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1. Introduction

Fractional calculus is a generalization of traditional calculus, extending the concepts of derivatives and integrals to
non-integer (fractional) orders. This broadens the applicability of calculus to a variety of scientific and engineering
problems [1, 2, 3]. Fractional integrals and fractional derivatives also provide a mathematical framework for
modeling a wide range of phenomena that classical calculus cannot effectively describe. Therefore, several notions
of fractional integrals and fractional derivatives have been proposed, such as Riemann-Liouville [4], Caputo [5],
Caputo-Hadamard [6], and Conformable derivative [7]. Their versatility makes them increasingly important in
modern science and engineering; for more information, consult the sources [4, 5, 6, 8].

Recently, a new type of fractional derivative was proposed by Dixit and Ujlayan [9, 10] known as ”Ujlayan-Dixit
(UD) fractional derivative” which transforms a fractional derivative into a convex combination of a function and
its ordinary derivative. It is a relatively recent development in the field of fractional calculus, introduced as a novel
mathematical operator to address some limitations of traditional fractional derivative definitions [11, 12, 13, 14].
The introduction of the UD fractional derivative represents a step towards expanding the versatility of fractional
calculus. As researchers continue to explore its properties and improve its applications, it may provide new
solutions to existing challenges in science and engineering.

A probability distribution is a mathematical function that describes the likelihood of different outcomes for
a random variable. It provides a framework for modeling uncertainty and variability in real-world phenomena,
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and forms the backbone of probability theory and statistics. It enables researchers and practitioners to make
predictions, test theories, and optimize systems in a variety of fields, from the natural sciences to artificial
intelligence; see the references [15, 16, 17]. The gamma with two-parameters distribution is one of the most
important continuous probability distributions, widely used in statistics, engineering, biology and other fields.
It generalizes the exponential distribution and is particularly useful for modeling waiting times or sums of
independent exponential random variables; further details can be found in the papers [18, 19, 20].

Fractional calculus plays a crucial role in understanding and modeling probability distributions, especially
in complex, non-local, memory-dependent stochastic systems that are not adequately modeled using classical
probability theory. It bridges the gap between classical probability models and more complex stochastic phenomena
in the real world. Actually, the link between fractional calculus and probability theory has been the subject of
interest for many researchers [21, 22, 23, 24]. Actually, the link between fractional calculus and probability theory
has been the subject of interest for many researchers, so several articles have been published on it, some of which
can be found in the following sources [25, 26]. In recent times, scientists used fractional derivatives in probability
distributions, and the results have been interesting, especially when it came to the conformable fractional derivative,
most applications have been established on conformable fractional probability distributions.

Abu Hammad et al. in [27] produced a fractional distribution and probability density functions for random
variables by applying fractional differential equations. Subsequently, Jebril et al. in [28] discovered some properties
and applications of the conformable fractional gamma with two-parameters distribution, and also proposed some
entropy measures for this distribution. More recently, in [29], Alhribat et al. used the UD fractional differential
equations to develop novel fractional distributions based on previously existing probability distributions including
the exponential, Pareto, Levy, and Lomax distributions.

Motivated by the above mentioned works, in this research, we apply the UD fractional derivative to construct the
fractional probability density function for two-parameters gamma distribution and determine certain properties and
applications of this new distribution such as cumulative distribution, survival and hazard functions. Furthermore,
other notions and applications for continuous random variables are developed using the UD fractional analogues
of statistical measures which is expectation, rth-moments, rth-central moments, variance and standard deviation.
Lastly, we provide the UD fractional entropy measures including Shannon, Tsallis and Rényi entropy.

2. Basic Concepts

This section will go over the fundamental concepts and properties of the UD fractional integral and UD fractional
derivative; for more information, see [9, 10].

Definition 2.1
[10] The UD fractional derivative of order α ∈ [0, 1] for a function g : [0,+∞) → R, is defined by:

Dαg(x) = lim
ε→0

eε(1−α)g
(
xe

εα
x

)
− g(x)

ε
, (1)

if limit exists. Also, if g is UD differentiable in the interval (0, x) and for x > 0 and α ∈ [0, 1] such that
limx→0+ g

α(x) exist, then,
gα(0) = lim

x→0+
gα(x),

Notice that,

Dαg(x) =
dαg

dxα
.

