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Abstract This study introduces a novel exponential accelerated failure time (AFT) model, detailing its fundamental
properties and characterizations. To evaluate the performance of various estimation techniques, we conduct simulation
studies that assess the finite-sample behavior of the estimators. Additionally, we propose a modified chi-square goodness-
of-fit test tailored for the new model, applicable to both complete and right-censored datasets. The model’s validity is
examined using the theoretical framework of the Nikulin-Rao-Robson (NRR) statistic, with maximum likelihood estimation
employed for parameter estimation. Two separate simulation studies are carried out: one to evaluate the proposed AFT
model and another to assess the efficacy of the NRR test statistic. Furthermore, the practical applicability of the test statistic
is demonstrated through analyses of three real-life datasets.
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1. Introduction

This study addresses significant gaps in survival analysis by introducing a novel quasi Burr-Hatke exponential
accelerated failure time (QBHE-AFT) model, which offers greater flexibility compared to traditional AFT models
like exponential or Weibull, particularly in handling non-monotonic hazard rates (Yousof et al., 2018). It fills a
critical gap in validating parametric AFT models for censored data by proposing a modified chi-square goodness-
of-fit (GoF) test based on the NRR statistic, applicable to both complete and right-censored datasets, unlike classical
tests that are unsuitable for unknown parameters (Bagdonavicius & Nikulin, 2011; Goual et al., 2020). Furthermore,
while many studies rely solely on maximum likelihood estimation, this research evaluates multiple estimation
techniques, such as Cramer-von Mises, Anderson-Darling, and L-moments, providing a comprehensive framework
for parameter estimation under varying sample sizes and conditions (Goual & Yousof, 2019; Yadav et al., 2020).
Despite these advancements, the study highlights the need for further exploration of high-dimensional covariates,
robustness to model misspecification, and computational efficiency for large datasets, as noted in similar works
(Dupuy, 2014; Voinov et al., 2013).

In order to bridge this research gap, this paper introduces a QBHE-AFT accelerated failure time model,
addressing the need for more flexible parametric models in survival analysis. The QBHE-AFT model offers
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advantages over traditional AFT models by accommodating both monotonic and non-monotonic hazard rate
functions, making it suitable for diverse real-world applications. Unlike existing models, it combines simplicity
with enhanced flexibility through its two-parameter structure, while maintaining computational efficiency. The
study fills a gap in the literature by providing a comprehensive validation framework using modified chi-square
GoF tests for both complete and censored data scenarios. Our research contributes to the field by proposing
multiple estimation methods, including maximum likelihood and various adaptive approaches, allowing for robust
parameter estimation across different sample sizes. The model’s practical utility is demonstrated through successful
applications to real-life datasets from engineering, medical, and reliability studies. This work advances the
understanding of AFT models by exploring the asymptotic properties and finite-sample behavior of estimators
through extensive simulation studies. The proposed methodology addresses limitations of existing tests by
developing a modified Nikulin-Rao-Robson statistic specifically tailored for the QBHE-AFT model. Our findings
provide valuable insights into model performance under varying conditions, contributing to more accurate lifetime
data analysis. The research offers a comprehensive framework for analyzing survival data, benefiting researchers
and practitioners in reliability engineering, medical research, and other fields dealing with time-to-event data.

An appropriate parametric model is often of interest for analyzing survival data since it provides an overview
of the failure times characteristics and the risk functions. However, when failure rates of the products or death or
remission of patients or any other diseases can have different causes, simple parametric models cannot measure
the influence of each cause. In this case, accelerated failure time (AFT) models were proposed in the statistical
literature, where the stresses (explanatory variable, temperature, pressure, dose of medicine, etc.) represented by
covariates affect directly the functions of interest of the model, such as the failure rate and survival functions.
The AFT models are primarily fully parametric, in contrast to proportional hazards models, where Cox’s semi-
parametric proportional hazards model is more frequently used than parametric models. Also, the regression
parameter estimates from AFT models are resistant to omitted covariates, unlike proportional hazards models.
Additionally, they are less impacted by the probability distribution of choice. Depending on the values affected to
the covariates, by increasing or decreasing them, engineers and practitioners can achieve the desired results, which
is why the AFT models are widely used in reliability studies and survival analysis. The objective of this theory is
to know the influence of the stresses (covariates) on the life duration of the items. Based on classical distributions
called baseline, several AFT models are studied, such as the exponential, Weibull, log-logistic, and log-normal
AFT models (Bagdonavicius and Nikulin, 2002; Lawless, 2003; Bagdonavicius et al., 2010), the generalized
inverse Weibull AFT model (Goual and Seddik-Ameur, 2014; Bagdonavicius and Nikulin, 2011; Bagdonavicius et
al., 2011), which gave chi-squared GoF tests for regression models such as accelerated failure time, proportional
hazards, generalized proportional hazards, frailty models, models with cross-effects of survival functions.

The exponential distribution is likely the statistical model that is used most frequently across a variety of
fields among parametric distributions. Its significance is due in part to the exponential model’s constant failure
rate function. Furthermore, this model was the first lifetime model for which extensive statistical tools were
created in the literature on life testing. In a random process where events happen at a predetermined pace, the
waiting period before the first occurrence is distributed using an exponential function. It is a relatively simple
distribution; a random variable having this distribution is necessarily positive, and it is one of the more important
distributions among those used for positive random variables. The cumulative distribution function (CDF) of the
exponential distribution can be written as Gλ(x) = 1− exp (−λx), where λ > 0 and x ≥ 0. The moments, the
moment generating function (MGF), and several other properties of this distribution can be expressed in terms
of elementary functions. In the last decades, many new distributions have been developed by adding one or more
parameters to classical distributions to increase their flexibility (Yousof et al., 2018).

The most popular AFT model is provided by the log-logistic distribution. It can display a non-monotonic hazard
function that rises early and falls later, unlike the Weibull distribution. Although it has heavier tails, it has a form
that is relatively comparable to the log-normal distribution. When fitting data with censoring, the log-logistic
cumulative distribution function’s straightforward closed form plays a crucial computational role. The survival
function, which is the complement of the cumulative distribution function, is required for the censored observations.
It is unique among distribution families that the Weibull distribution (which includes the exponential distribution
as a special example) can be parameterized as either an AFT model or a proportional hazards model. There are
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two ways to interpret the outcomes of fitting a Weibull model. This model’s biological application, however, might
be constrained by the hazard function’s monotonicity, that is, its ability to be either decreasing or growing. The
log-normal, gamma, and inverse Gaussian distributions are additional distributions appropriate for AFT models;
however, they are less common than the log-logistic distribution, in part because their cumulative distribution
functions do not have a closed form. The Weibull, log-normal, and gamma distributions are special examples of
the generalized gamma distribution, a three-parameter distribution.

In this work, we introduce an exponential model dubbed the Burr-Hatke exponential (QBHE) distribution and
investigate its mathematical features in the manner of Yousof et al. (2018). The novel model simply has two
parameters and can be written as linear combinations of the well-known exponentiated exponential density. Its
probability distribution function (PDF) also has a straightforward shape. The asymptotics results can be used
to assess how the two parameters affect the QBHE distribution’s tails. The novel PDF, CDF, and hazard rate
function (HRF) asymptotics results are obtained correspondingly. Using two truncated moments, the HRF, and
the conditional expectation of a random variable-based function, various descriptions of the QBHE distribution are
provided. The finite sample behavior of the estimators is evaluated using a variety of estimation techniques, such as
the maximum likelihood, Cramer-von Mises, Anderson-Darling, right-tail Anderson-Darling, left-tail Anderson-
Darling, and method of L-moments. Simulated studies are carried out to compare the estimation techniques. Various
sample sizes and parameter values are used to accomplish the simulation experiments. The new QBHE-AFT model
can be used in reliability modeling and lifetime testing in many applied fields such as electric insulating, medicine,
and lifetime studies. For assessing the estimates of the QBHE-AFT model and depending on using the Barzilai-
Borwein (BZB) algorithm, the averages of the simulated values of the maximum likelihood estimators (MLEs)
and their corresponding mean squared errors are reported under different sample sizes. The QBHE-AFT model is
tested using a novel modified chi-square test in both the complete and right-censored data situations. The theoretical
framework of NRR statistics is used to assess the viability of the QBHE-AFT model (see Nikulin, 1973a, 1973b,
1973c; Rao and Robson, 1974). In several validation procedures, the NRR test statistic has recently been enhanced
(see, for instance, Goual and Yousof, 2019; Goual et al., 2019, 2020; Yadav et al., 2020, 2022a,b). The modified
NRR test statistic for the QBHE-AFT model is evaluated using the maximum likelihood approach at a few empirical
levels and equivalent theoretical levels. In order to evaluate the effectiveness of the NRR test statistic in validation,
three real datasets are also taken into account.

2. The quasi Burr Hatke exponetial model

2.1. Formluation

Based on the Burr-Hatke differential equation, Yousof et al. (2018) introduced a novel family of distributions
referred to as the BH-G family. According to Yousof et al. (2018), the cumulative distribution function (CDF) of
the quasi Burr-Hatke exponential (QBHE) distribution can be derived as:

Fλ (x) = 1− exp (−λx)

λx+ 1
. (1)

The PDF corresponding to (1) is given by

fλ (x) = λ (λx+ 1)
−2

[(λx+ 1) + 1] exp (−λx) . (2)

The HRF of the QBHE model can be expressed as

hλ (x) = λ
(λx+ 1) + 1

λx+ 1
. (3)

Mixture representations for Equations (2) and (3) are obtained. Consider the following expansions,(
1− ζ1

ζ2

)ζ3

=

∞∑
ζ4=0

(−1)
ζ4

(
ζ3
ζ4

)(
ζ1
ζ2

)ζ3

, |ζ1
ζ2

| < 1 (4)
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and

log

(
1− ζ1

ζ2

)
= −

∞∑
ζ4=0

1

1 + ζ4

(
ζ1
ζ2

)1+ζ4

, |ζ1
ζ2

| < 1. (5)

Firstly, the CDF (2) can be rewriten as

Fλ (x) = 1−

Aλ(x)︷ ︸︸ ︷
1− [1− exp (−λx)]

1− log {1− [1− exp (−λx)]}︸ ︷︷ ︸
Bλ(x)

.

