6k7 (−k1k2 + νhξh)

A
∗
h ∗

λ∗∗
h ψh

(
k2 + λ∗∗

h + νh − λ∗∗
h σh − νhσh

)
k6k5k7αh

k6λ
∗∗
h

(k4κh + ψhτh)wh

(
(σh − 1)λ∗∗

h
+ νhσh − νh − k2

)
γh (1 − η) + A (σh − 1)λ∗∗

h
2 + Bλ∗∗

h
− k3k4k5k6k7 (−k1k2 + νhξh)

I
∗
h∗ =

(k4κh + ψhτh)λ∗∗
h

(
k2 + λ∗∗

h + νh − λ∗∗
h σh − νhσh

)
k6k7αh

k6λ
∗∗
h

(k4κh + ψhτh)wh

(
(σh − 1)λ∗∗

h
+ νhσh − νh − k2

)
γh (1 − η) + A (σh − 1)λ∗∗

h
2 + Bλ∗∗

h
− k3k4k5k6k7 (−k1k2 + νhξh)

T
∗
h∗ =

η γh (k4κh + ψhτh)λ∗∗
h

(
k2 + λ∗∗

h + νh − λ∗∗
h σh − νhσh

)
k7αh

k6λ
∗∗
h

(k4κh + ψhτh)wh

(
(σh − 1)λ∗∗

h
+ νhσh − νh − k2

)
γh (1 − η) + A (σh − 1)λ∗∗

h
2 + Bλ∗∗

h
− k3k4k5k6k7 (−k1k2 + νhξh)

R
∗
h∗ =

λ∗∗
h αh (k6 (k4κh + ψhτh) γh (1 − η) + ϕhψhk5k6 + η ρhγh (k4κh + ψhτh))

(
(σh − 1)λ∗∗

h + νhσh − νh − k2
)

k6λ
∗∗
h

(k4κh + ψhτh)wh

(
(σh − 1)λ∗∗

h
+ νhσh − νh − k2

)
γh (1 − η) + A (σh − 1)λ∗∗

h
2 + Bλ∗∗

h
− k3k4k5k6k7 (−k1k2 + νhξh)

S
∗
m∗ =

αm

λ∗∗
m + µm

E
∗∗
m =

λ∗∗
m αm

k9
(
λ∗∗
m + µm

)
I
∗
m∗ =

κmλ
∗∗
m αm

µmk9
(
λ∗∗
m + µm

)
(2.26)

where A = (ϕhψhk5k6 + η ρhγh (k4κh + ψhτh))wh − k3k4k5k6k7 and
B = (νhσh − k2 − νh) (ϕhψhk5k6 + η ρhγh (k4κh + ψhτh))wh − k3k4k5k6k7 (k1σh − k1 − k2) with the forces
of infections defined by

λ∗∗h =
βhmϵI

∗∗
m

N∗∗
h

and λ∗∗m =
βmhϵI

∗∗
h

N∗∗
h

.

Theorem 5
The EEP, denoted as E1, will be GAS whenever Re > 1.

Proof
The Invariance Principle of Lyapunov-Lasalle, which entails examining the Lyapunov candidate function for E1, is
used to prove the theorem.

V =
1

2

(
Sh − S∗∗

h

)2
+

1

2

(
Vh − V ∗∗

h

)2
+

1

2

(
Eh − E∗∗

h

)2
+

1

2

(
Ah −A∗∗

h

)2
+

1

2

(
Ih − I∗∗h

)2
+

1

2

(
Th − T ∗∗

h

)2
+

1

2

(
Rh −R∗∗

h

)2
+

1

2

(
Sm − S∗∗

m

)2
+

1

2

(
Em − E∗∗

m

)2
+

1

2

(
Im − I∗∗m

)2
(2.27)
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Taking the derivative of (4.5),

V̇ =
(
Sh − S∗∗

h

)
Ṡh +

(
Vh − V ∗∗

h

)
V̇h +

(
Eh − E∗∗

h

)
Ėh +

(
Ah −A∗∗

h

)
Ȧh +

(
Ih − I∗∗h

)
İh +

(
Th − T ∗∗

h

)
Ṫh

+
(
Rh −R∗∗

h

)
Ṙh +

(
Sm − S∗∗

m

)
˙Sm +

(
Em − E∗∗

m

)
Ėm +

(
Im − I∗∗m

)
˙Im‘

=

((
αh + whRh + ξhVh)Sh +

(
νh + λh + µh)S

∗∗
h Sh + νhShVh +

(
(1− σh)λh + ξh + µh)V

∗∗
h Vh+(

λhSh + (1− σh)λhVh
)
Eh +

(
ϑh + κh + µh)E

∗∗
h Eh + ϑhEhAh + (τh + φh + µh)A

∗∗
h Ah+(

κhEh + τhAh
)
Ih +

(
γh + δh + µh)I

∗∗
h Ih + ηγhIhTh + (ρh + δh + µh)T

∗∗
h Th+

(φhAh + γh(1− η)Ih + ρhTh)Rh + (wh + µh)R
∗∗
h Rh + αmSm + (λm + µm)S∗∗

m Sm + λmSmEm+

(κm + µm)E∗∗
mEm + κmEmIm + µmI

∗∗
m Im

)
−((

νh + λh + µh)Sh +
(
αh + whRh + ξhVh)S

∗∗
h Sh +

(
(1− σh)λh + ξh + µh)Vh + νhShV

∗∗
h Vh+(

ϑh + κh + µh)Eh +
(
λhSh + (1− σh)λhVh

)
E∗∗
h Eh + (τh + φh + µh)Ah + ϑhEhA

∗∗
h Ah+(

γh + δh + µh
)
Ih +

(
κhEh + τhAh)I

∗∗
h Ih + (ρh + δh + µh)Th + ηγhIhT

∗∗
h Th+

(wh + µh)Rh + (φhAh + γh(1− η)Ih + ρhTh)R
∗∗
h Rh + (λm + µm)Sm + αmS

∗∗
m Sm + (κm + µm)Em+

λmSmE
∗∗
mEm + µmIm + κmEmI

∗∗
m Im

)
(2.28)

Therefore, the EEP, E1, is the largest compact invariant set within
{(

Sh, Vh, Eh, Ah, Ih, Th, Rh,

Sm, Em, Im

)
∈ Ω : V ≤ 0

}
. Thus, using the Lyapunov-LaSalle Invariance Principle, it can be shown that all

solutions in the set Ω will converge to E1 as t→ ∞ when Re > 1. As a result, E1, is GAS. Notably, this discovery
has epidemiological significance because it shows that malaria will persist and spread throughout a community as
long as Re > 1..

3. Numerical Simulation

The dynamic behavior of the malaria model, which is presented as an initial value problem in 2.3, is examined in
this section. Numerical simulations are conducted with ode45 solver on MATLAB. The model is simulated using
the following initial conditions:

Sh(0) = 6083.2, Vh(0) = 800, Eh(0) = 0, Ah(0) = 854, Ih(0) = 2000,

Th(0) = 683.2, Rh(0) = 200, Sm(0) = 46000, Em(0) = 2500, Im(0) = 1500.
(3.1)

3.1. Initial Conditions for Malaria Transmission Model

In calibrating the initial conditions for our malaria transmission model, we adopt field-informed assumptions based
on prevalence data from endemic settings and consider the ten classes of model 2.3.

3.1.1. Human Population Dynamics: Assuming a total human population of Nh(0) = 10,000, and a malaria
prevalence of Ph = 0.20 (20%), we infer an initial infected human population of:

Ih(0) = Ph ×Nh(0) = 2000 individuals.
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Recent studies indicate that 57.3%of infected individuals are asymptomatic, while the remaining 42.7% are
symptomatic [25]. This yields:

Ah(0) = 0.573× Ih(0) = 1146, I
sym
h (0) = 0.427× Ih(0) = 854.

In Nigeria, a high proportion of individuals with malaria-like illness receive some form of antimalarial treatment,
either through formal health facilities, pharmacies, chemists, herbal remedies, or self-medication at home. Based
on national survey data and peer-reviewed studies, it is estimated that approximately 80% of such individuals obtain
treatment. This estimate aligns with findings from a national opinion poll reporting that the majority of symptomatic
individuals seek treatment through hospitals (41%), chemists (22%), pharmacies (21%), herbal remedies (11%), or
over-the-counter drugs (7%) [46], as well as research showing that more than 60% of uncomplicated malaria cases
in public health facilities received treatment [27], and among those seeking care, 72% underwent diagnostic testing
prior to treatment [19].

