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Abstract Malaria remains a persistent global health challenge, with its burden concentrated in Sub-Saharan Africa and
other endemic regions where transmission is sustained by interactions between human and mosquito populations. Despite
progress in prevention and treatment, the emergence of partial immunity, asymptomatic carriers, and insecticide resistance
complicates control efforts. In this study, we formulate and analyze a nonlinear compartmental model that incorporates a
vaccination class alongside traditional malaria interventions. The model’s mathematical properties are established by proving
the positivity and boundedness of solutions, and by deriving the disease-free and endemic equilibria. Using the Diekmann-
Heesterbeek-Metz Next Generation Matrix approach, we obtain the effective reproduction number and conduct rigorous
local and global stability analyses of both equilibria. Furthermore, local sensitivity analysis is performed to identify key
parameters driving transmission, highlighting the roles of vaccine uptake, waning immunity, mosquito—human contact rate,
and vaccine efficacy. Numerical simulations illustrate the epidemiological impact of vaccination, showing that increased
vaccine coverage substantially reduces infection prevalence and sustains lower transmission levels. To complement this, we
extend the analysis with a cost-effectiveness evaluation of three optimal control strategies combining insecticide-treated nets,
diagnostic surveillance, and environmental sanitation. The results show that while single or dual interventions moderately
reduce infections, the integrated triple-intervention strategy together with the vaccinated compartment achieves the greatest
epidemiological impact while also being the most cost-effective, yielding the lowest ACER and a negative ICER, indicating
cost savings. These findings emphasize that vaccination, when combined with other interventions, not only reduces malaria
burden but also represents an economically justified approach to sustainable control.
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1. Introduction

Malaria is a disease that is caused by protozoan parasites, a member of Plasmodium genus family and it is highly
infectious. Plasmodium falciparum is the most virulent member of this family and it accounts for the majority
of malaria-related motalities worldwide. Susceptible individuals contract malaria when they are bitten by female
Anopheles mosquitoes carrying the infection, leading to severe illnesses in some individuals. The first sign of
malaria infection usually occur between 10 — 15 days after coming in contact with the the parasite. However,
other forms of transmission occasionally occur, including through blood transfusion, needle sharing, nosocomial
infection, organ transplantation, or vertical transmission from mother to fetus [56, 57, 58]

Malaria is widespread in various regions, including large areas of Africa, Latin America, parts of the Caribbean,
Eastern Europe, the South Pacific, and significant portions of Asia, such as South Asia, Southeast Asia, and the
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Middle East. These regions have favorable conditions for mosquito breeding and are considered endemic to the
disease due to the continuous presence of the disease. About 50% of the population of the world are vulnerable to
malaria transmission. In regions where malaria is endemic, some individuals develop partial immunity over time
due to repeated exposure to the parasite. It should be noted that this partial immunity does not offer complete
protection, it however significantly lowers the likelihood of severity of the disease and chances of death from
the infections. Many of the individuals who have acquired partial immunity exhibit no visible symptoms despite
carrying the parasite. This can complicate detection and control efforts, as asymptomatic individuals can still
contribute to the transmission of malaria. Most malaria-related deaths occur in young children in high-transmission
areas, such as West Africa because their immune system are not fully developed. In these areas, children under five
are particularly vulnerable to severe malaria and malaria-related deaths. Consequently, the need for an effective
strategy aimed at reaching the most vulnerable populations has been introduced [58, 59]

Malaria remains a persistent epidemiological issue, especially in tropical and subtropical zones, where its
transmission dynamics are strongly influenced by factors such as ecological and climatic changes. In view of
this, scientists from different fields including mathematicians have come up with different strategies to curtail
malaria in different regions of the world. A number of mathematical models that can help to check the prevalence
of malaria have been developed over the years [1, 2, 8, 13, 17, 20, 21, 23, 24, 34, 36, 38, 39, 41, 42, 43, 44, 45,
61, 63, 64, 68, 72, 82, 83, 84]. [40] studied the history and effects of mathematical models for the transmission
dynamics and control of malaria for over a century. This study became necessary due to the fact that malaria
continue to thrive and post a significant threat to human health, contributing to rising mortality and morbidity rates,
driven by environmental changes and socio-economic factors that influence vector ecology, transmission dynamics,
and healthcare accessibility. Hence, existing malaria models were critically examined in order to determine their
effectiveness in representing host-parasite dynamics. A hierarchical framework of deterministic mathematical
models with varying levels of complexity was generated and the modeling strategies adopted were examined.
Findings from these reviews may guide researchers in developing more appropriate models that capture current
realities such as resistance, vaccination etc. [52] proposed a seven-dimensional ordinary differential equation
(ODE) model that described the transmission dynamics of Plasmodium falciparum malaria between humans
and mosquito subpopulations with non-linear infection forces denoted by saturated incidence rates. The research
identified the region where the model remains epidemiologically viable. Numerical simulations were conducted
in order to determine the behaviors of the model classes under certain conditions. [5] developed a mathematical
model for malaria and vector subpopulations incorperating traditional malaria intervention measures implemented
by proactive individuals. The study demonstrated that the importation of malaria cases had a potential of altering
the reproductive number, (Rg), thereby influencing local epidemiological patterns. Consequently, the findings
suggested that full vigilance in implementing both WHO-endorsed and traditional malaria intervention measures
represented the most effective strategy for fighting the influence of malaria importation.

A malaria model incorporating temperature dependence and the developmental stages of mosquitoes was
developed and analyzed. The model parameters were expressed as periodic functions. The vector and effective
reproduction numbers associated with the model were obtained. Whenever the two reproduction numbers surpass
one, the system exhibited a minimum of one positive periodic solution and the disease persisted. Numerical
simulations were carried out using monthly mean temperature values from Burkina Faso and the results agreed
favourably well with the theoretical findings [71] .

[33] modeled the growth rate of awareness programs targeting the population as being proportional to the
number of unaware infected individuals. It was assumed that, based on these awareness campaigns, individuals
who were infected with the disease became aware of their condition thereby adopting behavioral modifications
that limit their exposure to mosquitoes. The model was simulated using Runge—Kutta method and the results
indicated a substantial increase in the population of susceptible individuals and a decrease in the number of infected
mosquitoes. [73] assumed that there was no vertical transmission and that all the newborns were vulnerable to
malaria infection. The results revealed that the population of susceptible individuals would continue to increase
because of new births and immune waning of the recovered population. Thus, the authors asserted that malaria
would continue to be increasingly endemic.
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[7] formulated a mathematical model consisting of some control strategies that would significantly reduce the
number of infected individuals and mosquito population. The numerical simulation revealed the optimal level
needed to minimize the incidence rate. [51] proposed and explored the transmission dynamics of malaria within
a population using a non-linear mathematical model. The stability theory of differential equations was used to
analyze the model. The model was extended to an OCP by incorporating three time-dependent control measures
- bed nets, treatment and insecticides. Optimal control theory was employed to characterize the control variables.
Fourth-order forward-backward Runge-Kutta method was adopted for the solution of the extended model. The
impacts of these control strategies on the prevalence of malaria-infected individuals were analyzed. Different
combination of the control strategies investigated.

1.1. Malaria Vaccines and its Effects

In 2021, World Health Organization (WHO) endorsed RTS,S/ASO1 (RTS,S) vaccine for malaria prevention in
children living in regions with moderate to high Plasmodium falciparum transmission. At least one dose of this
vaccine was administered to over 2 million children in Ghana, Kenya, and Malawi under the supervision of
WHO. A comprehensive evaluation revealed a significant reduction in severe malaria cases and a 13% reduction
in early childhood mortality in regions where the RTS,S vaccine was administered compared to areas without
its introduction [55]. [62] studied the implementation of RTS,S/ASO1 malaria vaccine in sub-Saharan Africa
(SSA). It was noted that 30 out of the 34 countries in SSA have requested GAVI for financial support and
access to the vaccine and 20 out of the 30 countries have been approved. However, the implementation of the
vaccine has been limited to only the three pilot countries designated by the WHO - Kenya, Ghana and Malawi
and only two non-pilot countries Burkina Faso and Cameroon. In view of this, [26] proposed a mathematical
model that captured the administration of this vaccine for children in Kenya, Ghana, and Malawi. In addition
to the incorporation of vaccinated class into the model, the inflow of infected immigrants was also considered.
The model analysis indicated that when there were no infected immigrant, the disease-free equilibrium point
(DFE) was globally symptomatically stable (GAS) when Ry < 1. However, the model exhibited only endemic
equilibrium states with the influx of infected immigrants. Sensitivity analysis of R indicated the importance of
reducing human-vector contact. The results showed that increasing children’s vaccination rate and elimination of
infected human inflows could help to achieve a malaria-free population. The analysis and simulation of the optimal
control problem (OCP) demonstrated that the most effective measure of eliminating malaria is the combined use
of vaccination, personal protective measures, and treatment contingent upon the complete cessation of infected
immigrant inflows. [69] formulated a two-group malaria model structured by age, incorporating vaccination for
children under 5 years. The existence of multiple endemic equilibria was explored using Descartes’ rule of signs.
A global sensitivity analysis (GSA) of R together with the response functions of the vaccination compartment
was conducted using partial rank correlation coefficients embedded in Latin Hypercube Sampling. Optimal control
theory was employed to obtain the best combination of control strategies for minimizing malaria transmission.
In a community, the simultaneous implementation of the three intervention measures could significantly enhance
malaria control efforts. The importance of such strategies has been reinforced by recent developments in malaria
prevention. In October 2023, WHO recommended R21/Matrix-M malaria vaccine as a second safe and effective
option for malaria prevention. The availability of 2 malaria vaccines is expected to increase supply and make
broad-scale deployment across Africa and beyond possible [62, 57].

2. Model Formulation and Analysis

A malaria model represented by the system of ten ODEs that captures the dynamics of malaria transmission
between human and mosquito populations is proposed. The human population is divided into Susceptible (.S3),
Vaccinated (V},), Exposed (Fy), Asymptomatic Infected (Ay,), Infected (1), Treated (7}), Recovered (Ry) while
the mosquitoes population is partitioned into Susceptible (.5, ), Exposed (E,,) and Infected (I,,,). The total human
population, Ny, (¢), is expressed as

Nh(t)ZSh-f—Vh-i-Eh-i-Ah-‘th-l-Th-‘v—Rh. 2.1
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Table 2.1. Model Parameter

Parameter | Description
ap Recruitment rate into susceptible humans
Qo Recruitment rate into susceptible mosquitoes
Lh Human natural death rate
fom Mosquito natural death rate
on Human disease-induced death rate
wh Rate of loss of immunity of recovered humans
Bhm Probability of mosquitoes becoming infected
Bmh Probability of humans becoming infected
Vh Vaccine uptake rate
€ Contact rate of mosquito to human
&n Vaccine waning
on Vaccine efficacy
Iy, Transition rate from exposed to asymptomatic individuals
Kh Transition rate from exposed to infected individuals
Km Transition rate from exposed to infected mosquitoes
T Transition rate from asymptomatic to infected individuals
©n Transition rate from asymptomatic to recovered individuals
Yh Transition rate from infected to treated individuals
n Drug efficacy
Ph Recovery rate

Similarly, the total mosquito population, N,,(¢), is given by

Ny (t) = Sp + B + I 2.2)
The forces of infection A\, and \,,, are defined as
ﬁhmejm ﬁmhﬁfh
Ap = ———— d M\N,=——
)z Nh an Nh

where Sy, represents the probability of effective transmission of malaria from infected humans to susceptible
mosquitoes as a result of contact rate of mosquito to human given by e. Similarly, 5,,, denotes the probability of
effective transmission of malaria from infected mosquitoes to susceptible humans.

