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Abstract Quantitative method in portfolio construction is an engaging issue in mathematical finance. A number of studies
have shown the role of real numbers in constructing portfolio. However, very little attention has been paid to the role of
complex number in finance. The principal objective of this project is to construct complex-based Global Minimum Variance
(GMV) portfolio and apply clustering method in asset selection. The findings indicate that the GMV with Hilbert transform
method has lower standard deviation in general than the real-based GMV portfolio. On the other hand, GMV portfolio
approached by Fourier Transform shows higher standard deviation than complex-based portfolio with Hilbert transform and
real-based portfolio. Our findings show how to develop GMV portfolio with Hilbert and Fourier Transform approach for
constructing complex-based optimal portfolio.
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1. Introduction

Risk diversification is a strategy in investment management that aims to reduce risk by spreading investments
across different assets or financial instruments. Diversification can be done by investing in various financial assets
or real assets. The more capital diversified, the lower risk taken in investing [7]. Thus, it is necessary to diversify
the capital into several financial instruments to increase the return and minimize the risk [1].

The construction of investment portfolio is an attempt to diversify risk. A portfolio is a set of assets that can be
combined to obtain the lowest risk with a certain return [12]. One method that can minimize risk is constructing
a Global Minimum variance (GMV) portfolio [3]. A real-based GMYV is designed to minimize risk and maintain
expected returns. The real based GMV portfolio can perform risk and return efficiency which means that this
portfolio offers the best combination of risk and expected return. By minimizing variance, investors can obtain
certain value expected returns with lower risk than a portfolio that is not well-diversified.

Behind the advantages of the real-based GMV portfolio that can minimize risk well, it does not mean that the
real-based GMV portfolio does not have disadvantages. The problem with real-based portfolios is that the expected
return value in the variance-covariance matrix sometimes can not follow the data pattern and it cause biased. This is
affected by high volatility stock price data. High volatility data makes the assumption of constant expected value no
longer suitable. One way to handle high volatility data is doing transformation. Transformations supports stabilize
the variance and reduce non-normality in the data, which in turn enhance the quality of modeling [15].
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Some researchers have applied Hilbert transformation to solve the problem of data volatility. Drummond, et
al. [6] developed a volatility estimation method using Hilbert-Huang transform. Drummond, et al. [6] study is
providing a more consistent and accurate solution in analyzing market volatility affected by micro noise. Besides,
Kurbatsky, et al. [10] performed the Hilbert transform on highly volatile electricity usage data in Australia to
calculate instantaneous amplitude and frequency at any time. This is in line with research conducted by Uchiyama,
et al. [16] who performed Hilbert transformation on stock return data to complex numbers to form Maximum
Risk Diversification (MRD) portfolio development. The transformation of stock return data to complex numbers is
intended to capture dynamic information of time series data. Stock return data transformed to complex numbers can
be more detailed and more adaptive in capturing the volatility of stock price movements. The results of Uchiyama’s
research [16] show that complex-based MRD portfolio is better than real-based MRD portfolio. In additions, [13]
also establishes fundamental theory of expected value, variance, and covariance in quaternions that can be applied
in portfolio development.

Since the last few decades, Fourier transform has become an important tool in mathematical finance, especially
in the portfolio construction. The Fourier transform can be used to decompose the variance, correlation, alpha,
and beta of asset returns into separate frequency components as in [4]. This approach allows the construction
of frequency-based optimal portfolio that can increase the effectiveness of investment strategies. In addition, the
Fourier transform is also combined with the Quasi-Monte Carlo (QMC) method to improve the Value-at-Risk
(VaR) efficiency of the portfolio as in [8]. This study shows that the Fourier transform can make the QMC method
reach convergence faster thus improving the efficiency of VaR portfolio simulation. Besides, the Fourier transform
is applied to calculate the Fourier coefficients of volatility, which allows to obtain an estimate of the volatility
spectrum as in [5]. This is useful for analyzing price fluctuations and risk in financial markets. Furthermore, the
Fourier transform can be used as a tool to understand the frequency dynamics of market shocks as in [18]. This
is particularly useful in the construction of effective portfolio by identifying the response of different assets to
market shocks over time. The use of Fourier transform in the study allows investors to optimize portfolio weights
for improved diversification strategies among QUAD country markets.

Based on the deep analysis results of the CVRD portfolio, it is found that the portfolio does not consider
heterogeneity in choosing portfolio assets. Heterogeneity causes differences in the characteristics of the assets
invested. Clustering techniques in portfolio construction reduce the time used in asset selection, because assets
with similar characteristics are categorized in one cluster [17]. Park [14] applied K-Means clustering in constructing
real based GMV. Gubu, et al. [11] also applied clustering method on the classical portfolio. Thus, this study will
apply the clustering method in selecting asset on the portfolio construction. This study aims to construct complex-
based GMYV portfolio with clustering method in asset selection. Hilbert and Fourier transformation methods will
be employed to convert asset return data into complex numbers in this study. The transformed data will be used to
construct GMV portfolios, followed by a comparative analysis of the two transformation approaches in terms of
expected return, standard deviation, and Sharpe ratio performance of the portfolios.

This research consists into four main sections. Section 1 presents the background of the problem and some review
of relevant prior studies. Section 2 outlines the theoretical framework and methodologies employed to address
the research questions. Section 3 details the results and provides a comprehensive discussion, while Section 4
concludes the study with a summary of key findings.

2. Materials and Method

2.1. Return

Return is defined as the capital gain or lost over certain investment period. Mathematically, the return of an asset is
expressed as:

R, = Pt; — Pt—1, (1)

K2 )

Pt—1;
where R, denotes the return of asset ¢ at time ¢, p;, represents the current closing price asset ¢ at time ¢, and p;_1,
denotes the previous closing asset price 7.
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2.2. Discrete Hilbert Transform

Discrete Hilbert Transform is a transformation that is often used in signal processing, communications, and
image processing. This transformation is introduced for performing a phase shift of 90 degrees to original signal.
Following [16], the Hilbert transform of a sequence y,,, is defined by:

M M-1 v
okl = = <k N 2> > yme )

m=0

In this case, k denotes discrete frequency index, 7 denotes imaginary unit, sgn(.) denotes sign function, M denotes
number of points in the discrete Fourier transform, and y,,, denotes the mth element of the sequence.
The analytical signal s; is obtained by applying the Hilbert transform in (2) to the return of asset in (1)

st = Ry, +1Hp[Ry,]. 3)

2.3. Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical technique for converting a sequence of discrete values
over a specific time period from the time domain to the frequency domain. DFT transforms continuous (analog)
signals into discrete values in the time domain, which are then translated into the frequency domain and processed
digitally using microcontrollers or computers. The DFT is defined by:

M—-1
Yi= D yme” I o)
m=0

2.4. Expected Value
The expected value of a random variable is also known as the arithmetic mean of a random variable.

Definition 2.1
If X is a random variable with probability density function f(x), then the expected value of X is defined by:

E[X] = {Z”

(x) if Xis discrete random variable
/ fooc xzf(x)dx if Xis continuous random variable.