Th(0) = 0.80× Ih(0) = 683.2.

Assuming no individuals are in the exposed class at t = 0, we set:

Eh(0) = 0.

If 10% of the susceptible population has been vaccinated, we initialize the vaccinated class as:

Vh(0) = 0.10× (Nh(0)− Ih(0)) = 0.10× 8000 = 800.

Assuming 10% of previously infected individuals have recovered with immunity:

Rh(0) = 0.10× Ih(0) = 200.

The susceptible human population is then obtained by subtraction:

Sh(0) = Nh(0)−
(
Vh(0) + Eh(0) +Ah(0) + I

sym
h (0) + Th(0) +Rh(0)

)
= 10,000− (2400 + 0 + 1146 + 854 + 683.2 + 200) = 4483.2. (3.2)

3.1.2. Mosquito Population Dynamics: For the mosquito vector, we assume an initial population of Nm(0) =
50,000 with an average of patent infection prevalence of 3% [3, 16, 29, 50, 67]. This results in:

Im(0) = Pm ×Nm(0) = 1500 infected mosquitoes.

Assuming 5% of mosquitoes are in the exposed (latent) stage:

Em(0) = 0.05×Nm(0) = 2500.

The susceptible mosquito population is:

Sm(0) = Nm(0)− (Em(0) + Im(0)) = 50,000− (2500 + 1500) = 46,000.

Parameter Estimation for Malaria Transmission Dynamics

To ensure validity and realism in the development of a malaria transmission model that is biologically plausible,
thorough parameter estimate is necessary. Prior modeling research and empirical data are employed to estimate the
model parameter values.

Based on Nigeria’s average life expectancy of 54.4 years from 2015 to 2024 [74, 81, 77], we calculate human
natural mortality rate as:

µh =
1

54.4× 365
= 5.04× 10−5 d−1
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For a baseline population Nh(0) = 10,000, the human recruitment rate is:

αh = µhNh(0) = (5.04× 10−5)(10,000) = 0.504 individuals d−1,

ensuring demographic equilibrium in the disease-free state [78].
For Anopheles mosquitoes with a natural mortality rate of 18 days and baseline population Nm(0) = 50,000.
Nigeria has an average of 55 million cases of malaria and 90,000 malaria mortality (δh) annually. The mortality

rate due to malaria is calculated as δh = 90000
500000 = 0.0000018 per day [54].

The total rate leaving the exposed human class is k3. If the mean exposed duration is DE = 11 days and
pA = 0.573 (57.3% go asymptomatic), pI = 0.427 (42.7% become symptomatic), then

k3 =
1

DE
=

1

11
= 0.0909 day−1,

ϑh = pA k3 = 0.573× 0.0909 = 0.0520 day−1,

κh = pI k3 = 0.427× 0.0909 = 0.0388 day−1.

If the average mosquito extrinsic incubation period, DEIP = 11 days:

κm =
1

DEIP
=

1

11
= 0.0909 day−1.

assuming that the human and mosquito natural mortality rates, µh and µm are sufficiently small to be neglected
[32, 65, 76]

From the concept of half life, t 1
2
, the rate of loss of immunity for t 1

2
= 1 year is given by ωh = ln(2)

365 ≈
0.00190 day−1 [31].

The average malaria vaccine efficacy can be taken as σh = 60.5% [70, 66, 22, 79], µm = 0.1429 [47] and
Λm = 0.7 [60].

3.2. Sensitivity Analysis

The local sensitivity index (SI) for each of the model parameters in system 2.3 is obtained by calculating the
normalized forward sensitivity index with respect to a parameter Ψ [4, 10, 12, 18, 75, 35]. Therefore, Re is studied
in relation to slight variations in parameter values for both positive and negative SI.

Definition 1
In relation to a parameter Ψ, the normalized forward SI of Re is defined by

SRe

Ψ =
∂Re

∂Ψ
× Ψ

Re
(3.3)

The SI expression for each of the parameters in Re is obtained using equation 3.3. The SI of Re with regard to
νh, for example, is provided as

SRe
νh

=
∂Re

∂νh
× νh

Re
≈ − 11

100

Consequently, equation 3.3 can be used to get the SI for each parameter of Re. Therefore, the parameter values
in Table 2.1 are used to evaluate the SI of each parameter with respect to Re.

Table 3.2 reveals that the parameters µh, αm, βhm, βmh, κm, ξh, κh, τh, and ϵ have positive sensitivity indices
(SI), whereas αh, γh, νh, µm, σh, δh, φh, and ϑh have negative values. A positive SI signifies that Re varies in the
same direction as the parameter, while a negative SI indicates an opposite effect. For instance, SRe

νh
≈ −0.113

shows that doubling the vaccine uptake rate would reduce Re by about 11.3%, thus lowering the potential
for disease spread. In contrast, SRe

βhm
≈ 0.5 implies that a 100% rise in the mosquito-to-human transmission

probability would lead to a 50% increase in Re. The most influential parameters are µm (S ≈ −1.31), ϵ (S ≈
1.00), and the transmission probabilities βhm, βmh (S ≈ 0.5), underscoring the importance of vector control and
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Table 3.1. Baseline parameter values and their sources

Parameter Value Source
αh 0.004215 Estimated
αm 0.7000 [60]
µh 5.04× 10−5 Estimated
µm 0.1429 Estimated
δh 1.8× 10−6 Estimated
ωh 0.00190 Estimated
βhm 0.729255 [7]
βmh 0.837773 [7]
νh [0, 1] Assumed
ϵ 0.49 [53]
ξh 0.0015 Assumed
σh 0.605 Estimated
ϑh 0.0520 Estimated
κh 0.0388 Estimated
κm 0.0909 Estimated
τh 0.05 Assumed
φh 0.01 Assumed
γh 0.0092 [53]
η [0, 1] Assumed
ρh 0.001 Assumed

Table 3.2. Partial derivatives ∂Re
∂Ψ and normalized sensitivity indices SRe

Ψ for each parameter at baseline

Parameter
∂Re
∂Ψ

SRe

Ψ

αh −57.08 −0.5000
αm +0.4087 +0.5000
µh +9.91× 103 +0.5004
µm −4.254 −1.3056
δh −5.42 −9.73× 10−5

ωh 0 0.0000
βhm +0.3426 +0.5000
βmh +0.2926 +0.5000
νh −19.50 −0.1129
ϵ +0.6826 +1.0000
ξh +20.00 +0.1092
σh −0.4202 −0.2585
ϑh −0.0206 −0.0225
κh +0.0215 +0.0228
κm +1.146 +0.3056
τh +0.0441 +0.0441
φh −0.0439 −0.0439
γh −27.09 −0.4972
η 0 0.0000
ρh 0 0.0000

contact reduction. Therefore, strategies that strengthen vaccine uptake and efficacy (linked to negative SI) and
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simultaneously suppress mosquito survival and biting frequency (linked to positive SI) are the most effective in
reducing malaria transmission.

The computed values of the partial derivatives
(
∂Re

∂Ψ

)
describe how Re responds to infinitesimal changes in

each parameter. A positive derivative implies that increasing the parameter raises Re, thereby enhancing malaria
transmission, whereas a negative derivative indicates that increasing the parameter reducesRe and supports disease
control.

The relative magnitudes of these derivatives highlight the parameters to which Re is most responsive. In
particular, µh, γh, νh, ξh, and µm exhibit the largest absolute derivative values, showing that even small shifts
in these parameters can substantially alter transmission potential. By contrast, parameters such as ωh, η and ρh
display near-zero derivatives, indicating negligible impact on Re under the baseline conditions.

When considered alongside the normalized sensitivity indices, these findings emphasize that mosquito mortality
µm (negative influence), human-to-mosquito and mosquito-to-human transmission probabilities (βhm, βmh), and
the contact rate ϵ (positive influence) are the dominant drivers of malaria spread. On the intervention side, vaccine
uptake νh and efficacy σh (both negative influence) represent important levers for reducing Re. Thus, parameters
with both large derivative magnitudes and strong sensitivity indices emerge as priority targets for malaria control,
offering a quantitative foundation for guiding interventions and optimizing resource allocation.