2.1. Model Assumptions

1. Homogeneity of the Populations: The human population is homogeneously mixed. This implies that there
is an equal chance of interaction amongst individuals in the population. This assumption also applies to the
vector population, implying random and uniform interactions between mosquitoes.

2. Vaccination and Immunity: Malaria vaccines reduce the likelihood of susceptible individuals becoming
infected or transitioning to other states of infection. It is noted that since the vaccine is not 100% efficacious,
a small proportion of the vaccinated individuals will transit to other state of the infection. Recovered humans
have partial immunity, which wanes over time, transitioning them back to the susceptible population.

3. Transmission Assumption: Malaria is transmitted from infected humans and mosquitoes to susceptible
humans.

4. Natural Death: All individuals within the human and vector populations, regardless of their compartmental
classification, are subject to natural mortality. However, only humans within the infected and treated
compartments experience an additional disease-induced mortality rate.

5. No Recovery for Infected Mosquitoes: Infected mosquitoes do not undergo recovery from the disease;
therefore, they remain infectious for the entirety of their lifespan, unless mortality occurs due to natural or
disease-induced factors.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 MODELING THE IMPACT OF VACCINATION ON MALARIA TRANSMISSION DYNAMICS

The flowchart for the proposed model dynamics is as given below:

Wh
fh fyh ]- - T]
Hh Hh Hm
ayp, 13 (1 - o'h))\h
—> Sh(t) > V(1) > En(t i Ap(t | IL(t) A Ty (¢ it Ry, (t)
A A
An b v #h

Qm Am Km
—>| Sn(t) 20 o 1.(t)
The model is represented by the non-linear system of ODEs below:

BB = ap, + wpRn + &V — vaSh — AuSh — 1inSh
G = v Sy — (1= an) Vi — Vi — in Vi
A2 = MSh + (1= 0n) M Vi — 9nEn — k1. Bn — pn B
b = 9, By — mhAn — ondn — pnAn
dly

G = knbn + A — yndn — (0n + pn) In

o = nyp Iy, — puTh — (65 + p1n) T

dRh = onAn + (1 =) + ppTh — wp Ry — pn Ry,
ddstm = m — AnSm — L Sm

B = NS — K Erm — pn B

dé;” = kmEm — tmIm

2.3)

with the initial conditions

Sp(t) > 0,Vi(t) > 0, B (t) > 0, Ap(t) > 0, I,(t) > 0,Th(t) > 0, Ry (t), Sin(t) > 0, Ep(t) > 0, In(£) > 0.
2.4)

2.1.1. Positivity of solutions The positivity of solutions for the malaria system 2.3 will be verified for all non-
negative initial conditions of the compartments at ¢ > 0. The proof demonstrating the non-negativity of the
solutions for all state variables of system 2.3 is presented below for all £ > 0,

Theorem 1

Given that the initial conditions 2.4 of system 2.3, there exists (S, (0), V4(0), E5,(0), Ax(0), 15(0), T5(0), Ry, (0),
Sm(0), Em(0), In(0) > 0): (0,inf) — (0, inf) which solves system 2.3.
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i’:;loljrcne that ¢ = sup{S(0) > 0, V},(0) >0, Ex(0) >0, A4,(0) > 0,1,(0) > 0,75(0) > 0, Rp(0) > 0, 5, (0) >
0, B, (0) > 0,1,,,(0) > 0, this implies that ¢ > 0 O
It follows that 45, (8)
=~ nt o+ An) Sy (2.5)
Employing separation of variables, it follows that
- h((f)) > (vn+ o+ ) dt 2.6)

Upon integrating 2.6 and using the initial condition, we arrive at

Sp(t) > Sh(O)e_((l’h+”h)t+fJ An(€)dC) >0, Vt>O0.

Similarly,
Vi(t) > Vh(0)6—(Eh,+uh,)t+f(§’(1—0h)kh(<)dC >0, Vit>0,
En(t) > Ep(0)e~Wntrntmn)t >0 vt >0,
Ap(t) > Ap(0)e=(mtentrn)t >0 vt >0,
I (t) > I, (0)e=Omtontmn)t > 0 ¢ >0,
Th(t) > T (0)e~(Prtontun)t >0 ¢ >0,
Rp(t) > Ry (0)e~(wntrn)t >0 V¢ >0,
Spn(t) = Sy (0)e = (Hm)tH s Am(QdS > 0y ¢ >0,
Ep(t) > Ep(0)e(Fmtrm)t >0 ¢ >0,
In(t) > I, (0)e Hmt >0, V>0,

2.1.2. The Invariant Region The invariant region (£2) associated with system 2.3 is defined as the region within the
state space where the model variables, representing population sizes or concentrations, remain non-negative and
bounded, ensuring biological feasibility. To construct this invariant region, it is necessary to determine the subset
of the state space where the population sizes remain constrained within biologically meaningful limits and exhibit
bounded behavior over time.

Theorem 2
I,,(t) be the solutions of system 2.3 with initial
0), Em(0), 1,,,(0)). The compact set

Q ={(Sn(t), Vi (£), Bn(t), An(t), In(£), Th(t), R (t), S (t), B (1), In(£)) € R0 : N, < % N,, < %}
(2.7)

attracts all solutions in R}ro and is positively invariant.

Proof

We define a region within the non-negative orthant R that contains uniformly bounded solutions to the model
2.3, encompassing the human and mosquito populations. In view of these populations given in equations 2.1 and
2.2 respectively, we have

ANy dSy Vi dE, | dAy | db  dT,  dR,

dt — dt dt dt dt dt dt dt 2:8)

and
de dSm dE’ln d-[m

a - ar @t T a 29
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In the context of model 2.3, equation 2.8 becomes

dNp,
d7th = ap — pnNn — Opdp — 6pTh < ap — pnNp, (2.10)
Equation 2.10 implies that dé\i’l < 0. Thus, the region €2 represents a set that is positively invariant. By solving

equation 2.10, we derive

673
Np(t) = 4 ast — o0

Thus, Ni(t) € [0, %]
Similarly; Ny (t) € [0, 2], )

2.2. The Equilibrium Points

2.2.1. The Disease-Free Equilibrium Point (DFE): At the DFE, no infection or recovery occurs. Consequently, all
the compartments associated with infection: Ey,, Ay, I, Ty, Ry, B, I, are set to zero in model 2.3. By solving
the remaining compartments at equilibrium, we derive the DFE as

@ + apv, «
50:(507 nnten) o hZh EQ:o,A‘,’L:O,IQ:O,T,S:O,R?L:O,SQI:ﬂ,E&:o,[&:o). @11

P ton TR T wnEn o ) Km

2.3. Local Asymptomatic Stability Analysis

2.3.1. The Effective Reproduction Number In a completely susceptible population, the effective reproduction
number, R., is defined as the expected number of secondary cases generated by an infected individual during
its infectious period. It corresponds to the spectral radius of the next generation matrix G = F'V ~! associated with

model 2.3, where:
Brm€eSh+(1—0r)Brme Va

00 0 00 -
0 0 0 0 0 0
e 0 0 0 0 0 0 2.12)
0 0 0 0 0 0
0 0 ZuacSn 0 0 0
0 0 0 0 0 0
Up + Kn + pn 0 0 0 0 0
—9,, T+ Un + 0 0 0 0
v —Knp —Th Yh + On + Wn 0 0 0 2.13)
0 0 —NYh Ph + On + pin 0 0
0 0 0 0 Fom + fm O
0 0 0 0 —Km P,

where k1 = v, + pin, ko = on + & + ph, ks = On + K + pn. ko = T + 01 + ks ks = n + 0n + ph, ke = pn +
On + tn, k7 = wp + pp, ks = fm, ko = Ky + i, and k19 = p,,- Hence, the R for the system 2.3 is given by

Brnh Brm @ o i (007 + katin) ((on — Dvn — i — &) €
Re=p(FV ') = /RyRpm = 2.14
" ) " \/ an k3kiks ko 2, (& + vn + pun)? 214

where ( )
Bmn th (InTh + karp )€
Ry = —nln _ 2.15)
an k3 ki ks (§n + vn + pin)
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_ Brm @ ko kg (00 — Vv — pn — &n) €

Rm =

117 kg

(2.16)

Therefore, malaria can be completely eliminated from the population if R. < 1, as stated in the following theorem:

2.4. Stability Analysis of the Disease free Equilibrium

Theorem 3
The DFE, £, of model (2.3) and represented by Equation (2.11), will be locally-asymptotically stable (LAS) when
R. < 1, and unstable when R, > 1.

Proof

To prove Theorem (3), we derive the Jacobian matrix of model (2.3) at £° as

J(E%) =

o o o o o o

fe=l

0 0
0 0
0 0
—ky 0
Th —ks
0 1N Yh
®n Y (1 —mn)
Hman(on+Entuntvn)
Hman(on+Entuntvn)
0 0

0 0 _ Bume an(Entin) Watin)(On+En+in)
wnEntvntpn)an(on+&ntuntvn)

0 0 (=1401)Bhme Vh (vn+1n) (On+En+1in)
an@Entvntun)(on+Entpuntvn)

0 0 _ (Wntpn)e (@n+Entin) (=an(Entun)+(=1+0n)anvn) Bum
wn(€ntvntun)on(on+Entuntvn)

0 0 0

0 0 0 (2 17)

0 0 0

0 0 0

—ks 0 0
0 —ko 0
0 Km —k1o

The first five eigenvalues of the Jacobian matrix (2.17) are given as

7

—ky

—ko

—kg (2.18)
ko

—kg

The following sub-matrix can be used to obtain the remaining eigenvalues

_ (wntpn)e(ont+&ntpn)(—an(Entpn)+(=1+on)nvn) Bum

—ks 0 0 0 wn(Entvntpn)an(on+En+untvn)
Y —ka 0 0 0
Bm Eam(l’ +u )(‘7 +Entu )
0 0 hﬂmah((};h“rgh“r:h‘i’sh) : —ko 0
0 0 0 Rm, —k10
(2.19)
The chareacteristic equation of matrix 2.19 is given as
045)\5 + 044)\4 + 043)\3 + 042)\2 + a1 A+ag=0 (2.20)
where
a5 = 1
(k1okskaks + kiokskake + kiokskske + kiokakske + kskskske) — R? (2.21)
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8 MODELING THE IMPACT OF VACCINATION ON MALARIA TRANSMISSION DYNAMICS

0 = pmkskakske(1 — RZ) (2.22)

Based on the Routh-Hurwitz criterion [49], for the matrix 7 to have all eigenvalues real and negative, it must
satisfy the conditions

1. all coefficients «; are positive, and
2. the Hurwitz matrices H; are positive for ¢ = 2, 3,4 and 5.

