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Abstract The proposed research technique implements Inverse Exponential distribution as its intensity function for
modelling and estimating NHPP occurrence rates. The main research target evaluates parameter identification capabilities
between traditional methods and metaheuristic algorithm and deep learning approaches in this newly created stochastic
process. This research analyses parameter estimation through a combination of Maximum Likelihood Estimation (MLE) with
Ordinary Least Squares (OLS) classical methods and Firefly Algorithm (FFA) and Grey Wolf Optimization (GWO) as well as
Long Short-Term Memory (LSTM) networks and Artificial Neural Networks (ANN) as deep learning models. Performance
evaluation of parameter identification methods depends on Root Mean Squared Error (RMSE) calculations in the simulation
experiment. The researcher tested the model using failure time data that was extracted from the Mosul Dam power station
during the time period from January 2017 through January 2020. Research data shows Artificial Neural Networks with Long
Short-Term Memory networks produce superior outcomes than traditional techniques because ANN achieved the lowest Root
Mean Squared Error across all sample numbers. The proposed research uses hybrid intelligent methods to improve stochastic
process parameter estimation through examples that can benefit reliability engineering alongside temporal modelling of data.
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1. Introduction

A non-homogeneous Poisson process (NHPP) functions as a prevalent stochastic process that allows modelling
temporal event occurrences when their rates have time-dependent characteristics. The NHPP shows advantages
over classical (homogeneous) Poisson process because it handles changing probabilities through time while
maintaining the dependency on time [1, 2]. The intensity function λ(t) stands as the identifying characteristic of
NHPP because it determines event occurrence probabilities at different time points and incorporates exponential,
Weibull, log-normal among other parametric and non-parametric distribution forms [3, 4].

The range of deployment for NHPP extends over various academic fields. Reliability engineering uses NHPP
models as a standard approach for representing system failure rates that develop because of system aging together
with wearing effects and environmental exposure [5]. The finance sector implements NHPP models to quantify
sporadic market behaviours as well as changes in transaction frequency and fast trading speeds [6]. The Network
Hourly Poisson Process serves telecommunications by modelling how message arrival frequencies and calls or
data packets function in changing network environments [7, 8]. The NHPP provides excellent capabilities to model
non-stationary systems with a memoryless structure because it adapts to time and depends only on present states
without considering historical conditions [9].
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2 PARAMETER ESTIMATION OF NHPP USING CLASSICAL, METAHEURISTIC, AND DEEP LEARNING

NHPP implementation challenges lead to a continuous parameter estimation problem because its intensity
functions and distribution types require difficult analytical analysis. MLE and OLS face execution challenges
during estimation on non-linear systems and limited sample size conditions according to [10] and [11]. The
traditional methods have found their equal match through the combination of Firefly Algorithm (FFA) and Grey
Wolf Optimization (GWO) metaheuristic optimization algorithms and Artificial Neural Networks (ANN) and
Long Short-Term Memory (LSTM) networks as machine learning techniques. Data-driven systems perform non-
convex terrain searching and uncover complex hidden patterns that standard methods cannot analyse through these
approaches [12, 13, 14, 15].

The paper establishes a fresh NHPP framework which defines its time-varying occurrence rate through Inverse
Exponential distribution. The research evaluates parameter estimation for this process through MLE and OLS
alongside FFA, GWO, ANN and LSTM as intelligent computational approaches. Performance assessments of
these methods occurred through simulation experiments and corroborated with real failure time data at the Mosul
Dam power station in Iraq. The research compares different methods to determine the best approach for measuring
the intensity function of the Inverse Exponential NHPP that offers both precision and computational effectiveness
for reliability modelling purposes [16, 17, 18, 19].

The paper presents an entire system to calculate parameters from the newly developed Inverse Exponential
Non-Homogeneous Poisson Process. The initial segment of the paper explains three fundamental points about
NHPP including its suitability in unpredictable time-dependent stochastic modelling and the failure of standard
estimation techniques. Definitions regarding Inverse Exponential Processes (IEPs) appear next to the initial
segment for presenting their probability framework and interarrival time distributions and transformation strategies.
The research initiates methodology development with basic estimation methods starting with MLE and OLS before
continuing to advanced methodologies that implement FFA alongside GWO and ANN and LSTM networks. Each
method receives both algorithmic and mathematical regularizing components [20, 21, 22]. Different parameter
settings and sample dimension ranges serve as bases for RMSE-based accuracy evaluation across an exhaustive
simulation assessment. The authors verify the findings through the analysis of failure time information collected
from Mosul Dam power station units spanning the period from 2017 to 2020 to obtain comparative estimation
outcomes. The proposed IEP model exhibits time-variance according to the results of the statistical homogeneity
test presented in this paper. Both ANN and LSTM achieve superior outcomes than traditional methods during the
analysis of non-linear complex information structures as confirmed by the discussion section leading the way for
future research about stochastic processes and reliability systems modelling [23, 24].

2. Inverse Exponential Process (IEP)

The Inverse Exponential (IE) distribution is a versatile and widely applicable continuous probability density
function that has gained significant attention in various reliability studies and life testing applications. It is
particularly useful for modelling the time rate of occurrence for nonhomogeneous Poisson processes, resulting in a
new process called the Inverse Exponential process. The IE distribution has a unimodal probability density function
and belongs to the exponential family, which makes it useful for modelling and predicting failure rates of complex
systems. Its application can lead to better decision-making in industries such as manufacturing, engineering, and
healthcare. The probability distribution function for the IED is described by the following [9]:
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The mean of y is given by:
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The cumulative distribution function is given by:

Stat., Optim. Inf. Comput. Vol. x, Month 2025



Y. A. ORAIBI 3

F (y) = 1− e−λy (3)

The Inverse Exponential process is a nonhomogeneous Poisson process with the time rate of occurrence defined
by:
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, t ≥ 0; c, b > 0 (4)

where c represent scale parameter and b shape parameter.
The process parameter, m(t), which represents the mean rate, is the cumulative function of the time rate of

occurrence and is given by [10]:

m(t) =

∫ t

0

λ(u)du, 0 < t < ∞ (5)

where λ(u) represents the time rate of occurrence or intensity function; [10]:
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After a change of variable, the expression for m(t0) becomes:

m(t0) = 1− e
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)c

, 0 ≤ t ≤ t0 (7)

where t0 represent the time of occurrence of the event.
The inter-arrive process for the Inverse Exponential process is distribution as:

f(t) = λ(t)e−
∫ t0
0 λ(u)du (8)

which simplifies to:
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3. Performance of estimation accuracy

When different estimates for a parameter are obtained, the comparison of their accuracy is an essential process. In
order to measure the accuracy of these estimates, various techniques are existing in literature; the Root Mean
Squared Error (RMSE) is one of the most popular tools for measuring the accuracy. RMSE determines the
differences between the estimated and the actual parameter values; it is defined as the square root of the average
squared difference between the estimated and actual parameter values [11].

