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Abstract Time-series analysis and dynamic modeling are crucial in various fields, including business, economics, and
finance. This study is based on the prediction of financial time series, which are known for their volatility, nonlinearity,
and sensitivity to macroeconomic and psychological factors. This article examines four international stock market indices,
such as MASI, S&P 500, CAC 40, and Nikkei 225, representing Africa, America, Europe, and Asia, respectively, which
are challenging to model accurately. This research aims to compare three forecasting models: the classical Autoregressive
Integrated Moving Average (ARIMA), the Machine Learning (ML) model Support Vector Regression (SVR) and the Deep
Learning (DL) model Long-Short-Term Memory (LSTM). The empirical results reveal that LSTM outperforms both SVR
and ARIMA in predicting financial time series; SVR outperforms ARIMA in twos indices: S&P 500, and CAC 40. In
contrast, ARIMA outperforms SVR in the MASI and Nikkei 225 index, demonstrating the effectiveness of this traditional
method in specific contexts.
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1. Introduction

Time series analysis and dynamic modeling represent a fundamental and multidisciplinary field of research [1],
offering a broad range of applications in diverse fields such as business, economics, finance, and computer science
[15, 36]. In particular, stock market forecasting is essential in financial analysis and economic research, given its
importance for investors, financial analysts, and economic decision-makers. It helps guide investment strategies,
minimize financial risks, and improve decision-making at various levels. However, global financial markets are
characterized by great complexity and increased volatility due to multiple factors, such as economic shocks,
monetary policies, and geopolitical events. These unpredictable dynamics make the prediction task particularly
challenging and require advanced analytical tools capable of adapting to the characteristics of financial time
series [25]. In this context, several techniques have been developed to analyze and predict variations in stock
prices. Traditional models, such as the Autoregressive Integrated Moving Average (ARIMA) introduced by Box
and Jenkins [2], remain benchmark tools due to their robustness and ability to efficiently model linear time
series structures [23, 8]. Although effective in many contexts, these methods are limited when capturing the
nonlinear relationships and complex dependencies often present in stock market series [13, 29]. To overcome
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these limitations, machine learning (ML) based approaches, such as support vector machines (SVMs), have been
introduced, offer greater flexibility by directly learning complex relationships between data, enabling them to
better adapt to the nonlinear characteristics of financial markets [19, 26]. Furthermore, the emergence of deep
learning (DL) models, notably long-short-term memory (LSTM) networks, has marked a significant advance in
time series modeling. These recurrent neural networks (RNN) are particularly effective at capturing long-term
temporal dependencies and data nonlinearities, offering superior predictive capability [20, 21].

One significant challenge is selecting the model best suited to the different characteristics of stock market indices.
Traditional models often perform well on stationary series, while artificial intelligence (AI)-based approaches better
capture nonlinearities [37]. With this diversity of methods, a central question emerges: Which approach is the most
effective for predicting the Moroccan All Shares Index (MASI), Standard and Poor’s 500 (S&P 500), Nikkei 225,
and CAC 40 indices?
Thus, we make the following assumptions: ML models, such as SVR and LSTM, will offer higher predictive
accuracy than ARIMA models. However, their performance varies according to the specific features of each stock
market index studied. Finally, a multicriteria analysis will reveal the advantages and limitations of each approach.
In this investigation, the study evaluates the performance of three models, ARIMA, SVR, and LSTM, in forecasts
of stock prices on four international markets: MASI (Morocco), S&P 500 (USA), Nikkei 225 (Japan), and CAC
40 (France). This research aims to identify the model that offers the best performance in terms of accuracy and
robustness while considering the specific features of each financial market. This analysis, based on historical data
for these stock market indices, aims to identify the strengths and limitations of each approach, offering a global
perspective on their applicability and effectiveness in various economic and geographical contexts.

The rest of this article is organized as follows. Section 2 provides an overview of the latest work on stock index
forecasting. Section 3 outlines the methodology employed, including models and evaluation criteria. The section 4
compares and analyzes model performance on the various indices studied. Finally, Section 5 summarizes the main
results and suggests perspectives for future research.

2. Related works

Numerous studies have examined the forecasting of stock market indices, with particular attention paid to
traditional models such as ARIMA and modern ML-based approaches such as SVR and DL, particularly LSTM.
This section reviews previous work exploring the use of these models for financial market forecasting. ARIMA
models have been widely utilised to forecast economic time series due to their simplicity and efficiency. For
example, Ariyo et al. [8] applied ARIMA models to predict the stock prices of Nokia and Zenith Bank,
demonstrating that they are effective for short-term forecasts. However, the accuracy decreases over longer
horizons. Similarly, the authors of the paper [6] compared different ARIMA configurations to predict Netflix stock
prices, concluding that the ARIMA(1,1,33) model offered the best precision with a Mean Absolute Percentage
Error (MAPE) of 99.74%. However, they noted that ARIMA models have difficulty capturing sudden price
fluctuations, particularly in volatile markets. In [5], a comparative study between ARIMA and LSTM models
in forecasting the price of Apex Foods stock. Contrary to expectations, the results showed that the ARIMA model
outperformed the LSTM in terms of Root Mean Square Error (RMSE) of 4.336 and Mean Absolute Error (MAE)
of 3.4592. Suggests that classic models may still outperform modern methods. In addition, the authors of [23]
used ARIMA models to predict Bursa Malaysia’s closing prices during COVID-19. The ARIMA(2,1,2) model
performed best among the configurations tested, but it also displayed signs of overfitting and an inability to keep
up with sudden price changes.