It is obvious that aq, ag, a4, as are positive since all the associated term are positive.If the R, < 1, then equations
2.21 and 2.22, imply that oy > 0. and «; > 0. This shows that the DFE is stable since R, < 1 and it reveals that
malaria infection can be curtail. Given the follwoing Hurwitz matrices from the characteristic equation 2.20: H; =
g G2 Qg 0
s &g (71 0
0 Qg Q02 Qo
0 a5 (g Q7

Qg Q2 O
> > 0,H3 = det a5 (3 Q7 >0, Hy = det
0 a4 a2

Qg Q2

a4>O,H2:det( >0,

a5 Qg

g Q2 (7)) 0

a5 (3 Q71 0
H5 = det 0 g G2 Qg

0 s &g (O71 0

0 0 Qg Q2 Qo
Since H;, > 0,V i =1,...,5, this confirms the stability of the system. When R. < 1, the eigenvalues of matrix
(2.19) are both real and negative, implying that the DFE, £°, is LAS. On the other hand, if R. > 1, the eigenvalues
become unstable, resulting in the instability of £°. Furthermore, by the Poincaré-Lyapunov theorem, since the two
conditions above are satisfied and jacobian .J(£°) has all eigenvalues with negative real parts, as demonstrated in
(2.18), £ is confirmed to be locally asymptotically stable. O

o O O

> 0.

2.5. Global Asymptotic Stability (GAS)

The Disease-Free Equilibrium (DFE) for global asymptotic stability of system 2.3 is analyzed through the
application of the Lyapunov direct method, as outlined in [11, 35, 75]. By constructing an appropriate Lyapunov
function, we show that the DFE is GAS if R. < 1. This ensures that, regardless of the initial conditions, the
population will tend to the DFE over time, meaning that the disease will eventually be eradicated in the system:

{‘fg =F(U,V)

& = G(U,V)

(2.23)

where the uninfected population is denoted by U = (S, Vi, Ri, Sm) and V = (Ey, Ap, I, Th, Epn, I, represents
the infected population. Thus, the point £ = (U*,0) is said to be GAS if R, < 1.

Theorem 4
The DFE is said to be GAS in Q = (Sp,(t), Vi(t), En(t), Ap(t), In(t), Th(t), Ra(t), Sm(t), Em(t), In(t)) € R0 if
R.<1 and the two conditions below are satisfied:

1. C1: %¥ = F(U,0), £ is GAS
2. Co: G(X,Y) = AV — G*(U, V), G*(U, V) > 0 for (U, V) € Q
Proof
For C'1, model 2.3 gives
ap +wp Ry + § Vi — vpSh — pnSh
UnSh — &V — un Vi
InAn + (L= n)In + ppTh — wp Ry — pn Ry,
Oy — /J“mSm

F(U,0) = (2.24)
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0 _ (g0 — _on(éntpn) 0 _ WVh 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ om
Thus, £° = (S} = 5t ot Vi = mte tonrany Bh = 0 AL = 0,13 = 0.7 = 0. B = 0,5y, = =,
ES =0,10 = 0) is GAS for ‘fg = F(U, 0). By adopting the technique of integrating factor, we have
as
CT: + (Un + pn)Sh = an + & Vi + wr Ry,

% (She(V;L+Mh)t) _ ahe(un-i-un)t + (éth +thh)6(V"+”")t

She(l/h-ﬂu‘)t = Oéh/e(yh—i_“h)tdt + /(ﬁth + thh)e(VhJ'_“h)tdt

ahe(yh“l'#h)t

She(’/h+#h)t — + /(fhvh + thh)e(Vh-i-#h)tdt
(vh + 1n)
Sy = Ah + EnVi + wn Ry e~ Wntpn)t _ gth + thh evntun)t gy
(v + pn) Vh + [n U + pin
Hence, Sy (t) — oty as t— oo

Qo

Using a similar approach, S,,(t) — L as t— oo Thus, this implies that equation 2.24 is globally convergent
in Q

For Cs:
AnShH + (1 — O‘h)/\th — 9, Ey — kB — HJhEh
InEn — mhAn — onAn — pnAn
E Ap — v In — (6 1
GX,Y) = { " b+ ThAn — Ynln — (O + pn)In (2.25)
udn — pnTh — (6n + pn)Th
)\mSm - fimEm - MmEm
HmEm - ,UfmIm
= AV -G*(U,V)
where
—19h — Khp — Uh 0 0 0 0 0
In —Th — $h — Hh 0 0 0 0
Kh Th —Yn — On — [h 0 0 0
A =
0 0 Mk —Ph — On — fin 0 0
0 0 0 0 —Km — Hm 0
and

*(AhSh + (1 — O'h)/\th)

G*(U,V) =

—AmSm
0

Condition Cy is not satisfied since G*(U, V) < 0. Hence, for R. < 1, £° = (U*,0) may not be Globally
Asymptomatically Stable. O
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10 MODELING THE IMPACT OF VACCINATION ON MALARIA TRANSMISSION DYNAMICS

2.5.1. The Endemic Equilibrium Point (EEP) All disease states in model 2.3 are considered positive at the
EEP. In view of this, when S;* in the model 2.3 is positive then a unique EEP exists This is equivalent
to having R. > 1. Thus, the EEP is defined as &' = (S;*, V™, Ep*, Ay I Ty Ry, Sir Ene 1) and it
satisfies dsh = % = dfth = dg‘th = % = % = dﬁh = dgt = gt = % =0.In v1ew of the complex nature
of system 2.3, all the state variables are represented in terms of the forces of infection A\;* and A;; at the steady

state. Accordingly,

keksapks ((on — 1) AL" — ko) krks

«
Shx = kAL (karn + ¥nh) wh ((0n — DAL +vhon — v —ka) v (L—n) + A(op — 1) Ap*2 + BAT* — kakakskekr (—k1k2 + vp&p)
Ve = vhkakakekskrap

keX5* (karp + ¥nh) wy ((0n — DA +vpon — v —ka) v (L—n) + A (o, — 1) AJ*2 + BAS* — kakakskeky (—k1ka + vp€p)
Efv— kaAy* (k2 + X5 + v — Ap¥op — vpop) kekskrag,

keAL* (kakp + ¥ph) wh ((0n — D) AL* +vpop —vn —k2) v (L—=n) + A(op — 1) A3*2 + BAG* — kakakskekr (—k1ka + vpép)
AL X5 g (k2 + A5* 4+ v — AL op — vpop) kekskrap,

625" (karp + YpTh) wh ((0n = DAL +vpon —vh —k2) ya (1 —n) + A (o — D) AL*2 + BAL® — kakakskekr (—k1ka + vp&p)
* (kakip + Pr7r) AL (k2 + A\5* 4+ v, — A o — vpop) kekray,

I % =

" keAL* (kakn + Ypmh) wh ((0n — )AL +vhon —vp —k2) yu (L —n) + A(op — 1) A5*2 + BAL* — kakakskekr (—k1ka + vpén)
Ti = nyn (kakp + ) A* (k2 + A5 + vy — X o —vpop) kray,

' ke A5* (karp + n7h) wy ((0n — DAL +vpon — v —ka) v (L—n) + A (o, — 1) XF*2 + BAZ* — kakakskekr (—k1ka + vpén)
RY e — ApFap (ke (kakp + ¥p7h) Yh (L — 1) + én¥nkske + 1 pnvn (kakn + ¥nth)) ((0n — DAL +vpop — vp — k2)

h* = " "

' keAL* (karn + Yn7h) wp ((0n — DAL +vpon — v —k2) v (1= n) + A (o) — 1) A3*2 + BAS* — kakakskekr (—ki1ka + vpép)
* O‘Tn,
Sy = -

A+ pm
. ATy om

™ ke (AEF 4 um)
nm/\;: Qm

timky (N5 + pm)

*
mT T

(2.26)
where A = (¢hwhk5k6 + 1N Pr YR (k4l€h + ’t/JhTh)) wyp, — kskskskek7 and
B = (I/hCTh — ko — Vh) (¢hiphk5k6 + 1 PrYh (k’4l€h + ZZJhTh)) wy, — kskakskeky (klah — Kk — kg) with the forces
of infections defined by

_ Bunelyt e _ Bunely

ATF =
h N** m N;:*

Theorem 5
The EEP, denoted as £1, will be GAS whenever R, > 1.

Proof
The Invariance Principle of Lyapunov-Lasalle, which entails examining the Lyapunov candidate function for £!, is
used to prove the theorem.

1 1 1 1 1 1
V=3 (S0 =87+ 5 (V= Vi) 4 5 (B = ) 4 5 (A = 470)° + S (0= )"+ S (T = T3)
1 Kok | 2 1 sk | 2 1 K| 2 1 o) 2

(2.27)
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Taking the derivative of (4.5),
=(Sh — S )s'h + (Vi = Vi)W + (BEw — B} )En + (An — A5 Ap + (In — L) In + (Th, — T37) T,
(

= ((Oéh + wp Ry + Vi) Sh + (vn + A+ pn)Si*Sh 4 vnSu Vi + (1 = on) A + & + ) Vi Vit

(ASh+ (1= o)A Vi) En + (On + k1 + un) ER En + O EpAn + (Th + o0 + pn) A Ap+
(knEn + 7 An) I + (v + 60 + 1n) I In + mynInTh + (o + 0n + pn) Ty “Th+
(enAn + (1 =) In + prTh) Bi + (wh + pn) By Ry + @m S+ (A + tian) S5 Sim =+ Am S B+

((Vh + An A+ 1) Sk + (n + wiRn 4 E,Vi) S5 Sk + (1= on)An 4 &n + 1) Vi + vaSh Vi Vit

(On + K+ pa)En + (AnSh + (1= 01) A Vi) 3 En + (Th + on + pin) An + 9 ER A} Ap+
(vn + 0n + pn) In + (KnEn + mh A) I I+ (pn + 0n + pn) T A ynIn Ty Tht-
(wp, + pp) Ry + (epAp + 90 (1 — ) In + ppTh) Ry Ry + (A + tom ) S + amSir Sy + (B + o) B+

>\7YLS7YLE;;:<Em Jr ,umIm + HmEm[::InL)

(2.28)
Therefore, the EEP, £, is the largest compact invariant set within { (Sh, Vi, En, An, I, Th, Ry,

S, Em,Im) eN: V< 0}. Thus, using the Lyapunov-LaSalle Invariance Principle, it can be shown that all

solutions in the set © will converge to £* as t — oo when R, > 1. As aresult, €', is GAS. Notably, this discovery
has epidemiological significance because it shows that malaria will persist and spread throughout a community as
long as R. > 1.. O

3. Numerical Simulation

The dynamic behavior of the malaria model, which is presented as an initial value problem in 2.3, is examined in

this section. Numerical simulations are conducted with ode45 solver on MATLAB. The model is simulated using

the following initial conditions:
Sr(0) = 6083.2, V1(0)
Tr(0) = 683.2, R (0)

ioo Ep(0) = Ap(0) = 854, 1,,(0) = 2000, A

00,  Sp(0) = 46000 En(0) = 2500,  I,,(0) = 1500.