Mathematically, the RMSE is defined as the follows:

RMSE =

√∑Q
i=1(γ̂i − γ)2

Q
(10)

θ̂i: reflects the parameter’s predicted value for iteration i.
θ: reflects the actual value of the parameter.
Q: is the total number of iterations.
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4. Artificial Neural Network (ANN)

The Computational Artificial Neural Network adopts analogies from biological neuron structures to build systems
that learn as a central nervous system does while demonstrating adaptive capabilities through neural arrangements.
Experience-based learning through the human brain demonstrates unmatched abilities in addressing complex
nonlinear issues which exceed traditional computational methods because of improved flexibility and situational
awareness. The biological foundation of ANNs allows them to use interconnected artificial neurons for performing
efficient adaptive information processing because of their inspired neural network design. Simplified models of
biological neurons serve as artificial neurons in computation because they maintain essential operations needed for
accurate performance modelling. Multiple inputs are processed by these neurons after applying weight factors and
activation functions that add non-linearity before producing single output values. A basic artificial neuron includes
three essential elements including input-weight connections which define link power and an activation mechanism
to process input data into output signals as well as a bias value that affects output without regard for inputs. Despite
their basic framework artificial neurons maintain all essential learning capabilities needed to detect sophisticated
patterns in data-intensive systems [20].

1. The connecting points, or synapses, each have a unique weight and strength. More precisely, xj at input of
conjugation j connected to a neuron, is increased by the colligation weight wj .

2. Associate degree activation operates for limiting the amplitude of the output of a neuron.
3. The model of a neuron. Additionally includes associate degree external bias, denoted by b, which has the

impact of skyrocketing or lowering internet input of the activation:

y = φ

(
N∑
j=1

wjxj + b

)
(11)

where x1, . . . , xn are the input signals, w1, . . . , wn stands for the neuron’s synaptic weights, and b for the
bias, φ(.) is the activation function and y are the output signal of the neuron. The ability of ANNs to identify
complex relationships in static datasets fails to work properly with time-dependent structures since sequential
modelling techniques become necessary. The research moves toward Long Short-Term Memory (LSTM) networks
because these models offer deep learning capabilities to temporal domains for analysing cumulative software failure
processes.

5. Long Short-Term Memory Networks

This section provides a concise overview of Long Short-Term Memory (LSTM) networks, accompanied by their
underlying mathematical formulations. LSTM represents an advanced variant of Recurrent Neural Networks
(RNNs) specifically designed to address the limitations of traditional RNN architectures, particularly their inability
to retain information over extended sequences due to issues such as vanishing and exploding gradients [24]. In
this study, the standard architecture is referred to as ”Vanilla LSTM” (VLSTM), which is widely recognized for
its capacity to model both short-term fluctuations and long-term dependencies in sequential data. The fundamental
computational units within an LSTM network are known as LSTM cells, each of which operates through a dynamic
gating mechanism that controls the flow of information across time steps. As illustrated in Figure 1, an LSTM cell
receives two primary inputs at each time step: the current input vector Y (t) together with previous hidden state
h(t). The LSTM design depends on the cell state D(t) which receives control from three basic gates: the input gate
L(t) and the forget gate g(t) as well as the output gate m(t). These gates collectively govern the retention, update,
and exposure of information within the network, enabling LSTMs to effectively learn complex temporal patterns
while maintaining stability across lengthy input sequences.

The three gates in LSTM cells function as separate layers that determine information entry and exit in the
memory cell. The forget gate within LSTM determines which information must be removed from the cell state so
outdated memories can be eliminated. The input gate enables the selection of data that can enter the cell state to
update memory representations. Information regarding the hidden state gets determined through the output gate
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Figure 1. LSTM generic unit

that functions as both an output of the LSTM unit and an intermediary for future time steps. The propagation of
hidden state h(t) alongside cell state C(t) moves from time step t to the following timestep t+ 1. At each time
step t the hidden state function h(t) provides short-term memory by tracking sequence-dependent information
while the cell state variable C(t) works as long-term memory. LSTMs function effectively because of their gating
mechanism which enables them to effectively model sequential dependencies for time-series analysis and natural
language processing as well as sequential decision-making tasks. The computational dynamics of Vanilla LSTM
units are governed by the following equations:

g(t) = sigm(WgY (t) + Ugh(t− 1) + bg) (12)

L(t) = sigm(WLY (t) + ULh(t− 1) + bL) (13)

X(t) = tanh(WXY (t− 1) + UXh(t− 1) + bX) (14)

X(t) = g(t)X(t− 1) + L(t)X(t) (15)

o(t) = sigm(WoY (t) + Uoh(t− 1) + bo) (16)

h(t) = o(t) tanh(X(t)) (17)

Equations (12) through (17) feature the weight matrices W as well as the weight matrices U and the b bias vector.
The proposed model utilizes two active functions which include sigmoid (σ) and hyperbolic tangent (tanh). The
defined activation functions appear as follows:

sigm(y) =
1

1 + ey
, sigm(y) ∈ (0, 1) (18)

tanh(y) =
ey − e−y

ey + e−y
, tanh(y) ∈ (−1, 1) (19)
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Building on our discussion of ANN applications in parameter assessment, the following section introduces the
Maximum Likelihood Estimation (MLE) method. This method leverages the ANN’s learning ability to refine
parameter estimates and improve the accuracy of software reliability assessments.