4. Formulation of an Optimal Control Problem (OCP)

This section applies optimal control theory to determine the most effective combination of interventions for
reducing malaria transmission. In the context of malaria epidemiology, the objective is to minimize the disease
burden in both human and mosquito populations, while accounting for the economic and operational costs of
implementing the control strategies.

We introduce three time-dependent interventions:

(i) ψ1(t) = Insecticide-Treated Nets (ITNs);

(ii) ψ2(t) = Improved Diagnostic Surveillance; and

(iii) ψ3(t) = Environmental Sanitation.

(i) The control variable 0 ≤ ψ1(t) ≤ 1 represents the use of ITNs, which serve as a personal protection measure
against mosquito bites. The use of ITNs reduces the rate at which susceptible humans are bitten by infectious
mosquitoes, and simultaneously reduces the likelihood of mosquitoes becoming infected after biting
infectious humans. Thus, this intervention decreases the effective contact between humans and mosquitoes.
As a result, the forces of infection for both populations are modified as follows: the human force of infection
becomes λch = (1− ψ1(t))λh, and the mosquito force of infection becomes λcm = (1− ψ1(t))λm.

(ii) The control variable 0 ≤ ψ2(t) ≤ 1 represents improved diagnostic surveillance and case detection efforts,
such as enhanced laboratory testing, rapid diagnostic tools, and active case finding. This intervention
increases the rate at which exposed humans are correctly detected and moved into either asymptomatic or
symptomatic compartments for appropriate management. As a result, the disease progression parameters are
modified to reflect earlier detection. Specifically, the rate of progression from Eh(t) to Ih(t) is adjusted as
κch = κh + θ1ψ2(t), and the rate from asymptomatic to symptomatic becomes τ ch = τh + θ2ψ2(t), where θ1
and θ2 are positive constants representing the effectiveness of surveillance.

(iii) The control variable 0 ≤ u3(t) ≤ 1 denotes environmental sanitation efforts aimed at disrupting mosquito
breeding habitats. Such interventions may include drainage of stagnant water, proper waste disposal, clearing
of bushes, and other vector habitat modification strategies. These efforts reduce the mosquito population by
decreasing the recruitment rate of mosquitoes and increasing their mortality rate. Consequently, mosquito
recruitment rate is modified as αcm = (1− u3(t))αm, and the natural mosquito death rate is increased to
µcm = µm + u3(t)µm.
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By formulating an objective functional that balances infection prevalence against the costs and feasibility of
these interventions, we aim to identify the optimal time-dependent profiles of ψi(t), i = 1, 2, 3 that achieve the
greatest reduction in malaria cases and vector density over the endemic region:

J(ψ1, ψ2, ψ3) =

∫ tf

0

[
κ1Ah(t) + κ2Ih(t) + κ3Im(t) +

1

2

(
ω1ψ

2
1(t) + ω2ψ

2
2(t) + ω3ψ

2
3(t)
)]
dt, (4.1)

subject to the non-linear ODEs below:

dSh

dt = αh + whRh + ξhVh − νhSh − λchSh − µhSh,

dVh

dt = νhSh − (1− σh)λ
c
hVh − ξhVh − µhVh,

dEh

dt = λchSh + (1− σh)λ
c
hVh − ϑhEh − κchEh − µhEh,

dAh

dt = ϑhEh − τ chAh − φhAh − µhAh,

dIh
dt = κchEh + τ chAh − γhIh − (δh + µh)Ih,

dTh

dt = ηγhIh − ρhTh − (δh + µh)Th,

dRh

dt = φhAh + γh(1− η)Ih + ρhTh − whRh − µhRh,

dSm

dt = (1− ψ3(t))αm − λcmSm − (1 + ψ3(t))µmSm,

dEm

dt = λcmSm − κmEm − (1 + ψ3(t))µmEm,

dIm
dt = κmEm − (1 + ψ3(t))µmIm,

(4.2)

with the initial conditions given by 2.4. The modified forces of infection are defined as:

λch = (1− ψ1(t))
βhmϵIm
Nh

, λcm = (1− ψ1(t))
βmhϵIh
Nh

. The modified progression rates under improved surveillance are:

κch = κh + θ1ψ2(t), τ ch = τh + θ2ψ2(t)

where θ1, θ2 are positive constants reflecting the strength of the surveillance, tf stands for the final time for
the control strategies implementation. The balancing weight constants, κi > 0, i = 1, 2, 3, are for asymptomatic
humans, infectious humans and infectious mosquitoes. The terms 1

2ωiψ
2
i (t), i = 1, 2, 3 denote the costs associated

with implementing insecticide-treated nets (ITNs), improved diagnostic surveillance, and environmental sanitation,
respectively.

We use the idea from [6, 30, 37, 48] to get the best controls in order to minimize the objective functional

J(ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t)) = min

Φ
J(ψ1(t), ψ2(t), ψ3(t)) (4.3)

where Φ = ψi(t), i = 1, 2, 3 are lebesque measurable functions with ψi(t) ∈ [0, 1] : 0 ≤ t ≤ tf because the state
and control variables are non-negative, Φ exists and is bounded, closed, and convex.

The application of optimal control allows for the investigation of optimal intervention strategies in accordance
with Pontryagin’s Maximum Principle. This principle is employed to reformulate the controlled system equations
and the objective functional into a minimization problem involving the pointwise Lagrangian L with respect to
ψ1(t), ψ2(t), and ψ3(t). The aim is to determine the optimal time-dependent control profiles that minimize L.
This approach aligns with the standard methodology presented in [9], where the Hamiltonian H is analyzed to
characterize the necessary conditions for optimality and to derive the optimal control strategy. The Hamiltonian is
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given as:

H = κ1Ah + κ2Ih + κ3Im +
1

2

(
ω1ψ

2
1 + ω2ψ

2
2 + ω3ψ

2
3

)
+ λSh

(αh + whRh + ξhVh − νhSh − λchSh − µhSh)

+ λVh
(νhSh − (1− σh)λ

c
hVh − ξhVh − µhVh)

+ λEh
(λchSh + (1− σh)λ

c
hVh − ϑhEh − κchEh − µhEh)

+ λAh
(ϑhEh − τ chAh − φhAh − µhAh)

+ λIh (κ
c
hEh + τ chAh − γhIh − (δh + µh)Ih)

+ λTh
(ηγhIh − ρhTh − (δh + µh)Th)

+ λRh
(φhAh + γh(1− η)Ih + ρhTh − whRh − µhRh)

+ λSm
((1− ψ3)αm − λcmSm − (1 + ψ3)µmSm)

+ λEm
(λcmSm − κmEm − (1 + ψ3)µmEm)

+ λIm (κmEm − (1 + ψ3)µmIm) .

(4.4)

Theorem 6
For the OCP given by (4.1)-(4.2) with the initial conditions at t = 0, there exists (ψ∗

1(t), ψ
∗
2(t), ψ

∗
3(t)) ∈ U such

that J(ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t)) = min

ψ1(t),ψ2(t),ψ3(t)∈U
J(ψ1(t), ψ2(t), ψ3(t)).

Proof
The results in Theorem 6 are established by adopting the techniques in [9, 14, 15, 28]. Thus, the following
characteristics will be established:

i The control set U associated with each state variable equation is non-empty, convex and closed.

ii Non-negative solutions of the system 4.2 exists and it is bounded.

iii The boundedness of each right-hand side expression in model 2.3 is a linear function of U, which varies with
time and depends on the state variables.

iv The integrand in the objective function 4.1, expressed as

κ1Ah(t) + κ2Ih(t) + κ3Im(t) +
1

2

(
ω1ψ

2
1(t) + ω2ψ

2
2(t) + ω3ψ

2
3(t)
)

convex in U.

i The control set U is non-empty and closed since it contains all of its limit points. Therefore, given λ ∈ [0, 1] and
any two arbitrary points x, y ∈ U, where x = (x1,x2,x3) and y = (y1,y2,y3), then λxi + (1− λ)yi ∈ U
for i = 1, 2, 3 satisfying the convexity property of the control set.

ii We take into consideration the objective function J(ψ1(t), ψ2(t), ψ3(t)) since the state and control variables
in system 4.2 are positive and the control set U is closed and convex, as demonstrated above. Finding the
ideal control is made easier by the convexity that means every local minimum is also a global minimum
as the integrand of J is a convex function of the control variables ψ1(t), ψ2(t), ψ3(t) on the control set U.
Additionally, for any admissible control ψi(t) = (ψ1(t), ψ2(t), ψ3(t)), there exist positive constants χ1, χ2

and ϵ > 1, such that
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J =κ1Ah(t) + κ2Ih(t) + κ3Im(t) +
1

2

(
ω1ψ

2
1(t) + ω2ψ

2
2(t) + ω3ψ

2
3(t)
)

≥ ω1ψ
2
1(t) + ω2ψ

2
2(t) + ω3ψ

2
3(t)

≥ ω1ψ
2
1(t) + ω2ψ

2
2(t) + ω3ψ

2
3(t)− χ2 Since ω1ψ − ω1 ≤ 0

≥ min
(1
2
ω1 +

1

2
ω2 +

1

2
ω3

)
(ψ2

1(t) + ω2ψ
2
2(t) + ω3ψ

2
3(t))− ω1

≥ χ1∥u∥2,

(4.5)

where χ2 = min
(
1
2ω1 +

1
2ω2 +

1
2ω3

)
, χ1ω1 and ϵ = 2.