3.1. Initial Conditions for Malaria Transmission Model

In calibrating the initial conditions for our malaria transmission model, we adopt field-informed assumptions based
on prevalence data from endemic settings and consider the ten classes of model 2.3.

3.1.1. Human Population Dynamics: Assuming a total human population of N,(0) = 10,000, and a malaria

prevalence of P, = 0.20 (20%), we infer an initial infected human population of:

I (0) = Py x Np(0) = 2000 individuals.
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12 MODELING THE IMPACT OF VACCINATION ON MALARIA TRANSMISSION DYNAMICS

Recent studies indicate that 57.3%of infected individuals are asymptomatic, while the remaining 42.7% are
symptomatic [25]. This yields:

Ap(0) = 0.573 x I,(0) = 1146, 1™ (0) = 0.427 x I;,(0) = 854.

In Nigeria, a high proportion of individuals with malaria-like illness receive some form of antimalarial treatment,
either through formal health facilities, pharmacies, chemists, herbal remedies, or self-medication at home. Based
on national survey data and peer-reviewed studies, it is estimated that approximately 80% of such individuals obtain
treatment. This estimate aligns with findings from a national opinion poll reporting that the majority of symptomatic
individuals seek treatment through hospitals (41%), chemists (22%), pharmacies (21%), herbal remedies (11%), or
over-the-counter drugs (7%) [46], as well as research showing that more than 60% of uncomplicated malaria cases
in public health facilities received treatment [27], and among those seeking care, 72% underwent diagnostic testing
prior to treatment [19].

Tr(0) = 0.80 x I(0) = 683.2.
Assuming no individuals are in the exposed class at ¢t = 0, we set:

E,(0) =0.
If 10% of the susceptible population has been vaccinated, we initialize the vaccinated class as:
Vi (0) = 0.10 x (NVL(0) — I(0)) = 0.10 x 8000 = 800.

Assuming 10% of previously infected individuals have recovered with immunity:

R (0) = 0.10 x I (0) = 200.
The susceptible human population is then obtained by subtraction:

Sn(0) = Nu(0) = (Va(0) + En(0) + Ap(0) + 1™ (0) + T (0) + Rn(0))
= 10,000 — (2400 + 0 + 1146 + 854 + 683.2 + 200) = 4483.2. (3.2)

3.1.2. Mosquito Population Dynamics: For the mosquito vector, we assume an initial population of N,,(0) =
50,000 with an average of patent infection prevalence of 3% [3, 16, 29, 50, 67]. This results in:

1,,(0) = P,, x N,,(0) = 1500 infected mosquitoes.
Assuming 5% of mosquitoes are in the exposed (latent) stage:
E,,(0) = 0.05 x N,,(0) = 2500.
The susceptible mosquito population is:

S (0) = Npp (0) — (Ep (0) 4 I (0)) = 50,000 — (2500 + 1500) = 46,000.

Parameter Estimation for Malaria Transmission Dynamics

To ensure validity and realism in the development of a malaria transmission model that is biologically plausible,
thorough parameter estimate is necessary. Prior modeling research and empirical data are employed to estimate the
model parameter values.

Based on Nigeria’s average life expectancy of 54.4 years from 2015 to 2024 [74, 81, 77], we calculate human

natural mortality rate as:
1

. _504x10°d!
54.4 % 365 x

Hh
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For a baseline population N, (0) = 10,000, the human recruitment rate is:
o, = Ny (0) = (5.04 x 107°)(10,000) = 0.504 individuals d ",

ensuring demographic equilibrium in the disease-free state [78].
For Anopheles mosquitoes with a natural mortality rate of 18 days and baseline population N,,,(0) = 50,000.
Nigeria has an average of 55 million cases of malaria and 90,000 malaria mortality (;) annually. The mortality
rate due to malaria is calculated as 8, = 0990 = 0.0000018 per day [54].
The total rate leaving the exposed human class is k3. If the mean exposed duration is Dy = 11 days and

pa = 0.573 (57.3% go asymptomatic), p;y = 0.427 (42.7% become symptomatic), then

1 5
ks = — =—=0. d
3 Dy 11 0.0909 day -,

Oy = pa ks = 0.573 x 0.0909 = 0.0520 day ',
kn = pr ks = 0.427 x 0.0909 = 0.0388 day *.

If the average mosquito extrinsic incubation period, Dg;p = 11 days:

1 1 »
= = — =10.0909d .
Dgrp 11 v

Rm

assuming that the human and mosquito natural mortality rates, u, and u,, are sufficiently small to be neglected
[32, 65, 76]

From the concept of half life, t1, the rate of loss of immunity for t1 =1 year is given by wy =
0.00190 day~* [31].

The average malaria vaccine efficacy can be taken as o, = 60.5% [70, 66, 22, 79], ., = 0.1429 [47] and
A, = 0.7 [60].

n(2)
365

3.2. Sensitivity Analysis

The local sensitivity index (SI) for each of the model parameters in system 2.3 is obtained by calculating the
normalized forward sensitivity index with respect to a parameter ¥ [4, 10, 12, 18, 75, 35]. Therefore, R. is studied
in relation to slight variations in parameter values for both positive and negative SI.

Definition 1
In relation to a parameter ¥, the normalized forward SI of R, is defined by
_OR. ¥

=50 XR—E (3.3)

R.
S\I/

The SI expression for each of the parameters in R, is obtained using equation 3.3. The SI of R, with regard to

vy, for example, is provided as
Sze:aRe NGO
ovp,  Re 100

Consequently, equation 3.3 can be used to get the SI for each parameter of R.. Therefore, the parameter values
in Table 2.1 are used to evaluate the SI of each parameter with respect to R..

Table 3.2 reveals that the parameters i, um, Bhim, Bmhs Kms Eh, Khy Th, and € have positive sensitivity indices
(SI), whereas ap, Vi, Vh, fbm, Oh, On, @1, and ¥y have negative values. A positive SI signifies that R, varies in the
same direction as the parameter, while a negative SI indicates an opposite effect. For instance, SIELG ~ —0.113
shows that doubling the vaccine uptake rate would reduce R. by about 11.3%, thus lowering the potential
for disease spread. In contrast, S;i,em ~ 0.5 implies that a 100% rise in the mosquito-to-human transmission
probability would lead to a 50% increase in R.. The most influential parameters are p,, (S ~ —1.31), € (S =
1.00), and the transmission probabilities S, Bmn (S = 0.5), underscoring the importance of vector control and
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14 MODELING THE IMPACT OF VACCINATION ON MALARIA TRANSMISSION DYNAMICS

Table 3.1. Baseline parameter values and their sources

Parameter Value Source
ap, 0.004215 Estimated
A 0.7000 [60]

L 5.04 x 1075  Estimated
Lm 0.1429 Estimated
S, 1.8 x 1076  Estimated
wr, 0.00190 Estimated
Bhm 0.729255 [7]

Bmh 0.837773 (7]

vp, [0,1] Assumed
€ 0.49 [53]

&n 0.0015 Assumed
on 0.605 Estimated
Iy, 0.0520 Estimated
Kh 0.0388 Estimated
Km, 0.0909 Estimated
Th 0.05 Assumed
©n 0.01 Assumed
Yh 0.0092 [53]

n [0,1] Assumed
Ph 0.001 Assumed

Table 3.2. Partial derivatives %% and normalized sensitivity indices S?;e for each parameter at baseline

R, R,
Parameter 20 Sy
an —57.08 —0.5000
Qm +0.4087 +0.5000
ih +9.91 x 10®  +0.5004
Lo —4.254 —1.3056
Sn —5.42 —9.73 x 1075
wh, 0 0.0000
Bhm +0.3426 +0.5000
Bmh +0.2926 +0.5000
Un —19.50 —0.1129
€ +0.6826 +1.0000
&n +20.00 +0.1092
on —0.4202 —0.2585
I —0.0206 —0.0225
Kh +0.0215 +0.0228
Km +1.146 +0.3056
Th +0.0441 +0.0441
©n —0.0439 —0.0439
Th —27.09 —0.4972
n 0 0.0000
Ph 0 0.0000

contact reduction. Therefore, strategies that strengthen vaccine uptake and efficacy (linked to negative SI) and
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simultaneously suppress mosquito survival and biting frequency (linked to positive SI) are the most effective in
reducing malaria transmission.

The computed values of the partial derivatives (%If;) describe how R, responds to infinitesimal changes in
each parameter. A positive derivative implies that increasing the parameter raises R., thereby enhancing malaria
transmission, whereas a negative derivative indicates that increasing the parameter reduces R, and supports disease
control.

The relative magnitudes of these derivatives highlight the parameters to which R, is most responsive. In
particular, pp,vn, v, &R, and u,, exhibit the largest absolute derivative values, showing that even small shifts
in these parameters can substantially alter transmission potential. By contrast, parameters such as wy,n and py,
display near-zero derivatives, indicating negligible impact on R, under the baseline conditions.

When considered alongside the normalized sensitivity indices, these findings emphasize that mosquito mortality
Im (negative influence), human-to-mosquito and mosquito-to-human transmission probabilities (8x.m,, Bmr), and
the contact rate e (positive influence) are the dominant drivers of malaria spread. On the intervention side, vaccine
uptake vy, and efficacy o, (both negative influence) represent important levers for reducing R.. Thus, parameters
with both large derivative magnitudes and strong sensitivity indices emerge as priority targets for malaria control,
offering a quantitative foundation for guiding interventions and optimizing resource allocation.

4. Formulation of an Optimal Control Problem (OCP)

This section applies optimal control theory to determine the most effective combination of interventions for
reducing malaria transmission. In the context of malaria epidemiology, the objective is to minimize the disease
burden in both human and mosquito populations, while accounting for the economic and operational costs of
implementing the control strategies.

We introduce three time-dependent interventions:

(i) 11 (t) = Insecticide-Treated Nets (ITNs);
(i) 2(t) = Improved Diagnostic Surveillance; and
(iii) v5(¢t) = Environmental Sanitation.

(i) The control variable 0 < ¢4 (¢) < 1 represents the use of ITNs, which serve as a personal protection measure
against mosquito bites. The use of ITNs reduces the rate at which susceptible humans are bitten by infectious
mosquitoes, and simultaneously reduces the likelihood of mosquitoes becoming infected after biting
infectious humans. Thus, this intervention decreases the effective contact between humans and mosquitoes.
As a result, the forces of infection for both populations are modified as follows: the human force of infection
becomes Af = (1 — 91 (t))An, and the mosquito force of infection becomes A, = (1 — 11 (t)) M.