Applying (4) to Aλ (x). Then, Aλ (x) =
∞∑
k=0

ak [1− exp (−λx)]
k
, where ak = (−1)

k (1
k

)
. Now, applying (5) to

Bλ (x), still in Equation (2), we obtain

Bλ (x) = 1 +

∞∑
i=0

1

i+ 1
[1− exp (−λx)]

i+1

=

∞∑
k=0

bk [1− exp (−λx)]
k
,

where b0 = 1, k ≥ 1 and bk = −1
k . Then, Equation (2) can be writen as

F (x;λ) = 1−

∞∑
k=0

ak [1− exp (−λx)]
k

∞∑
k=0

bk [1− exp (−λx)]
k
= 1−

∞∑
k=0

ck [1− exp (−λx)]
k
,

where c0 = ao

b0
and, for k ≥ 1, we have ck = 1

b0

(
ak − 1

b0

k∑
r=1

brck−r

)
. At the end, the CDF (2) can be writen as

Fλ (x) =

∞∑
k=0

dkΠ1+k(x;λ), (6)

where d0 = 1− ck, for k ≥ 1 we have d0 = −ck and Π1+k(x;λ) = [1− exp (−λx)]
1+k is the CDF of the

exponentiated exponential model with power parameter 1 + k. By differentiating (6), we obtain the same mixture
representation

fλ (x) =

∞∑
k=0

dkπ1+k(x;λ), (7)

where πς (x) = (1 + k)λ exp (−λx) [1− exp (−λx)]
k is the PDF of the exponentiated exponential with power

parameter (ς). Equation (7) demonstrates that the exponentiated exponential densities are combined linearly to
form the QBHE density function. As a result, it is possible to derive some structural characteristics of the new
model, including the generating function, ordinary and incomplete moments, and Exp-E distribution, right away.
Many authors have recently explored the exponentiated exponential distribution’s properties.

2.2. Properties

Let a = inf{x|Fλ(x) > 0}, the asymptotics of CDF, PDF and HRF as x → a are given by

Fλ(x) ∼ 1− exp (−λx) |x→a , fλ(x) ∼ λ exp (−λx) |x→a,
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and
hλ(x) ∼ λ exp (−λx) |x→a.

The asymptotics of CDF, PDF and HRF as x → ∞ are given by

1− Fλ(x) ∼
exp (−λx)

λx
|x→∞, fλ(x) ∼

exp (−λx)

λx2
(1− λx) |x→∞,

and
hλ(x) ∼

1

x
(1− λx) |x→∞.

The effect of the parameters on tails of distribution can be evaluated by means of the above equations.
Theorem 1: Let T be a random variable with the exponentiated exponential distribution with positive parameters

λ and ς . Then, for any r > −1, the rth ordinary and incomplete moments of T are given by

µ′
r,T =

∞∑
w=0

C(r,ς)
w Γ (1 + r)

and

Ir,T (t) =

∞∑
w=0

C(r,ς)
w γ (1 + r, (λt)) ,

respectively, where

C(r,ς)
w = ςλ−r (−1)

w

(w + 1)
(1+r)

(
ς − 1

w

)
and γ (ζ1, ζ2) is the incomplete gamma function which can be expressed as

γ (ζ1, ζ2) =

∫ ζ2

0

exp (−w) dw =
1

ζ1
ζζ12 {1F1 [ζ1; ζ1 + 1;−ζ2]} =

∞∑
κ=0

(−1)
κ

κ! (ζ1 + κ)
ζζ1+κ
2 ,

and 1F1 [·, ·, ·] is a confluent hypergeometric function. Based on Theorem 1, the rth ordinary moment of X is given
by µ′

r,X = E(Xr) =
∫∞
−∞ xr f (x) dx. Then, we obtain

µ′
r,X =

∞∑
k,w=0

C
(1+k,r)
k,w Γ (1 + r) |r>−1, (8)

where C
(1+k,r)
k,w = dkC

(r,1+k)
w and

C(r,1+k)
w = (1 + k)

(−1)
w

(w + 1)
(1+r)

(
k

w

)
The cumulants, central moment, skewness and kurtosis measures can be calculated from the ordinary moments
using well-known relationships. Based on Theorem 1, the rth incomplete moment of X , say Ir,X(t) =∫ t

−∞ xr f(x)dx, can be determined from (7) and (8) as

Ir,X(t) =

∫ t

−∞
xr f(x)dx =

∞∑
k,w=0

C
(1+k,r)
k,w γ (1 + r, (λt)) |r>−1. (9)

The MGF of X follows from (7) and (8) as

MX(t) =

∞∑
k,w,r=0

tr

r!
C

(1+k,r)
k,w Γ (1 + r) |r>−1.
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3. Different estimation methods

3.1. Maximum likelihood (ML) method

Let x1, x2, . . . , xn be a RS from this distribution with parameter vector (λ)⊺. The log-likelihood function for (λ),
say ℓ(λ), is given by

ℓ(λ) = n log λ− 2n

n∑
i=0

log (λxi:n + 1) +

n∑
i=0

log[(λxi:n + 1) + 1]− λ

n∑
i=0

log xi:n

which can be maximized either using the statistical programs or by solving the nonlinear system obtained from
ℓ(λ) by differentiation. The score vector, U (λ) =

(
∂
∂λℓ(λ)

)⊺
, are easily derived.

3.2. Cramér-von-Mises method

The Cramér-von-Mises estimation (CVME) of the parameter λ is obtained via minimizing the following expression
with respect to the parameter λ respectively, where

CVM(λ) =
1

12
n−1 +

n∑
i=1

[
Fλ(xi:n)− ζ(i,n)

]2
,

where ζ (i,n) =
2i−1
2n and

CVM(λ) =

n∑
i=1

(
1− exp (−λxi:n)

λxi:n + 1
− ζ(i,n)

)2

.

The, CVME of the parameter λ are obtained by solving the following non-linear equation

n∑
i=1

(
1− exp (−λxi:n)

λxi:n + 1
− ζ(i,n)

)
ς(λ)(xi:n, λ) = 0,

where ςλ(xi:n, λ) are the first derivatives of the CDF of QBHE distribution with respect to λ respectively.

3.3. Method of L-moments

However, linear combinations of the order statistics can be used to estimate the L-moments, which are comparable
to ordinary moments. They are relatively resistant to the effects of outliers and exist anytime the distribution’s mean
does, even if certain higher moments do not. Based on the moments of the order statistics, we can derive explicit
expressions for the L-moments of x as infinite weighted linear combinations of the means of suitable QBHE order
statistics. The L-moments for the population can be obtained from

γr =
1

r

∑r−1

m=0
(−1)

m

(
r − 1

m

)
E (xr−m:m) | (r≥1).

The first four L-moments are given by

γ1 (λ) = E (x1:1) = µ′
1 = L1,

Then, the L-moments estimators λ̂(LME) of the parameters λ can be obtained by solving the following equation
numerically

γ1

(
λ̂(LME)

)
= L1,
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3.4. Anderson Darling method

The Anderson Darling estimation (ADE) of and λ̂(ADE) are obtained by minimizing the function

ADE (λ) = −n− n−1
n∑

i=1

(2i− 1)

{
logF(λ)(xi:n)

+ log
[
1− F(λ)(x[−i+1+n:n])

] } .

The parameter estimates of λ̂(ADE) follow by solving the nonlinear equation

∂

∂λ
[ADE (λ)] = 0.

3.5. Right Tail-Anderson Darling method

The Tail-Anderson Darling estimation (RTADE) of and λ̂(RTADE) are obtained by minimizing

RTADE (λ) =
1

2
n− 2

n∑
i=1

F(λ)(xi:n)−
1

n

n∑
i=1

(2i− 1)
{
log
[
1− F(λ)(x[−i+1+n:n])

]}
.

The parameter estimates of and λ̂(RTADE) follow by solving the nonlinear equation

∂

∂λ
[RTADE (λ)] = 0.

3.6. Left Tail-Anderson Darling method

The left Tail-Anderson Darling estimation (LTADE) of and λ̂(LTADE) are obtained by minimizing

LTADE (λ) = −3

2
n+ 2

n∑
i=1

F(λ)(xi:n)−
1

n

n∑
i=1

(2i− 1) logF(λ)(xi:n).