It is noted that the inequality guarantees that J is convex with regard to the control variables. An optimal
control is implied by the convexity of J, the boundedness of the state variables, and both of these factors.
Lastly, using the Direct Method in the Calculus of Variations, we determine that the closed and convex
control set U contains the optimal controls ψi(t) that minimize the objective function J . As a result, it is
established that 4.1 subject to system of equations 4.2 has an optimal control.

iii We use the method described in [9] to prove this condition. Let

H(X,ψ, µ) = H(X,ψ) +G(µ)X

where G(µ) =



−µ 0 0 0 0 0 0 0 0 0
0 −µ 0 0 0 0 0 0 0 0
0 0 −µ 0 0 0 0 0 0 0
0 0 0 −µ 0 0 0 0 0 0
0 0 0 0 −µ 0 0 0 0 0
0 0 0 0 0 −µ 0 0 0 0
0 0 0 0 0 0 −µ 0 0 0
0 0 0 0 0 0 0 −µ 0 0
0 0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 0 0 0 −µ


, X =



Sh(t)
Vh(t)
Eh(t)
Ah(t)
Ih(t)
Th(t)
Rh(t)
Sm(t)
Em(t)
Im(t)


,

H(X,ψ, µ) =



αh + whRh + ξhVh − νhSh − λchSh
νhSh − (1− σh)λ

c
hVh − ξhVh

λchSh + (1− σh)λ
c
hVh − ϑhEh − κchEh

ϑhEh − τ chAh − φhAh
κchEh + τ chAh − γhIh − µhIh

ηγhIh − ρhTh − µhTh
φhAh + γh(1− η)Ih + ρhTh − whRh
(1− ψ3(t))αm − λcmSm − ψ3(t)µmSm

λcmSm − κmEm − ψ3(t)µmEm
κmEm − ψ3(t)µmIm


(4.6)

Given the initial conditions 2.4, a non-negative bounded OCP and Lebesgue measurable controls exist. The
OCP provided by model (4.2) can be expressed as follows:

dX

dt
= D(ψi(t))X+G(ψi(t),X) (4.7)

Equation 4.7 has bounded coefficients and is a non-linear coupled system. Let

H(X) = DX+G(ψi(t),X) (4.8)
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Therefore, the first equation of (4.2) shows that

|G(ψi(t),X1)−G(ψi(t),X2)| ≤c1 |Sh1 − Sh2|+ c2 |Vh1 − Vh2|+ c3 |Eh1 − Eh2|+ c4 |Ah1 −Ah2|
+ c5 |Ih1 − Ih2|+ c6 |Th1 − Th2|+ c7 |Rh1 −Rh2|+ c8 |Sm1 − Sm2|
+ c9 |Em1 − Em2|+ c10 |Im1 − Ihm2|

≤c
(
|Sh1 − Sh2|+ |Vh1 − Vh2|+ |Eh1 − Eh2|+ |Ah1 −Ah2|

+ |Ih1 − Ih2|+ |Th1 − Th2|+ |Rh1 −Rh2|+ |Sm1 − Sm2|
+ |Em1 − Em2|+ |Im1 − Ihm2|

)
(4.9)

where X1 =
(
Sh1, Vh1, Eh1, Ah1, Ih1, Th1, Rh1, Sm1, Em1, Im1

)
, and X2 =(

Sh2, Vh2, Eh2, Ah2, Ih2, Th2, Rh2, Sm2, Em2, Im2

)
and c = max

(
ci, i = 1, 2, . . . , 10

)
. It is noted that

c is independent of the state variables. Hence, the following inequality holds:

|H(X1)−H(X2)| ≤ c |X1 −X2| (4.10)

for c =
∑10

i=1 a1 + ∥H∥2 ≤ ∞. Thus, H(X) is Lipschitz continuous. Given the control variables ψi, i =
1, 2, 3 and the initial conditions 2.4, it follows that solutions of the control model 4.2 exist.

iv Let ψ(t) = (ψ1(t), ψ2(t), ψ3(t))
⊤ and define, for fixed t,

f(ψ) = κ1Ah(t) + κ2Ih(t) + κ3Im(t) + 1
2

(
ω1ψ

2
1 + ω2ψ

2
2 + ω3ψ

2
3

)
.

The terms κ1Ah(t) + κ2Ih(t) + κ3Im(t) are constant with respect to ψ (for fixed t), so convexity in ψ is
determined by the quadratic term.

Compute the gradient and Hessian with respect to ψ:

∇ψf(ψ) =

ω1ψ1

ω2ψ2

ω3ψ3

 , ∇2
ψf(ψ) =

ω1 0 0

0 ω2 0

0 0 ω3

 .

For any v = (v1, v2, v3)
⊤,

v⊤∇2
ψf(ψ) v = ω1v

2
1 + ω2v

2
2 + ω3v

2
3 .

Hence, if ωi ≥ 0 for i = 1, 2, 3, the Hessian is positive semidefinite and f is convex in ψ. If ωi > 0 for all i
the Hessian is positive definite and f is strictly convex.

Since the objective functional is

J(ψ1, ψ2, ψ3) =

∫ tf

0

f
(
ψ(t)

)
dt,

and the pointwise integrand f(ψ(t)) is convex in ψ(t) for each t, the functional J is convex in the control
functions ψ(·) on any convex admissible control set (for example measurable controls taking values in a
convex set like [0, 1]3). Moreover J is strictly convex if ωi > 0 for all i.

4.1. The Uniqueness of the Optimal Control

The optimality system that follows is obtained by using the method in [9, 35, 37]. Pontryagin’s Maximum Principle
is used to determine the uniqueness of the optimal control of the malaria epidemiological model. This principle
establishes the prerequisites for optimality, and if it results in a singular solution, it validates that the optimal
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control is unique. Here, the goal is to minimize the cost functional in equation (4.1) while taking into account the
dynamics of malaria transmission as given by system (2.3), which ensures the existence of an optimal control. If
(X(t),U(t)) is an optimal pair for the control problem, then there exists a non-trivial vector function, based on
Pontryagin’s Maximum Principle.

λ(t) = (λSh
, λVh

, λEh
, λAh

, λIh , λTh
, λRh

, λSm
, λEm

, λIm)⊤

.
The adjoint variables satisfy

dλi
dt

= −∂H
∂xi

, λi(tf ) = 0, i = 1, 2, . . . , 10,

where xi represents the ith component of the state vector X(t). The optimality condition

∂H
∂ψj

= 0, j = 1, 2, 3,

yields the explicit control characterizations

ψ∗
j (t) = min

{
max

{
0,− 1

ωj

∂
(
λ⊤F (X,U)

)
∂ψj

}
, 1

}
, j = 1, 2, 3.

These necessary conditions, together with the convexity of the integrand in U, guaranteed the uniqueness of the
optimal control for the malaria model.