(ii) The control variable 0 < 15(¢) < 1 represents improved diagnostic surveillance and case detection efforts,
such as enhanced laboratory testing, rapid diagnostic tools, and active case finding. This intervention
increases the rate at which exposed humans are correctly detected and moved into either asymptomatic or
symptomatic compartments for appropriate management. As a result, the disease progression parameters are
modified to reflect earlier detection. Specifically, the rate of progression from FE}(t) to I, (t) is adjusted as
K§. = Kkp, + 0112(t), and the rate from asymptomatic to symptomatic becomes 77 = 73, + 629)2(t), where 6;
and 6, are positive constants representing the effectiveness of surveillance.

(iii) The control variable 0 < u3(t) < 1 denotes environmental sanitation efforts aimed at disrupting mosquito
breeding habitats. Such interventions may include drainage of stagnant water, proper waste disposal, clearing
of bushes, and other vector habitat modification strategies. These efforts reduce the mosquito population by
decreasing the recruitment rate of mosquitoes and increasing their mortality rate. Consequently, mosquito
recruitment rate is modified as af, = (1 — u3(t))a,, and the natural mosquito death rate is increased to

Hin, = Him + u3(t) fim.
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16 MODELING THE IMPACT OF VACCINATION ON MALARIA TRANSMISSION DYNAMICS

By formulating an objective functional that balances infection prevalence against the costs and feasibility of
these interventions, we aim to identify the optimal time-dependent profiles of v;(¢),7 = 1, 2,3 that achieve the
greatest reduction in malaria cases and vector density over the endemic region:

t
J (1,9, 13) = /O ' {mAh(t) + kolp (t) + K3l (t) + % (w193 (t) + warh3 (£) + wsrh3 (1)) | dt, .1

subject to the non-linear ODEs below:

450 — oy, 4wy Ry, + E,Vi — VS — ASSh — 1tnSh,

% = vpSh — (1 = on) A Vi — EnVi — i Vi,

4B = XeSh 4 (1 — 0n) Mg Vi — InEn — K5, B — pin B,

d:?th =By — i AL — oA — pnAp,

Ay — ¢ By + 15 An — wdn — (On + ) In, )
D = yy Iy, — puTh — (61 + p) T,
dRy _

T = enAn + (1 =) In + ppTh — wp Ry — pn R,
B = (1= Ys(0)am = XS — (L + $3()) it S,
B = X6 Sy — i B — (L4 03()) ftm Ens
Yo = K B = (14 93(6)) Iy

with the initial conditions given by 2.4. The modified forces of infection are defined as:

R e e 10)

Bmneln
Nh

. The modified progression rates under improved surveillance are:
Kpp, = kn + 012(t), 75, = Th + O292(¢)

where 01, 0, are positive constants reflecting the strength of the surveillance, ¢; stands for the final time for
the control strategies implementation. The balancing weight constants, x; > 0, ¢ = 1,2, 3, are for asymptomatic
humans, infectious humans and infectious mosquitoes. The terms %wq; »2(t), i = 1,2, 3 denote the costs associated
with implementing insecticide-treated nets (ITNs), improved diagnostic surveillance, and environmental sanitation,
respectively.

We use the idea from [6, 30, 37, 48] to get the best controls in order to minimize the objective functional

JW1(8), (1), 95(1)) = min J (¢ (2), 92 (2), 3 (1)) (4.3)

where & = 9;(t),7 = 1,2, 3 are lebesque measurable functions with v;(t) € [0,1] : 0 <t < t; because the state
and control variables are non-negative, @ exists and is bounded, closed, and convex.

The application of optimal control allows for the investigation of optimal intervention strategies in accordance
with Pontryagin’s Maximum Principle. This principle is employed to reformulate the controlled system equations
and the objective functional into a minimization problem involving the pointwise Lagrangian £ with respect to
P1(t), Pa(t), and 5(t). The aim is to determine the optimal time-dependent control profiles that minimize L.
This approach aligns with the standard methodology presented in [9], where the Hamiltonian H is analyzed to
characterize the necessary conditions for optimality and to derive the optimal control strategy. The Hamiltonian is
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given as:
H = k1 Ap + kodp, + k3l + = L (wﬂ/)l + wath3 + wst3)
+ As,, (an +wp Ry + Vi, — v Sk — NeSh — unSh)
+ Av,, (WS — (1 = o)A Vi — Ea Vi — pin Vi)
+Ag, ARSh + (1= o) A\yVi — OnEp — K3, En — pnEp)
+Aa, (OnEn — 15 AR — onAn — unAp)
+ A, (K5 Ep + 75 AR — Y dn — (8 + pn)In) (4.4)
+ A7, (yndn — pnTh — (0n + pn)Th)
+ Ar,, (onAn + (L =) + ppTh — wp Ry, — pinRp)
+ As,,, (1= v3)am — AL Sm — (1 + ¥3) ttm Sim)
(A Sm = BB — (L4 ¥3) pm B
+ A1, (BmEm — (1 4+ 93) it D) -

+ Ag,

Theorem 6

For the OCP given by (4.1)-(4.2) with the initial conditions at ¢ = 0, there exists (¢} (¢), ¥3(t), 435 (t)) € U such
that J(d}f (t)v @ (t)a ZZJ; (t)) b1 (8) I(I;;I}b (H)eu (1/}1 (t)v () (t)a V3 (t))

Proof
The results in Theorem 6 are established by adopting the techniques in [9, 14, 15, 28]. Thus, the following
characteristics will be established:

i The control set U associated with each state variable equation is non-empty, convex and closed.
ii Non-negative solutions of the system 4.2 exists and it is bounded.

iii The boundedness of each right-hand side expression in model 2.3 is a linear function of U, which varies with
time and depends on the state variables.

iv The integrand in the objective function 4.1, expressed as

F1An(t) + 2 dn(t) + 3L (8) + % (w197 (t) + wati (1) + ws3 (¢))
convex in U.

i The control set U is non-empty and closed since it contains all of its limit points. Therefore, given A € [0, 1] and
any two arbitrary points z,y € U, where x = (x1,x2,x3) andy = (y1,y2,¥3), then Ax; + (1 = N)y; € U
for ¢ = 1,2, 3 satisfying the convexity property of the control set.

ii We take into consideration the objective function J(v1(t),12(t),13(t)) since the state and control variables
in system 4.2 are positive and the control set U is closed and convex, as demonstrated above. Finding the
ideal control is made easier by the convexity that means every local minimum is also a global minimum
as the integrand of J is a convex function of the control variables 1 (), ¥2(t), ¥3(t) on the control set U.
Additionally, for any admissible control ©;(t) = (v1(t), ¥2(t),¢3(t)), there exist positive constants 1, x2
and € > 1, such that
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(w13 (t) + wat3 (t) + ws3 (L))

DN | =

J :KlAh(t) + KQIh(t) + Hg[m(t) +

> w17 () 4 w3 () + wsth3 (1)

> wihf (t) + wat3 () + wsyp3(t) — x2  Since with —wy <0 (4.5)
1 1 1

> min (e + Swa + Sws) (Y1 () + watl () + wat3 (1) —wr

> XIHUsz

where y2 = min(3w; + 2wz + Jws), x1wi and e = 2.

It is noted that the inequality guarantees that .J is convex with regard to the control variables. An optimal
control is implied by the convexity of J, the boundedness of the state variables, and both of these factors.
Lastly, using the Direct Method in the Calculus of Variations, we determine that the closed and convex
control set U contains the optimal controls #;(¢) that minimize the objective function .J. As a result, it is
established that 4.1 subject to system of equations 4.2 has an optimal control.

iili We use the method described in [9] to prove this condition. Let

H(Xa¢aﬂ) = H(Xa ¢) + G(ILL)X

—x 0 0 0 0 0 0 0 0 0T " S(t) ]

0O -4 0 0 0 0 0 0 0 0 V()

0 0 —x 0 0 0 0 0 0 0 Ep(t)

0 0 0 —u 0O 0O 0 0 0 0 Ap(t)

0 0 0 0 —p 0 0 0 0 0 In(t)
where G ="'y o o 0 0 —x 0 0o o ol *T|lmwl|

0O 0 0 0 0 0 —p 0 0 0 Ri(t)

0O 0 0 0 0 0 0 —u 0 0 Sp(t)

0O 0 0 0 0 0 0 0 —p 0 Epn(t)

o 0 0 0 0 0 0 0 0 -—pul 1, (1) ]

[ an+wpRp + § Vi — vpSh — A, Sh
S — (L= op) A Vi — Vi
AfLSh + (1 - ah))\,Cth — 9B, — KZEh
UnEn — 1 An — onAn

_ K5 En 4 15 Ap — Yadn — pndn
H(X, b,n) = Mt — prTh — pnTh (46)
onAn + (1 —n)In + ppTh — wn Ry
(1 - wS(t))a’m - )\fnsm - ¢3(t)umsm
A8, Sm — Em B — U3 () tom B,
L HmEm - ¢3(t)/im[m h

Given the initial conditions 2.4, a non-negative bounded OCP and Lebesgue measurable controls exist. The
OCP provided by model (4.2) can be expressed as follows:

% = D(4i(t))X + G(¥i(t), X) 7

Equation 4.7 has bounded coefficients and is a non-linear coupled system. Let
H(X) = DX + G(¢5(t), X) 438)
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Therefore, the first equation of (4.2) shows that

|G (¢i(t), X1) — G(i(t), X2)| <e1 [Sh1 — Sha| + c2 [Vir — Via| + 3 |Ep1 — Ena| + ¢4 |An1 — Ans
+¢5 [T — In2| + c6 | Tha — Tha| + c7|Rn1 — Raa| + cg |Sm1 — Smal
+ o |Em1 — Ema| + c10 [Im1 — Ihme|
<c(Sn1 — Shal + Va1 — Vaz| + |En1 — Ena| + |Ap1 — Anz
+ [In1 — In2| + |Thy — Tha| + [Ru1 — Rpa| + [Sm1 — Smal

+ |Em1 - EmQ‘ + |Im1 - Ihm2|)
(4.9)

where X1 = (1, Var, Bnty Anty Ints Thas Rty Sty Bty It ). and X, =
(ShQ,VhQ,Eh27AhQ,IhQ,ThQ,RhQ,SmQ,Em27Im2) and c=max(ci,i = 1,27...,10). It is noted that
c is independent of the state variables. Hence, the following inequality holds:

|H(X1) — H(X2)| < c]X1 — X (4.10)

for ¢ = Zgl a1 + ||H||? < oo. Thus, H(X) is Lipschitz continuous. Given the control variables ;i =
1, 2, 3 and the initial conditions 2.4, it follows that solutions of the control model 4.2 exist.

iv Let 1(t) = (¥1(t),v2(t),3(t)) T and define, for fixed t,
F) = K1An(t) + raln(t) + ksl (t) + 3 (w197 + wathh + wst3).