On the other hand, ML models such as the SVR have been used because they can handle nonlinear data and
detect complex relationships in financial time series. The study in [7] compares the ARIMA, artificial neural
network (ANN), and SVR models in terms of their performance in predicting the Al-Quds stock market index
in Palestine. The results proved that SVR gave the best accuracy, with an RMSE of 0.00703, which performs better
than the ARIMA and ANN models. Likewise, Henrique et al. [17] utilized SVRs on various markets, such as
Brazil, the United States, and China, to forecast stock prices. Their study demonstrated that SVRs with a linear
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kernel surpassed ARIMA and random walk models, specifically for small capitalizations. As highlighted by [18],
who presented a fine-tuned version of SVR to forecast stock prices in several business sectors. Their model showed
a significant improvement in accuracy with reduced computation time over traditional SVRs. However, they pointed
out that optimizing hyperparameters remains challenging, particularly for big datasets. This challenge was equally
met by [10], who compared SVR with linear regression to predict Amazon stock prices. Although linear regression
surpassed SVR in their investigation, the authors outline that SVR can be improved by combining hyperparameter
optimisation techniques with other models.

In contrast, DL models like the LSTM have become valuable tools for capturing long-term dependencies in
financial time series. In [3] proposed a simple Google stock price prediction technique using a DL RNN. The
findings show an RMSE of 12.68% for the prediction with an accuracy of 87.32%, meaning that the projections
are 87.32% similar to the actual Google stock prices. In the study carried out in [15], The authors examined the
forecast performance of the ARIMA and LSTM models for several stock market indices, notably the S&P 500
and NASDAQ. The analysis revealed that LSTM minimizes by 84% to 87% compared to ARIMA, proving its
ability to model complex time series. Chen et al. [4] pointed out that LSTM models can capture nonlinearity
in emerging markets, noting that the forecast of stock market returns in China has been improved from 14.3%
to 27.2%. Similarly, the study conducted in [12] adopted ARIMA and LSTM models to predict the financial
budgets of a government organization. LSTM was better than ARIMA in terms of accuracy, even though its
performance depends on hyperparameters optimization. This dependence has also been studied by [13], who carried
out a comparative study between the LSTM, ARIMA, and gated recurrent unit (GRU) models for forecasting the
price of stocks in various economic sectors. It shows that LSTM and GRU offer better performance than ARIMA
regarding mean squared error (MSE), but this varies depending on the industry. Furthermore, the work in [22]
predicts the price trends on the Swedish stock market using LSTM. The results showed the capacity to generate
portfolios with higher returns and lower volatility than random portfolios. In [26], H. Oukhouya and K. El Himdi
Conducted a comparative study of the ARIMA, SVR, and LSTM models for predicting the MASI index (Morocco),
showed that LSTM outperformed ARIMA and SVR in terms of accuracy, but highlighted that optimizing LSTM’s
hyperparameters was still a challenge. In addition, Kalyan et al. [9] employed ARIMA, LSTM and random forest
(RF) models to predict Tata Motors and Infosys stock prices. The findings revealed that LSTMs were better at
capturing long-term dependencies but that ARIMAs were more reliable for some indices. In the same way, the
study in [11] investigated the ARIMA, SVR, and LSTM models for predicting the S&P 500 and SSE (China)
indices. The results confirmed that ARIMA was the best performer for short-term predictions, while LSTM was
the best for long-term ones.

Based on existing studies, several limitations have been observed when using stock market forecasting models.
Firstly, many studies concentrate on specific markets or indices, which limits the possibility of generalizing results
to other markets or regions [23, 22]. Secondly, the performance of models such as LSTM and SVR is highly
dependent on hyperparameter optimization and data quality, with persistent challenges related to noise, missing
values, and temporal frequency [18, 26]. Third, some studies point to the increased sensitivity of traditional
models, such as ARIMA, during high volatility, while DL approaches require massive data volumes and significant
computational capabilities [24, 14]. Finally, few studies adopt an international [27, 17, 16], multisector perspective
to validate the robustness of the models. The contribution of this paper is to fill these gaps by proposing a
comparative analysis of the ARIMA, SVR, and LSTM models applied to four distinct international stock market
indices: the MASI (Morocco), the S&P 500 (USA), the CAC 40 (France) and the Nikkei 225 (Japan). By evaluating
these models in mature and emerging markets, characterized by varying economic and regulatory dynamics,
this study aims to generalize the findings on the predictive effectiveness of the approaches while incorporating
hyperparameter optimization and data preprocessing strategies to improve the reliability of the results. This multi-
contextual process will enable us to identify the models best adapted to specific markets, giving investors and
researchers practical information.
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3. Data and Methodology

In this section, we present the methodology employed to compare the performance of stock market forecast models
from data with suitable preprocessing, hyperparameter optimization, and evaluation using MAPE, RMSE, mean
absolute error (MAE), and coefficient of determination (R2).