6. Parameters Estimation

The section presents the estimative approaches for parameters of the proposed Non-Homogeneous Poisson Process
(NHPP) whose intensity function uses an Inverse Exponential distribution. Parameter estimation becomes a major
challenge because the process shows non-homogeneity while using the nonlinear distribution. The challenges have
been resolved through multiple classical together with intelligent techniques which provide diverse advantages
according to data specifications combined with computational capabilities and model complexity [12].

6.1. Classical Estimation Techniques

The fundamental classical method remains Maximum Likelihood Estimation (MLE) among all classical
techniques. The likelihood function of measured data directs the analyst to select parameter values which maximize
its value. MLE is recognized because it delivers asymptotic efficiency alongside consistency given regularity
conditions. Analysis or numerical approaches can be applied to maximize the constructed likelihood function which
derives directly from the probability density function in an Inverse Exponential Process (IEP). OLS represents a
classical approach to statistical analysis which minimizes the squared differences between predicted outcomes
and actual measurements. The authors use logarithmic transformation on the cumulative intensity function before
expressing it in linear form. This transformation facilitates the use of linear regression techniques for parameter
estimation OLS.

6.2. Intelligent Estimation Techniques

The paper reviews contemporary algorithms derived from metaheuristic and machine learning methods for
improving parameter estimation in Industrial Ecology Performance frameworks. FFA along with GWO showcase
their ability to discover global optimal solutions of non-convex search regions through their nature-based
metaheuristic search behaviour. FFA mimics firefly luminescent signals to attract additional fireflies toward optimal
solutions while GWO uses wolf species hunting procedures to establish parameter configuration rankings. The
techniques of Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM) networks use deep
learning methods between them for employment purposes. Natural neural networks incorporate two essential
properties which involve constructing estimates of complex non-linear mathematical functions through layered
neural processing systems. ANN models acquire the mapping procedure for time-parameter estimation through
training data processing from real or simulated data sources. The combination of time series and sequential data
finds optimal results with LSTM networks that function as specialized recurrent neural networks (RNNs) because
these networks handle both long-term and short-term dependencies. The gating processes in LSTM models enable
precise modelling of changing failure rates in NHPP systems by managing data transmission over time steps.

6.3. Comparative Rationale

Each evaluation method provides exclusive benefits to estimators. When dealing with moderately sized datasets
along with manageable model types MLE and OLS produce efficient analytical results. These methods deliver
their best results when models remain linear along with cases that present simple analytical expressions. The ANN
and LSTM intelligent methods perform exceptionally well at extracting intricate data relationships so they provide
strong durability together with flexibility under nonstandard situations. FFA and GWO operate as metaheuristic
algorithms because they regulate exploratory behaviour from exploitative behaviour which allows them to handle
highly non-linear models without relying on gradient information. The ensemble of described methods delivers
a complete solution to estimate parameters of Inverse Exponential NHPP models which benefits both academic
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research and practical applications. A simulation approach and real-world data assessment follows to measure the
accuracy together with computational speed and feasible implementation of the examined methods.

6.3.1. Parameter Estimation for the IEP using MLE method The MLE is a widely accepted statistical method for
parameter estimation in stochastic models. One of the reasons for its popularity steadiness is one of its finest
qualities, unbiasedness, and efficiency. MLE aims to find the parameter values that maximize the likelihood
function of the observed data.

In the case of a Non-Homogeneous Poisson Process (NHPP) with the time rate of occurrences defined by formula
(4), the joint probability function of the occurrence times (t1, t2, . . . , tn) can be defined by the following equation
[13]:

f(t1, t2, . . . , tn) =

n∏
i=1

λ(ti)e
−m(t0) (20)

From the (9) equation, we substitute it into the (20) to get the joint probability function:
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The Likelihood function for the formula (21) for the period (0, t].
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The log-likelihood function is expressed as follows:

lnL = n ln(cb)− 2
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Hence, deriving equation (23) with respect to parameter c, we get:
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The following formula is used to obtain the derivative of the logarithm of the probability function with respect
to the parameter b: ∂LLF

∂b = 0. So, we get:

∂LLF

∂b
=
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b
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(25)

Where t0 represent the time, the last event occurred. Maximum Likelihood Estimation (MLE) provides the
method to find the unknown model parameters c and b in the system. The formulation of the system depends on
setting each first-order partial derivative of the log-likelihood function at zero when derived with respect to c and b.
The solution of these simultaneous score functions produces maximum likelihood estimators that correspond to the
parameters c and b under the names ĉ and b̂. Due to their status as nonlinear equations that lack analytic solutions,
we use numerical optimization methods to solve for the roots. Our analysis uses the Newton-Raphson algorithm to
gain successive iterations which lead to values that optimize the log-likelihood function (defined in Equation (23))
as our final estimation. The optimization process produces accurate and efficient parameter estimations of the MLE
framework. The observed information matrix has to be calculated to build confidence intervals and use them to test
hypotheses about the parameters: b and c. This matrix allows the estimation of the standard errors to the maximum
likelihood estimators. Considering the approximated values of b and c, the respective observed information matrix
will be the following one:

Stat., Optim. Inf. Comput. Vol. x, Month 2025



8 PARAMETER ESTIMATION OF NHPP USING CLASSICAL, METAHEURISTIC, AND DEEP LEARNING

D =

[
D11 D12

D21 D22

]
(26)

Where:
D11 = ∂2l

∂α2 , D12 = ∂2l
∂α∂β ,

D21 = ∂2l
∂β∂α , D22 = ∂2l

∂β2 .

Let the parameter space be denoted by A = (b, c), and let Â = (̂b, ĉ) represent the corresponding maximum
likelihood estimators (MLEs) of b and c, respectively. In here D(A) represents the Fisher information matrix.
Using the Newton-Raphson algorithm to maximize the log-likelihood function, observed information matrix is
calculated. Therefore, the variance-covariance matrix of the maximum likelihood estimators is found by the inverse
of this observed information matrix.