The terms k1 Ap(t) + K21k (t) + w31, (t) are constant with respect to v (for fixed t), so convexity in 1) is
determined by the quadratic term.

Compute the gradient and Hessian with respect to 1/:

w11 w 0
Vpf(h) = [wea |, Vo f(@)=|0 ws
w33 0 0 ws

For any v = (v, ve,v3) ",
UTV?/;JC("P) v = UJl'U% + wgv% + W3U§.

Hence, if w; > 0 for i = 1,2, 3, the Hessian is positive semidefinite and f is convex in 1. If w; > 0 for all ¢
the Hessian is positive definite and f is strictly convex.

Since the objective functional is
ty
J(wla ¢2ﬂ/’3) = / f<¢(t)) dt7
0

and the pointwise integrand f(t(¢)) is convex in 4)(¢) for each ¢, the functional J is convex in the control
functions 4)(-) on any convex admissible control set (for example measurable controls taking values in a
convex set like [0, 1]3). Moreover J is strictly convex if w; > 0 for all i.

O

4.1. The Uniqueness of the Optimal Control

The optimality system that follows is obtained by using the method in [9, 35, 37]. Pontryagin’s Maximum Principle
is used to determine the uniqueness of the optimal control of the malaria epidemiological model. This principle
establishes the prerequisites for optimality, and if it results in a singular solution, it validates that the optimal
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control is unique. Here, the goal is to minimize the cost functional in equation (4.1) while taking into account the
dynamics of malaria transmission as given by system (2.3), which ensures the existence of an optimal control. If
(X (t),U(t)) is an optimal pair for the control problem, then there exists a non-trivial vector function, based on
Pontryagin’s Maximum Principle.

A(t) = (Asps ANy ABs My ALy ATy ARps A8,y AR AL

The adjoint variables satisfy

d\; oH ,
. Ai(ty) =0, =1,2,...,10,
dt &r, ’ ( f) ’
where x; represents the ith component of the state vector X (¢). The optimality condition
oH
a. = 07 ,7 = 17 2a 3)
o,

yields the explicit control characterizations

-
V3 (t) :min{max {Q—;W} 71}, j=1,2,3.
j j

These necessary conditions, together with the convexity of the integrand in U, guaranteed the uniqueness of the
optimal control for the malaria model.

Theorem 7

Given the optimal control o7 (t),¢5(t),¢5(t) and  solutions of the state  variables
AS, s AV s Al s Al AT s AT s AR, s NS, s AR s A7, then  there  exists  adjoint  variables \; for =
(A8 AV s ABy s Ay s Al ATy s ARy s AS,, s AR, A1, ) that minimizes J (17 (t), 135 (t), ¥5(t) over @ satisfying:

m€lm
+ Mh) — A, vh — AR, (1 - 1/11)6hT7
h

ﬁhmeIm

As, = s, <1/h (L) R

mae-[m
N,

ﬁhmeIm
Nh

M = A &+ i (1= 0n) (1 = ) + &+ in) = Am, (L= on)(1 = 1)

g, = Am, (19}1 + Ky + 012 + Nh) — A4, I — A, (Kn + 0192),

Aa, = =K1+ A, (Th + O2vpo + p, + Mh) — A1, (Th 4 02102) — AR, ©n,

: mh€5m
A, = —K2 + Ap, (Vh + 0 + Mh) = A, Myh — AR, (L —1n) + (1 - %)5]@7}1 (As,, = AE, )

@.11)
W = AT, (Ph +0p + ,Uh) — ARy, Phs

AR, = —As, Wh + AR, (wh + Nh)a

Brmneln

Pmnely +(1+ ws)ﬂm) —Ag, (1 - %)Nih’

Np,

As,, = As,, ((1 — 1)

A, = Ag,, (Hm +(1+ 1/)3)Mm) — AL, Km,

| P (1 — 1) Brme

. N ()\ShSh + (1= on)Av, Vi — A, (Sn + (1 — ah)vh)) Az, (14 93) .
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with the control variables 5 (t), ¥3(t), 3 (¢) and the transversality conditions
A (tf> _0 1= ()\Sh7)\Vh;)\Eh7)\Ah7)\1h7)‘Tha)‘Rha)‘Sm7 ma)‘fm)' (412)
The following optimality conditions are used to characterize the control variables:

maEI

Py = max (0, min (17 wil {(AE}L —Xs;,) N, Sh+ (Mg, — Av,) Bh%dm Vil — on)

+0m, s P, ),
Yy = max (O m1n< ;2 {()\Ih Ag, )01 En + (A1, — )\Ah)OQAh} >>, (4.13)
Y3 = max <07 min (17 w% {/\sm (m + pmSm) + Ap,, tm Em + Ar, umlm] > > :

Proof
The Hamiltonian associated with the malaria OCP is defined by

H = k1Ap + kolp + k3l + 5 (w0197 + wot)3 + wyth3)

me m
+ As, (ah +wp Ry + & Vi —vpSp — (1 — ¢y )B}LTSIL - Mh5h>

v (Vhsh —(=on)(1 - wl)ﬁhmd Vi —&nVa — th>
Az, ((1 — ¥ )ﬁhrjr\i[ Sp+ (1 —on)(1 - 7/)1)ﬁh7]7<[z[m Vi

—UpEy — (kn + 019p2) B, — MhEh)

+ Aa, (ﬂhEh — (Th + O292) Ap, — o Ap — MhAh>

4.14)
+ Az, ( Kh + 91’1/)2 E;, + (Th + GQQ/JQ)Ah — vl — (5h + Mh)Ih)

+ Az, (v dn — ppTh — (0 + Mh)Th>

+ Ag, (@hAh + 0 (1 =) Ip + ppTh — wp Ry — uth)

ﬁmhelh
N Sm - (1 + '(/J?))Mmsm)

ﬁmhdh

+As,(1—w3 — (1 — gy R
(-

+Ag, Sy — o By — (1 4+ wg)MmEm)

+)\1m( o —(1+w3)umlm>.

The partial derivatives of the Hamiltonian function, H, with respect to each of the model’s state variables are
taken to obtain the adjoint system:

: OH
As), = _875}/ Asy, (tf) =0,
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A, = —%7 Av, (tg) =0,
A =~ 5ot Am(t) =0,
A, = —%» Aa, (tr) =0,
A, = _%’ A, (tf) =0,
AT, = —%, Az, (ty) =0,
A == o, A1) =
As,, = *%, As, (tf) =0,
Ap,, = f%, Mg, (tr) =0,
A1, = f%, A, () = 0.
O
If (z, ) is the optimal solution based on the optimality conditions, then g}; = g}; = % =0atvy; =]
Py = max (0, min (17 wil {()\Eh — )\sh)ﬁhylvzlm Sy + (Mg, — Av,) Bh%ijm Vi(1 —op)
(s, — As,) ’"]3;[” Sm] )) ,
Yy = max (O, min <17 wig |:()\]h —Ag, )01 En + (Ag, — )\Ah)ezAh:| >>, 4.15)
Y3 = max <O7 min (1, wig {/\Sm (m + mSm) + A6, i Em + AL, umlm] > )

;0
B0, =
OH
50, =
OH
0. =

w1 — <(/\Eh - /\Sh)ﬂhN6 Sh+ (AE, — AWL)BhNE Vi(l1=on) + (Ag,, — /\Sm)ﬂ J\}}E h5m>7
h h h

wothy — <(/\1h —Ag, )01 En + (A1, — /\A,L)GQAh)a

w31/]3 - <)\Sm (am + MmSm) + )\Em,u/mEm + >\Im,um[m> .

Hence, the OC functions are given as

1 (g, — As) B2, 4 (Ap, — Av) B2 Vi (1= 03) + (Ap,, — Asm)%s;’hsm)
L (Ar, = Ag, )1 En + (Ar, — A Ah)QQAh> (4.16)
/\Sm(am + Mmsm) + )‘Emlu’mEm + )\Imlu/mlm>
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By using the bounds on ¢} and the notion of standard control, we get

0ifvr <0
v =0 if0<Vr <1
1ifdf >0
where ¢ = 1,2, 3 and
1 mae-[m maGIm ﬂmhe-[h
Uy = o <(AEh - Ash)ThSh +(Ag, — )\vh,)Tth(l —on) + (Mg, — As,) N, Sm

Therefore, 1, the control for ITNs, can be expressed in compact form as
¥ (t) = min {1, maz {0,9,}}
Similarly,
9y = ((AI,L — A5 )01En + (A1, — AA,L)egAh>

w2
Consequently, v, the control for Improved Diagnostic Surveillance, can be expressed in compact form as
¥ (t) = min {1, maxz {0,9,}}
Lastly,

1

J3 = JB <)\Sm (am + NmSm) + >\Em/JJmEm + /\Im,UJmIm)

Community-based sanitation measures targeting the disruption of mosquito breeding habitats, 13, implies that

Y3 (t) = min {1, max {0,93}}

5. Results and Discussion

In this section, we analyze the dynamic properties of the malaria model 2.3. The resulting two-point boundary
value problem (BVP), corresponding to a sixteen-dimensional optimality system, is solved numerically.

5.1. Autonomous System

We analyze the dynamics of the malaria model using the parameter values presented in Table 3.1. Based on these
values, R of system 2.3 is estimated to be approximately R, = 1.2268.

5.2. Effects of vaccination rate (v;,) on the Human Population

4
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Figures 5.2 - 5.2 reveal the effects of increasing v, on each of the classes of the human subpopulation. The
population of the susceptible class decreases as uy, increases, as seen in Figure 5.2. This shows that effective malaria
vaccines will reduce human susceptability to malaria. Figure 5.2 depicts a significant increase in the vaccinated
class. On the other hand, Figures 5.2 - 5.2 reveal that an increase in v, causes the population of E(t), A(t), I(t),
T(t), and R(t) compartments to decline. This demonstrates how well immunizations work to stop the spread of
malaria.

5.3. Correlation of vy, oy, € and &;, with the steady-state vaccinated population (V)

Figure 5.1a reveals an exceptionally strong positive correlation (r ~ 0.997) between the vaccination rate () and
the resulting steady-state vaccinated population size (V). This confirms the fundamental principle that increasing
the speed of vaccination directly and effectively increases the size of the protected cohort. While the relationship
is overwhelmingly positive, it follows a subtle concave-down quadratic trend rather than a purely linear one. This
indicates the presence of saturating dynamics within the model. The most substantial absolute gains in V' are
achieved at intermediate vaccination rates (e.g., between v, = 0.4 and vy, = 0.7). The slight diminishment in the
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rate of increase at the highest values of v}, is likely due to the increasing competition between the vaccination
process and the natural depletion of the susceptible pool from other factors like natural mortality and the vaccine
waning rate (£5,). The simulation results, represented by blue points, show the model’s output across the parameter
sweep. The mean steady-state vaccinated population across all simulated rates is approximately 17,500 individuals,
with values ranging from around 1,800 to over 33,000. For health policymakers, this analysis underscores that
higher vaccination rates are unequivocally beneficial for achieving population-level immunity. The model suggests
that while returns may become marginally less pronounced at the highest levels, a strategy focused on maximizing
vy, remains the most effective way to maximize V;'. This supports the allocation of resources towards initiatives
that accelerate vaccine rollout, such as increasing clinic availability and public outreach campaigns.