3.1. Data

The data presented in this article represent the historical closing prices of the MASI, S&P 500, CAC 40, and Nikkei
225 stock indices. They were selected because they represent the stock markets of different economic regions.

• MASI (Morocco): Reflects the financial market of an emerging African country and offers an overview of
regional economic dynamics and expanding markets.

• S&P 500 (USA): The benchmark index for the US market comprises the 500 largest listed companies and
serves as a barometer for the global economy.

• CAC 40 (France): The main index of the Paris Stock Exchange (Euronext, Paris) includes France’s 40 largest
market capitalizations and serves as a barometer for the French and eurozone economies.

• Nikkei 225 (Japan): Key index for the Asian market, reflecting the performance of major Japanese companies
and the impact of economic dynamics in Asia.

The study period runs from January 1, 2023, to July 31, 2024. Data were collected from finance.yahoo.com for the
international indices S&P 500 and Nikkei 225, and from investing.com for the MASI and CAC 40 indices.

Table 1. Descriptive statistics for stock market indices

Index Mean Median Std Dev Min Max Skewness
MASI 11946.2 11977.3 1067.9 9717.99 13984.33 -0.128
S&P 500 4613.50 4499.38 492.06 3808.1 5667.2 0.396
CAC 40 7452.75 7382.49 359.44 6594.57 8239.99 0.513
Nikkei 225 33576.24 32851 4351.82 25716.8 42224.02 0.087

Table 1 shows the descriptive statistics of each index, revealing that the Nikkei 225 index is the most volatile, with
a wide dispersion reflecting its sensitivity to economic shocks and that the MASI displays a slight negative skew,
indicating a slightly left-biased distribution. While the S&P 500 and CAC 40 show a positive skew, suggesting a
higher concentration of high values.

3.2. Trends in the stock market indices studied

As shown in Figure 1, the MASI, S&P 500, CAC 40, and Nikkei 225 stock indices show an overall uptrend between
January 2023 and July 2024, with marked fluctuations and a notable slowdown or correction in October, reflecting
the impact of geopolitical tensions on financial markets.

3.3. Stationarity Tests

Results presented in Table 2 show that the differentiated series is stationary according to Augmented Dickey-Fuller
(ADF) and Phillips-Perron (PP) tests, as the null hypotheses of non-stationarity are rejected. The Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test accepts the null hypothesis of stationarity, which is consistent with the results
of the other tests.
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Figure 1. Historical of daily stock market indices studied

Table 2. Stationarity Tests for the first difference of closing price of MASI, S&P 500, CAC 40, and Nikkei 225 Indices

Test Index Test Statistic p-value Decision of H0

ADF

MASI -7.4505 0.01 Rejected
S&P 500 -6.9115 0.01 Rejected
CAC 40 -7.6090 0.01 Rejected

Nikkei 225 -7.1782 0.01 Rejected

KPSS

MASI 0.08517 0.10 Accepted
S&P 500 0.05010 0.10 Accepted
CAC 40 0.16757 0.10 Accepted

Nikkei 225 0.06550 0.10 Accepted

PP

MASI -316.49 0.01 Rejected
S&P 500 -355.08 0.01 Rejected
CAC 40 -410.42 0.01 Rejected

Nikkei 225 -405.06 0.01 Rejected

3.4. Preprocessing

Data preprocessing is essential in guaranteeing the relevance and quality of forecasting model results. It converts
raw datasets to a format suitable for analysis, ensuring that it is consistent, comparable, and adapted to the
algorithms’ requirements. This phase includes operations such as normalizing values, splitting into training and
test sets, and stationarity of time series where necessary. We normalized the time series to ensure better model
convergence and avoid the domination of significant amplitude variables. We used the Min-Max transformation,
which brings the values into the interval [0,1], defined by:

ynorm(t) =
y(t)− ymin

ymax − ymin
, (1)
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where t represents each trading day, and y(t) represents the raw input data, i.e., the daily closing prices.
ynorm(t) ∈ [0, 1] denotes the normalized data values, while ymax and ymin respectively represent the Max and Min
values of the entire time series. In addition, the time series were split into training and test sets in a ratio of 90%-
10% as illustrated in table 3, ensuring that the models were trained on a significant portion of the data while
reserving a portion for performance evaluation. However, there are no missing values in our time series.