[D(A)]−1 =

[
Var(̂b) Cov(̂b, ĉ)

Cov(ĉ, b̂) Var(ĉ)

]
(27)

And (A, Â) → N(0, [D(A)]−1). Therefore, approximate 100(1− α)% confidence intervals for the parameters b
and c can be obtained as:

b̂± Z b
2

√
Var(̂b) and ĉ± Z b

2

√
Var(ĉ) (28)

Where Z b
2

is the critical value from the standard normal distribution. Alternative approaches, such as bootstrap
confidence intervals or Bayesian credible intervals, may also be considered in future work to enhance robustness.

6.3.2. Parameters Estimation for the IEP using the OLS method The OLS is a classical technique that is used to
estimate the unknown parameters in a model. This method depends on minimizing the sum of squared residuals
between the observed values and predicted values from the model.

In this study, the natural logarithm of the accumulating time rate represented by the power law function of a
process Inverse Exponential in formula no. (7), we get:

ln[m(ti)] = ln

(
1− e

(
b
ti

)c
)

(29)

It is observed that this equation represents a straight line with respect to the cumulative time of the stochastic
process. Therefore, we can use linear regression to find the best-fit line for the data. We represent this line as [14]:

yi = b0 + b1xi + ei; i = 1, 2, ..., n (30)

6.3.3. Parameter Estimation for the IEP using GWO Algorithm This section outlines the use of the Grey Wolf
Optimization (GWO) algorithm to estimate the parameter α of the Inverse Exponential process, which characterizes
the time rate of occurrences. The following algorithm, Algorithm 1, is proposed for this purpose; it is described as
follows [15]:
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Algorithm 1 GWO for Parameter Estimation

Step 1: Start the population and the estimation for the Inverse Exponential process parameter α. Use formula
(4).
Step 2: Generate the initial population using X = L+ rand ∗ (u− l), where L, u, and l denote the lower bound,
upper bound, and search space limits, respectively.
Step 3: The fitness function is assessed using the formula represented by the Root Mean Squared Error (RMSE),
given by (10).
Step 4: Identify the best (Xα), 2nd best (Xβ) and 3rd best (Xδ) positions.
Step 5: Set iteration=1
Compute a = (1− iteration

maxiter ), where maxiter is the maximum number of iterations.
Compute X1, X2, X3 Using:
X1 = Xα − a ∗ (Xβ −Xδ)
X2 = Xβ − a ∗ (Xβ −Xδ)
X3 = Xδ + a ∗ (rand(u− l)− 0.5)
Compute Xnew = X1+X2+X3

3 . Check if Xnew is within the bounds, and if yes, perform greedy selection by
comparing f(Xnew) with the current best solution. If f(Xnew) is better update solution.
Step 6: Increment the iteration counter by setting iteration= iteration+1. If the termination criterion is not met,
return to Step 2.

6.3.4. Parameters Estimation for the IEP using the FFA Algorithm In this section, the FFA is introduced. This
approach estimates α, the parameter of the time rate of occurrence for the IEP. The proposed Algorithm, Algorithm
2, is described below [16]:

Algorithm 2 FFA for Parameter Estimation

Step 1: Define the number of particles (N=50) and the maximum number of iterations imax = 100.
Step 2: Suggest initial input parameters for the algorithm, including: alpha = 0.5, beta0 = 0.2, gamma = 1, n=
the number of observations.
Step 3: Initialize the positions of each particle, where each position represents an estimation for the Inverse
Exponential process parameters b and c.
Step 4: Define the fitness function as the Mean Percentage Error (MPE), which is calculated as MPE =∑max

1≤i≤n[(|Si − Ŝj |/Si)]
Step 5: Write the equations that represent the basis of the FFA algorithm:
delta = 1− ((10−4)/0.9)(1/kk)

alpha1 = (1− delta) ∗ alpha
T = alpha1 ∗ (rand(1, N)− 0.5)
r = norm(yy(i, :)− yy(j, :))
beta = ((beta0) ∗ (exp(−1 ∗ gamma ∗ r2)))
y1(i, :) = yy(i, :) + (beta ∗ (yy(j, :)− yy(i, :))) + T (1, :)
Where: kk represent iteration. yy represent new position.
Step 6: The estimators of parameter α should be modified based on the value of the objective function MPE.
Step 7: Steps 4 and 5 are repeated until a imax is reached.

6.3.5. Parameter Estimation for the IEP using Long Short-Term Memory (LSTM) Algorithm This algorithm
describes the initialization and training process of ANN model; it involves preparing the input data for the neural
network. Each input variable represents a feature or characteristic of the data. These inputs are fed into the neurons
in the input layer of the neural network. Before training begins, the weights and biases of the neural network need
to be initialized. This is typically done randomly, often from a uniform distribution. The weights represent the
strength of connections between neurons in adjacent layers, while biases provide each neuron with an additional
parameter to adjust the output [19]. Once the weights and biases are initialized, the input data is fed forward through
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the network. Each neuron in the hidden layer receives input from the input layer, applies a weighted sum along
with a bias term, and then applies an activation function to produce an output. After the we chose a multilayer
FFNN that contains two hidden layers: one input and one output. The first hidden layer contains six nods, and the
second hidden layer contains nine nods. After several experimental iterations, we found that the neural network
architecture with two hidden layers outperformed those with one or three hidden layers. Specifically, when utilizing
six nodes in the first hidden layer and nine nodes in the second hidden layer, this configuration yielded statistically
superior results, the output of the neural network is compared to the actual target values using a loss function.
In this case, the mean squared error (MSE) is commonly used. Lower MSE indicates better performance of the
neural network in approximating the target values. This process continues until the model achieves satisfactory
performance or until a stopping criterion is met. (is summarized by the following steps [20]):

1. Input Distribution.
• Each input is fed into individual neurons within the first hidden layer.

2. Define Objective Function
• Use Equations (4) and (7) to define the objective function.

3. Weight Initialization
• Initialize all weights and biases with random values or predefined heuristics.

4. Parameter Selection
• Choose hyperparameters:
• Parameter a.
• Parameter b.
• Evaluate quality using the Mean Square Error (MSE) formula: MSE =

∑n
i=1(yi−m(ti))

2

n−N .

5. Compute Neuron Inputs in the First Hidden Layer
• Compute the weighted sum of inputs and add bias:

∑
(wi · xi) + b

6. Compute Neuron Outputs in the First Hidden Layer
• Apply activation function to the computed sum.
• Pass the output as input to the second hidden layer.