Theorem 2.2
[9] Let g : [0,+∞) → R be a differentiable function. Then, the function g is UD differentiable, and

Dαg(x) = (1− α)g(x) + αg′(x), α ∈ [0, 1]. (2)

Specifically, for α = 0 we have D0g(x) = g(x), and if α = 1 we have D1g(x) = g′(x).
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Lemma 2.3
[10] Let a, b ∈ R, x ≥ 0 and for α ∈ [0, 1]. The following lists the UD derivatives of some elementary real-valued
differentiable:

• Dα(a) = (1− α)a.
• Dα((ax+ b)n) = (1− α)(ax+ b)n + anα(ax+ b)n−1.
• Dα(log(ax+ b)) = (1− α) log(ax+ b) + aα(ax+ b)−1.
• Dα(eax+b) = ((1− α) + aα)eax+b.

Properties 2.4
[9] Let g, h : [0,+∞) → R be two differentiable functions and for α, β ∈ [0, 1]. Then, the properties of the UD
fractional derivative are given by:

• The UD derivative is a linear operator, such that for all λ, γ ∈ R, we have:

Dα(λg(x) + γh(x)) = λDαg(x) + γDαh(x).

• The UD derivative satisfies the following product rule:

Dα(g(x).h(x)) = (Dαg(x))h(x) + α(Dαh(x))g(x).

Thus, The UD derivative does not satisfy the Leibnitz’s rule, i.e.:

Dα(g(x).h(x)) ̸= h(x)Dαg(x) + g(x)Dαh(x).

• The UD derivative satisfies the following quotient rule:

Dα(g(x).h(x)) =
(Dαg(x))h(x)− α(Dαg(x))h(x)

(h(x))2
, with h(x) ̸= 0.

• The UD derivative is a commutative operator, such that:

Dα(Dβg(x)) = Dβ(Dαg(x)).

So, the UD derivative does not satisfy the semi-group property, i.e.:

Dα(Dβg(x)) ̸= Dα+βg(x).

Definition 2.5
[9] The UD fractional integral of order α ∈ [0, 1] for a function g : [a, b] → R, is defined by:

Iαa g(x) =
1

α

∫ x

a

e
(1−α)

α (s−x)g(s)ds.

Properties 2.6
[9] Let g, h be two continuous functions and for α, β ∈ [0, 1]. Then, the properties of the UD fractional integral are
given by:

• The UD integral is a linear operator, such that for all λ, γ ∈ R, we have:

Iαa (λg(x) + γh(x)) = λIαa g(x) + γIαa h(x).

• The UD integral is a commutative operator, such that:

Iαa (I
β
a g(x)) = Iβa (I

α
a g(x)).

Thus, the UD integral does not satisfy the semi-group property, i.e.:

Iαa (I
α
a g(x)) ̸= I2αa g(x).
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3. Main Results

in this section, we use the UD derivative to present the main results on the fractional probability density function
of the gamma with two-parameters distribution, as well as developing some applications for this new distribution.

3.1. The UD Fractional Gamma Distribution (UDFGD)

[18] A continuous random variable X is said to have a gamma with two-parameters distribution if its probability
density function is defined by:

g(x, k, θ) =
xk−1e−

x
θ

θkΓ(k)
; x > 0, (3)

where k > 0 is the shape parameter and θ > 0 is the scale parameter, Γ(x) =
∫ +∞
0

sx−1e−sds is the gamma
function.
Now, we take y = xk−1e−

x
θ

θkΓ(k)
. Hence, the first derivative of y is provided by:

y′ =
xk−1e−

x
θ

θkΓ(k)

(
k − 1

x
− 1

θ

)
=

(
k − 1

x
− 1

θ

)
y.