Table 3. # of observations in the time series

Stock index
Observations Train Date Range Total Data Frequency #NA

Train 90% Test 10% Start Date End Date

MASI 354 39 2023-01-02 2024-06-03 393 Daily 0
S&P 500 356 39 2023-01-03 2024-06-04 395 Daily 0
CAC 40 364 40 2023-01-02 2024-06-05 404 Daily 0
Nikkei 225 349 39 2023-01-04 2024-06-05 388 Daily 0

3.5. ARIMA model

The ARIMA model, the Box-Jenkins methodology (Figure 2), is a classic statistical tool for time series analysis and
forecasting. It combines three fundamental components: an autoregressive (AR), an integrated (I) for stationarity,
and a moving average (MA). ARIMA is particularly well suited to short-term forecasting [8, 15]; Its effectiveness
lies in its ability to model univariate time series with trends or seasonality [6], provided they are made stationary
[12]. ARIMA is defined by three parameters (p, d, q):

STEP 1

STEP 2

STEP 3

Is the model 
adequate ?

 Forecasting                                                
(Over a horizon h)NO

- Times series plots 
- ACF and PACF

- Condit ional Least Squares (CLS)
- Maximum Likelihood (ML)

- Ljun-Box Test   (Autocorrelat ion)
- Jarque-Bera Test   (Normality)

YES

 Identif ication

Estimation

Diagnostic Checking

STEP 4

Figure 2. Box-Jenkins methodology
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• AR(p): Captures the linear dependency between an observation and p lags. Formally:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt, (2)

where ϕi are the coefficients and εt the random error.

• I(d): Number of differentiations required to eliminate trends and make the series stationary (i.e., constant
mean and variance).

• MA(q): Models past errors as a linear combination:

yt = c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q. (3)

The general formulation of ARIMA is therefore:(
1−

p∑
i=1

ϕiB
i

)
(1−B)dyt =

(
1 +

q∑
j=1

θjB
j

)
εt, (4)

where B is the lag operator (i.e., Byt = yt−1). The following pseudocode algorithm 1 describes the training
procedure for the ARIMA model adopted in our research.

Algorithm 1 Pseudocode for the ARIMA model (Box-Jenkins methodology)

1: Step 1: Identification
2: Check the stationarity of the series using the ADF, PP, and KPSS tests.
3: If non-stationary, differentiate the series (1−B)dyt.
4: Examine the ACF and PACF plots to estimate the orders of p and q.
5: Step 2: Estimation
6: Estimate the parameters of the ARIMA(p, d, q) model by Maximum Likelihood (ML) or Conditional Sum of

Squares (CSS).
7: Compare several candidate models using the AIC/BIC criteria.
8: Step 3 : Diagnostic Checking
9: Analyze residuals (independence, normality, homoscedasticity).

10: Apply the Ljung-Box test to verify the absence of autocorrelation.
11: Apply the Jarque-Bera/Shapiro-Wilk tests to verify the normality.
12: If the model is inadequate, return to step 1.
13: Step 4 : Forecasting
14: Using the validated model to forecast future values of the series.
15: Evaluation of performance using metrics (RMSE, MAE, MAPE, R2).

3.6. SVR model

The SVR model extends the Support Vector Machines (SVM) adapted to regression problems. It is distinguished
by its ability to model nonlinear relationships (Figure 3) through the use of kernels [17] and to minimize prediction
error while controlling model complexity [19]. Its application in finance, notably for time series forecasting, is
supported by several recent studies [7, 18]. The SVR seeks to find a function f(x) that approximates the target y
with a tolerance margin εt while penalizing deviations greater than this margin. Formally, the objective is to solve:

min
w,b

1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ), (5)

under constraints : 
yi − (w · ϕ(xi) + b) ≤ ε+ ξi,

(w · ϕ(xi) + b)− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0.

(6)
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Figure 3. Nonlinear SVR

Where w and b are the model parameters, ϕ(x) is a projection function in a high-dimensional space via a kernel
(linear, polynomial, radial basis function (RBF)), C is the regularization parameter that controls the trade-off
between margin size and error tolerance, and ξi, ξ

∗
i are the slack variables measuring the deviation beyond the

ε-margin. The pseudo-algorithm 2 presents an SVR estimation and forecasting process of our study.

Algorithm 2 SVR estimation and forecasting process

1: Create lagged values L1 of the series.
2: Split the time series into a training set (90%) and a test set (10%).
3: Choosing a kernel function K(·) (linear, polynomial, or RBF).
4: Initialise hyperparameters (C, ε, γ).
5: Solving the SVR optimization problem :

min
w,b

1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ),

under constraints :
yi − ⟨w, ϕ(xi)⟩ − b ≤ ε+ ξi, ⟨w, ϕ(xi)⟩+ b− yi ≤ ε+ ξ∗i .