2.5. Covariance Matrix

The covariance matrix is a basic concept in statistics and data analysis. It is a square matrix that contains all the
covariance values of each pair random variables in multivariate data. The covariance matrix of random variable X
is defined by

Var(Xy) Cov(X1,X5) -+ Cov(X1,X,)
Cov(Xsq, X1) Var(Xs) o Cov(Xa, Xp)
Y= ) . ) ) ®)
Cov(X,,X;) Cov(X,,Xa2) --- Var(X,)

In the covariance matrix Var(X,) is defined as variance of random variable X,. The formula of variance is given
by
Var(X,) = E[(X, — E[X.))(Xa — E[Xo)) ],a=1,2,...,n. (6)
In this case, T is transpose of the matrix.
Furthermore Cov(X,, X;) is defined as covariance of random variable X, and X,. The formula of covariance is
given by
Cov(X,.,Xy) = B[(X, — E[X.]))( Xy — BE[Xp))],a=b=1,2,...,n. @)
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2.6. K-Means Clustering

Clustering is a methods used to find and categorize high similarity data in a cluster. The study that have been
conducted by Wu et al. [17] applied K-Means clustering in portfolio construction. K-Means clustering is a non-
hierarchical clustering method that categorize data into one or more cluster. Similar characteristics data are grouped
in one cluster, different characteristics data are grouped in other clusters. The initial cluster center is chosen
randomly, then the distance from the center to the data can be calculated using the following formula

D(ac) = \/(Xla - ch)2 + (X2a - X2c)2 + -+ (Xka - ch)Q

The distance of data a to cluster center ¢ is denoted by D), data a in data attribute % is denoted by Xy, and
center point c in attribute % is denoted by X.. Recalculation of the distance from the cluster center to the data in
each cluster is done until there is no more significant change.

2.7. Sharpe Ratio

Portfolio performance evaluation is one of the most important aspects in the investment decision process. Thus,
the evaluation of portfolio performance needs to be done every certain period. Sharpe ratio method is one of the
portfolio performance assessment methods. The Sharpe Ratio measures investment returns in excess of the risk-free
rate per unit of standard deviation. Mathematically, the the Sharpe ratio is defined by

_Rp_Rf

Op

S ®)

where R, represents portfolio return, R represents risk-free asset, and o, represents standard deviation of
portfolio. The greater the Sharpe index value, the better portfolio performance. Conversely, the smaller the Sharpe
index value, the worse the portfolio performance [9].

2.8. Quadratic Programming

Quadratic Programming (QP) is an optimization approach to maximize or minimize a quadratic objective function
with quadratic or linear inequality constraint function [20]. The general form of QP is given by

min %xTH x+clx
QP < subject to Ar =1b )
x>0

In the optimization problem (9), z denotes an n x 1 vector of optimization variables, A denotes n x m matix of
constraint coefficients, b represents an m x 1 vector specifying right hand side of the constraints, and cis an n x 1
vector consisting of linear term coefficient in objective function. Additionally, H is an n x n Hessian matrix
which encapsulates the coefficients of the quadratic terms in the objective function.

2.9. Global Minimum Variance Portfolio

Global Minimum Variance (GMV) portfolio is one of the most popular development of the Markowitz portfolio.
The GMYV portfolio aims to minimize the variance which represents the risk measure of a portfolio. GMYV is located
at the left end of efficient frontier curve [19]. The efficient frontier is a curve that expresses the relationship between
expected return and standard deviation. In other words, the GMV portfolio is a portfolio that allocate principal in
several financial assets so that the portfolio risk is minimized. This portfolio is suitable for risk-averse investors
and who are interested in reducing investment volatility, even though the return on investment is minimal. The
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optimization problem of GMV is given by

min f=3wTHuw
subject to Zfilwl =1 ¢=12,...,N

QPcmv N =BT (10)
B[Ry = io wiE[R] > E[R]
w >0
In the quadratic programming problem (10), w(wy, ws, ..., wy) denotes the weight of each asset in the portfolio,
E[R,] denotes the expected value of portfolio, E[R;] denotes the expected value of each asset in the portfolio,

and E[R;] denotes the average of asset return in the portfolio. While H is Hessian matrix assumed to be positive
definite for expressing that the variance is a convex function. The weight of each asset can be solved by primal dual
interior point method. The first step in determining asset weight in portfolio (w1, wa, ..., wy) is making a formula
decomposition of (10) to form A, b, ¢, and H matrices. The formula decomposition of (10) is given by

min f=wio} +wiwso12 + -+ wiwyoLN
‘wowy021 + w%a% + -+ wwnyooN + - FWNWIONT
+WNWIONg + -+ + WN20 N2

QPamv subject to wy +we+ - +wy =1 (1
E[Rl]wl + E[RQ]U}Q + -4 E[RN]UJN — WN41 = E[RJ
wq 207’11}2 207 y WN+1 >0

where w1 is an additional slack variable for converting inequality into equality.
Based on coefficient of the first and second constrains in (11), the A matrix is constructed as follows

1 1 1 0
A:{E[Rl] E[Ry] --- E[Rp] —1]'

In this case, b is a vector consist of right hand side of the first and the second constraint coefficient in (11)
constructed by

1
b= ===
[E [Ri]]
The Hessian matrix H is mathematically expressed as the following symmetric matrix
20’% 20‘12 s 20’1]\]
2021 20’% R 20’2]\]
H =
20’N1 20’N2 e 20’12\/

Lagrange function of system (11) is expressed by

1
L(w,v,v) = §wTHw + o7 (b — Aw) Zln w;) (12)

where v represents Lagrange multiplier vector and ~y denotes the barrier parameter coefficient. By deriving partially
(12) with respect to « and v, then dual and primal feasibility condition are obtained in succession.

Hw—-ATv—yW=le=0 (13)

b— Aw =0. (14)
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The complementary slackness conditions of primal dual interior point method is given by the following equation
WUe = ~e. (15)

In (15) W is the diagonal matrix of x;, U represents diagonal matrix of u;, and e is matrix of ones.

The Newton method provides an iterative numerical approach for solving the system of nonlinear equations
arising in quadratic programming. Given a current iterate consisting of the vectors w, u, and v, then the next
iteration will be w + d,, v + d,,, v + d,. The value of d,, d,, d, are determined by solving the following linear
system.

A 0 0 dy Aw* — b
—H I A"| |dy| =—|—-Hw+ ATv*F +uF —¢
u W 0 dy WUe — ~v*e

Hence, we obtain

=[XH+ U] " (XA"d, — Xrq+rc)

X Y(r. —Ud,)

= [[XH +U]'XAT] " [r, + AIXH + U] (Xrg — 1)),

duw
du
dy
where 7, 74,7 i given by

'rp:foqub
rqg=Ha* — ATo* —uF 4 ¢

re=—XUe + u”e.

Step length is the distance between the initial value w, u, v and the updated value of w, u, v. Formally, the step
length is expressed by

a, = BMin]l, —%,dwi < 0],
Uj

aq = fMin[1, et

dui < O]

The parameter [ is a scalar or multiplier that aims to determine the number of portions of the previous direction
that will be added to the process of determining the new value. The parameter § value is between O and 1. The 3
value that often used is 0.999. The updated value of w, u, and v is given by

Lk 4 ad,,

w
uP = uF + agd,
P = oF + ayd,.
The superscript k represents the k-th iteration.
The optimization algorithm stops when the following three convergence conditions are simultaneously satisfied.
Primal feasibility

Jw o] _
op = —7—— <€
S I/
Dual feasibility
[[7all
=— <
T He+ o[ +1 -7
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Complementary slackness

kNT
where rq = Hw® — ATv* —u* + cand % = W The notation of €1, €3, €3 are predetermined small positive
tolerance values and n denotes the dimension of optimization variable space.

2.10. Mean Variance Portfolio

Mean variance (MV) portfolio is also known as modern model portfolio or Markowitz portfolio. This investment
model is developed by Harry Markowitz that explains how investors can maximize returns while minimizing risk
by diversifying their portfolio [12]. The optimization problem of MV portfolio with no short-sale is given by

min f=3w"Huw
subject to Zfilwi =1 i=12,...,N
sz'vzl w; B[R] = R, '
w >0

QPyv (16)

In the optimization problem (16), the objective function is minimizing the variance f with 3 constraints. R, in (16)
is defined as target return of portfolio.

2.11. Research Procedure

The stages of this study are as follows:
1. Clustering the data based on standard deviation and transaction volume using K-Means clustering.
2. Determining the return (1) of each asset.
3. Calculating the expected return of each asset (5).