Figure 5.1b presents the result of the correlation between the steady-state vaccinated population (V) and vaccine
efficacy (o},). The observed strong positive correlation (r =~ 0.997) is notable and reveals a non-linear, concave-
down quadratic relationship. Contrary to an initial assumption that efficacy primarily protects individuals from
infection, the model indicates that higher vaccine efficacy has a secondary, population-level effect: it sustains
the size of the vaccinated pool. This occurs because a more efficacious vaccine (o5, — 1) significantly reduces
the rate of breakthrough infections, which is a pathway out of the V}, compartment. Consequently, individuals
remain vaccinated for longer periods before waning immunity (&) or natural mortality (1) moves them out. This
retention effect allows the constant inflow of new vaccinated individuals (at rate v,.Sy) to accumulate, resulting
in a larger steady-state population V,". The supra-linear increase at very high efficacy levels (e.g., o, > 0.95)
suggests a critical threshold beyond which improvements in vaccine quality yield disproportionately large benefits
for maintaining population immunity. This implies that investing in the development of high-efficacy vaccines is
not only beneficial for individual protection but is also a powerful strategy for achieving and sustaining higher
overall vaccination coverage, as it optimizes the durability of the vaccinated state.

x10° x10

Correlation: r = 0.861 —— Quadratic Trend Line it
L oL
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Steady-State Vaccinated Population (V;)

Vaccine Effcacy Range:0.70- 09
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Figure 5.1. Correlation of &y, €, vy, and oy, with V'
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Figure 5.1c illustrates a pronounced and robust negative correlation (r =~ —0.986) between the human-mosquito
contact rate (¢) and the steady-state vaccinated population (V;"). The relationship is characterized by a strongly
concave, non-linear decay. This inverse relationship is mechanistically driven by the role of € in the force of
infection (Ap). An increase in e raises the risk of infectious bites for all individuals, including those who are
vaccinated. While the vaccine offers partial protection (modulated by efficacy o},), a sufficiently high contact rate
overwhelms this protection, leading to a sharp increase in breakthrough infections. This effect manifests in the
model as a critical outflow pathway from the V}, compartment: vaccinated individuals experience breakthrough
infections and transition to the exposed (F},) class. Consequently, the steady-state balance shifts; the constant
inflow into V}, (from vaccination) is counteracted by an accelerated outflow due to infection, in addition to the
baseline outflows from waning immunity (£;) and mortality (u). The precipitous decline in V' at low-to-mid
values of e demonstrates the vulnerability of vaccination programs in high-transmission settings. This analysis
underscores that environmental transmission intensity is a primary constraint on vaccine-derived population
immunity. Vaccination cannot be viewed as a standalone intervention. Its success is contingent upon effective
integrated vector management to suppress the contact rate (¢) and maintain the protective benefit of vaccination.
The results argue strongly for combining vaccination with aggressive vector control efforts to reduce the risk of
breakthrough infections and ensure the long-term stability of the vaccinated cohort.

Figure 5.1d demonstrates a definitive inverse relationship between the vaccine-induced immunity waning rate
(&) and the steady-state size of the vaccinated population (V,"), characterized by an exceptionally strong negative
correlation (r =~ —0.928). The response is markedly non-linear, exhibiting a concave, decaying trend. The analysis
reveals that the stability of the vaccinated cohort is acutely sensitive to the duration of immunity. Incremental
increases in the waning rate, particularly at lower values, precipitate a disproportionately large decline in V. This
sensitivity arises because &, constitutes a direct outflow pathway from the V3, compartment; a higher waning rate
accelerates the transition of vaccinated individuals back to the susceptible state (S},), where they are once again at
risk of infection. This establishes that the long-term effectiveness of a vaccination program is not solely dependent
on the initial efficacy (o},) or uptake rate (14,), but is fundamentally constrained by the durability of the immune
response it elicits. Consequently, developing vaccines that confer long-lasting immunity is paramount for achieving
and sustaining high levels of population coverage and underscores the critical role of vaccine durability in public
health strategy.

5.4. Non-autonomous System

In this section, MATLAB is used to solve the sixteen-dimensional optimality problem using an iterative forward-
backward sweep method (FBSM) in conjunction with the fourth-order Runge-Kutta algorithm. The state system
4.2, the adjoint system 4.11, and the control equations 4.16 specified across the time interval [0, 400] days make up
this system, which represents a two-point BVP. Our objective is to identify the best control measures required to
slow the population’s spread of malaria outbreak.

Starting with initial conditions and an initial control guess, the equations of the non-autonomous system 4.2 are
solved forward in time, because the optimality system has several time orientations. The adjoint system’s equations,
on the other hand, with terminal conditions 4.12, are calculated backward.

The weight constants «; and t;, where ¢ = 1,2 and 3 of the objective functional are taken as follows:
k1 = 0.5, ko = 0.25, k3 = 0.5, = 1000, )2 = 500 and 13 = 1000 together with the parameter values in Table
3.1. These theoretical weights are used to simulate OCP. For a strong surveillance effect, we take 6; = 0.6 day '
and A, = 0.4 day .

In this study, three distinct strategies are examined for the optimization of the objective functional 4.1. Each
strategy incorporates the application of at least two optimal control measures. The strategies are:

 Strategy A: A combination of Insecticide-Treated Nets and Improved Diagnostic Surveillance (i.e. 11 (t)
and s (t), with ¥3(t) = 0).

* Strategy B: A combination of Insecticide-Treated Nets and Environmental Sanitation (i.e. 11 (¢) and v3(¢),
with 19 (t) = 0).

e Strategy C: A combination of Insecticide-Treated Nets, Improved Diagnostic Surveillance and
Environmental Sanitation (i.e. ¥ (¢), 12 (t) and ¥5(t)).
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According to World Health Organization, one essential and vital method for preventing and controlling malaria
is the use of ITNS, 11 (¢). It serves as a personal protection measure against mosquito bites. Thus, this intervention
decreases the effective contact between humans and mosquitoes release [80]. Hence, this control measure in
included in each of the strategies.

5.4.1. Strategy A: A combination of Insecticide-Treated Nets and Improved Diagnostic Surveillance (i.e. 11 (t) and
Pa(t), with ¢5(t) = 0) .

Figure 5.2a illustrates the temporal progression of the asymptomatic infected humans (Aj,) under Strategy A. The
dashed red curve represents the baseline dynamics, where A, rises sharply to a pronounced peak before settling
into a persistently elevated endemic equilibrium. This outcome underscores the role of asymptomatic carriers in
sustaining malaria transmission, as they form a substantial, largely undetected reservoir of infection. By contrast,
the solid blue curve reflects the effects of the interventions of Strategy A. Here, the intervention markedly reduces
the peak of asymptomatic infections and lowers the long-term equilibrium to a substantially diminished level. This
indicates that Strategy A does not only curtails the hidden reservoir of infection but also weakens the overall force
of transmission across the population.

Figure 5.2b illustrates the dynamics of the symptomatic, infectious human hosts (1) over a 400-day period.
The plot shows two distinct trajectories: one representing the baseline scenario (dashed red line) and another
representing the system under a specific control strategy (solid blue line). In the absence of control, population of
symptomatic humans surges rapidly to a high peak, indicating a substantial clinical burden. This is followed by a
pronounced decline as individuals recover or are treated, eventually stabilizing at a lower, yet persistent, endemic
level. The implementation of the control strategy substantially mitigates the initial outbreak and maintains the
infectious population at a consistently reduced level, highlighting the effectiveness of the intervention in reducing
both the peak incidence and the long-term burden of symptomatic disease.

Figure 5.2c illustrates the trajectory of the treated human hosts (7},) over a 400-day period. The plot compares
the baseline scenario (dashed red line) with the system under control strategy A (solid blue line). In the absence of
control, the treated population rises sharply and reaches a very high peak, indicating a substantial and immediate
burden on the healthcare system as it responds to the outbreak. The subsequent decline is gradual, stabilizing at a
high endemic level, which suggests a persistent, long-term demand for treatment resources. The implementation of
the control strategy results in a dramatically reduced and delayed peak. More importantly, the strategy maintains the
treated population at a consistently low level throughout the simulation, effectively mitigating the clinical burden
and demonstrating the intervention’s success in reducing the number of cases severe enough to require treatment.

Figure 5.2d illustrates the dynamics of the recovered human hosts (R}, ) over a 400-day period. The plot compares
the baseline scenario (dashed red line) with the system under control strategy A (solid blue line). In the absence
of control, the recovered population exhibits a rapid and substantial increase, reaching a very high equilibrium.
This growth is driven by the steady inflow of individuals from the infectious and treatment compartments (A,
Iy, T},) as they clear the infection. The implementation of the control strategy results in a significantly lower and
slower accumulation of recovered individuals. This outcome is a direct consequence of the successful intervention,
which reduces the number of new infections and people who can eventually recover. While this leads to a smaller
recovered population, it reflects a substantially reduced overall disease burden, as transmission is effectively
curtailed at the source, preventing individuals from entering the infectious stages in the first place.

The prevalence increases sharply and stabilizes at a high endemic equilibrium, reflecting an uncontrolled
outbreak in the absence of interventions. By contrast, the implementation of the control interventions under Strategy
A produces a substantial reduction in prevalence relative to the baseline. The epidemic curve peaks at a much lower
level and remains consistently reduced throughout the simulation, thereby demonstrating the effectiveness of the
strategy in alleviating the disease burden (see Figure5.2e).

Figure 5.2f shows the behavior of the infected mosquito population (/,,) over time under Strategy A. The
dashed red curve represents the baseline scenario without interventions while the solid blue curve represents
the outcome under Strategy A. The introduction of Strategy A results in a significant decline in the population
of infected mosquito. This demonstrates the effectiveness of the control strategy in reducing the population of
infected mosquitoes.
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Figure 5.2. Effects of Strategy A on the Dynamics of Malaria Prevalence
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The solid blue curve represents the control function, 1) (¢). It shows that this control is initially applied at the
maximum possible intensity (a value of 1, indicating 100% effort or coverage) within the first 50 days. Thereafter, it
declines to zero and remains at that level throughout the rest of the simulation. The dashed red curve represents the
control function 5 (¢). This control is not activated at all for the entire duration, as its value remains at zero. This
profile indicates that the optimal implementation of Strategy A requires the immediate and sustained application
of control 11 (¢) at its highest possible level, while control ¢2(¢) is determined to be unnecessary for this particular
strategy and is therefore kept inactive (see Figure 5.2g).