So, it can be written as follows:

y′ −
(
k − 1

x
− 1

θ

)
y = 0. (4)

Thus, the equation (4) is a first-order ordinary differential equation.
Next, we consider the α-order differential equation with respect to the UD derivative in the following manner:

y(α) −
(
k − 1

x
− 1

θ

)
y = 0,

(1− α)y + αy′ −
(
k − 1

x
− 1

θ

)
y = 0,

αy′ +

(
1− α− k − 1

x
+

1

θ

)
y = 0,

y′ +

(
θ(1− α) + 1

αθ
− k − 1

αx

)
y = 0. (5)

Thus, the equation (5) is a linear first-order differential equation with an integrating factor

ψ(x) = e
∫
( θ(1−α)+1

αθ − k−1
αx )dx,

= e
θ(1−α)+1

αθ x− k−1
α lnx,

= x−
k−1
α e

θ(1−α)+1
αθ x.

Therefore, the general solution to the equation (5) can be expressed by:

y =
C

ψ(x)
,

= Cx
k−1
α e−

θ(1−α)+1
αθ x.

Consequently, we give the new probability distribution as:

gα(x) = Cx
k−1
α e−

θ(1−α)+1
αθ x. (6)
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To determine the normalization constant C, the following equation can be solved:∫ +∞

0

gα(x)dx = 1.

This implies that, ∫ +∞

0

C x
k−1
α e−

θ(1−α)+1
αθ xdx = 1,

C
Γ
(
k−1
α + 1

)
(

θ(1−α)+1
αθ

) k−1
α +1

= 1.

As a result, the normalization constant C will be:

C =

(
θ(1−α)+1

αθ

) k−1
α +1

Γ
(
k−1
α + 1

) .

The α-gamma with two-parameters distribution has the UD fractional probability density function (UDFPDF),
which can be written in the following format:

gα(x) =

(
θ(1−α)+1

αθ

) k−1
α +1

Γ
(
k−1
α + 1

) x
k−1
α e−

θ(1−α)+1
αθ x, x > 0, k > 0, θ > 0, 0 < α < 1. (7)

Note that, for α→ 1−, we have:

lim
α→1−

gα(x) =
xk−1e−

x
θ

θkΓ(k)
= g(x, k, θ). (8)

A comparison between the classical case of the probability density function (PDF) for the gamma distribution and
the UD fractional probability density function (UDFPDF) of the α-gamma distribution for α = 1 and k = 2, θ = 5
can be illustrated in Fig. 1. Then, the UD fractional probability density function (UDFPDF) for the α-gamma
distribution can be plotted by taking different values of α according to k = 2 and θ = 5 in Fig. 2.
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Figure 1. Comparison of the classical PDF of gamma distribution with the UDFPDF of α-gamma distribution for α = 1 and
k = 2, θ = 5.
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Figure 2. the UDFPDF of α-gamma distribution for different values of α according to k = 2 and θ = 5.

3.2. Applications of The UD Fractional Gamma Distribution

Based on these sources [28, 30], in this part we establish novel applications of the UD fractional probability for the
α-gamma distribution to the probabilistic random variables.

3.2.1. The UD fractional cumulative distribution function For the α-gamma distribution, we find the UD fractional
cumulative distribution function (UDFCDF) as follows:

Gα(x) =
(θ(1− α) + 1)

k−1
α +1

αΓ
(
k−1
α + 1

) e
(α−1)

α x γ

(
k − 1

α
+ 1,

x

αθ

)
, (9)

where γ(x, y) =
∫ y

0
sx−1e−sds is lower incomplete gamma function. In actuality,

Gα(x) = Pα(X ≤ x),

= Iα0 gα(x),

=
1

α

∫ x

0

e
(1−α)

α (s−x)gα(s)ds,

=

(
θ(1−α)+1

αθ

) k−1
α +1

αΓ
(
k−1
α + 1

) ∫ x

0

e
(1−α)

α (s−x)s
k−1
α e−

θ(1−α)+1
αθ sds,

=

(
θ(1−α)+1

αθ

) k−1
α +1

αΓ
(
k−1
α + 1

) e
(α−1)

α x

∫ x

0

s
k−1
α e−

s
αθ ds,

By using the variable change v = s
αθ , we obtain:

Gα(x) =
(θ(1− α) + 1)

k−1
α +1

αΓ
(
k−1
α + 1

) e
(α−1)

α x

∫ x
αθ

0

v
k−1
α e−vdv,

=
(θ(1− α) + 1)

k−1
α +1

αΓ
(
k−1
α + 1

) e
(α−1)

α x γ

(
k − 1

α
+ 1,

x

αθ

)
.