6: Adjust (C, ε, γ) by trial-and-error method.
7: Select the model with the lowest RMSE and MAE on the training set.
8: Use the final model to predict values on the test set.
9: Evaluate the model by calculating performance metrics (RMSE, MAE, MAPE, R2).

3.7. LSTM model

LSTM networks are specialized RNNs conceived to efficiently tackle long-term dependencies in sequential data
[13]. They are exceptionally well adapted to tasks involving time-series data, such as stock market forecasts.
LSTMs resolve a common problem in traditional RNNs: the vanishing gradient problem [30]. This problem arises
when gradients become too small or too large as they are backpropagated in time, resulting in minimal modification
of weights and rendering the learning process inefficient. LSTMs can store and refresh information over long
sequences by including memory cells and control mechanisms, enabling them to learn and predict patterns in
sequential data. The LSTM cell uses an input gate, a forget gate, and an output gate (a simple multilayer perceptron
(MLP)). Depending on the data’s priority, these gates define whether the data can pass through. The gates also

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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enable the network to learn what to save, what to forget, what to remember, what to pay attention to, and what to
output. The cell and hidden states gather data for processing in the next state. The vanishing gradient can, therefore,
be protected [28]. Figure 4 shows the structure of the nodes of the LSTM cell. At every time step t, an LSTM cell

Input gate

Forget gate

Output gate

Figure 4. The internal structure of LSTM

has the following elements:

Forget Gate

Determines which information to remove from the cell state. The sigmoid activation function (σ) is applied to a
linear combination of the preceding hidden state ht−1 and the present input xt:

ft = σ(Wf · [ht−1, xt] + bf ), (7)

where Wf and bf represent the weight matrix and bias for the forget gate.

Input Gate and Candidate Cell State

The input gate controls which new information to be stored in the cell state. It is composed of the input gate it and
the candidate cell state C̃t, which represents new candidate values for the cell state:

it = σ(Wi · [ht−1, xt] + bi), (8)

C̃t = tanh(Wc · [ht−1, xt] + bc), (9)

where Wi, Wc, bi, and bc represent the weight matrix and bias for the input gate and candidate cell state,
respectively.

Cell State Update

The cell state is updated by merging the preceding cell state Ct−1, scaled by the forget gate ft, with the candidate
cell state C̃t, scaled by the input gate it:

Ct = ft · Ct−1 + it · C̃t. (10)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



A. YAAKOUB, H. OUKHOUYA, M. ELHIA, T. ZARI AND R. GUERBAZ 9

Output Gate and Hidden State

The output gate determines the value of the hidden state ht. First, the output gate ot is calculated by applying the
sigmoid activation to a combination of the previous hidden state ht−1 and the current input xt. Then, the hidden
state ht is obtained by applying the output gate to the updated cell state Ct:

ot = σ(Wo · [ht−1, xt] + bo), (11)

ht = ot · tanh(Ct). (12)

Where Wo and bo represent the weight matrix and bias for the output gate, respectively. Control mechanisms
(forget, input, and output gates) enable LSTM to retain or reject information selectively, allowing it to capture
short and long-term dependencies in sequential data. The detailed procedure of the LSTM model is outlined in the
following algorithm 3:

Algorithm 3 LSTM estimation and forecasting process

1: Split the time series into a training set (90%) and a test set (10%).
2: Normalize the data (e.g., Min-Max scaling).
3: Create sequences using a moving window (Xt, yt) adapted to the LSTM network.
4: Define an LSTM architecture including :

• one or more LSTM layers,

• dense fully-connected layers, if necessary,

• a linear output layer.

5: Initialize hyperparameters: number of neurons, window size, number of epochs, batch size, learning rate.
6: Compile the model with a loss function (e.g., MSE) and an optimizer Adam.
7: Train the model on the training set.
8: Assess performance on a validation set.
9: Adjust the hyperparameters (neurons, epochs, batch size) to reduce the error.

10: Use the final model to forecast on the test set.
11: Denormalize the predictions to return to the original scale.
12: Calculate key performance metrics (RMSE, MAE, MAPE, R2).

3.8. Assumptions and implications

After presenting the three methods, namely ARIMA, SVR, and LSTM, it is useful to outline their main assumptions
and the implications that arise from them. Table 4 presents the assumptions of each model and their impact in the
event of a violation.

The summary in the table 4 shows that each model is built on specific assumptions that directly influence
its ability to perform well and adapt to financial data. The ARIMA model is robust for linear relationships and
stationary data; the SVR model offers flexibility when dealing with moderate nonlinearities. In contrast, the LSTM
model is particularly suited to complex relationships and long-term dependencies.