Selecting asset in each cluster based on the highest Sharpe ratio value (8).

Constructing real based mean variance and global minimum variance portfolio.

AN

Transforming return data of the selected asset into complex number by discrete Hilbert and discrete Fourier
transform (3).

7. Determining the variance return (6) and covariance return (7) values and forming the covariance matrix (5).

8. Constructing the complex based GMV portfolio (10) using interior point method to solve the quadratic
programming problem.

9. Determining expected return, standard deviation and Sharpe ratio of portfolios.

10. Comparing the expected return, standard deviation, and Sharpe ratio of all constructed portfolios.

3. Main results

3.1. Data Descriptions

The portfolio selection is based on Indonesia Stock Exchange Industrial Classification data, especially Jakarta
Islamic Index (JII) data. This study applied monthly closing price data of 30 issuers from January, 1, 2013
to December, 1, 2024. Besides that, this study also applied monthly closing price data of the 30 most traded
commodities with the same time frame as the stock data. JII stocks were selected because they fulfill sharia
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principles and provide consistent market characteristics, while liquid commodities were applied because they
provide stable and reliable data for technical analysis using Hilbert and Fourier transform methods. Furthermore,
this study incorporates Indonesia interest rate decision as risk-free asset, with time frame corresponding to the
assets data utilized in the analysis.

The monthly return data movement of the selected asset (Orange Juice Futures, US Sugar #11 Futures, ADRO,
MDKA and INKP) during the period displays in Figure 1.

Return of Assets

—— ADRO
MDKA
0.8 — INKP
Orange Juice Futures
US Sugar #11 Futures

061 — Risk Free Rate

0.4 4

Return

0.0

T T T T T T
2014 2016 2018 2020 2022 2024
Date

Figure 1. Monthly historical return

Based on the Figure 1, it can be seen that the returns of the six assets are very volatile. INKP has the highest
data spike among all assets and ADRO has the lowest data spike. This result aligns with the characteristic analysis,
which represents that stocks in Cluster 1 expose low price volatility with fluctuating standard deviation (ADRO),
whereas stocks in Cluster 3 (INKP) show high price volatility. The result of expected return and standard deviation
computation of each asset is contained in the Table 1.

Table 1. Expected return and standard deviation of each asset

Assets E[R;] o
ADRO 0.011029976 0.126261671

MDKA 0.015560837  0.1034473
INKP 0.027857707  0.168507397

Orange Juice Futures  0.014438854  0.089897864
US Sugar #11 Futures  0.003490062  0.080295915

Table 1 contains the expected return and standard deviation of five selected assets. INKP has the highest expected
return (0.0279), but it also has the highest standard deviation (0.1685) among these assets. The expected return and
standard deviation value of INKP indicate that its profit potential comes with a greater degree of risk. On the other
hand, US Sugar #11 Futures showed the lowest expected return (0.0035), but it was accompanied by relatively
less volatility (0.0803). The expected return and standard deviation value of US Sugar #11 Futures reflect the
more stable yet less aggressive return-generating characteristics of defensive assets 1. Generally, the commodity
assets such as Orange Juice Futures and US Sugar #11 Futures exhibit a lower risk profile than equity assets,
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8 A COMPARATIVE STUDY OF HILBERT TRANSFORM AND FOURIER TRANSFORM METHODS...

even though with more moderate expected returns. Meanwhile, stocks such as MDKA shows a relatively optimal
balance between expected return (0.0156) and risk (0.1034). The combination value of expected return and standard
deviation making MDKA as attractive candidates in a portfolio that emphasizes Sharpe ratio efficiency. This data
supports the significance of a quantitative approach in asset selection. An optimally diversified portfolio constructed
by the trade-off between risk and return.

The heatmap in Figure 2 represents the correlation matrix between five assets; ADRO, MDKA, INKP, Orange

1.00
0.12
0.75

- 0.50

ADRO

MDKA - 0.14
- 025
INKP - 0.015 - 0.00
--0.25
Orange Juice - 0.15 0.17 -0.0026
-—-0.50
US Sugar #11 - 0.12 0.14 0.015 0.064

I075
—1.00

ADRO -
MDKA -
INKP -

Orange Juice -
US Sugar #11

Figure 2. Heatmap of Asset Correlation

Juice, and US Sugar #11, which reflects the linear relationship between asset pairs. In general, the correlations
between the assets are at low to moderate levels, with most values hovering around zero to 0.15. A notable
negative correlation is found between MDKA and Orange Juice at —0.17, indicating a potential risk diversification
contribution if both assets are included in one portfolio. INKP assets appear to have a very weak correlation
relationship with Orange Juice and US Sugar #11, which could theoretically strengthen the minimum variance
portfolio structure. Such correlation patterns are important as inputs in complex Hilbert and Fourier transform-
based approaches for constructing global minimum variance portfolios.

3.2. Clustering Process

Asset selection process with K-Means clustering method is based on return standard deviation and average
transaction volume. Standard deviation is used to measure volatility or changes in asset price movements while
average transaction volume is used to describe the liquidity of asset or how easily the asset is sold and bought
without affecting the asset price.
There are 9 outliers out of 30 commodity during the clustering process. These commodities are crude oil WTI
futures (CL), fresh hen egg futures (DJDc1), gold futures (GC), lean hogs futures (LHc1), lumber futures (LXRcl),
natural gas futures (NG), nickel futures (NICKEL), US cocoa futures (CC), and US corn futures (ZC). Furthermore,
the number of clusters in this study is determined by Within Sum of Square (WSS) method, which optimizes the
distance between cluster center data. The number of optimal clusters can be seen in the Figure 3.

Figure 3 represents Elbow Method in determining the optimal number of commodity clusters based on Total
Within-Cluster Sum of Squares (WSS). The plot indicates a noticeable inflection point at k = 2. The elbow elbow
proposes that partitioning the commodity set into two different clusters captures the essential underlying structure
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Optimal number of clusters

IS
o
S

3001

Total Within Sum of Square

N
o
o

100

1 2 3 4 5 6 7 8
Number of clusters k

Figure 3. Optimal cluster of commodity

while avoiding over fitting and redundancy. From the value of £ it can be conclude that 2 is chosen as the optimum
number of stock cluster. The results of stocks clustering can be seen in Figure 4 below:

Cluster plot

Feeaer Latue ruture

cluster

ok
4] 2

-5 0
Dim1 (49.5%)

Figure 4. Result of commodity clustering

Based on Figure 4, it can be seen that the results of commodity clustering with the K-Means method are
obtained 2 optimal clusters with each cluster members presented in Table 2 below. The first cluster is consist of 14
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commodities, while the second cluster is consist of 7 commodities. Meanwhile, There are 8 out of 30 stocks listed in

Table 2. Member of each commodity cluster

Cluster Number of members Group of Stocks

1 14 Butter Futures (CBc1), Gasoline RBOB Futures (GPR)
Iron ore fines 62% Fe CFR Futures (TIOc1), Palladium Futures (PA)

Platinum Futures (PL), Rubber RSS3 Futures (SRUc1), US Coffee C Futures (KC)

Class III Milk Futures (DCSc1), Feeder Cattle Futures (FC),

Live Cattle Futures (LCc1), Orange Juice Futures (OJ), Palm Oil Futures (FCPOcl),

Rough Rice Futures (RR), US Cotton #2 Futures (CT)
2 7 Copper Futures (HG), Milling Wheat N2 Futures (BL2c1),
US Soybean Meal Futures (ZM), US Sugar #11 Futures (SB),
Heating Oil Futures (NYF), Silver Futures (SI)
US Soybean Oil Futures (ZL)

JII not included in the analysis because these stocks indicated outliers during the clustering process. These stocks
are BRIS, BRMS, BRPT, ESSA, HRUM, SMGR, TLKM, and TPIA. Meanwhile Figure 5 displays the Elbow
Method used to identify the optimal number of commodities clusters based on the Total Within-Cluster Sum of
Squares (WSS). The graph demonstrate a visible bending at £ = 3. Further increment in the clusters number only
result minor reductions in WSS. This indicates that three clusters are adequate to interpret the primary structure of
the data without irrelevant complexity. The curve’s slower decrease long way off this point confirms that adding
more clusters offers limited improvement in clustering quality. Therefore £ = 3 is a statistically and practically
efficient choice of cluster number.