Theorem 7
Given the optimal control ψ∗

1(t), ψ
∗
2(t), ψ

∗
3(t) and solutions of the state variables

λ∗Sh
, λ∗Vh

, λ∗Eh
, λ∗Ah

, λ∗Ih , λ
∗
Th
, λ∗Rh

, λ∗Sm
, λ∗Em

, λ∗Im , then there exists adjoint variables λi for i =
(λSh

, λVh
, λEh

, λAh
, λIh , λTh

, λRh
, λSm , λEm , λIm) that minimizes J(ψ∗

1(t), ψ
∗
2(t), ψ

∗
3(t) over Φ satisfying:

λ̇Sh
= λSh

(
νh + (1− ψ1)

βhmϵIm
Nh

+ µh

)
− λVh

νh − λEh
(1− ψ1)

βhmϵIm
Nh

,

λ̇Vh
= −λSh

ξh + λVh

(
(1− σh)(1− ψ1)

βhmϵIm
Nh

+ ξh + µh

)
− λEh

(1− σh)(1− ψ1)
βhmϵIm
Nh

,

λ̇Eh
= λEh

(
ϑh + κh + θ1ψ2 + µh

)
− λAh

ϑh − λIh (κh + θ1ψ2),

λ̇Ah
= −κ1 + λAh

(
τh + θ2ψ2 + φh + µh

)
− λIh (τh + θ2ψ2)− λRh

φh,

λ̇Ih = −κ2 + λIh

(
γh + δh + µh

)
− λTh

ηγh − λRh
γh(1− η) + (1− ψ1)

βmhϵSm
Nh

(λSm
− λEm

),

λ̇Th
= λTh

(
ρh + δh + µh

)
− λRh

ρh,

λ̇Rh
= −λSh

wh + λRh

(
wh + µh

)
,

λ̇Sm
= λSm

(
(1− ψ1)

βmhϵIh
Nh

+ (1 + ψ3)µm

)
− λEm

(1− ψ1)
βmhϵIh
Nh

,

λ̇Em
= λEm

(
κm + (1 + ψ3)µm

)
− λIm κm,

λ̇Im = −κ3 +
(1− ψ1)βhmϵ

Nh

(
λSh

Sh + (1− σh)λVh
Vh − λEh

(
Sh + (1− σh)Vh

))
+ λIm (1 + ψ3)µm.

(4.11)
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with the control variables ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t) and the transversality conditions

λi(tf ) = 0, i = (λSh
, λVh

, λEh
, λAh

, λIh , λTh
, λRh

, λSm , λEm , λIm). (4.12)

The following optimality conditions are used to characterize the control variables:

ψ∗
1 = max

(
0,min

(
1,

1

ω1

[
(λEh

− λSh
)
βhmϵIm
Nh

Sh + (λEh
− λVh

)
βhmϵIm
Nh

Vh(1− σh)

+(λEm − λSm)
βmhϵIh
Nh

Sm

]))
,

ψ∗
2 = max

(
0,min

(
1,

1

ω2

[
(λIh − λEh

)θ1Eh + (λIh − λAh
)θ2Ah

]))
, (4.13)

ψ∗
3 = max

(
0,min

(
1,

1

ω3

[
λSm

(αm + µmSm) + λEm
µmEm + λImµmIm

]))
.

Proof
The Hamiltonian associated with the malaria OCP is defined by

H = κ1Ah + κ2Ih + κ3Im + 1
2

(
ω1ψ

2
1 + ω2ψ

2
2 + ω3ψ

2
3

)
+ λSh

(
αh + whRh + ξhVh − νhSh − (1− ψ1)

βhmϵIm
Nh

Sh − µhSh

)
+ λVh

(
νhSh − (1− σh)(1− ψ1)

βhmϵIm
Nh

Vh − ξhVh − µhVh

)
+ λEh

(
(1− ψ1)

βhmϵIm
Nh

Sh + (1− σh)(1− ψ1)
βhmϵIm
Nh

Vh

− ϑhEh − (κh + θ1ψ2)Eh − µhEh

)
+ λAh

(
ϑhEh − (τh + θ2ψ2)Ah − φhAh − µhAh

)
+ λIh

(
(κh + θ1ψ2)Eh + (τh + θ2ψ2)Ah − γhIh − (δh + µh)Ih

)
+ λTh

(
ηγhIh − ρhTh − (δh + µh)Th

)
+ λRh

(
φhAh + γh(1− η)Ih + ρhTh − whRh − µhRh

)
+ λSm

(
(1− ψ3)αm − (1− ψ1)

βmhϵIh
Nh

Sm − (1 + ψ3)µmSm

)
+ λEm

(
(1− ψ1)

βmhϵIh
Nh

Sm − κmEm − (1 + ψ3)µmEm

)
+ λIm

(
κmEm − (1 + ψ3)µmIm

)
.

(4.14)

The partial derivatives of the Hamiltonian function, H, with respect to each of the model’s state variables are
taken to obtain the adjoint system:

λ̇Sh
= − ∂H

∂Sh
, λSh

(tf ) = 0,
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λ̇Vh
= − ∂H

∂Vh
, λVh

(tf ) = 0,

λ̇Eh
= − ∂H

∂Eh
, λEh

(tf ) = 0,

λ̇Ah
= − ∂H

∂Ah
, λAh

(tf ) = 0,

λ̇Ih = − ∂H
∂Ih

, λIh(tf ) = 0,

λ̇Th
= − ∂H

∂Th
, λTh

(tf ) = 0,

λ̇Rh
= − ∂H

∂Rh
, λRh

(tf ) = 0,

λ̇Sm
= − ∂H

∂Sm
, λSm

(tf ) = 0,

λ̇Em
= − ∂H

∂Em
, λEm

(tf ) = 0,

λ̇Im = − ∂H
∂Im

, λIm(tf ) = 0.

If (x, ψ) is the optimal solution based on the optimality conditions, then ∂H
∂ψ1

= ∂H
∂ψ2

= ∂H
∂ψ3

= 0 at ψi = ψ∗
i

ψ∗
1 = max

(
0,min

(
1,

1

ω1

[
(λEh

− λSh
)
βhmϵIm
Nh

Sh + (λEh
− λVh

)
βhmϵIm
Nh

Vh(1− σh)

+(λEm − λSm)
βmhϵIh
Nh

Sm

]))
,

ψ∗
2 = max

(
0,min

(
1,

1

ω2

[
(λIh − λEh

)θ1Eh + (λIh − λAh
)θ2Ah

]))
, (4.15)

ψ∗
3 = max

(
0,min

(
1,

1

ω3

[
λSm

(αm + µmSm) + λEm
µmEm + λImµmIm

]))
.

∂H

∂ψ1
= ω1ψ1 −

(
(λEh

− λSh
)
βhmϵIm
Nh

Sh + (λEh
− λVh

)
βhmϵIm
Nh

Vh(1− σh) + (λEm
− λSm

)
βmhϵIh
Nh

Sm

)
,

∂H

∂ψ2
= ω2ψ2 −

(
(λIh − λEh

)θ1Eh + (λIh − λAh
)θ2Ah

)
,

∂H

∂ψ3
= ω3ψ3 −

(
λSm

(αm + µmSm) + λEm
µmEm + λImµmIm

)
.

Hence, the OC functions are given as

ψ∗
1 = 1

ω1

(
(λEh

− λSh
)βhmϵIm

Nh
Sh + (λEh

− λVh
)βhmϵIm

Nh
Vh(1− σh) + (λEm − λSm)βmhϵIh

Nh
Sm

)
ψ∗
2 = 1

ω2

(
(λIh − λEh

)θ1Eh + (λIh − λAh
)θ2Ah

)
ψ∗
3 = 1

ω3

(
λSm(αm + µmSm) + λEmµmEm + λImµmIm

) (4.16)
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By using the bounds on ψ∗
i and the notion of standard control, we get

ψ∗
i =


0 if ϑ∗i ≤ 0

ϑ∗i if 0 < ϑ∗i < 1

1 if ϑ∗i ≥ 0

where i = 1, 2, 3 and

ϑ1 =
1

ω1

(
(λEh

− λSh
)
βhmϵIm
Nh

Sh + (λEh
− λVh

)
βhmϵIm
Nh

Vh(1− σh) + (λEm − λSm)
βmhϵIh
Nh

Sm

)
Therefore, ψ1, the control for ITNs, can be expressed in compact form as

ψ∗
1(t) = min {1,max {0, ϑ1}}

Similarly,

ϑ2 =
1

ω2

(
(λIh − λEh

)θ1Eh + (λIh − λAh
)θ2Ah

)
Consequently, ψ2, the control for Improved Diagnostic Surveillance, can be expressed in compact form as

ψ∗
2(t) = min {1,max {0, ϑ1}}

Lastly,

ϑ3 =
1

ω3

(
λSm

(αm + µmSm) + λEm
µmEm + λImµmIm

)
Community-based sanitation measures targeting the disruption of mosquito breeding habitats, ψ3, implies that

ψ∗
3(t) = min {1,max {0, ϑ3}}

5. Results and Discussion

In this section, we analyze the dynamic properties of the malaria model 2.3. The resulting two-point boundary
value problem (BVP), corresponding to a sixteen-dimensional optimality system, is solved numerically.