The parameter estimates of and λ̂(LTADE) follow by solving the nonlinear equation

∂

∂λ
[LTADE (λ)] = 0.
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4. Simulation studies for comparing estimation methods

Table 1: Simulation results for parameter λ = 0.7

n BIAS(λ) RMSE(λ) Dabs Dmax

MLE 50 0.00948 0.11545 0.00311 0.00453
CVM 0.00858 0.12920 0.00281 0.00411

L-MOMENT 0.01154 0.11700 0.00377 0.00551
ADE 0.00493 0.12157 0.00162 0.00237

RTADE 0.00125 0.11680 0.00041 0.00060
LEADE 0.01543 0.14386 0.00503 0.00735

MLE 100 0.00752 0.08000 0.00247 0.00360
CVM 0.00573 0.08932 0.00189 0.00275

L-MOMENT 0.00906 0.08149 0.00298 0.00434
ADE 0.00408 0.08408 0.00134 0.00196

RTADE 0.00336 0.08128 0.00111 0.00161
LEADE 0.00740 0.09749 0.00243 0.00355

MLE 200 0.00470 0.05543 0.00155 0.00226
CVM 0.00527 0.06260 0.00173 0.00253

L-MOMENT 0.00506 0.05604 0.00166 0.00243
ADE 0.00408 0.05933 0.00134 0.00196

RTADE 0.00318 0.05685 0.00105 0.00153
LEADE 0.00650 0.06885 0.00214 0.00312

MLE 300 0.0005 0.04382 0.00017 0.00024
CVM 0.00069 0.05070 0.00023 0.00033

L-MOMENT 0.00070 0.04390 0.00023 0.00034
ADE 0.00014 0.04782 0.00005 0.00007

RTADE -0.00056 0.04571 0.00018 0.00027
LEADE 0.0017 0.05591 0.00065 0.00094

To rigorously assess and compare the performance of different parameter estimation techniques, a comprehensive
numerical simulation study is conducted. The simulation is based on data generated from the QBHE distribution,
with N = 1000 independent simulation replications. For each replication, synthetic data sets are generated at
varying sample sizes: n = 50, n = 100, n = 200, and n = 300, to investigate how estimation accuracy behaves
under different data volumes. The simulations are performed for different values of the shape parameter λ,
reflecting a range of distributional shapes and complexities. Specifically, the simulations explore the following
λ values as λ = 0.7 (see Table 1), λ = 2 (see Table 2) and λ = 5 (see Table 2). To comprehensively compare the
performance of the estimation methods, several evaluation metrics are simultaneously considered. These include
the bias, which reflects the average deviation of the estimator from the true parameter value; the root mean squared
error (RMSE), which accounts for both the bias and variability of the estimates; the mean absolute deviation
in distribution (M-AD), measuring the average difference between the theoretical and empirical cumulative
distribution functions; and the maximum absolute deviation in distribution (Max-AD), which captures the largest
observed discrepancy between the estimated and true distributions across all data points. Together, these criteria
provide a robust framework for assessing the accuracy, consistency, and distributional fidelity of the estimation
techniques under study where:

1-BIAS(λ) = 1
B

B∑
i=1

(
λ̂i − λ

)
,
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2-RMSE(λ) =

√
1
B

B∑
i=1

(
λ̂i − λ

)2
,

3-The M-AD
(
D(abs)

)
:D(abs) =

1
nB

B∑
i=1

n∑
j=1

|F(λ)(xij)− F(λ̂)(tij)| and

4-The Max-AD
(
D(max)

)
:D(max) =

1
B

B∑
i=1

maxj |F(λ)(xij)− F(λ̂)(wij)|.

Table 2: Simulation results for parameter λ = 2

n BIAS λ RMSE λ Dabs Dmax
MLE 50 0.03905 0.35070 0.00447 0.00652
CVM 0.02128 0.37929 0.00246 0.00357

L-MOMENT 0.04869 0.34453 0.00558 0.00810
ADE 0.01516 0.36006 0.00175 0.00254

RTADE 0.01279 0.34892 0.00148 0.00215
LEADE 0.07173 0.42749 0.00815 0.01187

MLE 100 0.03221 0.23292 0.00369 0.00539
CVM 0.01140 0.26130 0.00131 0.00192

L-MOMENT 0.02008 0.23640 0.00231 0.00337
ADE 0.00657 0.24693 0.00076 0.00111

RTADE 0.00266 0.23864 0.00031 0.00045
LEADE 0.01392 0.28227 0.00161 0.00234

MLE 200 0.01450 0.15403 0.00167 0.00244
CVM 0.00928 0.17764 0.00107 0.00156

L-MOMENT 0.01599 0.16415 0.00184 0.00269
ADE 0.00712 0.16985 0.00082 0.00120

RTADE 0.00817 0.16539 0.00094 0.00137
LEADE 0.01345 0.19161 0.00155 0.00226

MLE 300 0.00392 0.13041 0.00045 0.00066
CVM 0.00790 0.14843 0.00091 0.00133

L-MOMENT 0.00948 0.13605 0.00109 0.00159
ADE 0.00692 0.14175 0.00080 0.00117

RTADE 0.00515 0.13755 0.00059 0.00087
LEADE 0.00723 0.16183 0.00083 0.00122

From the simulation results displayed in Tables 1, 2 and 3, a consistent pattern emerges across all three values of
the parameter λ (0.7, 2, and 5): as the sample size nn increases, the performance of all estimators significantly
improves. The BIAS(λ) systematically decreases toward zero for all methods, confirming that each estimator
is asymptotically unbiased. Similarly, the RMSE also declines steadily with increasing nn, indicating stronger
consistency, that is, estimates become more accurate and tightly clustered around the true parameter value. These
trends are evident even in the more challenging scenario of λ=5, where estimation is inherently more difficult due
to the heavier tail behavior of the distribution. Despite higher initial error at small sample sizes (e.g., n = 50), most
estimators exhibit rapid improvement as nn grows. Among the methods, RTADE and ADE consistently deliver
superior performance, particularly at lower sample sizes, as reflected in their lower bias, RMSE, and deviation
measures (M-AD and Max-AD). The LEADE method, while competitive in some scenarios, tends to show higher
variability and error, especially in small samples. Overall, the simulation results underscore the reliability and
robustness of the estimators, particularly the adaptive ones, with increasing data, and highlight their suitability
across a range of parameter settings.
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Table3: Simulation results for parameter λ = 5

n BIAS λ RMSE λ Dabs Dmax
MLE 50 0.12005 0.89825 0.00548 0.00799
CVM 0.14212 0.89758 0.00648 0.00944

L-MOMENT 0.17317 0.82756 0.00787 0.01147
ADE 0.11571 0.84090 0.00529 0.00771

RTADE 0.09747 0.81261 0.00447 0.00651
LEADE 0.16405 1.09597 0.00745 0.01088

MLE 100 0.04262 0.56296 0.00196 0.00286
CVM 0.02053 0.67329 0.00095 0.00138

L-MOMENT 0.04685 0.59259 0.00216 0.00314
ADE 0.00954 0.63367 0.00044 0.00064

RTADE 0.00445 0.60647 0.00021 0.00030
LEADE 0.07823 0.72400 0.00359 0.00523

MLE 200 0.04194 0.39887 0.00192 0.00282
CVM 0.02613 0.45062 0.00120 0.00176

L-MOMENT 0.02922 0.40273 0.00135 0.00196
ADE 0.02005 0.42645 0.00092 0.00135

RTADE 0.01498 0.40987 0.00069 0.00101
LEADE 0.02891 0.49821 0.00133 0.00194

MLE 300 0.00782 0.31943 0.00036 0.00053
CVM 0.00386 0.35260 0.00018 0.00026

L-MOMENT -0.00196 0.31932 0.00009 0.00013
ADE -0.00217 0.33414 0.00010 0.00015

RTADE -0.00721 0.32456 0.00033 0.00049
LEADE 0.02934 0.39068 0.00135 0.00197

5. The QBHE-AFT model

In this section, we introduce a novel accelerated failure time (AFT) model based on the Burr-Hatke exponential
distribution. This model is designed to provide greater flexibility in modeling survival data while accommodating
both monotonic and non-monotonic hazard rate functions. To construct this model, we assume that n independent
failure time variables are observed, and we consider the hypothesis H0, which specifies the survival function given
a vector of explanatory variables z(t) = (z0(t), z1(t), ..., zm(t)), z0(t) = 1 represents the baseline covariate (e.g.,
temperature, stress, or other external factors). The survival function under this hypothesis takes the form:

S(t|z) = S0

 t∫
0

e−βT z(u)du; ζ

 ,

where β = (β0, β1, ..., βm)T is a vector of unknown regression parameters, the function S0 is a specified functional
of time and does not depend on zi. If explanatory variables are constant over time, the parametric accelerated
failure time (AFT) model has the form

S(t|z) = S0

[
exp

(
−βT z

)
t; ζ
]
.
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Consider the QBHE distribution as baseline distribution where

H0 = F (t) = FAFT(t, λ, β) = FAFT.

So, the CDF of the AFT model can be expressed as

FAFT = 1−
exp

[
−λt exp

(
−βT z

)]
1 + λt exp (−βT z)

, t > 0;λ > 0,

and then, the PDF of the AFT model can be re-expressed as

fAFT =
λ exp

(
−βT z

)
exp

[
−λt exp

(
−βT z

)]
1 + λt exp (−βT z)

+ λ
exp

(
−βT z

)
exp

[
−λt exp

(
−βT z

)]
(1 + λt exp (−βT z))2

=
λ exp

(
−βT z

)
exp

[
−λt exp

(
−βT z

)] [(
1 + λt exp

(
−βT z

))
+ 1
]

(1 + λt exp (−βT z))2
.

Analogously, the corresponding survival function (SF), HRF and cumulative HRF of the AFT model are given by

SAFT = S0

[
t exp

(
−βT z

)]
=

exp
[
−λt exp

(
−βT z

)]
1 + λt exp (−βT z)

hAFT = λ exp
(
−βT z

) {[1 + λt exp
(
−βT z

)]
+ 1
}

1 + λt exp (−βT z)
,

and

HAFT = − log

{
exp

[
−λt exp

(
−βT z

)]
1 + λt exp (−βT z)

}
.

These expressions provide a comprehensive framework for analyzing the effects of covariates on survival times,
enabling researchers to estimate key quantities such as the likelihood of failure at a given time and the instantaneous
risk of failure. The proposed QBHE-AFT model is particularly well-suited for applications in fields such as
engineering, medicine, and reliability studies, where understanding the impact of stresses or treatments on system
lifetimes is critical. By incorporating the Burr-Hatke structure, the model achieves enhanced flexibility, allowing
for accurate modeling of complex hazard rate patterns observed in real-world datasets.