3.9. Forecast Accuracy Measures

The evaluation of a prediction model is based on its forecast accuracy. To this end, several measures are used,
which include the following:

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Table 4. Model assumptions and the impact of their violation on forecasting accuracy

Model Main assumptions Effects in case of violation

ARIMA

- Stationarity of the series (or made stationary by
differentiation)

- Inaccurate model specification

- Linear relationship between values in the series - Biased forecasts
- The residues are uncorrelated and normally
distributed

- The forecast intervals may be
incorrect

SVR

- The features extracted represent the underlying
structure well

- Overlearning or underlearning

- The kernel parameters are selected appropriately - Poor generalization to new data
- The data is free of excessive noise - Loss of accuracy in highly noisy

series

LSTM

- Sufficient data volume for training - Inability to capture complex
trends

- Time series include useful long-term dependencies - Overlearning or underlearning
- Hyperparameters are correctly tuned - Unstable or slow convergence

• MAE: This calculates the mean error between the predicted and actual values, providing an easy-to-
understand measure of model performance.

MAE =
1

n

n∑
t=1

|ŷt − yt| , (13)

• RMSE: By giving more weight to larger errors, RMSE emphasizes substantial deviations, making it a useful
metric when large errors are undesirable.

RMSE =

√√√√ 1

n

n∑
t=1

(ŷt − yt)
2
, (14)

• MAPE: This expresses forecast accuracy as a percentage, making it easier to interpret across different scales.

MAPE =
100

n

n∑
t=1

∣∣∣∣ ŷt − yt
yt

∣∣∣∣ . (15)

Where ŷt is the forecasted value, yt is the actual value, and n is the number of observations. The authors of [31]
stated that the model exhibiting the smallest value across all criteria is considered the most suitable for forecasting.

3.10. Criteria for Selecting the Optimal Model

When choosing the most appropriate model from several options, various criteria can be considered to select the
best model [33]. The Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) are two
essential criteria.

BIC = −2 ln(l) + k ln(n), (16)
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AIC = −2 ln(l) + 2k. (17)

Where l is the model likelihood, k is the order for the moving average q plus the order for the autoregressive p
(i.e., k = q + p), and n is the number of observations. Thus, the better model that gives the least value to both the
BIC and AIC [33].

4. Results and discussions

All experiments were executed using a PC equipped with an Intel Core i5 processor running at 2.3 GHz, 8 GB of
RAM, and a Windows 10 operating system. Training ARIMA models is particularly fast and inexpensive in terms
of resources. In contrast, the effectiveness of SVR decreases as the number of features or observations increases,
resulting in high training time and memory requirements [35]. As for LSTM model training, it requires more
computing time due to its complexity and the numerous parameters to be optimized. This difference highlights the
classic trade-off between forecast accuracy and computational cost. The study was conducted using the RStudio
environment (version 4.4.1) by exploiting several specialized libraries such as forecast for the ARIMA model,
caret and e1071 for the SVR model, and keras with tensorflow for LSTM networks. The integration of
these tools helped ensure the repeatability and efficiency of the experimental process.

4.1. Results of the ARIMA model

Estimation of the parameters of the ARIMA models for the MASI, S&P 500, CAC 40, and Nikkei 225 indices
was carried out using the maximum likelihood estimation (MLE) method, which is widely used due to its efficacy
in estimating parameters. The conditional sum of squares (CSS) method is also used, but the MLE method offers
more accurate estimates, especially for large samples. Table 5 shows the results of the ARIMA(2,1,2) model fitted
to the MASI index and the ARIMA(1,1,1) models fitted to the S&P 500, CAC 40, and Nikkei 225 indices. The
estimated AR and MA coefficients, associated standard deviations, and p-values are presented. Furthermore, AIC,
BIC, and maximum log-likelihood values are reported to assess the goodness of fit of each model. Analysis of
the estimated coefficients shows varying dynamics between markets. The MASI shows strong momentum with
partially corrective effects, reflecting a market memory that is marked but sensitive to shocks. The S&P 500 and
Nikkei 225 have negative AR coefficients, which suggests a quick corrective reaction to past variations, consistent
with the relative efficiency of these markets. Finally, the CAC 40 is characterized by high persistence of past
dynamics, offset by a quasi-symmetrical correction mechanism in response to new information.

Table 5. Estimated ARIMA parameters for MASI, S&P 500, CAC 40, and Nikkei 225

Index Model Parameter Estimate SE p-value AIC BIC

MASI ARIMA(2,1,2)

ϕ1 1.378 0.054 < 0.001∗∗∗

4063.93 4077.41ϕ2 -0.794 0.047 < 0.001∗∗∗

θ1 -1.351 0.062 < 0.001∗∗∗

θ2 0.793 0.065 < 0.001∗∗∗

S&P 500 ARIMA(1,1,1) ϕ1 -0.706 0.221 0.0014∗∗ 3539.32 3545.07
θ1 0.753 0.198 < 0.001∗∗∗

CAC 40 ARIMA(1,1,1) ϕ1 0.946 0.038 < 0.001∗∗∗ 3991.02 3996.82
θ1 -0.964 0.033 < 0.001∗∗∗