5.1. Autonomous System

We analyze the dynamics of the malaria model using the parameter values presented in Table 3.1. Based on these
values, Re of system 2.3 is estimated to be approximately Re = 1.2268.

5.2. Effects of vaccination rate (νh) on the Human Population
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Figures 5.2 - 5.2 reveal the effects of increasing νh on each of the classes of the human subpopulation. The
population of the susceptible class decreases as uh increases, as seen in Figure 5.2. This shows that effective malaria
vaccines will reduce human susceptability to malaria. Figure 5.2 depicts a significant increase in the vaccinated
class. On the other hand, Figures 5.2 - 5.2 reveal that an increase in νh causes the population of E(t), A(t), I(t),
T (t), and R(t) compartments to decline. This demonstrates how well immunizations work to stop the spread of
malaria.

5.3. Correlation of νh, σh, ϵ and ξh with the steady-state vaccinated population (V ∗
h )

Figure 5.1a reveals an exceptionally strong positive correlation (r ≈ 0.997) between the vaccination rate (νh) and
the resulting steady-state vaccinated population size (V ∗

h ). This confirms the fundamental principle that increasing
the speed of vaccination directly and effectively increases the size of the protected cohort. While the relationship
is overwhelmingly positive, it follows a subtle concave-down quadratic trend rather than a purely linear one. This
indicates the presence of saturating dynamics within the model. The most substantial absolute gains in V ∗

h are
achieved at intermediate vaccination rates (e.g., between νh = 0.4 and νh = 0.7). The slight diminishment in the
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rate of increase at the highest values of νh is likely due to the increasing competition between the vaccination
process and the natural depletion of the susceptible pool from other factors like natural mortality and the vaccine
waning rate (ξh). The simulation results, represented by blue points, show the model’s output across the parameter
sweep. The mean steady-state vaccinated population across all simulated rates is approximately 17,500 individuals,
with values ranging from around 1,800 to over 33,000. For health policymakers, this analysis underscores that
higher vaccination rates are unequivocally beneficial for achieving population-level immunity. The model suggests
that while returns may become marginally less pronounced at the highest levels, a strategy focused on maximizing
νh remains the most effective way to maximize V ∗

h . This supports the allocation of resources towards initiatives
that accelerate vaccine rollout, such as increasing clinic availability and public outreach campaigns.

Figure 5.1b presents the result of the correlation between the steady-state vaccinated population (V ∗
h ) and vaccine

efficacy (σh). The observed strong positive correlation (r ≈ 0.997) is notable and reveals a non-linear, concave-
down quadratic relationship. Contrary to an initial assumption that efficacy primarily protects individuals from
infection, the model indicates that higher vaccine efficacy has a secondary, population-level effect: it sustains
the size of the vaccinated pool. This occurs because a more efficacious vaccine (σh → 1) significantly reduces
the rate of breakthrough infections, which is a pathway out of the Vh compartment. Consequently, individuals
remain vaccinated for longer periods before waning immunity (ξh) or natural mortality (µh) moves them out. This
retention effect allows the constant inflow of new vaccinated individuals (at rate νhSh) to accumulate, resulting
in a larger steady-state population V ∗

h . The supra-linear increase at very high efficacy levels (e.g., σh > 0.95)
suggests a critical threshold beyond which improvements in vaccine quality yield disproportionately large benefits
for maintaining population immunity. This implies that investing in the development of high-efficacy vaccines is
not only beneficial for individual protection but is also a powerful strategy for achieving and sustaining higher
overall vaccination coverage, as it optimizes the durability of the vaccinated state.
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Figure 5.1. Correlation of ξh, ϵ, νh and σh with V ∗
h
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Figure 5.1c illustrates a pronounced and robust negative correlation (r ≈ −0.986) between the human-mosquito
contact rate (ϵ) and the steady-state vaccinated population (V ∗

h ). The relationship is characterized by a strongly
concave, non-linear decay. This inverse relationship is mechanistically driven by the role of ϵ in the force of
infection (λh). An increase in ϵ raises the risk of infectious bites for all individuals, including those who are
vaccinated. While the vaccine offers partial protection (modulated by efficacy σh), a sufficiently high contact rate
overwhelms this protection, leading to a sharp increase in breakthrough infections. This effect manifests in the
model as a critical outflow pathway from the Vh compartment: vaccinated individuals experience breakthrough
infections and transition to the exposed (Eh) class. Consequently, the steady-state balance shifts; the constant
inflow into Vh (from vaccination) is counteracted by an accelerated outflow due to infection, in addition to the
baseline outflows from waning immunity (ξh) and mortality (µh). The precipitous decline in V ∗

h at low-to-mid
values of ϵ demonstrates the vulnerability of vaccination programs in high-transmission settings. This analysis
underscores that environmental transmission intensity is a primary constraint on vaccine-derived population
immunity. Vaccination cannot be viewed as a standalone intervention. Its success is contingent upon effective
integrated vector management to suppress the contact rate (ϵ) and maintain the protective benefit of vaccination.
The results argue strongly for combining vaccination with aggressive vector control efforts to reduce the risk of
breakthrough infections and ensure the long-term stability of the vaccinated cohort.

Figure 5.1d demonstrates a definitive inverse relationship between the vaccine-induced immunity waning rate
(ξh) and the steady-state size of the vaccinated population (V ∗

h ), characterized by an exceptionally strong negative
correlation (r ≈ −0.928). The response is markedly non-linear, exhibiting a concave, decaying trend. The analysis
reveals that the stability of the vaccinated cohort is acutely sensitive to the duration of immunity. Incremental
increases in the waning rate, particularly at lower values, precipitate a disproportionately large decline in V ∗

h . This
sensitivity arises because ξh constitutes a direct outflow pathway from the Vh compartment; a higher waning rate
accelerates the transition of vaccinated individuals back to the susceptible state (Sh), where they are once again at
risk of infection. This establishes that the long-term effectiveness of a vaccination program is not solely dependent
on the initial efficacy (σh) or uptake rate (νh), but is fundamentally constrained by the durability of the immune
response it elicits. Consequently, developing vaccines that confer long-lasting immunity is paramount for achieving
and sustaining high levels of population coverage and underscores the critical role of vaccine durability in public
health strategy.

5.4. Non-autonomous System

In this section, MATLAB is used to solve the sixteen-dimensional optimality problem using an iterative forward-
backward sweep method (FBSM) in conjunction with the fourth-order Runge-Kutta algorithm. The state system
4.2, the adjoint system 4.11, and the control equations 4.16 specified across the time interval [0, 400] days make up
this system, which represents a two-point BVP. Our objective is to identify the best control measures required to
slow the population’s spread of malaria outbreak.

Starting with initial conditions and an initial control guess, the equations of the non-autonomous system 4.2 are
solved forward in time, because the optimality system has several time orientations. The adjoint system’s equations,
on the other hand, with terminal conditions 4.12, are calculated backward.

The weight constants κi and ψi, where i = 1, 2 and 3 of the objective functional are taken as follows:
κ1 = 0.5, κ2 = 0.25, κ3 = 0.5, ψ1 = 1000, ψ2 = 500 and ψ3 = 1000 together with the parameter values in Table
3.1. These theoretical weights are used to simulate OCP. For a strong surveillance effect, we take θ1 = 0.6 day−1

and θ2 = 0.4 day−1.
In this study, three distinct strategies are examined for the optimization of the objective functional 4.1. Each

strategy incorporates the application of at least two optimal control measures. The strategies are:

• Strategy A: A combination of Insecticide-Treated Nets and Improved Diagnostic Surveillance (i.e. ψ1(t)
and ψ2(t), with ψ3(t) = 0).

• Strategy B: A combination of Insecticide-Treated Nets and Environmental Sanitation (i.e. ψ1(t) and ψ3(t),
with ψ2(t) = 0).

• Strategy C: A combination of Insecticide-Treated Nets, Improved Diagnostic Surveillance and
Environmental Sanitation (i.e. ψ1(t), ψ2(t) and ψ3(t)).
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According to World Health Organization, one essential and vital method for preventing and controlling malaria
is the use of ITNs, ψ1(t). It serves as a personal protection measure against mosquito bites. Thus, this intervention
decreases the effective contact between humans and mosquitoes release [80]. Hence, this control measure in
included in each of the strategies.