6. The MLE for the QBHE-AFT model

In this section, we apply the maximum likelihood method to estimate the parameters of the AFT for the QBHE
distribution. We give a detailed description of the method as well as the score functions and the elements of the
FIM.

6.1. The MLE derivations

Let x1, . . . , xn be a RS from the AFT for the QBHE model with parameters λ and β. Let V = (λ, β0, β1)
⊺ be the

4× 1 parameter vector. For determining the MLE of V, we have the log-likelihood function

ℓ = ℓ (x;V) =

n∑
i=1

log
[
λ exp

(
−βT zi

)]
− λ

n∑
i=1

xi exp
(
−βT z

)
+

n∑
i=1

log
[
1 +

(
1 + λxi exp

(
−βT z

))]
− 2

n∑
i=1

log
[
1 + λxi exp

(
−βT z

)]
.

Stat., Optim. Inf. Comput. Vol. 14, August 2025



MOHAMED IBRAHIM, H. GOUAL, KHAOULA K. M, A. H. AL-NEFAIE, A. M. ABOALKHAIR, H. M YOUSOF 567

The score vector I(V) =
∂ℓ
∂V =

(
∂ℓ
∂λ ,

∂ℓ
∂β0

, ∂ℓ
∂β1

)⊺
is given by

I(λ) =
n

λ
−

n∑
i=1

xi exp
(
−βT z

)
+

n∑
i=1

xi exp
(
−βT z

)
1 + (1 + λxi exp (−βT z))

− 2

n∑
i=1

xi exp
(
−βT z

)
1 + λxi exp (−βT z)

,

I(β0) = λ

n∑
i=1

xi exp
(
−βT z

)
−λ

n∑
i=1

xi exp
(
−βT z

)
1 + [1 + λxi exp (−βT z)]

+ 2λ

n∑
i=1

xi exp
(
−βT z

)
1 + λxi exp (−βT z)

− 1,

I(β1) = −
n∑

i=1

zi + λ

n∑
i=1

zixi exp
(
−βT z

)
+2λ

n∑
i=1

zixi exp
(
−βT z

)
1 + λxi exp (−βT z)

− λ

n∑
i=1

zixi exp
(
−βT z

)
1 + [1 + λxi exp (−βT z)]

.

Setting the nonlinear system of equations I(λ) = 0, I(β0) = 0 and I(β1) = 0 and solving them simultaneously
yields the MLE V̂ = (λ̂, β̂0, β̂1)

⊺. To solve these equations, it is usually more convenient to use nonlinear
optimization methods such as the quasi-Newton algorithm to numerically maximize ℓ. Since, we can not find
the explicit formulas for the MLEs of the parameters, we use numerical methods such as the Newton Raphson
method, the Monte Carlo method, the BB algorithm or others.

6.2. Assessing the QBHE-AFT model via a simulation study

We conduct a comprehensive simulation study using the R programming software to evaluate the performance of
the maximum likelihood estimators (MLEs) for the parameters of the QBHE-AFT model. This study is crucial
for assessing the accuracy, consistency, and efficiency of the estimation methods under varying sample sizes and
parameter settings. The results are obtained using a numerical optimization approach, specifically the Newton-
Raphson method , which is widely recognized for its robustness and efficiency in solving nonlinear equations.

In this simulation setup, we assume that the data follows the QBHE-AFT distribution. To ensure reliability and
generalizability of the results, the data generation process is repeated N = 5000 times . The true parameter values
used in the simulation are set as follows: λ = 2.50, β0 = 1.96, β1 = 1.55. These values represent the baseline hazard
rate and the regression coefficients associated with the explanatory variables in the AFT model.

For computational purposes, we utilize the BB algorithm (Barzilai-Borwein algorithm), as described in Ravi
(2009), implemented in the R software. This algorithm is particularly well-suited for optimizing high-dimensional
nonlinear objective functions and provides efficient computation of the MLEs. Using this approach, we calculate
the averages of the simulated MLEs for the parameters λ , β 0 , and β 1 , along with their respective mean squared
errors (MSE) . The MSE serves as a key metric to evaluate the precision and bias of the estimators across different
sample sizes.

The simulation study considers six distinct sample sizes: n = 15, n = 30, n = 50, n = 150, n = 300, and n =
500. These sample sizes span a wide range, from small to large datasets, enabling us to examine how the
performance of the estimators evolves as the sample size increases. For each sample size, the simulation generates
synthetic datasets based on the specified parameter values and computes the MLEs iteratively over the 5000
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replications. The results are then aggregated to compute the average estimates and their corresponding MSEs. The
outcomes of the simulation study are summarized in Table 4 , which lists the MSE for the MLEs of the parameters
λ, β0, β1 across the different sample sizes. The table provides a clear depiction of how the MSE decreases as the
sample size grows, reflecting the asymptotic properties of the MLEs. Specifically for λ= 2.50 , the MSE decreases
significantly as the sample size increases from n = 15 to n = 500, indicating improved accuracy and reduced
variability in the estimates. Similarly, for β0 = 1.96 and β1 = 1.55 , the MSEs also exhibit a consistent downward
trend, confirming the consistency of the estimators. These findings underscore the reliability of the MLEs for
the QBHE-AFT model, particularly for larger sample sizes. The results demonstrate that the proposed estimation
method performs well under the specified simulation conditions, providing accurate and stable parameter estimates.
Overall, this simulation study validates the practical applicability of the QBHE-AFT model and highlights its
potential for real-world survival analysis applications.

Table 4: MLEs
(
λ̂, β̂0, β̂1

)
of the parameters and their mean squared errors.

N = 5000 n = 15 n = 30 n = 50 n = 150 n = 300 n = 500

λ̂ 2.5553 2.5545 2.5427 2.5294 2.5150 2.5079
MSE 1.6271× 10−2 8.0192× 10−3 4.7314× 10−3 2.0100× 10−3 9.6088× 10−4 6.5547× 10−4

β̂0 1.9909 1.9854 1.9767 1.9738 1.9674 1.9601
MSE 9.2760× 10−3 5.6049× 10−3 3.0585× 10−3 7.3168× 10−4 3.6641× 10−4 1.2534× 10−4

β̂1 1.6011 1.5819 1.5517 1.5556 1.5501 1.5498
MSE 2.1224× 10−2 1.7578× 10−2 8.7629× 10−3 5.2243× 10−3 4.7595× 10−3 1.1659× 10−3

The results obtained from the proposed methods are compelling and statistically meaningful, as demonstrated
in the accompanying table. The performance of the models is not only evaluated through GoF measures but also
supported by precise parameter estimation, with relatively low standard errors even under small sample conditions.
To further validate the consistency of the MLEs, we refer to the simulation results illustrated in Figure 1. These
results clearly show that the estimators exhibit convergence rates exceeding the classical O(n−1/2) benchmark.
Specifically, the bias and standard deviation of the MLEs decrease more rapidly than n−1/2 as the sample size
increases, providing strong empirical evidence for their

√
n-consistency. This rapid convergence highlights the

robustness and efficiency of the estimation procedure across a range of sample sizes, thereby reinforcing the
practical applicability of the proposed models in real-world settings.

7. Validation of the QBHE-AFT model

The GoF testing has witnessed significant development across recent literature, with adaptations tailored to new
lifetime and reliability distributions under both complete and censored data. Goual et al. (2019) introduced modified
GoF tests for odd Lindley exponentiated exponential and composite transmuted models. Goual and Yousof (2020)
developed a modified chi-square test for Burr XII-Inverse Rayleigh models, while Yadav et al. (2020) applied
the Nikulin-Rao-Robson (NRR) test to the Topp-Leone-Lomax model. Ibrahim et al. (2020) focused on censored
Burr XII data, and Yousof et al. (2021a) proposed a chi-square-based test for right-censored data. The NRR test
framework has been central to works like Mansour et al. (2020a,b,c), who modeled exponential Lomax, Poisson
Lomax, and exponential gamma models, and Mansour et al. (2020d,e,f), who used modified Bagdonavičius–
Nikulin (BN) tests for new life models including acute bone cancer data. Ibrahim et al. (2020) validated a flexible
log-logistic gamma model using GoF techniques. Goual et al. (2020) and Yousof et al. (2021b) used NRR testing
for the exponential Weibull and Poisson exponential models, respectively. Ibrahim et al. (2021) applied the BN test
to exponential generalized log-logistic models, while Yousof and Ahsan (2021) proposed a new GoF method for
right-censored Poisson exponential data. Yadav et al. (2021) validated the Topp-Leone q-exponential model with
NRR testing. Ibrahim et al. (2022) advanced the NRR test under both Bayesian and classical settings for the Double
Burr XII model. Yadav et al. (2022) assessed the xgamma exponential model with NRR tests under censoring.
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Figure 1. The
√
n-convergence of the parameters λ̂, β̂0 and β̂1 of the QBHE −AFT distribution.

Ibrahim et al. (2022) offered chi-square-based validation for odd Fréchet inverse exponential models. Yousof et al.
(2022) and Goual et al. (2022) explored Bayesian vs. frequentist GoF techniques for Burr Type XII-based models.
Emam et al. (2023) examined inference and GoF testing for exponential type models under censoring. Hashem
et al. (2023) proposed GoF validation for accelerated life testing with hybrid censoring. Yousof et al. (2023) and
Hashem et al. (2024) extended BN and Bayesian methods to real data with censoring and acceleration schemes.
Loubna et al. (2024) introduced the quasi-xgamma frailty model with appropriate GoF tools, and Teghri et al.
(2024) validated a two-parameter Lindley frailty model. Shehata et al. (2024) explored Bayesian and classical
validation for Burr Type XII-based models using NRR. Hashem et al. (2024) analyzed inference and GoF in
nonlinear hybrid accelerated failure models. Salem et al. (2023) presented validation for a Lomax variant applied
to insurance and medical data, while Salem et al. (2024) developed a right-skewed model validated through NRR
testing for actuarial and reliability applications. Collectively, these studies highlight the evolution of GoF testing
into a flexible, distribution-specific, and censor-aware methodology fundamental to modern statistical validation.