In particular case,
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lim
α→1−

Gα(x) =
γ
(
k, xθ

)
Γ (k)

= G(x). (10)

where G is the classical cumulative distribution function (CDF) for the gamma distribution.
In Fig. 3, we compare the classical case of the cumulative distribution function (CDF) for the gamma distribution
with the UD fractional cumulative distribution function (UDFCDF ) of the α-gamma distribution for α = 1 and
k = 2, θ = 5. In Fig. 4, we display the UD fractional cumulative distribution function (UDFCDF) for the α-gamma
distribution under different values of α according to k = 2 and θ = 5.
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Figure 3. Comparison of the classical CDF of gamma distri-
bution with the UDFCDF of α-gamma distribution for α = 1
and k = 2, θ = 5.
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Figure 4. the UDFCDF of the α-gamma distribution for
various values of α according to k = 2 and θ = 5.

3.2.2. The UD fractional survival distribution function For the α-gamma distribution, we define the UD fractional
survival distribution function (UDFSDF) of X by:

Sα(x) = 1− Gα(x),

= 1− (θ(1− α) + 1)
k−1
α +1

αΓ
(
k−1
α + 1

) e
(α−1)

α x γ

(
k − 1

α
+ 1,

x

αθ

)
. (11)

If α→ 1− in the formula (11), then we get the classical survival distribution function (SDF) for the gamma
distribution, i.e.:

lim
α→1−

Sα(x) = 1−
γ
(
k, xθ

)
Γ (k)

= S(x). (12)

Fig. 5 shows the comparison between the classical case of the survival distribution function (SDF) for the gamma
distribution and the UD fractional survival distribution function (UDFSDF ) of the α-gamma distribution for
α = 1 according to k = 2 and θ = 5. Fig. 6 also shows survival distribution function (UDFSDF) for the α-gamma
distribution by taking various values of α according to k = 2 and θ = 5.
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Figure 5. Comparison of the classical SDF of the gamma distribution with the UDFSDF of the α-gamma distribution for
α = 1 and k = 2, θ = 5.
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Figure 6. the UDFSDF of the α-gamma distribution for different values of α according to k = 2 and θ = 5.

3.2.3. The UD fractional hazard distribution function For the α-gamma distribution, we give the UD fractional
hazard distribution function (UDFHDF) of X as:

hα(x) =
gα(x)

Sα(x)
,

=

( θ(1−α)+1
αθ )

k−1
α

+1

Γ( k−1
α +1)

x
k−1
α e−

θ(1−α)+1
αθ x

1− (θ(1−α)+1)
k−1
α

+1

αΓ( k−1
α +1)

e
(α−1)

α x γ
(
k−1
α + 1, x

αθ

) ,

=
α
(

θ(1−α)+1
αθ

) k−1
α +1

x
k−1
α e−

θ(1−α)+1
αθ x

αΓ
(
k−1
α + 1

)
− (θ(1− α) + 1)

k−1
α +1

e
(α−1)

α x γ
(
k−1
α + 1, x

αθ

) . (13)
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Notice that, for α→ 1− in the formula (13), we find the classical hazard distribution function (HDF) for the gamma
distribution , i.e.:

lim
α→1−

hα(x) =
xk−1e−

x
θ

θk
(
Γ (k)− γ

(
k, xθ

)) = h(x), (14)

Actually, we can explain the graphical comparison between the UD fractional hazard distribution function
(UDFHDF ) of the α-gamma distribution for α = 1 and the classical case of the hazard distribution function
(HDF) of gamma distribution according to k = 2 and θ = 5 in Fig. 3. Also, we can plot the UD fractional hazard
distribution function (UDFHDF ) of the α-gamma distribution for different values of α according to k = 2 and
θ = 5 as shown in Fig. 8.
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Figure 7. Comparison of the classical HDF of the gamma
distribution with the UDFHDF of the α-gamma distribution
for α = 1 and k = 2, θ = 5.
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Figure 8. the UDFHDF of the α-gamma distribution for
different values of α according to k = 2 and θ = 5.