5.4.1. Strategy A: A combination of Insecticide-Treated Nets and Improved Diagnostic Surveillance (i.e. ψ1(t) and
ψ2(t), with ψ3(t) = 0) .

Figure 5.2a illustrates the temporal progression of the asymptomatic infected humans (Ah) under Strategy A. The
dashed red curve represents the baseline dynamics, where Ah rises sharply to a pronounced peak before settling
into a persistently elevated endemic equilibrium. This outcome underscores the role of asymptomatic carriers in
sustaining malaria transmission, as they form a substantial, largely undetected reservoir of infection. By contrast,
the solid blue curve reflects the effects of the interventions of Strategy A. Here, the intervention markedly reduces
the peak of asymptomatic infections and lowers the long-term equilibrium to a substantially diminished level. This
indicates that Strategy A does not only curtails the hidden reservoir of infection but also weakens the overall force
of transmission across the population.

Figure 5.2b illustrates the dynamics of the symptomatic, infectious human hosts (Ih) over a 400-day period.
The plot shows two distinct trajectories: one representing the baseline scenario (dashed red line) and another
representing the system under a specific control strategy (solid blue line). In the absence of control, population of
symptomatic humans surges rapidly to a high peak, indicating a substantial clinical burden. This is followed by a
pronounced decline as individuals recover or are treated, eventually stabilizing at a lower, yet persistent, endemic
level. The implementation of the control strategy substantially mitigates the initial outbreak and maintains the
infectious population at a consistently reduced level, highlighting the effectiveness of the intervention in reducing
both the peak incidence and the long-term burden of symptomatic disease.

Figure 5.2c illustrates the trajectory of the treated human hosts (Th) over a 400-day period. The plot compares
the baseline scenario (dashed red line) with the system under control strategy A (solid blue line). In the absence of
control, the treated population rises sharply and reaches a very high peak, indicating a substantial and immediate
burden on the healthcare system as it responds to the outbreak. The subsequent decline is gradual, stabilizing at a
high endemic level, which suggests a persistent, long-term demand for treatment resources. The implementation of
the control strategy results in a dramatically reduced and delayed peak. More importantly, the strategy maintains the
treated population at a consistently low level throughout the simulation, effectively mitigating the clinical burden
and demonstrating the intervention’s success in reducing the number of cases severe enough to require treatment.

Figure 5.2d illustrates the dynamics of the recovered human hosts (Rh) over a 400-day period. The plot compares
the baseline scenario (dashed red line) with the system under control strategy A (solid blue line). In the absence
of control, the recovered population exhibits a rapid and substantial increase, reaching a very high equilibrium.
This growth is driven by the steady inflow of individuals from the infectious and treatment compartments (Ah,
Ih, Th) as they clear the infection. The implementation of the control strategy results in a significantly lower and
slower accumulation of recovered individuals. This outcome is a direct consequence of the successful intervention,
which reduces the number of new infections and people who can eventually recover. While this leads to a smaller
recovered population, it reflects a substantially reduced overall disease burden, as transmission is effectively
curtailed at the source, preventing individuals from entering the infectious stages in the first place.

The prevalence increases sharply and stabilizes at a high endemic equilibrium, reflecting an uncontrolled
outbreak in the absence of interventions. By contrast, the implementation of the control interventions under Strategy
A produces a substantial reduction in prevalence relative to the baseline. The epidemic curve peaks at a much lower
level and remains consistently reduced throughout the simulation, thereby demonstrating the effectiveness of the
strategy in alleviating the disease burden (see Figure5.2e).

Figure 5.2f shows the behavior of the infected mosquito population (Im) over time under Strategy A. The
dashed red curve represents the baseline scenario without interventions while the solid blue curve represents
the outcome under Strategy A. The introduction of Strategy A results in a significant decline in the population
of infected mosquito. This demonstrates the effectiveness of the control strategy in reducing the population of
infected mosquitoes.
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Figure 5.2. Effects of Strategy A on the Dynamics of Malaria Prevalence
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The solid blue curve represents the control function, ψ1(t). It shows that this control is initially applied at the
maximum possible intensity (a value of 1, indicating 100% effort or coverage) within the first 50 days. Thereafter, it
declines to zero and remains at that level throughout the rest of the simulation. The dashed red curve represents the
control function ψ2(t). This control is not activated at all for the entire duration, as its value remains at zero. This
profile indicates that the optimal implementation of Strategy A requires the immediate and sustained application
of control ψ1(t) at its highest possible level, while control ψ2(t) is determined to be unnecessary for this particular
strategy and is therefore kept inactive (see Figure 5.2g).

5.4.2. Strategy B: A combination of Insecticide-Treated Nets and Environmental Sanitation (i.e. ψ1(t) and ψ3(t),
with ψ2(t) = 0). Figure 5.3a shows the dynamics of asymptomatic infections (Ah). Without intervention (dashed
red), Ah peaks sharply and stabilizes at a high endemic level, sustained by a hidden reservoir of carriers. Under
Strategy B (solid blue), both the peak and equilibrium are markedly reduced, demonstrating the intervention’s
effectiveness in shrinking this reservoir and weakening transmission.

Figure 5.3b presents the symptomatic infectious population (Ih). In the baseline, cases rise rapidly to a high
peak and persist at an endemic level. Strategy B substantially lowers the peak and maintains a consistently reduced
infectious population, alleviating both outbreak intensity and long-term burden.

Figure 5.3c illustrates treated cases (Th). The baseline shows a sharp surge to a high peak, followed by a sustained
demand on healthcare. With Strategy B, the peak is delayed and greatly diminished, and equilibrium levels remain
low, reducing pressure on treatment resources.

Figure 5.3d depicts recovered individuals (Rh). The baseline results in a very high equilibrium due to continuous
inflow from infections. Strategy B lowers recovery levels by preventing many infections from occurring, reflecting
an overall reduction in the disease burden.

Figure 5.3e highlights overall prevalence. The baseline stabilizes at a high endemic level, while Strategy B keeps
prevalence consistently suppressed, reducing both the epidemic peak and the equilibrium.

Figure 5.3f shows infected mosquitoes population (Im). In the absence of these interventions, infections rise
and persist at high levels. Strategy B reduces both the peak and equilibrium, demonstrating how human-focused
measures also disrupt mosquito infection dynamics.

Figure 5.3g presents the optimal control profiles. It shows that the two controls, ψ1(t) and ψ2(t) are implemented
immediately at full strength and maintained for approximately 50 days. Thereafter, they decline to zero and remain
at that level for the rest of the simulation period. This pattern underscores the importance of sustained primary
measures.

5.4.3. Strategy C: A combination of Insecticide-Treated Nets, Improved Diagnostic Surveillance and
Environmental Sanitation (i.e. ψ1(t), ψ2(t) and ψ3(t)). Figure 5.4a shows the dynamics of asymptomatic
infections (Ah). Under the baseline (dashed red), Ah rises to a sharp peak and stabilizes at a high endemic
equilibrium. With Strategy C (solid blue), the peak is strongly suppressed and the equilibrium driven close to
zero. This indicates that combining ITNs, surveillance, and sanitation disrupts the hidden reservoir of infections
and substantially weakens community transmission.

Figure 5.4b illustrates the symptomatic infectious population (Ih). Without intervention, symptomatic cases
surge rapidly and persist at a significant endemic level. Strategy C does not only flattens the peak but also drives
long-term symptomatic infections to very low levels, reflecting effective case detection and reduced exposure
through vector control.

Figure 5.4c presents the treated population (Th). In the baseline, treatment demand spikes sharply and stabilizes
at a high level, indicating persistent strain on healthcare. Under Strategy C, the peak is dramatically reduced and
the equilibrium remains minimal, demonstrating how combined measures ease clinical pressure by preventing both
infection and progression.

Figure 5.4d depicts recovered individuals (Rh). The baseline shows a large recovered population, driven by
high infection rates. Strategy C produces a much smaller recovery curve, reflecting the success of interventions in
preventing infections upstream, rather than relying on recovery downstream.
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Figure 5.3. Effects of Strategy B on the Dynamics of Malaria Prevalence
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Figure 5.4. Effects of Strategy B on the Dynamics of Malaria Prevalence
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Figure 5.4e highlights overall prevalence. In the baseline, prevalence climbs to a high endemic equilibrium. With
Strategy C, both the epidemic peak and equilibrium are substantially lowered, keeping prevalence consistently near
elimination levels throughout the simulation.