In the case of well-specified distributions, classical GoF tests such as Pearson’s chi-square, the Kolmogorov-
Smirnov (K–S) statistic, and the Anderson-Darling (A–D) statistic are commonly employed to assess the adequacy
of the proposed model. However, when the distribution’s parameters are unknown and must be estimated from
the observed data, these traditional tests lose their theoretical rigor. The resulting test statistics no longer follow
their classical distributions, as their asymptotic behavior becomes dependent on both the underlying model and
the estimation procedure used. When complete data are available, several techniques exist to assess the fit
of probabilistic models to empirical data. Among these, Pearson’s chi-square test is one of the most widely
applied. Nevertheless, its applicability becomes limited in cases involving censored data or models with unknown
parameters. To address these challenges, Nikulin (1973) and independently Rao and Robson (1974) developed a
statistic, now commonly referred to as the NRR statistic, specifically designed for use with complete samples.
This statistic is constructed based on the maximum likelihood estimators (MLEs) derived from the original data,
and under regularity conditions, it converges in distribution to a chi-square distribution. For a detailed exposition
of the construction and properties of this class of test statistics, readers are referred to Voinov et al. (2013) and
Goual et al. (2019). The NRR-based methods have been successfully applied in various contexts, including model
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adequacy testing for the Lomax Inverse Weibull distribution (see Goual et al., 2020), the Burr XII Inverse Rayleigh
model (Goual et al., 2019), and the Lindley Exponentiated distribution (see Goual et al., 2019). Building upon
this framework, the current section proposes a modified chi-square-type test based on the NRR statistic, tailored
specifically to evaluate the fit of the newly introduced QBHE model.

7.1. The NRR statistic test for the QBHE-AFT model

To test the hypothesis H0 according to which T1, T2, · · · , Tn, an n-sample comes from a parametric family FV(t)

H0 : Pr {Ti ≤ t} = FV(t), t ∈ R,

where V = (V1,V2, · · · ,Vs)
T represents the vector of unknown parameters, Nikulin (1973) and Rao and Robson

(1974) proposed K2 the NRR statistic defined as below. Observations T1, T2, · · · , Tn are grouped in r subintervals
I1, I2, · · · , Ir mutually disjoint Ij =]aj-1; aj ]; where j = 1; r. The limits aj of the intervals Ij are obtained such
that

pj(V) = pj(V; aj−1, aj) =

∫ aj

aj−1

fV(t)dt|( j=1,2,··· ,r),

so

aj = F−1

(
j

r

)
|(j=1,··· ,r−1).

If νj = (ν1, ν2, · · · , νr)T is the vector of frequencies obtained by the grouping of data in these Ij intervals

νj =

n∑
i=1

1{ti∈Ij} |(j=1,...,r).

The NRR statistic is given by

K2(V̂n) = X2
n(V̂n) +

1

n
LT (V̂n)(I(V̂n)− J(V̂n))

−1L(V̂n),

where

X2
n(V) =

(
ν1 − np1(V)√

np1(V)
,
ν2 − np2(V)√

np2(V)
, · · · , νr − npr(V)√

npr(V)

)T

and J(V) is the information matrix for the grouped data defined by

J(V) = B(V)TB(V),

with

B(V) =

[
1

√
p
i

∂pi(V)

∂µ

]
r×s

|(i=1,2,··· ,r and k=1,··· ,s),

then

L(V) = (L1(V), ...,Ls(V))T with Lk(V) =

r∑
i=1

νi
pi

∂

∂Vk

pi(V),

where In(V̂n) represents the estimated FIM and V̂n is the maximum likelihood estimator of the parameter vector.
The K2 statistic follows a distribution of chi-square χ2

r−1 with (r − 1) degrees of freedom.
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Figure 2. the simulated K2 histograms compared to the theoretical chi-square with the corresponding degree of freedom k

7.2. Simulation studies under the NRR statistic K2

Consider a sample T1:n where T = T1:n = (T1, T2, · · · , Tn)
T . If these data are distributed in accordance with the

QBHE-AFT model, then P {T1:n ≤ t} = FV(t); with unknown parameters V = (λ, β0, β1)
T , by fitting the NRR

statistic created in the preceding section, a chi-square GoF test is created. The MLEs V̂n of the unknown parameters
of the AFT-QBHE model are computed on the initial data. Since, the statistic K2 not dependent on the parameters,
we can therefore use the estimated Fisher information matrix (FIM) In(V̂n). All the components of the statistic
K2, for the AFT-QBHE distribution are provided, therefore K2 can be deduced easily.

In order to support the results obtained in this work, a numerical simulation is performed. Therefore, in order to
test the null hypothesis H0 of the AFT-QBHE model, we calculated 5000 sample data simulations (n = 15, n = 30,
n = 50, n = 150, n = 300 and n = 500) from AFT-QBHE distribution, after calculating the value of the criterion
statistic K2, we count the number of rejected cases of the null hypothesis H0. When K2 > χ2 (k = r − 1), the
significance is different level α (1%, 5%, 10%). The simulation results of the rejected level of K2 and its theoretical
value are shown in Table 5 below.

Table 5: Empirical levels K2 and corresponding theoretical levels.
N = 5000 n = 15 n = 30 n = 50 n = 150 n = 300 n = 500
α = 0.01 0.019 0.018 0.024 0.0098 0.011 0.012
α = 0.05 0.055 0.045 0.046 0.048 0.0498 0.0502
α = 0.1 0.178 0.089 0.092 0.095 0.098 0.0997

The results show that the computed empirical level closely matches the corresponding theoretical level. Based
on this, we conclude that the proposed test is highly appropriate for the AFT-QBHE distribution. This finding
supports the claim that the K2 statistic asymptotically follows a chi-squared distribution with degrees of freedom
given by k = r − 1. To validate this, we performed N = 5,000 simulations under the null hypothesis H 0, using
various parameter estimates of the AFT-QBHE model V = (λ, β0, β1)

T and different values of r intervals. The
results were compared against the chi-squared distribution with k degrees of freedom. Their histograms are shown
in Figure 2, compared with the chi-square distribution with k degrees of freedom.

Stat., Optim. Inf. Comput. Vol. 14, August 2025



572 A NEW QUASI BURR-HATKE EXPONENTIAL ACCELERATED FAILURE TIME MODEL

Figure 2 shows the statistical distribution of K2 for various parameter values and r grouping units. The restriction
is based on the chi-square with k degrees of freedom within the simulated statistical error. The same findings are
achieved for various parameter values and various intervals of equal probability grouping. As a result, the NRR K2

statistic’s limit distribution is chi-square.

7.3. Applications to real data

We take into account the following real data sets and confirm the presumption that their distribution is consistent
with the AFT-QBHE model in order to demonstrate the applicability of the proposed modified chi-square GoF test.

7.3.1. Electric insulating fluid data The failure times of 76 electrical insulating fluids, which were tested under
varying voltages ranging from 26 to 38 kilovolts, are documented in the work of Lawless (2003). This dataset
has been widely utilized in reliability studies due to its relevance in understanding the impact of voltage stress
on the durability and performance of insulating materials. Bagdonavicius and Nikulin (2011) further analyzed
this dataset to assess its compatibility with the exponential and Weibull accelerated failure time (AFT) power-rule
models. Their study aimed to determine whether these traditional parametric models could adequately describe
the relationship between voltage levels and the failure times of the insulating fluids. In this section, we extend
their analysis by evaluating how well the data fits our proposed quasi Burr-Hatke exponential accelerated failure
time (AFT-QBHE) model. The AFT-QBHE model offers a more flexible framework compared to the conventional
exponential and Weibull models, as it can accommodate both monotonic and non-monotonic hazard rate functions.
This flexibility makes it particularly suitable for modeling complex datasets like the one under consideration, where
the influence of voltage stress on failure times may exhibit nonlinear patterns. By applying the AFT-QBHE model
to this dataset, we aim to demonstrate its ability to provide a better fit and capture the underlying failure mechanisms
more accurately. The results of this evaluation will not only validate the practical utility of the AFT-QBHE model
but also highlight its advantages over existing models in analyzing real-world reliability data.The data observations
are given as:

Voltage level (zi) ni Breakdown time xi

26 3 5.79,1579.52,2323.7
28 5 68.85,426.07,110.29,108.29,1067.6
30 11 17.05,22.66,21.01,175.88,139.07,144.12,

20.46,43.40,194.90,47.30,7.74
32 15 0.40,82.85,9.88,89.29,215.10,2.75,0.79,

15.93,3.91,0.27,0.69,100.58,27.80,13.95,53.24
34 19 0.96,4.15,0.19,0.78,8.01,31.75,7.35,6.50,8.27,33.91,

32.52,3.16,4.85,2.78,4.67,1.31,12.06,36.71,72.89
36 15 1.97,0.59,2.58,1.69,2.71,25.50,0.35,0.99,

3.99,3.67,2.07,0.96,5.35,2.90,13.77
38 8 0.47,0.73,1.40,0.74,0.39,1.13,0.09,2.38

In case of φ (z) = z log-linear assumption: Using R statistical software (the BB package) we find the values of
the MLEs of AFT-QBHE distribution parameters :