3.2.4. The UD fractional expectation

• The rth UD fractional moment Eα[X
r] For α-gamma distribution, the UD fractional moment of order r denote

by Eα[X
r] of continuous random variable X whose gα(x) is given by:

Eα[X
r] =

∫ +∞

0

xrgα(x)dx,

=

(
θ(1−α)+1

αθ

) k−1
α +1

Γ
(
k−1
α + 1

) ∫ +∞

0

xrx
k−1
α e−

θ(1−α)+1
αθ xdx,

=

(
θ(1−α)+1

αθ

) k−1
α +1

Γ
(
k−1
α + 1

) ∫ +∞

0

xr+
k−1
α e−

θ(1−α)+1
αθ xdx,

=

(
θ(1−α)+1

αθ

) k−1
α +1

Γ
(
k−1
α + 1

) Γ
(
k−1
α + r + 1

)
(

θ(1−α)+1
αθ

) k−1
α +r+1

,

=

(
αθ

θ(1−α)+1

)r

Γ
(
k−1
α + r + 1

)
Γ
(
k−1
α + 1

) . (15)
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If r = 1, then we get the UD fractional expectation Eα[X]:

Eα[X] =

(
αθ

θ(1−α)+1

)
Γ
(
k−1
α + 2

)
Γ
(
k−1
α + 1

) ,

=
θ(k − 1 + α)

θ(1− α) + 1
, (16)

we notice that, for α→ 1− we have the classical expectation E[X], i.e.:

lim
α→1−

Eα[X] = kθ = E[X]. (17)

If r = 2, then we have:

Eα[X
2] =

(
θα

θ(1−α)+1

)2

Γ
(
k−1
α + 3

)
Γ
(
k−1
α + 1

) .,

=
θ2(k − 1 + 2α)(k − 1 + α)

(θ(1− α) + 1)2
. (18)

For α→ 1− in the formula (15), we find the classical the rth moment E[Xr], i.e.:

lim
α→1−

Eα[X
r] =

θrΓ (k + r)

Γ (k)
= E[Xr]. (19)

• The rth UD fractional central moment Eα(X − µ)r Let us take:

µ = Eα[X] =
θ(k − 1 + α)

θ(1− α) + 1
. (20)

For the α-gamma distribution, the rth UD fractional central moment Eα(X − µ)r of X is defined by:

Eα(X − µ)r =

∫ +∞

0

(x− µ)rgα(x)dx. (21)

To find the first and second central moments, we can apply the formula (21), such that:

1) First central moment:

Eα(X − µ) = 0. (22)

2) Second central moment:

Eα(X − µ)2 =
αθ2(k − 1 + α)

(θ(1− α) + 1)2
. (23)

• The UD fractional variance V arα For the α-gamma distribution, the UD fractional variance V arα of X is given
by:

V arα(X) = Eα(X
2)− (Eα(X))2,

=
θ2(k − 1 + 2α)(k − 1 + α)

(θ(1− α) + 1)2
−
(
θ(k − 1 + α)

θ(1− α) + 1

)2

,

=
αθ2(k − 1 + α)

(θ(1− α) + 1)2
. (24)

If α→ 1− in the above formula, then we get the classical variance of X; i.e.:

lim
α→1−

V arα(X) = kθ2 = V ar(X). (25)
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• The UD fractional standard deviation σα For the α-gamma distribution, we give the UD fractional standard
deviation σα of X by:

σα =
√
V arα(X),

=

√
αθ2(k − 1 + α)

(θ(1− α) + 1)2
,

=
θ
√
α(k − 1 + α)

θ(1− α) + 1
. (26)

For α→ 1−, we have the classical standard deviation of X , such that:

lim
α→1−

σα = θ
√
k = σ. (27)

3.2.5. The UD fractional Entropy Measures

• The UD fractional Shannon entropy αH For the α-gamma distribution, we define the UD fractional Shannon
entropy αH of a random variable X as follows:

αH(X) = −
∫ +∞

0

gα(x) log(gα(x))dx. (28)

First, we start by calculating the following quantity:

log(gα(x)) = log


(

θ(1−α)+1
αθ

) k−1
α +1

Γ
(
k−1
α + 1

) x
k−1
α e−

θ(1−α)+1
αθ x

 ,

= log


(

θ(1−α)+1
αθ

) k−1
α +1

Γ
(
k−1
α + 1

)
+

k − 1

α
log x− θ(1− α) + 1

αθ
x.