Figure 5.4f shows infected mosquitoes (Im). Without intervention, mosquito infections persist at a high endemic
level. Strategy C leads to a steep decline, with infections in the vector population driven close to zero, underscoring
the impact of ITNs and environmental sanitation on breaking the mosquito−human transmission cycle.

Figure 5.4g presents the optimal control profiles. The controls, ψ1(t), ψ2(t), and ψ3(t), are applied immediately
at full strength and sustained for a period before gradually declining to zero. This behavior emphasizes the
importance of sustained control efforts at the early stage, followed by a tapering phase that maintains effectiveness
while reducing intensity.

5.5. Cost-Effectiveness Analysis

The financial feasibility of several health interventions, such as ITNs, enhanced diagnostic surveillance, and
environmental sanitation, was then assessed through a cost-effectiveness analysis. This type of research aids in
determining whether the costs incurred are justified by the health advantages attained. Three key measures are
evaluated in this section: the Infection Averted Ratio (IAR), the Average Cost-Effectiveness Ratio (ACER), and the
Incremental Cost-Effectiveness Ratio (ICER) [9].

5.5.1. Infection Averted Ratio (IAR)

IAR = Cumulative Cases Averted
Total Number of Recovered Humans

(5.1)

The Cumulative Cases Averted is calculated by subtracting the total number of infectious individuals under the
control strategy from those without any control. According to this analytical approach, the plan that offers the best
cost-effectiveness has the highest IAR [9]. The IAR for each of the strategies is obtained by using the parameter
values in Table 3.1.

Table 5.1 and Figure 5.6 present the results of the simulation. The highest IAR is obtained using Strategy B.
Thus, the most cost-effective approach is strategy B according to this cost analysis technique. The next cost-
effective strategy is C while the least economical approach is provided by Strategy A. Since Strategy A gives the
smallest number of infection averted in the population, it is the least cost-effective, as shown in Table 5.1 and
Figure 5.5.

Table 5.1. Strategy, Cumulative Cases Averted, Total Cost, IAR and ACER

Strategy Cumulative Cases Averted Total Cost ($) IAR ACER
A : ψ1(t), ψ2(t) 7335.34 100798.7701 0.0274 13.7415
B : ψ1(t), ψ3(t) 819609.27 547176.6786 2.8446 0.6676
C : ψ1(t), ψ2(t), ψ3(t) 842285.47 171853.6889 2.6480 0.2040

5.5.2. Average Cost-Effectiveness Ratio (ACER) The cost necessary to stop one infection case with a particular
intervention is represented by the ACER. It is calculated by dividing the total cost of putting a strategy into practice
by the total number of infections that the approach effectively prevents.

ACER =
Total cost of implementing the strategy

Total number of infections it successfully prevents
(5.2)

Given the objective functional in 4.1, the total cost generated by a strategy is stated as

TC =

∫ tf

0

(κ1ψ1Nh + κ2ψ2Eh + κ3ψ3Nm + ω1ψ
2
1 + ω2ψ

2
2 + ω3ψ

2
3)dt (5.3)
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A more effective and financially advantageous intervention is indicated by a lower ACER value [9]. The ACER for
each of the three interventions is thus determined using equation 5.2. The numerical results of the simulation are
shown in Table 5.1 and Figure 5.8.

According to this cost analysis method, Strategy C is the most cost-effective approach because it has the lowest
ACER. Strategy B comes next. Stragegy A is the least cost-effective strategy because it has the highest ACER.

The following method is used to confirm these findings through additional cost-effectiveness analysis.

Table 5.2. Strategy, Cumulative Cases Averted, Total Cost and ICER

Strategy Cumulative Cases Averted Total Cost ($) ICER
A : ψ1(t), ψ2(t) 7335.34 100798.7701 13.7415
B : ψ1(t), ψ3(t) 819609.27 547176.6786 0.5495
C : ψ1(t), ψ2(t), ψ3(t) 842285.47 171853.6889 -16.5560

5.5.3. Incremental Cost-Effectiveness Ratio (ICER) A new health intervention’s cost-effectiveness is evaluated
using the ICER in comparison to a baseline or conventional method. It is described as

ICER = Total cost with control-Total cost without control
Total number of infections without control-Total number of infections with control

(5.4)

We calculate the ICER for each strategy using the formula provided by equation 5.4 and the methods in [9].

ICER(A) =
100798.7701

7335.34
= 13.7415

ICER(B) =
547176.6786− 100798.7701

819609.27− 7335.34
=

446377.9085

812273.93
= 0.5495

ICER(C) =
171853.6889− 547176.6786

842285.47− 819609.27
= −16.5560

Table 5.2 compares Strategies A and B and reveals that ICER(A) is higher than ICER(B). This indicates that
Strategy B is in control of Strategy A. As a result, Strategy B is more cost-effective. Hence, Strategy A is excluded
in further analysis.

Thus, we are left with Strategies B and C. Using equation 5.4, Table 5.3 provides the ICER summary for the
two Strategies. From Table 5.3, is can be seen that Strategy C’s ICER is lower than Strategy B’s. This implies that
Strategy C is more economical than Strategy B, Strategy B is thus eliminated from the list. Therefore, Strategy C
is the most economical.

Strategy C, which combines the best use of insecticide-treated nets, improved diagnostic surveillance, and
environmental sanitation (i.e., ψ1(t), ψ2(t), and ψ3(t)) is the most cost-effective strategy since it produced the
least ICER.

Table 5.3. Performance Comparison of Strategies B and C

Strategy Cumulative Cases Averted Total Cost ($) ICER
B : ψ1(t), ψ3(t) 819609.27 547176.6786 0.6676
C : ψ1(t), ψ2(t), ψ3(t) 842285.47 171853.6889 16.5560

6. Conclusion

This study developed and analyzed a nonlinear mathematical model for malaria transmission dynamics that
incorporates a vaccinated human class alongside conventional interventions. The autonomous system was shown
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Figure 5.5. Plots of Cumulative Cases Averted for Strategies A, B and C

A: 1
(t), 2

(t)

B: 1
(t), 3

(t)

C: 1
(t), 2

(t), 3
(t)

0

0.5

1

1.5

2

2.5

3

IA
R

Figure 5.6. Plots of IAR for Strategies A, B and C

to be mathematically well-posed: all solutions remain positive and bounded in a biologically feasible region. Using
the Next-Generation Matrix method, the effective reproduction number Re was derived and it was established that
the DFE is locally and GAS whenever Re < 1. Conversely, a unique endemic equilibrium exists and is globally
stable when Re > 1. These results confirm that malaria elimination or persistence is determined by the threshold
value of Re in the autonomous system.

The sensitivity analysis identified the most influential parameters on the disease spread, including vaccine uptake
νh, efficacy σh, waning immunity ξh and mosquito−human contact rate ϵ. Numerical simulations demonstrated that
vaccination reduces the burden of malaria infection and sustains lower transmission levels over time, with greater
benefits achieved as uptake and efficacy increase.

The model was further extended to a non-autonomous system through the incorporation of three time-dependent
control strategies. Optimal-control analysis revealed that while single or dual interventions yield moderate
reductions in prevalence, the integrated triple strategy (vaccination, vector control, and treatment/environmental
measures) provides the greatest epidemiological impact. Cost-effectiveness analysis using IAR, ACER and ICER
showed that this integrated non-autonomous strategy is not only the most effective but also the most economically
efficient.
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Figure 5.7. Plots of Total Cost for Strategies A, B and C

A: 1
(t), 2

(t)

B: 1
(t), 3

(t)

C: 1
(t), 2

(t), 3
(t)

0

2

4

6

8

10

12

14

A
C

E
R

Figure 5.8. Plots of ACER for Strategies A, B and C

The autonomous analysis highlights the threshold conditions governing malaria persistence, while the non-
autonomous optimal-control framework demonstrates how integrated, time-dependent interventions can drive
malaria elimination in a cost-effective manner. Policymakers and healthcare practitioners are encouraged to adopt
combined strategies that strengthen vaccination coverage and durability while sustaining vector management and
treatment efforts to achieve long-term malaria control and eventual eradication.
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