Nikkei 225 ARIMA(1,1,1) ϕ1 -0.934 0.064 < 0.001∗∗∗ 5064.52 5070.23
θ1 0.903 0.073 < 0.001∗∗∗

Note: * p < 5%, ** p < 1%, *** p < 0.1%.
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The models can therefore be described as in the following table 6, using estimated parameters:

Table 6. Estimated ARIMA models for MASI, S&P 500, CAC 40, and Nikkei 225

Index Model ARIMA Model Equation

MASI ARIMA(2,1,2) ŷ′t = 1.378y′t−1 − 0.794y′t−2 + εt − 1.351εt−1 + 0.793εt−2

S&P 500 ARIMA(1,1,1) ŷ′t = −0.706y′t−1 + εt + 0.753εt−1

CAC 40 ARIMA(1,1,1) ŷ′t = 0.946y′t−1 + εt − 0.964εt−1

Nikkei 225 ARIMA(1,1,1) ŷ′t = −0.934y′t−1 + εt + 0.903εt−1

Where y′t = yt − yt−1 represents the first-order difference of the time series, and εt denotes the error term, the models describe the
relationship between the present index values and their past values.

4.2. Results of the SVR model

This research employed several SVR models in the training set to predict the closing prices of the MASI, S&P 500,
CAC 40, and Nikkei 225 indices. The kernel types tested included linear, polynomial, and RBF. After evaluating
the performance of each model, the following kernels were selected for each index based on the data results. The
linear kernel was selected for the MASI (Figure 5) and S&P 500 (Figure 6) indices because of their effectiveness
in modeling linear relationships. In contrast, the polynomial kernel was selected for the CAC 40 (Figure 7) and
Nikkei 225 (Figure 8) indices to capture complex nonlinear patterns.
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Figure 5. MASI : SVR with different kernels fitting parameters
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Figure 6. S&P 500 : SVR with different kernels fitting parameters

The main features of the selected models for each index are summarized in the table 7.
The parameters C, the degree of the polynomial kernel, and the scale were adjusted after several trials to ensure

a suitable model generalization.
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Figure 7. CAC 40 : SVR with different kernels fitting parameters
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Figure 8. Nikkei 225 : SVR with different kernels fitting parameters

Table 7. Performance of SVR model with different kernel types

Index Kernel Parameters Cross-Validation RMSE MAE R2

MASI
Linear C (Cost) 10-fold CV, repeated 10 times 75.43 53.11 0.9944
Polynomial C, Degree, Scale 10-fold CV, repeated 13 times 76.32 53.83 0.9943
RBF with Sigma Sigma, C 10-fold CV, repeated 13 times 80.86 56.11 0.9937

S&P 500
Linear C (Cost) 10-fold CV, repeated 10 times 34.87 27.63 0.9934
Polynomial C, Degree, Scale 10-fold CV, repeated 10 times 34.96 27.65 0.9934
RBF with Sigma Sigma, C 10-fold CV, repeated 15 times 36.10 28.75 0.9929

CAC 40
Linear C (Cost) 13-fold CV, repeated 10 times 57.93 44.32 0.9764
Polynomial C, Degree, Scale 13-fold CV, repeated 5 times 57.52 44.04 0.9765
RBF with Sigma Sigma, C 13-fold CV, repeated 10 times 58.87 44.44 0.9759

Nikkei 225
Linear C (Cost) 10-fold CV, repeated 12 times 346.74 267.66 0.9930
Polynomial C, Degree, Scale 10-fold CV, repeated 12 times 346.03 267.17 0.9930
RBF with Sigma Sigma, C 10-fold CV, repeated 12 times 361.70 286.97 0.9923

4.3. Results of the LSTM model

We have defined and adjusted the hyperparameters for each analyzed index to model the financial indices (MASI,
S&P 500, CAC 40, and Nikkei 225) using LSTM. We started by setting the architecture’s initialization standards,
and then we adjusted the hyperparameters using an empirical trial-and-error method. In order to reduce validation
error, this method has involved testing multiple parameter combinations. The primary hyperparameters include the
batch size, set to 1 in all cases, and the number of units in the LSTM layer, which varies by index. The models are
constructed with a sequential architecture consisting of LSTM, Dense, and Dropout layers. We utilized the tanh
activation function for both the LSTM and Dense layers. The tanh function is defined as tanh(x) = ex−e−x

ex+e−x . The
models are compiled with the Adam optimizer [34] and a loss function of Mean Squared Error. They are trained
for 50 epochs, with some data reserved for validation. The table 8 summarizes the configurations for each index:
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Table 8. Summary of LSTM model configurations for each index

Index Units Total Params Epochs Validation Split Activation Function
MASI 5 146 50 0.1 tanh
S&P 500 3 64 50 0.1 tanh
CAC 40 5 146 50 0.1 tanh
N225 5 146 50 0.1 tanh