7. Compute Neuron Inputs in the Output Layer
• The output layer consists of a single neuron.
• Compute weighted sum of inputs at this node.

8. Compute Output Layer Activation
• Apply activation function to obtain the final network output.

9. Compute Mean Square Error (MSE)
• Evaluate network performance using the MSE formula.

10. Convergence Check
• If MSE ≤ ϵ (where ϵ is a small threshold):
• Stop Training
• Finalize weights and biases.
• Otherwise, proceed to the next step.

11. Update Weights and Biases in the Output Layer
• Use the learning rate and training rule for updates.

12. Re-evaluate MSE
• If MSEnew ≤ MSEold:
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• Update Mnew = Mold/B
• Go to step 2.
• Otherwise:
• Update Mnew = Mold ∗B
• Go to step 11

The stopping criteria adopted by the metaheuristic method (FFA, GWO) depended on a fixed set number of
iterations and small variation in the objective functional successive iterations. In models ANN and LSTM, the
mean squared error when using validation data was observed to determine convergence and early stopping was
used to counter overfitting. These requirements guarantee their stability and avoiding unwarranted processing
overhead. Theoretically, older approaches, such as MLE, use the maximization of the likelihood based on regularity
conditions, and MLE works best with large, well, and behaved data sets. OLS is based on the assumption of the
linearity and homoscedasticity, which restricts its application to non-linear models. FFA, GWO: Metaheuristic
algorithms that are gradient-free optimizers, and work well on complex, non-convex spaces, at no guarantee of
global optimality. Data driven models include deep learning (ANN, LSTM) that use vast amounts of data and can
consume significant computational power in the learning process. Choice of methods ought to be informed by
the complexity of the model, nature of data and limitations of computing power. Metaheuristic algorithms (FFA,
GWO) hyperparameters were chosen by experimenting and tuning the parameters like population size, attraction
coefficient, and maximum iterations in attempts to lower RMSE. In ANN and LSTM, iterative experimenting and
grid search identified optimal parameters such as learning rate, number of hidden layers and number of neurons.
After a good tuning, the models converged much better, and estimation was much better.

7. Sensitivity Analysis for the Proposed Inverse Exponential Process (IEP) Model

The variations in parameters b, c along with their precise effects on output λ(t) receive evaluation through
sensitivity analysis. The analysis helps to determine: which model factors cause the most changes in output
behavior because it provides understanding about model stability. The estimation process must achieve high
precision rates when determining sensitive model inputs. Model refinement needs guidance to determine
parameters that demand adaptive or dynamic changes. For the Inverse Exponential process intensity function, we
analyse equation (4). Local sensitivity analysis conducts an instantaneous sensitivity analysis of λ(t) parameters
by evaluating each derivative of λ(t) separately [23].

∂λ(t)

∂b
=

c2

t2

(
b

t

)c−1

e(
b
t )

c

+
cb

t3

(
b

t

)2c−2

e(
b
t )

c

(31)

∂λ(t)
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(
b
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)c−1

e(
b
t )

c
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(
b

t

)
[1 +

(
b

t

)c

] (32)

The global sensitivity analysis (GSA) analyses variations in b, c based on their effects on the total variability of
λ(t). Sobol indices serve to determine parameter influence through variance-based measurement.

var(λ(t)) = var(b) + var(be(
b
t )

c

) + Cov(c, be(
b
t )

c

) (33)

where the Sobol sensitivity index for each parameter is:

Sb =
var(E[λ|b])

var(λ)
(34)

Sc =
var(E[λ|c])

var(λ)
(35)

Where E[λ|b] represents the expected value of λ(t) given a fixed b, c.
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Then Sb > Sc. We prove that c is the most sensitive parameter by computing the relative sensitivity function,
defined as:

RSθ =
∂λ(t)
∂θ

λ(t)
(36)

Applying this to each parameter for b:

RSb =
e(

b
t )

c

λ(t)
(37)

And for c:

RSc =
b
t2 e

( b
t )

c

λ(t)
(38)

Table 1. Sensitivity Analysis of Parameters for Optimal Release Time Estimation

Parameters -10% 0 10%

b 0.02070 0 -0.01766
c 0.02886 0 0.00166

8. Simulation and Results

Simulation is a scenario designed to compare any system with the real world, and is defined as the attempt to
simulate a particular process under specific circumstances using artificial methods that resemble natural conditions.
This includes building a smaller model that is an identical copy of the real model and performing tests on the
miniature model and examining the results and generalizing them to the original model, or computer simulation
by writing a program for the methods to be chosen under realistic programming conditions and then observing the
results obtained with the program and drawing a conclusion based on them [21].

There are different simulation methods, namely the (analogy method), the (mixed method) and the (Monte
Carlo method). The Monte Carlo method is one of the most important and widely used simulation methods, in
which a random sample of the phenomenon is generated, that corresponds to the behaviour of a certain probability
distribution that the phenomenon has. To achieve this, the probability distribution of the phenomenon it has (CDF)
it is known that the set of samples random in this way possesses the property of independent because random
samples in this method is by applying the mathematical method to each sample separately [22].

To put the previously discussed ideas into practice, the practical part of the research focused on the estimators
of the suggested model during the fuzzy phase for both of the approaches used, utilizing a simulation method.
The objective was to apply the Mean Square Error (MSE) statistical criteria to various sample sizes in order to
assess the optimality of these estimators. The purpose of the simulation model was to provide a comparison study
of the approaches that were evaluated while accounting for a variety of real data situations. By showing how the
estimate techniques affect the following variables, this strategy seeks to determine the best technique for estimating
parameters inside the interval of the Exponential Process [22].

• Change in sample size.
• Change in model parameter values.

8.1. Stages of Building a Simulation Experience

First stage: It is the most important stage on which the program’s steps and procedures depend. Below are the
steps for this stage:
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Step 1. Choose default values for the parameters of the Exponential Process. Several default values were chosen
for the shape parameter a and the scale parameter b for the Exponential Process by reviewing previous studies and
experimenting with many default values for the parameters, which led us to choose the best of these values, as
follows: (c = 0.9; 1.2; 1.1 and b = 0.9; 1.5; 1.1).