Optimal number of clusters
500 1

4001

3001

Total Within Sum of Square

%]
o
o

100 T T T . - T T .
1 2 3 4 5 6 7 8
Number of clusters k

Figure 5. Optimal cluster of stock

Figure 6 represents the stocks clustering outcomes. The analysis shows a clear partition into three different
clusters. Each cluster is characterized by unique spatial and structural properties. Cluster 1 (red) consists of stocks
from the energy and mining sectors such as ANTM, PGAS, and ADRO. Cluster 2 (green) is the largest cluster that
contain consumer goods, telecommunications, and health care sectors stocks. Cluster 3 (blue) includes industrial
and basic material stocks such as INKP and INDY.

Referring to Figure 6, it can be seen that the results of stocks clustering with the K-Means method obtained 3
optimal clusters with each cluster members presented in Table 3 below.
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Cluster plot
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Figure 6. Result of stocks clustering
Table 3. Member of each stock cluster
Cluster Number of members Group of Commodity
1 5 ADRO, AKRA, ANTM, PGAS, SCMA
2 13 ACES, ASII, CPIN, EXCL, ICBP
INDF, INTP, KLBF, MDKA, MIKA
PTBA, UNTR, UNVR
3 4 INCO, INDY, INKP, ITMG

Data in this study is clustered based on return standard deviation and average transaction volume of the assets. The
characteristics analysis result of each commodity cluster presented in Table 4 below:

Table 4. Result of commodity characteristics analysis

Cluster Sd 2013 Sd 2014 Sd 2015 Sd 2016 Sd 2017 Sd 2018
1 0.1060766  -0.0543264  0.04778555 0.09256864 0.2550069  -0.0697972
2 -0.2121531 0.1086528 -0.09557110  -0.18513728  -0.5100139  0.1395944
Cluster Sd 2019 Sd 2020 Sd 2021 Sd 2022 Sd 2023 Sd 2024
1 0.2958186  0.1481993  -0.03326674  0.0004548896 -0.1614830 0.02308501
2 -0.5916373 -0.2963986 0,67244 -0.0009097793  0.3229661 -0.04617003
Cluster mean 2013 mean 2014  mean 2015 mean 2016 mean 2017  mean 2018
1 -0.5541464 -0.5735949  -0.5699479 -0.6026366 -0.6157273  -0.6126008
2 1.1082928  1.1471898 1.1398958 1.2052733 1.2314546 1.2252016
Cluster mean 2019 mean 2020 mean 2021 mean 2022 mean 2023  mean 2024
1 -0.5956619 -0.6122596  -0.5725497 -0.5321325 -0.5688545  -0.6099631
2 1.1913238  1.2245191 1.1450994 1.0642650 1.1377090 1.2199262

Table 4 shows the characteristics of commodities data based on cluster analysis using the standard deviation of
closing prices (Sd) and average transaction volume (mean). Cluster 1 consistently shows lower price volatility with
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standard deviations that close to zero during the analysis period. It is indicating stable price fluctuations. In contrast,
cluster 2 expose more significant price varieties, with wider standard deviations and higher fluctuations than cluster
1. In terms of average transaction volume, cluster 1 exhibits constantly negative values. It is reflecting less trading
activity or transaction volumes below the market average. On the other hand, cluster 2 reveals consistently positive
and higher average transaction volume values. It is describes more active trading activity and transaction dominance in
commodities within this group. This combination is explained significant differences in volatility characteristics and
trading activity between the two clusters.

Table 5. Result of stock characteristics analysis

Cluster Sd 2013 Sd 2014 Sd 2015 Sd 2016 Sd 2017 Sd 2018
1 -0.5050284  0.2398691 -0.2157952  0.04654022  -0.2302533  0.3113692
2 0.1386838  -0.3909179  -0.2174859 -0.38116124 -0.4302715 -0.5394380
3 0.1805632 0.9706469 0.9765732  1.18059876  1.6861991 1.3639620
Cluster Sd 2019 Sd 2020 Sd 2021 Sd 2022 Sd 2023 Sd 2024
1 0.5309501 0.7294213 0.6998530 0.5989415 0.1780466  0.7421625
2 -0.6363920 -0.6101381 -0.5109491  -0.4958673 -0.3122322 -0.1874151
3 1.4045862 1.0711721 0.7857685 0.8628919 0.7921964 -0.3186041
Cluster mean 2013 mean 2014  mean 2015 mean 2016  mean 2017 mean 2018
1 0.9140179 1.1960187 1.4396967 1.3214061 1.3534019  1.6332001
2 -0.1873229 -0.26265818 -0.3057304  -0.3809739  -0.4836286 -0.4657925
3 -0.5337228 -0.6413846  -0.8059972  -0.4135925 -0.1199595 -0.5276747
Cluster mean 2019 mean 2020 mean 2021 mean 2022  mean 2023  mean 2024
1 1.5196026 1.5271477 1.4145319 1.5159600 1.0424193  1.2616570
2 -0.4050061 -0.3818686 -0.3816007 -0.3949131 -0.1588017 -0.2542029
3 -0.5832336  -0.6678617 -0.5279625 -0.6114824 -0.7869185 -0.7509120

Table 5 shows the standard deviation of commodity closing price and average transaction volume for each cluster.
Cluster 1 have relatively low price volatility with a fluctuating standard deviation. However, cluster 1 remains smaller
standard deviation than the other clusters in most periods, such as standard deviation value in 2013 (-0.5050284) and
standard deviation value in 2023 (0.1780466). Based on the average transaction volume, cluster 1 expose relatively
high and stable positive values, such as average transaction volume in 2013(0.9140179) and average transaction
volume in 2024 (1.2616570). The high and stable positive average transaction volume is reflecting significant trading
activity. Cluster 2 shows more negative price volatility pattern or close to zero, such as standard deviation value in
2014 (-0.3909179) and standard deviation value in 2023 (-0.3122322). Meanwhile, cluster 2 mostly have negative
average transaction volume, such as average transaction volume in 2013 (-0.1873229) and average transaction volume
in 2024 (-0.2542209), this indicates weaker commodity market activity. In contrast, cluster 3 exhibits higher price
volatility, such as standard deviation in 2017 (1.6861991). Besides, the average transaction volume in cluster 3 have
lower and negative pattern, such as average transaction volume in 2013 (-0.5337228) and average transaction volume
in 2024 (-0.7509120). The average transaction volume in cluster 3 reflecting more volatile market activity than the
other clusters. This combination highlight the significant differences in price volatility patterns and trading intensity
between the three clusters.