Thus,

αH(X) = −
∫ +∞

0

gα(x) log(gα(x))dx,

= −
∫ +∞

0

gα(x)

log

(

θ(1−α)+1
αθ

) k−1
α +1

Γ
(
k−1
α + 1

)
+

k − 1

α
log x− θ(1− α) + 1

αθ
x

 dx,

=
θ(1− α) + 1

αθ

∫ +∞

0

x gα(x)dx− log


(

θ(1−α)+1
αθ

) k−1
α +1

Γ
(
k−1
α + 1

)
∫ +∞

0

gα(x)dx

− k − 1

α

∫ +∞

0

log x gα(x)dx,

Then, we simplify the following terms: ∫ +∞

0

gα(x)dx = 1,
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∫ +∞

0

x gα(x)dx = Eα[X] =
θ(k − 1 + α)

θ(1− α) + 1
,

and

∫ +∞

0

log x gα(x)dx =

(
θ(1−α)+1

αθ

) k−1
α +1

Γ
(
k−1
α + 1

) ∫ +∞

0

log x x
k−1
α e−

θ(1−α)+1
αθ xdx,

=

(
θ(1−α)+1

αθ

) k−1
α +1

Γ
(
k−1
α + 1

) Γ
(
k−1
α + 1

)
(

θ(1−α)+1
αθ

) k−1
α +1

[
ψ

(
k − 1

α
+ 1

)
− log

(
θ(1− α) + 1

αθ

)]
,

= ψ

(
k − 1

α
+ 1

)
− log

(
θ(1− α) + 1

αθ

)
,

where ψ(x+ 1) = Γ′(x+1)
Γ(x+1) ) is digamma function.

Consequently, the UD fractional Shannon entropy αH can be expressed by:

αH(X) =
k − 1 + α

α
+ log

(
αθ

θ(1− α) + 1
Γ

(
k − 1

α
+ 1

))
− k − 1

α
ψ

(
k − 1

α
+ 1

)
. (29)

Notice that,

lim
α→1−

αH(X) = k + log (θΓ (k)) + (1− k)ψ (k) = H(X). (30)

where H the classical Shannon entropy of X for the gamma distribution.

• The UD fractional Tsallis entropy αTq For the α-gamma distribution, we give the UD fractional Tsallis entropy
αTq of a random variable X by:

αTq(X) =
1

q − 1

[
1−

∫ +∞

0

(gα(x))
q
dx

]
. (31)

Now, we calculate the integral
∫ +∞
0

(gα(x))
q
dx :

∫ +∞

0

(gα(x))
q
dx =

∫ +∞

0


(

θ(1−α)+1
αθ

) k−1
α +1

Γ
(
k−1
α + 1

) x
k−1
α e−

θ(1−α)+1
αθ x


q

dx,

=


(

θ(1−α)+1
αθ

) k−1
α +1

Γ
(
k−1
α + 1

)


q ∫ +∞

0

x
k−1
α qe−

θ(1−α)+1
αθ qx,

=


(

θ(1−α)+1
αθ

) k−1
α +1

Γ
(
k−1
α + 1

)


q

Γ
(
q k−1

α + 1
)

(
q θ(1−α)+1

αθ

)q k−1
α +1

.