4.4. Comparative analysis

In this comparative analysis of the ARIMA, SVR, and LSTM models applied to the forecasting of the MASI,
S&P 500, CAC 40, and Nikkei 225 stock market indices, the results obtained show a clear superiority of the LSTM
model over all the indices studied. Indeed, according to the evaluation metrics used (MAE, RMSE, MAPE and R2),
LSTM offers the most accurate performance in forecasting, better capturing trends, and the nonlinear dynamics of
time series. Furthermore, the SVR model outperforms ARIMA in three indices (S&P 500, CAC 40, and Nikkei
225), confirming its ability to model complex relations between previous and future observations. However, for
the MASI index, ARIMA outperformed SVR, suggesting that, in some contexts, statistical models can still offer
competitive results over machine learning approaches.

Table 9. Comparison of performance metrics of models on train and test sets for different indices

Models
MAE RMSE MAPE (%) R2

Train Test Train Test Train Test Train Test

MASI
ARIMA 47.64 56.74 70.99 82.28 0.411 0.423 0.9949 0.8617
SVR 53.28 58.65 78.03 84.11 0.465 0.437 0.9939 0.8555
LSTM 46.65 54.88 70.64 78.76 0.406 0.410 0.9950 0.8686

S&P 500
ARIMA 27.23 28.05 34.85 37.01 0.610 0.510 0.9930 0.8139
SVR 27.57 27.71 34.91 37.76 0.619 0.504 0.9930 0.8153
LSTM 18.22 19.54 23.31 27.50 0.408 0.356 0.9968 0.9112

CAC 40
ARIMA 44.58 68.15 58.48 79.24 0.605 0.894 0.9751 0.6545
SVR 43.79 68.71 58.06 78.14 0.594 0.901 0.9755 0.6640
LSTM 42.51 64.11 55.57 72.58 0.577 0.840 0.9882 0.7715

Nikkei 225
ARIMA 268.10 333.57 346.38 457.76 0.809 0.842 0.9926 0.8395
SVR 265.53 350.90 346.36 458.56 0.800 0.886 0.9927 0.8389
LSTM 221.68 284.08 287.51 385.73 0.668 0.718 0.9949 0.8860

The detailed results are presented in Table 9, which groups the values of the various evaluation metrics for each
model and each index. Furthermore, the predictive performance of the models is illustrated in Figures 9, 10, 11,
and 12, where the prediction curves obtained are superimposed on the actual values for each index, allowing clear
visualization of the differences between models. These observations confirm the growing interest in approaches
based on RNN, notably LSTM, for the analysis and prediction of financial time series.
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According to the radar charts in Figures 13, 14, 15, and 16, LSTM consistently outperforms the four indices,
confirming its superiority in financial forecasting. However, the relative performance of the ARIMA and SVR
models differs depending on the market: SVR performs better on the CAC 40 and S&P 500, while ARIMA remains
competitive on the MASI and Nikkei 225, revealing the influence of market-specific characteristics for test sets.

5. Conclusion

Forecasting financial time series, particularly stock market indices, is challenging due to their volatility,
nonlinearity, and sensitivity to macroeconomic and psychological factors. This study compared the effectiveness of
three forecasting models, ARIMA, SVR, and LSTM, applied to the MASI, S&P 500, CAC 40, and Nikkei 225 stock
indices from January 2023 to July 2024. The main objective was determining which model offers the best ability
to forecast market fluctuations by applying the Box-Jenkins methodology to construct the ARIMA models. The
results of the performance measures MAE, RMSE, MAPE, and R2 showed that the LSTM DL model outperformed
the other two models, particularly its ability to capture complex patterns and long-term dependencies. However, a
significant limitation was observed for the CAC 40 index, where LSTM did not deliver the expected results. This
is probably due to using a trial-and-error approach to hyperparameter selection, which is only sometimes optimal.
A more systematic approach like grid search could improve LSTM’s performance on series like the CAC 40.
In addition, the classic ARIMA model outperformed the SVR ML model for MASI and Nikkei 225 stock indices,
demonstrating the effectiveness of this traditional method in certain specific contexts. Although generally presented
in the literature, SVR outperforms ARIMA in similar studies. This result suggests that the particular characteristics
of each time series can strongly influence the performance of the forecasting models. Even if the results obtained
show that the LSTM, SVR and ARIMA models are effective in predicting stock market indices, it is important
to note that any prediction error can have a significant impact in a real-life context, particularly for investment
or portfolio management decisions [32]. In future research, we envisage exploring the multivariate approach by
incorporating additional factors influencing stock index fluctuations, including macroeconomic indicators and
sentiment analysis. We will also explore advanced hybrid models and deep architectures, such as BiLSTM
(Bidirectional LSTM) and Stacked LSTM, to improve prediction accuracy and better capture the interactions
between different variables.
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