After clustering the commodity, the next step is determining Sharpe ratio of each commodity in each cluster. In
calculating the Sharpe ratio, the risk-free rate used is the average of Indonesia interest rate decision appropriate with
the assets data timeline. Based on the Sharpe ratio calculation, the stocks that represent each cluster to construct the
portfolio is presented in Table 6.
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Table 6. Sharpe ratio of each stocks in each clusters

Cluster Commodity Sharpe ratio
Butter Futures (CBcl) 0.012893323

Gasoline RBOB Futures (GPR) -0.00147879
Iron ore fines 62% Fe CFR Futures (TIOc1) -0.024989274
Palladium Futures (PA) 0.005596242
Platinum Futures (PL) -0.114207506
Rubber RSS3 Futures (SRUc1) -0.020480822

1 US Coffee C Futures (KC) 0.054670495
Class III Milk Futures (DCScl) 0.010781388

Feeder Cattle Futures (FC) 0.012696919
Live Cattle Futures (LCcl) -0.003466598

Orange Juice Futures (OJ) 0.110488999

Palm Oil Futures (FCPOcl) 0.045769033
Rough Rice Futures (RR) -0.043180107
US Cotton #2 Futures (CT) -0.047866682
Copper Futures (HG) -0.038840889
Milling Wheat N2 Futures (BL2c1) -0.036876257

US Soybean Meal Futures(ZM) -0.05192541
2 US Sugar #11 Futures (SB) -0.012654035
Heating Oil Futures (NYF) -0.027474581
Silver Futures (SI) -0.022717076
US Soybean Oil Futures (ZL) -0.046376469

Table 6 presents the Sharpe ratios of each commodities in cluster 1 and 2. The Sharpe ratio provides insights into
their risk-adjusted performance. Cluster 1 contains a diverse range of commodities, including agricultural products
(e.g., US Coffee C Futures, Palm Oil Futures), energy derivatives (e.g., Gasoline RBOB Futures), and metals (e.g.,
Palladium, Platinum). Within cluster 1, several assets shows positive Sharpe ratios. The positive Sharpe ratio implies
favorable returns relative to their risk, with Orange Juice Futures (0.1105) and US Coffee C Futures (0.0547) standing
out as particularly strong performers. Meanwhile, the negative Sharpe ratios in assets such as Platinum Futures
(—0.1142) and Rough Rice Futures (—0.0432) implies that not all assets in this cluster offer attractive risk-adjusted
returns. This is highlighting the heterogeneity of performance within the cluster.

On the other hand, cluster 2 consist of energy and agricultural commodities such as Heating Oil Futures, US Soybean
derivatives, and various grains and metals. If cluster 2 is compared to cluster 1, this cluster demonstrates a consistently
weaker risk-adjusted performance, with all assets showing negative Sharpe ratios. The lowest Sharpe ratio is noticed in
US Soybean Meal Futures (-0.0519), meanwhile even traditionally stable assets such as Silver Futures and Heating Oil
Futures fail to show positive excess returns. In this case, excess return is the difference between return of an investment
compared to a benchmark return, such as market return, risk-free rate or a certain index.

Table 5 not only provides an evaluation of performance based on risk and return or Sharpe ratio but also provides an
overview of the stability and flexibility of each cluster to volatile market. Cluster 1 exhibits various risk-return profile,
which indicates the possibility of more diversification opportunities for investors. On the contrary, Cluster 2 presents
less performance consistency, which reflects high certain risk factors sensitivity such as energy price fluctuations or
agricultural supply chain disruptions.

After commodity clustering process in Table 6, the commodity with maximum Sharpe ratio value is selected for
representing each cluster to construct the optimum portfolio. Orange Juice Futures presents the maximum value of
Sharpe ratio in the first cluster (0.110488999). Meanwhile US Sugar #11 Futures in the second cluster shows the
highest Sharpe ratio value (—0.12654035).Thereby, Orange Juice Futures is chosen as the representative asset of
cluster 1 to be included in the constructed portfolio and US Sugar #11 Futures is selected to represent the second
cluster in the portfolio.
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Table 7. Sharpe ratio of each stocks in each clusters

Cluster  Stocks  Sharpe ratio
ADRO  0.051669262
AKRA  0.027946388

1 ANTM  0.048963066
PGAS  -0.037161036
SCMA  -0.059865927
ACES  0.007503785

ASII  -0.059350099
CPIN  0.014456849
EXCL -0.052226123
ICBP  0.073571527
INDF  -0.012984951

2 INTP  -0.084216699
KLBF -0.020493209
MDKA  0.10686318
MIKA  -0.026511972
PTBA  0.007612597
UNTR  0.012950795
UNVR  -0.126749226
INCO  0.04787413

3 INDY  0.060123553

INKP  0.138578947
ITMG  0.015432683

Table 7 displays the Sharpe ratio values for individual stocks in three different clusters. Cluster 1 contains of stocks
that show a positive Sharpe ratio such as ADRO (0.051669262), AKRA (0.027946388), and ANTM (0.048963066).
The stocks indicating that the assets in this group are able to provide good returns relative to the risk. However, there are
also stocks that present negative values of Sharpe ratio, such as PGAS (—0.037161036) and SCMA (—0.059865927).
Both of the stocks with negative value of Sharpe ratio reflecting that not all members of this cluster perform well.

Cluster 2 presents a more heterogeneous Sharpe ratio. Although there are stocks with significant positive Sharpe
ratios such as MDKA (0.10686318) and ICBP (0.073571527), cluster 2 also includes stocks with the poorest Sharpe
ratio performance such as INTP (—0.084216699) and UNVR (—0.126749226). This inequality illustrates the non-
uniformity in sensitivity to common market factors faced by the stocks in this cluster. Therefore, cluster 2 can be
categorized as the group with the highest level of risk diversification, but also demands more attention in portfolio
management to minimize the negative contribution of underperforming members.

Cluster 3 contains stocks that show positive Sharpe ratio values such as INCO (0.04787413), INDY (0.060123553),
INKP (0.138578947), and ITMG (0.015432683). The positive consistency in this cluster indicates its solid risk-return
performance. The positive values of Sharpe ratio can be considered as a relatively more stable and potential cluster for
strategic allocation in the portfolio. Stocks in this cluster can be prime candidates for investment strategies based on
risk-return ratio optimization, because the Sharpe ratio value in this cluster indicates good efficiency in risk-to-return
conversion.

Refers to Table 7, ADRO shows the maximum value of Sharpe ratio in the first cluster (—0.51669262). MDKA has
the highest value of Sharpe ratio in the second cluster (0.10686318). The best value of Sharpe ratio in the third cluster
is showed by INKP (0.138578947) (INKP). Hence, there are 3 stocks selected to construct the portfolio. Those are
ADRO, MDKA, and INKP.

3.3. Real-based Mean Variance Portfolio Construction

Figure 6 presents the asset allocation movement of the real-based mean variance portfolio without short selling from
2013 to 2024. The mean variance portfolio is constructed using a target return constraint 0.75. In the early years

Stat., Optim. Inf. Comput. Vol. x, Month 202x



NURWAHIDAH, M. BAHRI AND A. RAHIM 15

1.0

0.8

0:6 BN ADRO

MDKA
I INKP
Orange Juice

US Sugar #11
0.4

0.2

0.0

T T
2014 2016 2018 2020 2022 2024

Date

Figure 7. Asset allocation of real based mean variance portfolio with no short sale

2013-2015 the asset allocation is dominated by INKP and US Sugar #11. This is indicates limited diversification.
A shift towards greater diversification is seen in 2016-2018. In the 2016-2018 period, the increase in allocation
occurred in ADRO and MDKA. From 2019 to 2021, MDKA became the dominant asset. This indicates an increase
in risk-adjusted returns over the 2019-2021 period. In 2022-2023, the allocation returned to ADRO and INKP that
reflects the changing market dynamics.