λ̂ = 0.1641, β̂0 = 0.1854, β̂1 = 0.0306,

we choose r = 8 intervals and the estimated FIM can be expressed as :

I
(
V̂
)
=

(
5.1810 −35.8331 −994.9820

5.8830 163.3554
4570.9871

)
,

and then the NRR statistic : K2 = 28.7132. For the critical value : α = 0.01, we find K2 > χ2
0.01 (7) = 18.4753. 2-
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In case of φ (z) = log (z) power-rule assumption: We find the values of the MLEs of the AFT-QBHE distribution
parameters:

λ̂ = 1.4331, β̂0 = 20.7564, β̂1 = −4.64356,

we take r = 8 intervals and the estimated FIM can be:

I
(
V̂
)
=

(
0.41066 −0.6121 −2.0677
−0.6121 0.8772 2.9633
−2.0677 2.9633 10.0196

)
,

the NRR statistic is K2 = 9.8516. For the critical values : α = 0.01, α = 0.05 and α = 0.1, we find

K2 < χ2
0.01 (7) = 18.4753

K2 < χ2
0.05 (7) = 14.0671

K2 < χ2
0.1 (7) = 12.0170

respectively. So, we can assume that electric insulating fluid data of Lawless (2003) correspond appropriately to the
AFT-QBHE model. 3- In case of φ (z) = 1/z arrehnius model: We fit these data by the AFT-QBHE model. Using

R statistical software (the BB package) we find the values of the MLEs of the AFT-QBHE distribution parameters
:

λ̂ = 22.1641, β̂0 = 6.9938, β̂1 = 31.4706,

we take r = 8 intervals and the estimated FIM expressed as :

I
(
V̂
)
=

(
0.0018 −0.0338 −0.0011

0.7509 0.0265
0.00094

)
,

the NRR statistic is: K2 = 91.9240. For the critical value : α = 0.01, we find K2 > χ2
0.01 (7) = 18.4753.

7.3.2. Body fat data set The data of Neter et al. (1996) provides information on (n = 20) body fat, triceps skinfold
thickness, thigh circumference, and mid-arm circumference for twenty healthy females aged 20 to 34. The data are
:

zi1 (triceps skinfold measurement); zi2 (thigh circumference); xi(body-fat)
19.5, 24.7, 30.7; 43.1, 49.8, 51.9; 11.9, 22.8, 18.7

29.8, 19.1, 25.6; 54.3, 42.2, 53.9; 20.1, 12.9, 21.7

31.4, 27.9, 22.1; 58.5, 52.1, 49.9; 27.1, 25.4, 21.3

25.5, 31.1, 30.4; 53.5, 56.6, 56.7; 19.3, 25.4, 27.2

18.7, 19.7, 14.6, 29.5; 46.5, 44.2, 42.7, 54.4; 11.7, 17.8, 12.8, 23.9

27.7, 30.2, 22.7, 25.2; 55.3, 58.6, 48.2, 51.0; 22.6, 25.4, 14.8, 21.1

For φ (z) = z as a log-linear assumption: We fit these data by the AFT-QBHE model. Using R statistical software
(the BB package) we find the values of the MLEs of AFT-QBHE distribution parameters :

λ̂ =: 12.5501, β̂0 = −1.1, β̂1 = 0.0048, β̂2 = 0.0098.

we take r = 4 intervals and the estimated FIM expressed as

I
(
V̂
)
=

 2.6666× 10−7 −32.1072 −835.5879 −1667.993
−32.1072 402.9463 10486.6278 20933.314
−835.5879 10486.6277 281495.1660 553116.651
−1667.993 20933.31379 553116.651 1097012.518

 ,
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and then the NRR statistic : K2 = 6.1991. For different critical values : α = 1%, α = 5% and α = 10%, we find

K2 < χ2
0.01 (3) = 11.3448,K2 < χ2

0.05 (3) = 7.8147

K2 < χ2
0.1 (3) = 6.2513,

respectively.

7.3.3. Johnson’s data set Johnson (1996) utilized a comprehensive dataset to explore challenges associated with
multiple regression analysis. The dataset consisted of a response variable, which was the estimated percentage of
body fat, alongside 13 continuous covariates measured for n = 252 males . These covariates included demographic
and anthropometric measurements such as age, weight, height, and 10 distinct body circumference measurements.
The primary objective of the analysis was to predict the percentage of body fat using these covariates, demonstrating
potential issues that arise in multiple regression models when dealing with complex, multivariate data. The dataset
is widely accessible and can be found in the ’mfp’ package within the R statistical software, making it a valuable
resource for researchers and practitioners working on regression modeling and related statistical analyses. Below
is a detailed breakdown of the variables included in the dataset:

Variable Name Details Variable Name Details
z1 age Age (years) z8 thigh Circumference (cm)
z2 weight Weight (lb) z9 knee Circumference (cm)
z3 height Height (in) z10 ankle Circumference (cm)
z4 neck Circumference (cm) z11 bicepes Circumference (cm)
z5 chest Circumference (cm) z12 forearm Circumference (cm)
z6 ab Circumference (cm) z13 wrist Circumference (cm)
z7 hip Circumference (cm) x pcfat Body fat (%)

This rich dataset allows for an in-depth examination of how various physical and demographic factors influence
body fat percentage. By leveraging this data, Johnson (1996) highlighted the complexities and potential pitfalls
of multiple regression analysis, particularly when dealing with multicollinearity, nonlinearity, and interactions
among predictors. Such datasets remain instrumental in advancing methodologies for predictive modeling and
understanding the relationships between anthropometric measures and health outcomes. In our case, we used two
covariates density (Density determined from underwater weighing gm/cm3) and age (years). We consider the log
linear assumption (φ (z) = z) and we fit this data by the AFT-QBHE model. The values of the MLEs parameters:

λ̂ = 9.6, β̂0 = −1.50, β̂1 = 0.0011, β̂2 = 0.26,

We take r = 15 intervals and the estimated FIM I
(
V̂
)

expressed as

I
(
V̂
)
=


0.0103 −0.02163 −0.0228 −0.5937
−0.0216 0.2077 0.2197 5.6999
−0.0228 0.2197 0.2326 6.0276
−0.5937 5.6999 6.0276 162.1033

 ,

The NRR statistic test: K2 = 13.4835. For different critical values : α = 0.01, α = 0.05 and α = 0.1, we find

K2 < χ2
0.01 (14) = 29.1412,

K2 < χ2
0.05 (14) = 23.6847,

K2 < χ2
0.1 (14) = 21.06414,

respectively. This data can be fitted by our proposed AFT-QBHE model with the log-linear assumption (φ (z) = z) .
One can affirm that our proposed AFT-QBHE model can be an appropriate distribution of this data.
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8. Censored case

8.1. Maximum likelihood estimation

The likelihood function of the right-censored AFT-QBHE is

L (x;ϑ) =

n∏
i=1

f (xi;ϑ) =

n∏
i=1

λδi (xi;ϑ)S (xi;ϑ) , δi = 1{Ti≤Ci}

=

n∏
i=1

{
λe−βT z

[
θ
(
1 + λxi exp

(
−βT zi

))
+ 1
]

1 + λxi exp (−βT zi)

}δi

×
exp

(
−λxi exp

(
−βT zi

))
1 + λxi exp (−βT zi)

.

The log-likelihood function is

ℓ (x;ϑ) =

n∑
i=1

δi log
(
λ exp

(
−βT zi

))
+

n∑
i=1

δi log
[(
1 + λxi exp

(
−βT zi

))
+ 1
]

−
n∑

i=1

δi log
[
1 + λxi exp

(
−βT zi

)]
− λ

n∑
i=1

xi exp
(
−βT zi

)
−

n∑
i=1

log
[
1 + λxi exp

(
−βT zi

)]
=

∑
i∈F

log
(
λ exp

(
−βT zi

))
+
∑
i∈F

[(
1 + λxi exp

(
−βT zi

))
+ 1
]
− 2

∑
i∈F

log
[
1 + λxi exp

(
−βT zi

)]
−λ
∑
i∈F

xi exp
(
−βT zi

)
−
∑
i∈C

log
[
1 + λxi exp

(
−βT zi

)]
− λ

∑
i∈C

xi exp
(
−βT zi

)
,

where F and C denote the sets of uncensored and censored observations, respectively. The score functions for
the parameters λ, β0 and β1 are given by

∂ℓ (xi;λ, β)

∂λ
=

r

λ
+
∑
i∈F

xi exp
(
−βT zi

)
1 + (1 + λxi exp (−βT zi))

− 2
∑
i∈F

xi exp
(
−βT zi

)
1 + λxi exp (−βT zi)

−
∑
i∈F

xi exp
(
−βT zi

)
−
∑
i∈C

xi exp
(
−βT zi

)
1 + λxi exp (−βT zi)

−
∑
i∈C

xi exp
(
−βT zi

)
∂ℓ (xi;λ, β)

∂β0
= λ

∑
i∈F

xi exp
(
−βT zi

)
− λ

∑
i∈F

xi exp
(
−βT zi

)
1 + (1 + λxi exp (−βT zi))

+ 2λ
∑
i∈F

xi exp
(
−βT zi

)
1 + λxi exp (−βT zi)

+λ
∑
i∈C

xi exp
(
−βT zi

)
+ λ

∑
i∈C

xi exp
(
−βT zi

)
1 + λxi exp (−βT zi)

− 1,

∂ℓ (xi;λ, β)

∂β1
= λ

∑
i∈F

zixi exp
(
−βT zi

)
− λ

∑
i∈F

zixi exp
(
−βT zi

)
1 + (1 + λxi exp (−βT zi))

+ 2λ
∑
i∈F

zixi exp
(
−βT zi

)
1 + λxi exp (−βT zi)

+λ
∑
i∈C

zixi exp
(
−βT zi

)
1 + λxi exp (−βT zi)

+ λ
∑
i∈C

zixi exp
(
−βT zi

)
−
∑
i∈F

zi

where r is the number of failures.