Step 2. Choose sample sizes. Several different sample sizes (small, medium, large) were chosen as follows:
(n = 20; 60; 80; 100).

Second stage: Data generation:
At this stage, random data is generated using the inverse transformation method and according to the Rayleigh

Process, as follows:
Step 1. Generating a random variable ui that follows a uniform distribution with the interval (0, 1) using the

cumulative distribution function with the help of the Rand.

ui ∼ U(0, 1), i = 0, 1, 2, . . . , n (39)

Where: ui: It represents a continuous random variable that follows a uniform distribution.
Convert the data generated in step (first) that follows a uniform distribution into data that follows an Inverse

Exponential Process using the inverse function (CDF) transformation method and according to equation (7) and as
in the following formula.

ti =

√
2b2u

c
, i = 0, 1, 2, . . . , n (40)

Third stage: At this stage, parameters are estimated over the period for the Inverse Exponential Process Software
Reliability Growth Models and for all methods, which are.

• Feed forward artificial neural network (FFNN).

Fourth stage: Experiment is repeated (1000) times.
The experiments were performed in MATLAB R2019b on the Windows 10 machine with the Intel Core i7

processor (2.60 GHz), 16 GB RAM. ML algorithms (ANN, LSTM) were used to train deep learning models with
Deep Learning Toolbox of MATLAB and metaheuristic algorithms (FFA, GWO) were implemented with the help
of handwritten codes. These standards guaranteed consistent responses and reflectivity.

9. Numerical Computations

To generate random variables from the stochastic IEP, various sample sizes (n=20, 50, 100) are practised; to
evaluate the performance of the methods three values for the process parameters are used, c = 0.5, c = 0.8 and
c = 0.6. The simulation results are summarized in Table 2; the obtained results are: the estimated parameter values,
RMSE for each method and sample size. Overall, the results confirmed that the ANN method outperformed the
other methods in terms of accuracy and computational time. However, the proposed intelligent method also showed
promising results, particularly for smaller sample sizes. The MLE and OLS methods exhibited higher RMSE
and longer computational time compared to the other methods. These findings have important implications for
estimating the parameters of the IE distribution and could be useful in various practical applications.
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Table 2. Simulated RMSE of Inverse Exponential Process Parameter Estimation with Proposed Methods for Four Sample
Sizes.

Sample Size Parameters RMSE

b c ANN MLE OLS FFA GWO LSTM

20 1.1 0.9 0.0566 0.4043 1.3716 9.0029 8.0627 0.0588
0.9 1.1 0.3512 0.4715 1.7269 9.0303 9.5351 0.3625
1.2 1.5 0.0165 0.2436 2.3755 9.1852 8.7827 0.0276

60 1.1 0.9 0.0861 0.0327 0.8562 5.3058 4.4570 0.0972
0.9 1.1 0.2023 0.2397 1.1178 5.3667 4.0447 0.3134
1.2 1.5 0.0150 0.1841 1.1745 5.1406 6.0690 0.1261

80 1.1 0.9 0.0278 0.0294 0.7011 4.5246 2.3228 0.1389
0.9 1.1 0.1460 0.2015 0.7594 4.3892 3.6552 0.2571
1.2 1.5 0.0417 0.0439 1.0782 4.5707 3.5141 0.1528

100 1.1 0.9 0.0549 0.0851 0.6635 4.1098 0.0459 0.0658
0.9 1.1 0.0079 0.0386 0.6590 4.0468 0.0384 0.0089
1.2 1.5 0.1049 0.1559 0.8731 4.0203 0.1198 0.1159

From the table 2, it appears that the ANN method outperforms the other methods in terms of RMSE for estimating
the inverse Exponential process parameters, for all three sample sizes (N=20, N=50, and N=100). The RMSE values
for the ANN method are the lowest among all the methods listed in the table.

10. Real data

10.1. Dataset I

To determine whether the GWO, FFA, LSTM, ANN and MLE are applicable for parameter estimation of the IE
Process, real data from at the Mosul power station from 1st January 2017 to 1st January 2020 is used.

1. The collected data represent the stoppage times for the units of the Mosul Dam power stations from 1st
January 2017 to 1st January 2020.

2. The likelihood function is derived from the probability density function of the IE distribution; this function
is used to estimate the parameters using MLE.

3. The parameter for IE is estimated using each of FFA and GWO, LSTM and ANN
4. To evaluate the applicability and effectiveness for each estimate obtained from applying MLE, FFA, LSTM,

ANN and GWO, simulation is implemented using estimate values.

10.1.1. Homogeneity Testing for the Inverse Exponential Process The IEP is considered as nonhomogeneous
because its time rate of events is dependent on the change in time (t), which means that its behavior is affected by
time t. Therefore, the Inverse Exponential process is homogeneous when λ = 0, and it is nonhomogeneous when
λ ̸= 0. To test whether the process is homogeneous or nonhomogeneous, the following hypothesis is considered
[17]:

H0 : λ = 0 (41)

H1 : λ ̸= 0 (42)

which can be tested through the following statistics:
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Z =

∑n
i=1 τi −

1
2nτ0√

nτ2
0

12

(43)

Where: Z represent calculate test.
∑n

i=1 τi is the sum of the accident times for a period (0, τ0], n represents the
number of accidents that occur in a period (0, τ0].

10.1.2. Consistency Testing for the Data under Study To test the homogeneity of the data under study, we used
the statistical laboratory in formula (32), with a MATLAB/R2019b program specifically designed for this purpose.
The calculated value of |Z| was found to be 74.4596, which is higher than its corresponding tabular value of 1.96
at a significance level of 0.05. Therefore, we reject the null hypothesis and accept the alternative hypothesis. This
indicates that the process under study is heterogeneous.

10.1.3. Rate of Occurrence Estimation for IEP for the data under study To assess the effectiveness of intelligent
approaches, GWO and FFA, for estimating the IEP parameter, the estimates are compared with those obtained
from using traditional MLE and OLS methods using real data, which represent the stoppage times of the units
of the Mosul Dam power stations from 1st January 2017 to 1st January 2020 in Mosul in Iraq. A written
MATLAB/R2019b program was used to run the algorithms.