Table 8. Result of real-based MV Portfolio

Period WADRO WMDK A WINKP WOrangeJuice Wy SSugar#11

2013 0 0 0.724 0.276 0
2014 0 0 0 0 1
2015 0 0 0 0 1
2016 0.5859 0 0 0.1948 0.2193
2017 0.3099 02704  0.4197 0 0
2018 0 0.4601  0.5399 0 0
2019 0 1 0 0 0
2020 0 0.8888 0 0 0.1112
2021 0.1824  0.8176 0 0 0
2022 1 0 0 0 0
2023 0 0 0 1 0
2024 0 0 0 1 0

Table 8 exhibits the asset allocation of a no-short-sale mean-variance portfolio targeting a 0.75 return from
2013-2024. The frequent O or 1 asset weights arise because the optimizer, constrained from short-selling. This
concentrates capital in the few assets that best meet the return target while minimizing risk. For example, US Sugar
#11 dominates in 2014-2015, while MDKA and ADRO take full allocation in 2019 and 2022, respectively that
reflects their temporary efficiency. Zero asset weights indicate assets excluded for insufficient returns or excessive
risk. These extreme allocations reveal the sensitivity of mean-variance optimization to input parameters under
strict constraints. Such instability motivates our proposed Hilbert and Fourier transform methods for better asset
allocation.
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3.4. Real-based GMYV Portfolio Construction
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Figure 8. Asset allocation of real-based GMV portfolio

Figure 8 represents the asset allocation differences of the real-based GMV portfolio from 2013 to 2024. This
picture is highlighting the varying proportions of ADRO, MDKA, INKP, Orange Juice Futures, and US Sugar #11
Futures. The allocation shows substantial fluctuations over time, with MDKA demonstrating a dominant allocation
in 2015 and 2016, whereas Orange Juice Futures and US Sugar #11 Futures show significant weights in multiple
years. The assets distribution shows a shift in portfolio combination. This shifts reflect market conditions and
risk-return trade-offs. The existence of commodities alongside equities indicates a diversification strategy aimed at
optimizing risk-adjusted returns.

Table 9. Result of real-based GMV Portfolio

Period WADRO WMDK A WINKP WOrangeJuice WU SSugar#11

2013 0.1224 04028  0.0314 0.248 0.1954
2014 0.1742 0.386 0.1569 0.243 0.04

2015 0.0405  0.8839  0.0167 0.0177 0.0412
2016 0 0.8804 0 0.0403 0.0794
2017 0.1985 0.31 0.0388 0.0037 0.449
2018 0 0.2235 0 0.4231 0.3535
2019 0.175 0.3646  0.0742 0.3379 0.0482
2020 0 0.0821  0.1682 0.4828 0.2669
2021 0 0.1724  0.2161 0.4462 0.1653
2022 0.1862  0.0314  0.3213 0.0413 0.4198
2023 0 0.1697  0.2354 0.1811 0.4137
2024 0 0 0.241 0.3856 0.3734

Table 9 presents the asset allocation of the real-based GMV portfolio under a no-short-sale constraint across the
period from 2013 to 2024. The results indicate significant variation in asset weights over time, reflecting shifts in
risk-minimizing portfolio composition. Notably, MDKA frequently exhibits a dominant allocation, particularly in
2015 and 2016, while Orange Juice Futures attain substantial weights in multiple years, such as 2018 to 2021. The
existence of zero weights of assets in several periods suggests that certain assets were excluded from the optimal
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portfolio due to their risk-return characteristics relative to the other assets. This phenomenon arises because the no-
short-sale constraint prevents negative weights, leading to asset exclusion when their inclusion would not contribute
to variance minimization within the GMV framework.

3.5. Complex-based GMYV Portfolio Construction with Hilbert Transform Approach

After transforming the return data of the selected asset using Hilbert transform into complex valued return, then
the result of complex-based GMV portfolio construction can be seen in Table 10 and Figure 9.
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Figure 9. Asset allocation of complex-based GMV portfolio with Hilbert transform approach

Figure 9 represents the asset allocation differences of the complex-based GMV portfolio with Hilbert transform
from 2013 to 2024. The graph describes the temporal dynamics of the optimal weight allocated to each asset in
portfolio (ADRO, MDKA, INKP, Orange Juice Futures, and US Sugar #11 Futures). This visualization highlights
significant switches in the portfolio assets allocation over time, which is explained as the portfolio’s response to
dynamic market conditions and the non-stationary nature of the financial data analyzed in the complex domain.

Generally, Figure 9 illustrates that asset weights are unevenly distributed throughout the observation period.
MDKA, for instance, dominated the portfolio asset allocation in the early years such as 2015 and 2016 with a
weight close to 0.9, before having a sharp decline in its contribution after 2017. In contrast, commodities such
as US Sugar #11 Futures and Orange Juice Futures started to present a significant increment in weight allocation
from 2017 on wards, with relatively more stable fluctuations than other assets. This proposes that the Hilbert
Transformation approach has ability to capture phase changes as well as amplitude relations across time series.
Thereby asset allocation strategy resulted are more adaptive to hidden market patterns.

Furthermore, the weight allocation of ADRO and INKP shows a more moderate performance in the portfolio,
with an increasing contribution trend in the middle to the end of the observation period, especially from 2021 to
2024. This indicates a change in portfolio strategy from reliance on a single asset to broader diversification, which
is in line with the principle of risk reduction. These results express that the Hilbert Transform approach has a role
to construct more adaptive portfolios, because it has ability to recognize recurring patterns and irregularities in
financial data.
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Table 10. Result of complex-based GMV Portfolio using Hilbert Transform

Period WADRO WMDKA WINKP WOrangeJuice WU SSugar#11

2013 0.1484  0.3816  0.0353 0.2486 0.1861
2014 0.1766  0.3756  0.1592 0.2434 0.0452
2015 0.0444  0.8733  0.0195 0.0172 0.0456
2016 0 0.8804 0 0.0403 0.0794
2017 0.2818  0.0475  0.0387 0.0876 0.5443
2018 0.002 0.1664 0 0.447 0.3847
2019 0.0384  0.0271 0.0929 0 0.8416
2020 0 0.0504  0.1882 0.4933 0.2682
2021 0 0.0623  0.2216 0.4069 0.3092
2022 0.2071 0.0028  0.3249 0.0488 0.4164
2023 0 0.0969 0.269 0.1765 0.4576
2024 0 0 0.241 0.3856 0.3734

Table 10 represents the asset allocation of the complex-based GMV portfolio with Hilbert transform method
under a no-short-sale constraint across the period from 2013 to 2024. The portfolio is re-balanced annually from
2013 to 2024, with the aim of minimizing total risk (variance). The weight allocation values in the table exhibits
the proportion of funds invested in each asset each year. The INKP and US Sugar #11 Futures tend to gain more
weight allocation in the period after 2018. This condition indicating that the model considers these two assets to
be more effective in reducing portfolio risk. Meanwhile, ADRO exhibits a variable role. In some years such as
2017 and 2022, ADRO receives a high weight, but in other years such as 2020 and 2024, ADRO is not used at all.
This pattern describes how the Hilbert approach captures the changing structure of the relationship between assets
dynamically.

In general, Table 10 exhibits that the Hilbert Transform approach have ability in producing portfolio allocations
that are flexible and reactive to market changes. This approach supports the model to recognize invisible patterns in
financial data, such as cycles or trend shifts, that are not easily captured by standard methods. Thereby, the model
is able to construct portfolios that are not only risk-efficient, but also adaptive to volatile market conditions.

3.6. Complex-based GMYV Portfolio Construction with Discrete Fourier Transform Approach

After transforming the return data of the selected asset using Fourier transform into complex valued return, then
the result of complex-based GMV portfolio construction with Fourier transform can be seen in Table 11 and Figure
10. Figure 10 describes the asset allocation changing of the complex-based GMV portfolio constructed with the
discrete Fourier transform approach. The portfolio is constructed without short-selling method and rebalancing
every year during 2013-2024. Each bar represents the weights of the five assets in the portfolio in each year from
2013 to 2024. The allocation structure exposes significant variability across different time periods, reflecting the
impact of frequency-domain information on portfolio optimization.