8.1.1. Calculation of the matrix Ŵ The elements of the estimated matrix Ŵ defined by

Ŵl =

k∑
j=1

ĈljÂ
−1
j Ẑj , l = 1, 2, 3 ; j = 1, 2, ..., k.
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are obtained as follow

Ĉ1j =
1

n

k∑
i:Xi∈Ij

δi

{
1

λ
− U (xi, ϑ)

M (xi, ϑ) [1 +M (xi, ϑ)]

}
,

Ĉ2j =
1

n

k∑
i:Xi∈Ij

δi

{
λU (xi, ϑ)

M (xi, ϑ) [1 +M (xi, ϑ)]
− 1

}
,

Ĉ3j =
1

n

k∑
i:Xi∈Ij

δi

{
λU (xi, ϑ)

M (xi, ϑ) [1 +M (xi, ϑ)]
− zi

}
,

where,
U (x, ϑ) = xe−βT z ,M (xi, ϑ) = 1 + λxe−βT z , ϑ = (, λ, β0, β1) .

8.1.2. Information matrix Î The components of the information matrix Î
(
ϑ̂
)
=
(̂
ill′

)
3×3

are given as follows

î11 =
1

n

n∑
i=1

δi

{
1

λ
− U (xi, ϑ)

M (xi, ϑ) [1 +M (xi, ϑ)]

}2

,

î22 =
1

n

n∑
i=1

δi

{
λU (xi, ϑ)

M (xi, ϑ) [1 +M (xi, ϑ)]
− 1

}2

,

î33 =
1

n

n∑
i=1

δi

{
λU (xi, ϑ)

M (xi, ϑ) [1 +M (xi, ϑ)]
− zi

}2

,

î12 = − 1

n

n∑
i=1

δ

i

[
M (xi, ϑ)− λU (xi, ϑ) +M (xi, ϑ)

2
]2

λ [1 +M (xi, ϑ)]
2 ×M (xi, ϑ)

2

 ,

î13 = − 1

n

n∑
i=1

δ

i

zi

[
M (xi, ϑ)− λU (xi, ϑ) +M (xi, ϑ)

2
]2

λ [1 +M (xi, ϑ)]
2 ×M (xi, ϑ)

2

 ,

î23 =
1

n

n∑
i=1

δi


zi

[
M (xi, ϑ)− λU (xi, ϑ) +M (xi, ϑ)

2
]2

[1 +M (xi, ϑ)]
2 ×M (xi, ϑ)

2

 .

8.2. Simulation of the censored MLEs of the parameters for the AFT-QBHE distribution

In this section, we conduct a comprehensive simulation study to evaluate the performance of the maximum
likelihood estimators (MLEs) for the parameters of the Accelerated Failure Time model based on the quasi
Burr-Hatke exponential (AFT-QBHE) distribution. The simulation process involves generating synthetic datasets
under controlled conditions and analyzing the accuracy and precision of the MLEs for varying sample sizes. To
begin, we assume that the AFT-QBHE distribution is the underlying model for the data generation process. The
simulation is repeated N = 10,000 times to ensure robustness and reliability of the results. The true parameter
values used in the simulation are set as λ = 0.58 , representing the scale parameter of the distribution, β0 =
0.53 , corresponding to the intercept term in the regression model, β1 = 0.38 , representing the coefficient of
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the explanatory variable. For each replication, we generate synthetic datasets with six different sample sizes:
n = 15, n = 30, n = 50, n = 150, n = 300, and n = 500. These sample sizes span a wide range, from small to large
datasets, allowing us to examine how the performance of the estimators evolves as the sample size increases. The
primary objective of the simulation study is to compute the mean simulated MLEs for the parameters λ, β0, and β1

, along with their corresponding MSEs. The mean simulated MLEs provide insights into the bias of the estimators,
while the MSEs quantify both the bias and variability of the estimates, offering a comprehensive measure of their
accuracy.

Table 5: The censored MLEs
(
λ̂, β̂0, β̂1

)
of

AFT-QBHE’s parameters and their mean squared errors.
N = 10, 000 n = 15 n = 30 n = 50 n = 150 n = 300 n = 500

λ̂ 0.6097 0.5987 0.5968 0.5845 0.5823 0.5821
SME 2.5016× 10−3 1.7337× 10−3 1.1190× 10−3 4.4723× 10−4 2.6714× 10−4 1.2759× 10−4

β̂0 0.5497 0.5420 0.5400 0.5371 0.5352 0.5321
SME 2.0320× 10−3 1.5970× 10−3 1.3457× 10−3 9.3368× 10−4 8.2201× 10−4 2.2105× 10−4

β̂1 0.3897 0.3887 0.3867 0.3822 0.3801 0.3797
SME 1.8854× 10−3 9.6180× 10−4 5.3510× 10−4 3.3594× 10−4 2.9358× 10−4 2.4539× 10−4

These findings underscore the reliability of the MLEs for the AFT-QBHE model across different sample sizes
and parameter settings. The simulation study not only validates the theoretical properties of the estimators but
also provides practical guidance on their performance in real-world applications. The results demonstrate that
the proposed AFT-QBHE model is well-suited for analyzing survival data, particularly when the sample size is
sufficiently large to ensure accurate and stable parameter estimates.

Figure 3. The
√
n-convergence of the censored MLEs λ̂, β̂0 and β̂1 of the QBHE distribution.
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8.3. Simulated distribution of K2
n statistic for the right-censored AFT-QBHE distribution

We compute 5000 simulations of samples data (sample sizes : n = 15, n = 30, n = 50, n = 150, n = 300
and n = 500) from AFT-QBHE distribution, after calculating the values of criteria statistics K2

n, we count the
number of rejection’s cases of the null hypothesis H0, when K2

n > χ2
α (k) , with different significance level α

(α = 1%, 5%, 1%). The results of simulated levels of K2
n against their theoretical values are shown in the following

Table 6.

Table 6: Empirical levels K2
n and corresponding theoretical levels.

N = 5000 n = 15 n = 30 n = 50 n = 150 n = 300 n = 500
α = 1% 0.016 0.015 0.015 0.013 0.010 0.010
α = 5% 0.054 0.053 0.053 0.052 0.050
α = 10% 0.16 0.14 0.14 0.13 0.099 0.109

As can be seen, the calculated empirical level K2
n values are extremely similar to the equivalent theoretical level

value. Consequently, we draw the conclusion that the suggested test is excellent for the AFT-QBHE distribution.
in Figure 4 we plot, the histograms of simulated K2

n, compared with the chi-square distribution with k degrees
of freedom Figure 4 shows the statistical distribution of K2

n for different parameters values estimated above and
various r grouping intervals is chi-square with k degrees of freedom. As a result, the NRR K2

n statistic’s limit
distribution is chi-square.

8.4. Applications to real censored data

We take into account the following real data sets and confirm the presumption that their distribution is consistent
with the AFT-QBHE model in order to demonstrate the applicability of the proposed modified chi-square GoF test.

8.4.1. Censored motor data These reliability datasets, accessible in the survival package of R software, record
the time to failure (or breakdown) of motor insulation systems under varying temperature conditions. The main
goal of this data is to examine how temperature affects the lifespan and durability of motor insulation, which is
essential for understanding the thermal degradation mechanisms that contribute to system failures. Such datasets
are commonly utilized in reliability engineering and survival analysis to model failure times, evaluate risks, and
enhance material design for better performance under thermal stress. Below, Table 6 provides a summary of the
motor dataset.

Table 6: The breakdown of motor data set.
z1 (temperature) xi (time of Breakdown) δi (censor)

150 8046, 8064, 8064, 8064, 8064, 8046, 8064, 8064, 8064, 8064 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
170 1764, 2772, 3444, 3542, 3780, 4860, 5196, 5448, 5448, 5448 1, 1, 1, 1, 1, 1, 1, 0, 0, 0
190 408, 408, 1344, 1344, 1440, 1680, 1680, 1680, 1680, 1680 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
220 408, 408, 504, 504, 504, 528, 528, 528, 528, 528 1, 1, 1, 1, 1, 0, 0, 0, 0, 0.

In case of φ (z) = z log-linear assumption: Using R statistical software (the BB package) we find the values of the
censored MLEs of AFT-QBHE distribution parameters :

λ̂ = 0.25491, β̂0 = 2.61542, β̂1 = 4.91572,

we choose r = 15 intervals and the estimated FIM can be expressed as :

I
(
V̂
)
=

 0.002154 0.95782 −2.31574
0.95354 −1.300024

0.632591

 ,

and then the modified NRR statistic : K2 = 20.930154. For the critical value : α = 0.01, we find
K2 > χ2

0.01 (14) = 29.1412.
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9. Conclusions and future points

In this study, we introduced a novel exponential accelerated failure time (AFT) model based on the quasi Burr-
Hatke exponential (QBHE) distribution. The model’s fundamental properties were explored, and its validity was
assessed using various estimation techniques and GoF tests. Simulation studies demonstrated that maximum
likelihood estimators performed well across different sample sizes, with bias and RMSE decreasing as sample
size increased. The modified chi-square test based on Nikulin-Rao-Robson statistics proved effective for validating
the model in both complete and censored data scenarios. Applications to real-world datasets, including electric
insulating fluid, body fat measurements, and motor insulation data, confirmed the model’s practical utility. Results
showed that our proposed AFT-QBHE model provided an appropriate fit for these diverse datasets. Furthermore,
simulation studies indicated that the NRR statistic’s limiting distribution followed a chi-square distribution,
supporting the robustness of our approach. The model’s performance was consistent across various parameter
values and grouping intervals, demonstrating its flexibility and reliability. Comparisons between empirical
and theoretical levels of the test statistic showed close agreement, confirming the suitability of the proposed
methodology. This research contributes to the field of survival analysis by offering a new parametric AFT model
that can be applied to both complete and right-censored data. The QBHE-AFT model shows particular promise in
reliability studies and lifetime data analysis across multiple disciplines. Future research could explore extensions
of this model to accommodate more complex censoring mechanisms or incorporate additional covariates. The
successful application of BB algorithm for parameter estimation suggests potential for further optimization in
computational methods. Overall, this study provides a comprehensive framework for analyzing survival data using
the proposed QBHE-AFT model, contributing valuable tools for researchers in reliability engineering, medical
research, and other fields dealing with time-to-event data.