Table 3. Parameter Estimation for the IEP using Failure Time Data from Mosul Power Station.

Methods Parameter estimation Parameter estimation 95% CI
ĉ b̂

MLE 0.0070 0.0060 (0.1239, 0.4221)
OLS 3.6900 2.5910 (0.9239, 2.7201)
GWO 0.6808 0.6917 (120.5064, 124.8108)
FFA 0.8981 0.6972 (130.4064, 134.7118)
LSTM 0.7872 0.5662 (100.3063, 104.7007)
ANN 0.6763 0.5563 (90.3154, 94.6106)

Table 3 shows the estimation of the inverse Exponential process parameters for the operating periods between
two success stops in days for Mosul power station using the proposed estimation methods. Several runs were
conducted in the estimation process, and different values for the parameters were used. Accordingly, the variance-
covariance matrix is obtained as the inverse of the Hessian matrix of the negative log-likelihood function, evaluated
at the maximum likelihood estimates.

[D(A)]−1 =

[
Var(̂b) Cov(̂b, ĉ)

Cov(ĉ, b̂) Var(ĉ)

]
=

[
0.2323 0.0000
0.0000 1.3212

]
(44)

Table 4. The Resulted Values for RMSE for different Methods

Methods RMSE

MLE 0.1400
OLS 2.3088
GWO 0.1029
FFA 0.1175
LSTM 0.0165
ANN 0.0074*
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From the above table, Table 4, it can be seen that the ANN method has the lowest RMSE value compared to the
other methods, indicating that it provides the most accurate estimates of the parameters of the inverse Exponential
process for the given data. This suggests that intelligent methods such as GWO can be effective in estimating the
parameters of the inverse Exponential process. The following figure, Figure 2, can provide further insight into the
performance of the different estimation methods. It can help visualize how well the estimated function of the inverse
Exponential process matches the actual data. Comparing various methods of parameter estimation successfully, the
paper does not represent an analysis of the computational complexity explicitly. All three approaches, classical and
metaheuristic and deep learning, have varying computational requirements. Polynomial MLE and linear OLS are in
practice efficient when the dataset is small, however they do not scale well with nonlinear constraints. Both GWO
and FFA are metaheuristics: they are iterative, population-based, and manner; hence they are computationally
expensive and parallelizable. ANN and LSTM models are specific due to long training duration and resource-
intensive processing especially on other larger and streaming data. Comparative complexity discussion would be
found admirable in complementing the detailed nature of deploying the methods in the different data sizes and
environment.

Figure 2. Methods for Calculating Cumulative Stoppage Times of the Units of the Mosul Dam Power Stations are Being
Compared.

10.2. Data Set II

The data being used in the study is the fatigue life of 6061-T6 aluminum which had been analyzed by Birnbaum
and Saunders (1969) [25]. These specimens were machined in directions parallel to the rolling direction and were
put through the process of cyclic loading of 18 cycles a second. The data has 101 measured lifetimes; each one
measured at the breakdown of a maximum applied stress of 31,000 psi per cycle. This dataset has been used
because of its documented properties and applicability as a common benchmark by reliability and survival analysis
literature to evaluate the validity and reliability of statistical methods of modeling.
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Table 5. The Resulted Values for RMSE for different Methods

Methods RMSE

MLE 1.0400
OLS 3.2087
GWO 0.1018
FFA 0.0164
LSTM 0.0154
ANN 0.0062*

The values in Table 5 provide the answer to the Root Mean Squares Error (RMSE) obtained as parameter
estimations of different technique and Dataset II that consist of months of module loading fatigue life of 6061-
T6 aluminum that is under cyclic loading. The data set has been a classic reliability metric. The values of RMSE
giver are able to provide a comparative standard of accuracy of each method of estimation. Out of the modelling
procedures reviewed MLE, OLS, GWO, FFA, LSTM, ANN the Artificial Neural Network (ANN) produced the
best RMSE value being 0.0062, amongst other data as it had the lowest RMSE value, which was attributed to the
fact that among the models, it was highly accurate in the estimation of the parameters of the inverse Exponential
Process (IEP) given this data. It is important to note that LSTM and FFA also delivered good results having RMSE
of 0.0154 and 0.0164 respectively. These findings once again demonstrate the design strength of intelligent and
metaheuristic algorithms in the modeling of complex trends that exist in actual reliability data. In contrast, MLE
and OLS in particular showed much larger RMSEs (1.0400 and 3.2087 respectively), showing that they were
not very effective in modelling the nonlinear and non-homogeneous character of the process. In general Table 5
confirms the belief that data driven and evolution-based estimation frameworks greatly supersede the traditional
statistical methods when it comes to the domain of stochastic process modelling, reliability analysis.

Figure 3. RMSE Comparison of Estimation Methods for Dataset III Using the Inverse Exponential Process
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10.3. Data Set III

The data given in [26] are based on an accelerated life testing experiment on 59 electrical conductors. The studied
mechanism of failure is electromigration- a process that degrades a conductor that causes a microcircuit to fail. Its
dataset is the time of failure measured in hours and there are no censored values. Since it has been most frequently
used in reliability engineering and survival analysis journals, this dataset provides a positive benchmark and is
useful to compare and assess the performance of statistical models involved in failure-time analysis.

Table 6. The Resulted Values for RMSE for different Methods

Methods RMSE

MLE 2.0310
OLS 4.1077
GWO 1.1118
FFA 1.0164
LSTM 1.0054
ANN 0.0022*

Table 6 shows RMSE values of various estimation procedures used in Dataset III that consists of electromigration
failure times of electrical conductors using it as a typical benchmark of reliability engineering. The ANN method
once more made the lowest RMSE (0.0022), which revealed that ANN method has been more precise in modeling
the Inverse Exponential Process. RMSEs of LSTM and FFA amounted to 1.0054 and 1.0164, respectively. On
the contrary, classic approaches, such as MLE (2.0310) and OLS (4.1077) did not fare well, showing the frailty
of these approaches when used in complex, nonlinear failure data. Such findings highlight the effectiveness of
effective models in the high-fidelity reliability estimation.