5.4.2. Strategy B: A combination of Insecticide-Treated Nets and Environmental Sanitation (i.e. 11 (t) and 3(t),
with 15 (t) = 0). Figure 5.3a shows the dynamics of asymptomatic infections (A;). Without intervention (dashed
red), A, peaks sharply and stabilizes at a high endemic level, sustained by a hidden reservoir of carriers. Under
Strategy B (solid blue), both the peak and equilibrium are markedly reduced, demonstrating the intervention’s
effectiveness in shrinking this reservoir and weakening transmission.

Figure 5.3b presents the symptomatic infectious population (I;,). In the baseline, cases rise rapidly to a high
peak and persist at an endemic level. Strategy B substantially lowers the peak and maintains a consistently reduced
infectious population, alleviating both outbreak intensity and long-term burden.

Figure 5.3c illustrates treated cases (7},). The baseline shows a sharp surge to a high peak, followed by a sustained
demand on healthcare. With Strategy B, the peak is delayed and greatly diminished, and equilibrium levels remain
low, reducing pressure on treatment resources.

Figure 5.3d depicts recovered individuals (Rp). The baseline results in a very high equilibrium due to continuous
inflow from infections. Strategy B lowers recovery levels by preventing many infections from occurring, reflecting
an overall reduction in the disease burden.

Figure 5.3e highlights overall prevalence. The baseline stabilizes at a high endemic level, while Strategy B keeps
prevalence consistently suppressed, reducing both the epidemic peak and the equilibrium.

Figure 5.3f shows infected mosquitoes population (Z,,,). In the absence of these interventions, infections rise
and persist at high levels. Strategy B reduces both the peak and equilibrium, demonstrating how human-focused
measures also disrupt mosquito infection dynamics.

Figure 5.3g presents the optimal control profiles. It shows that the two controls, ¢ (¢) and 12 (t) are implemented
immediately at full strength and maintained for approximately 50 days. Thereafter, they decline to zero and remain
at that level for the rest of the simulation period. This pattern underscores the importance of sustained primary
measures.

5.4.3. Strategy C: A combination of Insecticide-Treated Nets, Improved Diagnostic Surveillance and
Environmental Sanitation (i.e. 11(t), ¥2(t) and 13(t)). Figure 5.4a shows the dynamics of asymptomatic
infections (A). Under the baseline (dashed red), Aj rises to a sharp peak and stabilizes at a high endemic
equilibrium. With Strategy C (solid blue), the peak is strongly suppressed and the equilibrium driven close to
zero. This indicates that combining ITNs, surveillance, and sanitation disrupts the hidden reservoir of infections
and substantially weakens community transmission.

Figure 5.4b illustrates the symptomatic infectious population (). Without intervention, symptomatic cases
surge rapidly and persist at a significant endemic level. Strategy C does not only flattens the peak but also drives
long-term symptomatic infections to very low levels, reflecting effective case detection and reduced exposure
through vector control.

Figure 5.4c presents the treated population (77). In the baseline, treatment demand spikes sharply and stabilizes
at a high level, indicating persistent strain on healthcare. Under Strategy C, the peak is dramatically reduced and
the equilibrium remains minimal, demonstrating how combined measures ease clinical pressure by preventing both
infection and progression.

Figure 5.4d depicts recovered individuals (Rj). The baseline shows a large recovered population, driven by
high infection rates. Strategy C produces a much smaller recovery curve, reflecting the success of interventions in
preventing infections upstream, rather than relying on recovery downstream.
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Figure 5.4e highlights overall prevalence. In the baseline, prevalence climbs to a high endemic equilibrium. With
Strategy C, both the epidemic peak and equilibrium are substantially lowered, keeping prevalence consistently near
elimination levels throughout the simulation.

Figure 5.4f shows infected mosquitoes (/,,,). Without intervention, mosquito infections persist at a high endemic
level. Strategy C leads to a steep decline, with infections in the vector population driven close to zero, underscoring
the impact of ITNs and environmental sanitation on breaking the mosquito—human transmission cycle.

Figure 5.4g presents the optimal control profiles. The controls, ¥ (t), ¥2(t), and 13(t), are applied immediately
at full strength and sustained for a period before gradually declining to zero. This behavior emphasizes the
importance of sustained control efforts at the early stage, followed by a tapering phase that maintains effectiveness
while reducing intensity.

5.5. Cost-Effectiveness Analysis

The financial feasibility of several health interventions, such as ITNs, enhanced diagnostic surveillance, and
environmental sanitation, was then assessed through a cost-effectiveness analysis. This type of research aids in
determining whether the costs incurred are justified by the health advantages attained. Three key measures are
evaluated in this section: the Infection Averted Ratio (IAR), the Average Cost-Effectiveness Ratio (ACER), and the
Incremental Cost-Effectiveness Ratio (ICER) [9].

5.5.1. Infection Averted Ratio (IAR)

— Cumulative Cases Averted

Total Number of Recovered Humans

The Cumulative Cases Averted is calculated by subtracting the total number of infectious individuals under the
control strategy from those without any control. According to this analytical approach, the plan that offers the best
cost-effectiveness has the highest AR [9]. The IAR for each of the strategies is obtained by using the parameter
values in Table 3.1.

Table 5.1 and Figure 5.6 present the results of the simulation. The highest IAR is obtained using Strategy B.
Thus, the most cost-effective approach is strategy B according to this cost analysis technique. The next cost-
effective strategy is C while the least economical approach is provided by Strategy A. Since Strategy A gives the
smallest number of infection averted in the population, it is the least cost-effective, as shown in Table 5.1 and
Figure 5.5.

Table 5.1. Strategy, Cumulative Cases Averted, Total Cost, AR and ACER

Strategy Cumulative Cases Averted Total Cost (§) TAR ACER
A r(t),a(t) 7335.34 100798.7701  0.0274 13.7415
B (), ¥3(t) 819609.27 547176.6786  2.8446 0.6676
C 1 (t),2(t), 3(t)  842285.47 171853.6889  2.6480 0.2040

5.5.2. Average Cost-Effectiveness Ratio (ACER) The cost necessary to stop one infection case with a particular
intervention is represented by the ACER. It is calculated by dividing the total cost of putting a strategy into practice
by the total number of infections that the approach effectively prevents.

Total cost of implementing the strategy

= (5.2)
ACER Total number of infections it successfully prevents

Given the objective functional in 4.1, the total cost generated by a strategy is stated as

ty
TC = / (F1U1 Np + K22 By + K33 N + w1t + wath3 + wse3)dt (5.3)
0

Stat., Optim. Inf. Comput. Vol. x, Month 202x



AYODEIJI SUNDAY AFOLABI AND MISWANTO MISWANTO 33

A more effective and financially advantageous intervention is indicated by a lower ACER value [9]. The ACER for
each of the three interventions is thus determined using equation 5.2. The numerical results of the simulation are
shown in Table 5.1 and Figure 5.8.
According to this cost analysis method, Strategy C is the most cost-effective approach because it has the lowest
ACER. Strategy B comes next. Stragegy A is the least cost-effective strategy because it has the highest ACER.
The following method is used to confirm these findings through additional cost-effectiveness analysis.

Table 5.2. Strategy, Cumulative Cases Averted, Total Cost and ICER

Strategy Cumulative Cases Averted Total Cost (§) ICER

A (), a(t) 7335.34 100798.7701  13.7415
B 41 (t),4s(t) 819609.27 547176.6786  0.5495
C :1(t), ¥a2(t),15(t) 842285.47 171853.6889  -16.5560

5.5.3. Incremental Cost-Effectiveness Ratio (ICER) A new health intervention’s cost-effectiveness is evaluated
using the ICER in comparison to a baseline or conventional method. It is described as

Total cost with control-Total cost without control (5.4)

ICER — ) ) ] . . .
Total number of infections without control-Total number of infections with control

We calculate the ICER for each strategy using the formula provided by equation 5.4 and the methods in [9].

100798.7701

ICER(A) = IR =13.7415

547176.6786 — 100798.7701  446377.9085
819609.27 — 7335.34 - 812273.93

ICER(B) = = 0.5495

171853.6889 — 547176.6786

ICER(C) = ~gi2085.47 —s19600.27 10-0900

Table 5.2 compares Strategies A and B and reveals that ICER(A) is higher than ICER(B). This indicates that
Strategy B is in control of Strategy A. As a result, Strategy B is more cost-effective. Hence, Strategy A is excluded
in further analysis.

Thus, we are left with Strategies B and C. Using equation 5.4, Table 5.3 provides the ICER summary for the
two Strategies. From Table 5.3, is can be seen that Strategy C’s ICER is lower than Strategy B’s. This implies that
Strategy C is more economical than Strategy B, Strategy B is thus eliminated from the list. Therefore, Strategy C
is the most economical.

Strategy C, which combines the best use of insecticide-treated nets, improved diagnostic surveillance, and
environmental sanitation (i.e., ¥1(t), ¥2(t), and 15(t)) is the most cost-effective strategy since it produced the
least ICER.

Table 5.3. Performance Comparison of Strategies B and C

Strategy Cumulative Cases Averted Total Cost (§) ICER
B (), 93(t) 819609.27 547176.6786  0.6676
C (), ¥2(t),s(t) 842285.47 171853.6889  16.5560

6. Conclusion

This study developed and analyzed a nonlinear mathematical model for malaria transmission dynamics that
incorporates a vaccinated human class alongside conventional interventions. The autonomous system was shown
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Figure 5.6. Plots of IAR for Strategies A, B and C

to be mathematically well-posed: all solutions remain positive and bounded in a biologically feasible region. Using
the Next-Generation Matrix method, the effective reproduction number R, was derived and it was established that
the DFE is locally and GAS whenever R, < 1. Conversely, a unique endemic equilibrium exists and is globally
stable when R. > 1. These results confirm that malaria elimination or persistence is determined by the threshold
value of R, in the autonomous system.

The sensitivity analysis identified the most influential parameters on the disease spread, including vaccine uptake
vy, efficacy oy, waning immunity &;, and mosquito—human contact rate e. Numerical simulations demonstrated that
vaccination reduces the burden of malaria infection and sustains lower transmission levels over time, with greater
benefits achieved as uptake and efficacy increase.

The model was further extended to a non-autonomous system through the incorporation of three time-dependent
control strategies. Optimal-control analysis revealed that while single or dual interventions yield moderate
reductions in prevalence, the integrated triple strategy (vaccination, vector control, and treatment/environmental
measures) provides the greatest epidemiological impact. Cost-effectiveness analysis using IAR, ACER and ICER
showed that this integrated non-autonomous strategy is not only the most effective but also the most economically
efficient.
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The autonomous analysis highlights the threshold conditions governing malaria persistence, while the non-
autonomous optimal-control framework demonstrates how integrated, time-dependent interventions can drive
malaria elimination in a cost-effective manner. Policymakers and healthcare practitioners are encouraged to adopt
combined strategies that strengthen vaccination coverage and durability while sustaining vector management and
treatment efforts to achieve long-term malaria control and eventual eradication.
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