Then, we find the UD fractional Tsallis entropy αTq:

αTq(X) =
1

q − 1

1−

(

θ(1−α)+1
αθ

) k−1
α +1

Γ
(
k−1
α + 1

)


q

Γ
(
q k−1

α + 1
)

(
q θ(1−α)+1

αθ

)q k−1
α +1

 . (32)
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As q → 1, the UD fractional Tsallis entropy αTq reduces to the UD fractional Shannon entropy αH, i.e:

lim
q→1

αTq(X) = αH(X). (33)

If α→ 1− in the formula (32), then we get the classical Tsallis entropy Tq of X for the gamma distribution.

lim
α→1−

αTq(X) =
1

q − 1

1−
(

θ
q

)q(k−1)+1

Γ (q (k − 1) + 1)

(θkΓ (k))
q

 = Tq(X), (34)

• The UD fractional Rényi entropy αRq For the α-gamma distribution, we obtain the UD fractional Rényi entropy
αRq of a random variable X as follows:

αRq(X) =
1

1− q
log

(∫ +∞

0

[fα(x)]
qdx

)
,

=
1

1− q
log



(

θ(1−α)+1
αθ

) k−1
α +1

Γ
(
k−1
α + 1

)


q

Γ
(
q k−1

α + 1
)

(
q θ(1−α)+1

αθ

)q k−1
α +1

 . (35)

As q → 1, the UD fractional Rényi entropy αRq reduces to the UD fractional Shannon entropy Hq, i.e:

lim
q→1

αRq(X) = αH(X). (36)

Particularly, for α→ 1− in the formula (35), we have the classical Rényi entropy Rq of X for the gamma
distribution, such that:

lim
α→1−

αRq(X) =
1

1− q
log


(

θ
q

)q(k−1)+1

Γ (q (k − 1) + 1)

(θkΓ (k))
q

 = Rq(X). (37)

4. Conclusion

In this research, we have apply the UD fractional derivative to provide a new fractional probability density function
(FPDF) for the two-parameters gamma distribution, and we also create certain applications of the α-gamma
distribution such as cumulative distribution, survival and hazard functions with graphical representation of each
application. In addition, we have develop notions and applications for continuous random variable using the UD
fractional analogues of statistical measures which is expectation, rth-moments, rth-central moments, variance and
standard deviation. Lastly, we have establish the UD fractional entropy measures like Shannon, Tsallis and Rényi
entropy.
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Banach Spaces with Fractional Semigroup, Filomat, vol. 38, no. 26, pp. 9321–9332, 2024.

25. Z. Dahmani, New applications of fractional calculus on probabilistic random variables, Acta Mathematica Universitatis
Comenianae, vol. LXXXVI, no. 2, pp. 299–307, 2017.

26. H. I. Okagbue, O. A. Muminu and A. A. Timothy, Ordinary differential equations of probability functions of convoluted distributions,
International Journal of Advanced and Applied Sciences, vol. 5, no. 10, pp. 46–52, 2018.

27. M. Abu Hammad, A. Awad, R. Khalil and E. Aldabbas, Fractional distributions and probability density functions of random
variables generated using FDE, Journal of Mathematics and Computer Science, vol. 10, no. 3, pp. 522–534, 2020.

28. I. Jebril, M. Abu Hammad, E. Nouh, R. Hamidi, Y. Dalahmeh and S. Almutlak, Properties of Conformable Fractional Gamma with
Two Parameters Probability Distribution, Proceedings of the International Conference on Information Technology (ICIT), pp. 16–18,
2021.

29. I. Alhribat and M. H. Samuh, Generating Statistical Distributions Using Fractional Differential Equations, Jordan Journal of
Mathematics and Statistics, vol. 16, no. 2, pp. 379–396, 2023.

30. S. Baratpour and A. Khammar, Tsallis Entropy Properties of Order Statistics and Some Stochastic Comparisons, Journal of
Statistical Research of Iran, vol. 13, pp. 25–41, 2016.

Stat., Optim. Inf. Comput. Vol. x, Month 202x


	1 Introduction
	2 Basic Concepts
	3 Main Results
	3.1 The UD Fractional Gamma Distribution (UDFGD)
	3.2 Applications of The UD Fractional Gamma Distribution 
	3.2.1 The UD fractional cumulative distribution function
	3.2.2 The UD fractional survival distribution function 
	3.2.3 The UD fractional hazard distribution function
	3.2.4 The UD fractional expectation 
	3.2.5 The UD fractional Entropy Measures


	4 Conclusion