Figure 4. Cumulative Stoppage Time Comparison Using NHPP Parameter Estimation Methods

Fig. 4 shows RMSE of six methods of estimation on the electromigration failure-time data (Dataset III), fitted
by the Inverse Exponential Process model. ANN attains RMSE (0.0022) the lowest, which means comparatively
high linear nonhomogeneous behavior. The least accurate approach is the classic (MLE, OLS), but LSTM, FFA,
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and GWO are comparatively good. This justifies the strength of intelligent models especially ANN in modeling
complex reliability data.

11. Discussion of Results

To compare the techniques used for estimating the IEP parameters, the RMSE, which is the most significant
tool for measuring errors and defined by formula (32), is determined using the real data set through a written
MATLAB/R2019b program designed for this case. The data collected from each unit represented the stoppage
times of the units of the Mosul Dam power stations from 1st January 2017 to 1st January 2020. The following table
shows the results for RMSE for different methods.

11.1. Model Assumptions and Implications

The paper proposes Inverse Exponential Process (IEP) in a non-homogeneous Poisson framework without
much considerations on the assumptions involved in the development of the proposed model. Among the basic
assumptions are assumed inappropriateness of the IEP to describe the rate of the events as time elapses, inter-
arrival times independence and finally, the conditions of stationarity needed to have confidence in the parameters
estimation. Assumptions of non-monotonic failure behaviour, incorrect distributional assumptions, etc., equally
may lead to biassed or inconsistent estimates of the parameters such that the results of both the classical and
intelligent methods lose their validity. I would suggest that it would be important to discuss these assumptions on
more detail, what consequences could be expected in case they are violated, and diagnostic instruments or goodness
of fit tests should be used to check whether the model is suitable.

Even though the comparative outcomes are condensed using RMSE in different approaches, the discussion can be
improved as complex interpretation on behalf of why particular approaches, including ANN and LSTM repeatedly
provided better results than that of the conventional and metaheuristic approaches is given. An instance is how
ANN and LSTM are at a high performance in dealing with non-linear time series and time-based data structures;
therefore, complex temporal dynamics can be performed with ANN and LSTM but not the MLE and OLS because
simpler forms of statistics are required. Similarly, the issues that led to moderate success of FFA and GWO was
due to their performance of global search with limited local accuracy of convergence. Data complexity or sample
size should be additionally broken down to add to the methodological validity and feasibility of the results. Even
though this paper reveals the comparative advantages of each estimation technique, it is critical to reflect on the
weaknesses of the estimation options. Such classical techniques as MLE and OLS, albeit analytically efficient, are
susceptible to indirectness and statistical sparsity. The metaheuristics that are globally search robust, including FFA
and GWO, can experience convergence problems and they cost more. ANN LSTM Deep learning Deep learning
techniques have high accuracy but expensive in data quantity, a training time, and subject to overfitting unless well
regularized. Consequently, the choice of methods ought to be technique-specific in line with the structure of data,
sample size, and available resources to achieve the computation.

A careful implementation of ANN, LSTM, and metaheuristic techniques into safety-critical systems (e.g., dam
failure prediction) should be done with caution given that the black-box models can lead to an increase in hidden
causes of decisions. Ethical implications are transparency, interpretability, as well as a possible impact of the
estimation error on society. Such issues should inform the choice of methods in practice.

Although the accuracy of such ANN or LSTM models is high, there is low interpretability of these advanced
models. In practice, to make an informed decision, it is important to know the impact of the parameter estimates
on the system performance in terms of failure patterns of the system or maintenance timetables. To make
the interpretation easier and such that it can make differences, visualizations and sensitivity metrics can be
implemented
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12. Conclusions and Future work

This research presented an innovative framework to determine parameters of Inverse Exponential distribution
based Non-Homogeneous Poisson Process models. Using a combined analysis of classical Maximum Likelihood
Estimation and intelligent estimation methods with Ordinary Least Squares and Firefly Algorithm and Grey
Wolf Optimization and Long Short-Term Memory networks and Artificial Neural Networks the study provides
an in-depth comparison of estimations for time-varying stochastic processes. Simulation data showed intelligent
approaches excel when estimating and are resilient at different sample levels through the use of ANN and
LSTM. The real-world check using failure time information from Mosul Dam power station demonstrated
that ANN generated the minimum Root Mean Squared Error (RMSE) exceeding classical and metaheuristic
strategies. The study shows that data-oriented learning methods succeed in tracking changing processes of
non-homogeneous systems particularly when these systems exhibit both non-linear structures and uncertain
patterns. Additional research opportunities exist even though the existing results demonstrate success. The
proposed framework requires expansion to handle multidimensional NHPPs since this will extend its practical
application range to include predictive maintenance systems and multi-component reliability networks. Additional
performance improvements concerning accuracy levels and uncertainty estimation capabilities could be obtained
by including Bayesian estimation techniques together with ensemble learning models. Research should develop
combination methods between neural network and evolutionary optimization to allow automatic improvements
in learning rate settings and search parameter values. The deployment of proposed detection methods to real-
time operations through online algorithms enables the system to adapt its fault detection capabilities in critical
infrastructure monitoring applications. Scientists should conduct in-depth mathematical analysis of the theoretical
characteristics which describe how estimators perform aspiring from asymptotic behavior to computational
expense. Such directions enhance the current methodology while delivering substantial benefits for the entire
field of stochastic process modeling alongside intelligent reliability engineering. Future studies may apply this
framework to multidimensional NHPPs so that it may be used with multi-component reliability systems and
networked environments. Besides, the use of Bayesian estimation methods to use prior information and measure
uncertainty would also be able to improve interpretability and robustness when using limited data. Even though in
the context of individual estimation techniques certain strengths were observed, considering the hybrid methods
might bring even more improvements into performance. To give an example, the metaheuristic algorithms (e.g.,
GWO, FFA) and neural networks (ANN, LSTM) can be used together to ensure both effectiveness of the research
and efficacy of the learning. This level of integration would allow autoigniting and fiddling of parameter settings
leading to better convergence and robustness when applied to a variety of datasets.
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