The allocation patterns exhibited in Figure 10 indicate significant variations in the weighting of each asset every
year during 2013-2024. MDKA, for instance, occurs to be highly dominant in 2013 and 2016. This condition
indicates that MDKA made a substantial contribution to portfolio risk minimization in 2013-2024 in the context
of low frequency or dominant signals. Conversely, assets such as US Sugar #11 Futures and INKP tend to express
more consistent and dispersed allocation in the portfolio. This condition reflecting that US Sugar #11 Futures and
INKP have stable contributions in the mid to high frequency spectrum.

The allocation patterns in Figure 10 describes that the discrete Fourier transform approach in portfolio
construction enables the transformation of asset return data into the frequency domain, which is then used to
identify hidden cyclical or periodic patterns in financial data that are not easily recognized in the time domain.
Unlike real based GMV portfolio that only consider static correlations between assets, the Fourier transform
provides an alternative framework that enables portfolio optimization based on complex frequency information.
This result support the role of the Fourier Transform in expanding the paradigm of risk management and portfolio
diversification, especially in volatile and uncertain market environments.
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Figure 10. Asset allocation of complex-based GMV portfolio with discrete Fourier transform approach

Table 11. Result of complex-based GMV Portfolio using Fourier Transform

Period WADRO WMDKA WINKP WOrangeJuice  WUSSugar#11

2013 0.0289  0.8386  0.0046 0.0347 0.0933
2014 0.165 04516  0.0737 0.2516 0.058
2015 0 0 0.241 0.3856 0.3734
2016 0 0.6616  0.1861 0.1128 0.0394
2017 0.2015  0.0454  0.0347 0.2539 0.4645
2018 0.0617  0.0607  0.1326 0.5128 0.2322
2019 0.1246  0.0134  0.1488 0.0165 0.6966
2020 0.2118  0.1136  0.0787 0.2959 0.3
2021 0.0874  0.0164  0.1488 0.2836 0.4638
2022 0.169 02117  0.3345 0.2849 0
2023 0.0061 0 0 0.3875 0.6064
2024 0.1653  0.1937  0.4311 0 0.2099

Table 11 represents the GMV portfolio asset allocations without short-selling constructed using a complex-
based approach with Fourier Transform on five financial assets over the 2013-2024. The estimation results show
a variation in the weights distribution across periods, reflecting the volatility dynamics and asset correlations
captured through the spectral approach. Particularly, INKP exhibits a significant weight increase in 2016 and
2024, while the Orange Juice Futures has more volatile weight, indicating sensitivity to structural changes in
the data. The existence of zero weights in several periods of complex-based GMV portfolio with Fourier transform
is less than complex-based GMV portfolio with Hilbert transform approach. This is due to the differences of both
transformations capture spectral information from the asset price data. The Fourier transform transforms asset
price data from the time domain to the frequency domain, therefore it captures spectral information from the entire
time period at once. This allows complex-based GMV with Fourier transform to consider long-term patterns in the
relationships between assets. This result more assets gain positive weight in the portfolio. On the other hand, the
Hilbert transform concentrates more on local analysis through phase and amplitude components, This lead to the
exclusion of certain assets if their contribution to risk reduction is less significant.
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3.7. Comparison between real-based MYV, real-based GMV, and complex-based GMV Portfolio

This section will discuss the comparison of real-based MV, real-based GMV and complex-based GMV portfolios
based on the expected return, standard deviation, and Sharpe ratio values. Visually, the comparison of both
portfolios describes in Figure 11, 12, and 13.

Expected Return Portfolio
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Figure 11. Expected return of real-based MV, real-based GMYV, and complex-based GMV Portfolio

Figure 11 represents the expected return comparison of real-based MYV, real-based GMV, and complex-based
GMV portfolios with Hilbert and Fourier transform for 12 years. In Figure 11, RMV is the abbreviation of
real-based mean variance portfolio. RGMYV is the abbreviation of real-based GMV portfolio. CGMVHT refers
to complex-based GMV portfolio with Hilbert transform approach, while CGMVDFT refers to complex-based
GMV portfolio with Fourier transform approach. The CGMVHT portfolio has the most negative return in 2019.
It shows a heightened sensitivity to instantaneous frequency components. Meanwhile, the CGMVDFT portfolio
also shows negative return in 2019, but it is less than CGMVHT. The RGMYV portfolio, denoted by the blue line,
consistently aligns closely with the complex-based approaches, even with slightly higher peaks and troughs in
certain periods. Conversely, the RMV portfolio shows a higher return than all GMV portfolios because RMV
has a target return 0.75.The drastic decrease in expected returns on complex-based portfolios in 2019, as seen
in CGMVHT (-0.03740884) and CGMVDFT (-0.03011784), is most likely influenced by the sensitivity of the
transformation method to significant market structure changes. Hilbert and Fourier transforms rely on spectral and
phase information which magnifies the impact of high volatility changes or market shocks. These findings highlight
the impact of different mathematical transformations on expected return portfolio.

Table 12 presents the expected return comparison of the real-based mean variance portfolio (MV), real-based
GMV portfolio (RGMYV), the complex-based portfolio with Hilbert transform (CGMVHT), and the complex-
based portfolio with Fourier transform (CGMVDEFT) over the period 2013-2024. Generally, the RGMYV portfolio
exhibits a consistent expected return pattern with positive values in most periods, such as 2016 (0.002819405)
and 2024 (0.005717458), although there are some years with negative values, such as 2014 (-0.002352861). The
RMV portfolio shows positive returns throughout the period due to the determination of the target return in the
constraint function. The CGMVHT portfolio shows a similar expected return pattern with the RGMYV, but with a
slight difference value in some periods, such as 2013 to 2016. Meanwhile, the CGMVDFT portfolio exposes more
significant fluctuations with higher expected return values in some periods, such as 2015 (0.005717458), but also
larger negative values in certain years, such as 2024 (-0.01509264). These results suggest that the Fourier transform
develops more varying expected returns than the Hilbert transform and real number-based portfolios, which may
reflect the sensitivity of the Fourier transform to asset data fluctuations.
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Table 12. Expected Return of Portfolio

21

Period RMYV RGMV CGMVHT CGMVFT
2013 0.075 0.004925226 0.004605696 0.000785084
2014 0.004122 -0.002352861 -0.002422432 -0.000744575
2015 0.006363  -0.00246456  -0.002791151 0.005717458
2016 0.075 0.002819405 0.002820152 0.005167371
2017 0.075 0.01130866 0.007784864 0.001599171
2018 0.075 0.01057482 0.00733902 0.01181949
2019 0.040017 0.02495313 -0.03740884 -0.03011784
2020 0.075 0.03391949 0.03253186 0.02950533
2021 0.048731 0.01233831 0.005843487 0.006490994
2022 0.04992 0.02121965 0.02207883 0.02433837
2023 0.040729 -0.002568482 -0.001450369 0.006678285
2024 0.04796 0.005717458 0.005717458 -0.01509264
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Figure 12. Standard deviation of real-based MV, real-based GMV and complex-based GMV Portfolio

Figure 12 represents the standard deviation of real-based MV (RMV), real-based GMV (RGMYV), and complex-
based GMV portfolios with Hilbert transform (CGMVHT) and Fourier transform (CGMVDFT) approach. The
results reveal that the CGMVDFT portfolio exposes significantly higher volatility across most periods, particularly
in 2020 and 2023. It shows greater sensitivity to frequency-domain transformations. The RMV portfolio has a
slightly higher standard deviation than the RGMV and CGMVHT portfolios. This rather high standard deviation
of RMV is in line with the target return set. Conversely, the RGMV and CGMVHT portfolios maintain relatively
lower and stable standard deviations. It indicates more constrained risk profile. The alignment between RGMV
and CGMVHT shows that the Hilbert transform preserves key temporal characteristics of asset returns while
mitigating excess variance. These findings describes the influence of complex-valued transformations on portfolio
optimization.