While this study presents a novel QBHE-AFT model with valuable applications, it has certain limitations. The
model’s performance is evaluated primarily through simulation studies and a limited number of real-world datasets,
which may not fully represent the complexity of various practical scenarios. The research focuses on right-censored
data and does not extensively explore other types of censoring mechanisms, potentially limiting its applicability in
more complex survival analysis contexts. Additionally, the study assumes specific parametric forms for the baseline
distribution, which might not always be suitable for all types of lifetime data. Finally, while multiple estimation
methods are considered, the computational efficiency and robustness of these methods under very large datasets or
high-dimensional covariates are not thoroughly investigated.

Based on the cited literature, the QBHE distribution holds significant promise for future statistical and applied
modeling. Inspired by Ahmed et al. (2022), who developed a novel G-family for sampling plans, QBHE could be
tailored for truncated or censored quality control schemes. In line with the flexible models in Alizadeh et al. (2024),
the QBHE can be utilized in threshold-based risk analysis under extreme environmental stress. Its structure could
be extended for actuarial applications, following methodologies from Alizadeh et al. (2025), Alizadeh et al. (2023),
and Hamedani et al. (2023), to model skewed and heavy-tailed claims or reinsurance data. Building upon entropy
and order-statistic-based analyses in Elbatal et al. (2024) and Hashempour et al. (2024a), QBHE can contribute
to entropy maximization and P-mean evaluations in revenue and loss modeling. Moreover, incorporating copula-
based dependence structures as shown in Hamed et al. (2022) and Khedr et al. (2023), the QBHE can be integrated
into multivariate risk frameworks. The Bayesian and non-Bayesian frameworks by Ibrahim et al. (2023), as well
as discrete modeling approaches in Yousof et al. (2024a), indicate the potential of QBHE extensions for handling
overdispersed, skewed, or zero-inflated discrete data. Its use in extreme value modeling, particularly in finance and
insurance, is suggested by models in Yousof et al. (2023b), Salem et al. (2023), and Hashempour et al. (2024b). For
survival and frailty analysis under heterogeneity, as examined by Loubna et al. (2024), QBHE can offer alternative
formulations with improved tail behavior. Given the success of existing models in Value-at-Risk (VaR) and stress
testing—see Korkmaz et al. (2018), Aljadani et al. (2024), and Yousof et al. (2024b), the QBHE could serve as a
novel base for estimating risk measures under financial extremes. Additionally, following Das et al. (2025), Ibrahim
et al. (2025), and Yousof et al. (2023b), the distribution may support economic peak modeling, automobile claims
forecasting, and heavy-tailed value estimation in real estate and transportation sectors. Furthermore, applications
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involving bimodal and symmetric insurance data, as developed in Yousof et al. (2023c, 2023d and 2023e), and
precipitation risk modeling from Hashempour et al. (2024b), affirm QBHE’s relevance across climate and disaster
risk domains. Finally, the statistical validation strategies used across studies such as Teghri et al. (2024), Rasekhi et
al. (2022), and Shrahili et al. (2021) pave the way for QBHE to undergo rigorous goodness-of-fit, simulation-based
assessment, and risk-based policy design. For more related works in risk analysis and other related works for future
points see Alizadeh et al. (2025), Das et al. (2025), Ibrahim et al. (2025a,b,c,d), Ramaki et al. (2025), Yousof et al.
(2025), Taghipour et al. (2025), AlKhayyat et al. (2025) and Abonongoet al. (2025).
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right censored distributional validation with applications in medicine and reliability. Statistics in Transition New Series, 24(4), 1-18.

73. Yousof, H. M., Ali, M. M., Goual, H. and Ibrahim. M. (2021b). A new reciprocal Rayleigh extension: properties, copulas, different
methods of estimation and modified right censored test for validation, Statistics in Transition New Series, 23(3), 1-23.

74. Yousof, H. M., Ali, M. M., Hamedani, G. G., Aidi, K. & Ibrahim, M. (2022). A new lifetime distribution with properties,
characterizations, validation testing, different estimation methods. Statistics, Optimization & Information Computing, 10(2), 519-
547.

75. Yousof, H. M., Aljadani, A., Mansour, M. M., & Abd Elrazik, E. M. (2024). A New Pareto Model: Risk Application,
Reliability MOOP and PORT Value-at-Risk Analysis. Pakistan Journal of Statistics and Operation Research, 20(3), 383-407.
https://doi.org/10.18187/pjsor.v20i3.4151

76. Yousof, H. M., Altun, E., Ramires, T. G., Alizadeh, M., & Rasekhi, M. (2018). A new family of distributions with properties,
regression models and applications. Journal of Statistics and Management Systems, 21(1), 163–188.

Stat., Optim. Inf. Comput. Vol. 14, August 2025



MOHAMED IBRAHIM, H. GOUAL, KHAOULA K. M, A. H. AL-NEFAIE, A. M. ABOALKHAIR, H. M YOUSOF 583

77. Yousof, H. M., Ansari, S. I., Tashkandy, Y., Emam, W., Ali, M. M., Ibrahim, M., Alkhayyat, S. L. (2023b). Risk Analysis
and Estimation of a Bimodal Heavy-Tailed Burr XII Model in Insurance Data: Exploring Multiple Methods and Applications.
Mathematics. 2023; 11(9):2179. https://doi.org/10.3390/math11092179

78. Yousof, H. M., Goual, H., Emam, W., Tashkandy, Y., Alizadeh, M., Ali, M. M., & Ibrahim, M. (2023c). An Alternative Model for
Describing the Reliability Data: Applications, Assessment, and Goodness-of-Fit Validation Testing. Mathematics, 11(6), 1308.

79. Yousof, H. M., Goual, H., Hamida, T., Hiba, A., Hamedani, G.G. and Ibrahim, M. (2022a). Censored and Uncensored Nikulin-Rao-
Robson Distributional Validation: Characterizations, Classical and Bayesian estimation with Applications.

80. Yousof, H. M., Goual, H., Khaoula, M. K., Hamedani, G. G., Al-Aefaie, A. H., Ibrahim, M., ... & Salem, M. (2023). A novel
accelerated failure time model: Characterizations, validation testing, different estimation methods and applications in engineering
and medicine. Pakistan Journal of Statistics and Operation Research, 19(4), 691-717.

81. Yousof, H. M., Khaoula, M. K., Goual, H., Hamedani, G.G. and Ibrahim, M. (2022b). Accelerated failure time estimation for a novel
exponential model with characterizations, validations and different methods of estimation.

82. Yousof, H. M., Saber, M. M., Al-Nefaie, A. H., Butt, N. S., Ibrahim, M. and Alkhayyat, S. L. (2024). A discrete claims-model for the
inflated and over-dispersed automobile claims frequencies data: Applications and actuarial risk analysis. Pakistan Journal of Statistics
and Operation Research, 261-284.

83. Yousof, H.M.; Emam, W.; Tashkandy, Y.; Ali, M.M.; Minkah, R.; Ibrahim, M. (2023d). A Novel Model for Quantitative
Risk Assessment under Claim-Size Data with Bimodal and Symmetric Data Modeling. Mathematics 2023, 11, 1284.
https://doi.org/10.3390/math11061284

84. Yousof, H.M.; Tashkandy, Y.; Emam, W.; Ali, M.M.; Ibrahim, M. (2023e). A New Reciprocal Weibull Extension for Modeling
Extreme Values with Risk Analysis under Insurance Data. Mathematics 2023, 11, 966. https://doi.org/10.3390/ math11040966

Stat., Optim. Inf. Comput. Vol. 14, August 2025


	1 Introduction
	2 The quasi Burr Hatke exponetial model
	2.1 Formluation
	2.2 Properties

	3 Different estimation methods
	3.1 Maximum likelihood (ML) method
	3.2 Cramér-von-Mises method
	3.3 Method of L-moments
	3.4 Anderson Darling method
	3.5 Right Tail-Anderson Darling method
	3.6 Left Tail-Anderson Darling method

	4 Simulation studies for comparing estimation methods
	5 The QBHE-AFT model
	6 The MLE for the QBHE-AFT model
	6.1 The MLE derivations
	6.2 Assessing the QBHE-AFT model via a simulation study

	7 Validation of the QBHE-AFT model
	7.1 The NRR statistic test for the QBHE-AFT model
	7.2 Simulation studies under the NRR statistic K2
	7.3 Applications to real data
	7.3.1 Electric insulating fluid data
	7.3.2 Body fat data set
	7.3.3 Johnson's data set


	8 Censored case
	8.1 Maximum likelihood estimation
	8.1.1 Calculation of the matrix W"0362W
	8.1.2 Information matrix I"0362I

	8.2 Simulation of the censored MLEs of the parameters for the AFT-QBHE distribution
	8.3 Simulated distribution of Kn2 statistic for the right-censored AFT-QBHE distribution
	8.4 Applications to real censored data
	8.4.1 Censored motor data


	9 Conclusions and future points