Based on Table 13, the portfolio standard deviation comparison represents that the real-based portfolio
(RGMV) has slightly higher value of standard deviation than the complex-based portfolio using Hilbert transform
(CGMVHT). This result is in line with [2] that shows standard deviation of the complex-based mean variance
portfolio is slightly lower than the real number-based mean variance portfolio. Meanwhile, RMV and CGMVDFT
have standard deviations above RGMV and CGMVHT.The standard deviation of the CGMVHT portfolio has a
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Table 13. Standard Deviation of Portfolio
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Period  RMV RGMV CGMVHT CGMVFT
2013  0.238087 0.06346789 0.06177172  0.09157376
2014 0.064806 0.06212857 0.06128907 0.06720342
2015 0.11945  0.06212857 0.06128907 0.06720342
2016  0.063195 0.03017037 0.02888912 0.08576849
2017  0.071638 0.02809034 0.03669535  0.09424182
2018  0.164381 0.04179337 0.04433628  0.1024952
2019  0.096984 0.03964727 0.02916722  0.07035159
2020  0.127107 0.02782324 0.02717544  0.1834032
2021  0.109602 0.04677164 0.04813961  0.1134264
2022 0.097467 0.02792201  0.0268544  0.1154797
2023  0.111054 0.05349322  0.053474 0.1517768
2024  0.076172 0.03310281 0.03169352  0.09594338

lower variation than the CGMVFT, but in 2016, 2022, and 2023, the standard deviation value is higher than the
RGMYV portfolio. It is caused by the nature of Hilbert transform that preserves the phase component of the signal.
Therefore, it results larger fluctuations when there is high volatility in the market data. Meanwhile, the CGMVDFT
portfolio has a higher standard deviation than the RMV, RGMYV, and CGMVHT because the Fourier transform use
full frequency component which amplifies variations and sensitivity of sharp changes in asset prices. It reflects
greater risk in the CGMVDEFT portfolio.
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Figure 13. Sharpe ratio of real-based GMV and complex-based GMV portfolio

Figure 13 presents the Sharpe ratio dynamics of the real-based MV (RMV), real-based GMV (RGMV) and
complex-based GMYV portfolios, incorporating Hilbert (CGMVHT) and discrete Fourier (CGMVDFT) transform.
The RGMYV portfolio shows substantial fluctuations. The peak is in 2020 and the lowest Sharpe ratio of RGMV
is in 2015. The peak indicates a period of exceptionally high risk-adjusted returns. Conversely, the CGMVDFT
portfolio exhibits greater stability during the timeline, with less pronounced variations. It means that frequency-
domain transformations contribute to return smoothing. RMV shows a very stable Sharpe ratio value that does not
even show significant fluctuations in any period. Meanwhile, the CGMVHT portfolio that has more volatile sharpe
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ratio value than CGMVDFT, shows instances of strong performance, particularly in 2020. These results highlight
the impact of complex-valued transformations on the portfolio optimization.

Table 14. Sharpe Ratio of Portfolio

Period RMV RGMV CGMVHT CGMVFT
2013 0.292768431  -0.005836275 -0.01116928 -0.04925601
2014  -0.030172815  -0.1356902 -0.138684 -0.101512
2015 0.002527005 -1.731575 -1.498528  -0.01084419
2016 1.109828081  -0.06778205 -0.07076234  0.003532265
2017 0.994937993 0.2699869 0.110647 -0.02255327
2018 0.430977729 0.1535978 0.07180508  0.07477466
2019 0.370606247  0.52661901 -1.422246 -0.4860155
2020 0.562722893 1.094247 1.06927 0.1419351
2021 0.418270631 0.2020586 0.06140028  0.03176766
2022 0.478604007 0.6427815 0.7003294 0.1824257
2023 0.324254263 -0.1362369 -0.1153764  0.01290723
2024 0.564646427  0.02319157  0.02422281  -0.2088981

Table 14 displays the Sharpe ratio comparison of the four portfolio strategies over the period 2013-2024 (RMYV,
RGMYV, CGMVHT, and CGMVFT). In general, the RMV portfolio exhibits the most consistent performance with
relatively high Sharpe ratio values, especially in 2016, 2017, and 2024. The superior performance of RMV can be
attributed to the target return constraint in the optimization model, which helps maintain a balance between risk
and expected return. On the other hand, complex -based GMV portfolios, especially CGMVHT, show promising
potential in capturing the phase and frequency information structure of market data, which cannot be captured by
conventional approaches. This is reflected in the spike in the Sharpe ratio in 2022, where CGMVHT outperforms all
other models. Thus, although the transformation approach has not consistently outperformed real-based portfolios,
its superiority in identifying hidden patterns and temporal dynamics of the market makes it a prospective tool for
the formulation of more adaptive and sophisticated portfolio strategies.

Based on the analysis of the expected return, Sharpe ratio, and standard deviation of the three types of portfolios
(RMV, RGMV, CGMVHT, and CGMVDEFT), the appropriate portfolio recommendations for the three types of
investor risk profiles can be adjusted as follows:

1. Conservative investors
RGMY is the most suitable portfolio for conservative investors. This portfolio has a lower standard deviation
or small risk volatility, although its expected return is relatively moderate. The Sharpe ratio value of RGMV
also exposes more stable performance than other portfolios. It provides a better risk and return balance for
investors who prioritize capital safety.

2. Moderate investors
CGMVHT is a better choice for investors with moderate risk tolerance. This portfolio has a slightly higher
risk than RGMYV, but provides diversification opportunities with comparable or better expected returns in
some periods. Although CGMVHT’s Sharpe ratio is not always higher than RGMYV, this portfolio provides
greater flexibility in capturing market dynamics.

3. Aggressive investors
CGMVDFT is the most suitable for aggressive investors who pursue high returns despite facing huge risks.
Even though this portfolio exhibits the highest volatility and standard deviation, as well as a negative Sharpe
ratio in some periods, its potential returns are significant, especially in certain years with high market price
swings. This portfolio is suitable for investors who are willing to accept large fluctuations in pursuit of
maximum returns.
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Meanwhile, RMV portfolios are very flexible because they offer a target return on the constraint function, so that
each investor can determine the target return that suits the risk he can bear. By considering risk, return and Sharpe
ratio value, these portfolio selections are customized to meet the risk preferences and investment objectives of each
type of investor.

Based on the findings of this study, several recommendations can be made for further development. First, future
research needs to expand the data coverage by covering a wider range of asset types and market periods. Second,
the integration of transaction costs and liquidity factors into the optimization model will make the results more
practically relevant. Third, sensitivity analysis is needed to understand the impact of model parameters on portfolio
stability. Fourth, the development of a clearer interpretation framework for transformation-based methods will
facilitate application by practitioners. Fifth, ethical aspects of applying these methods, such as potential bias
in signal processing, need to be addressed. Finally, the exploration of hybrid approaches that combine Hilbert
and Fourier transforms with machine learning techniques could be an innovative solution to future portfolio
optimization challenges.

4. Conclusion

The conclusion of this study confirms that complex-based portfolios with Fourier transform (CGMVDFT) and
Hilbert transform (CGMVHT) approaches offer an attractive diversification alternative compared to real-based
portfolios (RGMV). Standard deviation analysis shows that CGMVDFT has the highest volatility. Meanwhile,
CGMVHT consistently has the lowest risk. In terms of performance, the expected return of CGMVDFT tends to
be higher in certain periods, but the Sharpe ratio value is often lower or even negative. This means that the risk is not
worth the return. In contrast, RGMV provides more consistent risk and return stability. The Sharpe ratio value of
RMYV shows stability due to the explicit target return constraint. The empirical results show that CGMVHT exhibits
superior Sharpe ratios in certain periods, especially under dynamic market conditions, indicating its effectiveness in
capturing localized phase and amplitude information. This research opens up opportunities for further exploration
of complex-based portfolio optimization to improve risk and return efficiency under dynamic market conditions.
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