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Abstract A new lifetime distribution by compounding the Alpha Power Modified Weibull distribution, named Alpha Power
Modified Weibull-Geometric distribution is introduced and discussed.The compounding of the distribution is motivated from
the failure time of the system with series structure, where only the minimum lifetime value is considered. Various Statistical
properties of the proposed distribution are investigated. Maximum likelihood estimation method is used to estimate the
model parameter. To assess the performance of the proposed method, Monte Carlo simulation study is conducted using
various choices of effective sample size and parameter value. Finally, to illustrate the capability and flexibility of the
proposed distribution, three real life data sets are considered and showed that the proposed distribution is more compatible
by comparing with other competing lifetime distributions.
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1. Introduction

In the new era of statistical literature, researchers have shown an increased interest on finding and developing
different ways of expanding the existing families of distributions by incorporating one or more additional
parameters to the well-known distributions. Their motivation is to make the well known and existing distributions
more flexible with wider characteristics so that it can be used for modeling data in various disciplines.Through this
numerous distributions of modeling lifetime data has also been introduced.

[3] proposed a way to add a parameter to the lifetime distribution through compounding based on the failure time
of a series or parallel system with unknown components. This approach generates a new distribution with wider
characteristics which is more flexible in modeling many complex phenomenon; it also gives new distributions
that extend well-known families of distributions. The flexibility of such compound distributions comes in terms of
having better fit, more variation of the hazard rate function that maybe decreasing, increasing, bathtub shaped, etc.
Many extension of their work has been done since then. Among such compound distributions introduced recently
is the exponential-geometric distribution with decreasing hazard rate developed by compounding geometric and
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exponential distributions (EG) by [4]. In the same way, [7] and [8], respectively, introduced the exponential-
Poisson (EP) and exponential logarithmic (EL) distributions, which have decreasing hazard rates, and studied
their properties.

In practice, Weibull distribution has been considered as a multifaceted distribution due to having various shapes
of failure rate function i.e increasing, decreasing and constant. This make the Weibull distribution capable of
modeling monotone failure rate. However, In many real life phenomenon like biological, reliability studies and
many more, we encounter non-monotonic failure rate such as bathtub shape, upside down bathtub shape and
unimodal shape failure rates and Weibull distribution does not provide a reasonable parametric fit for modeling
phenomenon. Hence many generalizations of the Weibull distribution have been attempted by various researchers.
Some of the generalized Weibull distributions developed by following the idea of [1] by compounding the
Weibull distribution or its generalized form with other distributions are namely, the Weibull-geometric [10],
Weibull-Poisson [11], Exponential-Weibull [12], Modified Weibull geometric [13], Additive Weibull-geometric
[14], Exponentiated Transmuted Weibull geometric [16],Exponentiated Inverse Weibull-geometric [15], Weilbull
lindley [18] and Inverse Weibull-geometric [19]. Some other recent proposed distribution considering the samilar
approach are , the Ishita Power Series [21], Inverse Gamma Power Series[22], Inverse Lindeley Power Series [24],
Pareto-Poisson [25], Unit Gambertz Power Series [26] and the Zhang-Power Series[27].

[20] introduced a relatively new distribution called the Alpha power modified Weibull (APMW) distribution
which is derived based on the alpha power transformation method suggested by [17] which has increasing failure
rate, decreasing failure rate and unimodal probability density function (pdf) and can have increasing failure rate,
decreasing failure rate, increasing-decreasing-increasing, bathtub and upside-down bathtub hazard rate function
(hrf). It was also shown by analysing three real life data sets that this distribution provide better fit compared
to other competing distribution. Thus, this make the APMW distribution a good member of the compounding
distribution instead of other generalized distribution.

The aim of this paper is to introduced a new lifetime distribution by compounding the Alpha Power Modified
Weibull distribution and the geometric distribution. The main motivations for this study are as follows:
(i) the proposed distribution have various shapes of failure rate function, indicating the great flexible nature of the
distribution, which is also one of the important characteristics for modeling lifetime scenario;
(ii) The proposed distribution is capable of modeling the first failure of a system having a series structure;
(iii) The proposed distribution compares well with other competing distribution in modeling survival and failure
as shown by three real data applications.

The rest of the paper is organized as follows: In Section 2, we introduce the new Alpha Power Modified
Weibull Geometric (APMWG) distribution by compounding the Alpha Power Modified Weibull distribution and
the geometric distribution. In Section 3, we discuss some of its statistical properties. In Section 4, the estimation
of the parameters is performed by the method of maximum likelihood estimation. In Section 5, a simulation study
has been performed to illustrate the behavior of the MLEs in terms of different sample size n and different sets of
parameter value. Three real data sets are studied to illustrate the importance of the distribution in section 6. Finally,
we conclude the paper in section 7.

2. The Alpha Power Modified Weibull-Geometric Distribution (APMWG)

In this section, we introduce the new lifetime distribution known as the Alpha Power Modified Weibull-Geometric
(APMWG) distribution. The new distribution is defined as follows. Suppose that a system has n-components
in series structure, assumed to be independent and identically distributed at a given time, where the lifetime of
the ith-components is denoted by Xi(i=1,2,3,...n). Further, suppose that the random variable N follow Geometric
distribution with probability mass function (pmf) given by

P (N = n) = (1− p)pn−1, n = 1, 2, 3, ..., and 0 < p < 1 (1)
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and the lifetime Xi(i=1,2,3,..n) follows Alpha Power Modified Weibull distribution with cumulative distribution
function (cdf) and probability density function (pdf) respectively given by

FAPMW (x, θ) = F (x) =
α1−e−(λx)γ − 1

α− 1
if α > 0, α ̸= 0 (2)

and
fAPMW (x, θ) = f(x) =

logα

α− 1
γλγeγ−1α1−e−(λx)γ

e−(λx)γ ; if α > 0, α ̸= 0. (3)

As the system is having a series structures thus, the failure time of the system is

X = min(X1, X2, ...Xn)

Then the conditional cdf of X given N=n is given as

F (x | n; τ) = 1− (1− F (x))n = 1−

[
1− α1−e−(λx)γ − 1

α− 1

]n
. (4)

So, the required marginal cdf of X is given by

FAPMWG(x; θ, p) =
1− α1−e−(λx)γ

1− α+ αp− pα1−e−(λx)γ
, (5)

where, x > 0, θ > 0 and 0 < p < 1, and the corresponding pdf of X is given by

fAPMWG(x; θ, p) =
(α+ p− pα− 1)logαγλγxγ−1α1−e−(λx)γ

e−(λx)γ[
1− α+ αp− pα1−e−(λx)γ

]2 . (6)

The survival function and the hazard rate function (hrf) of APMWG distribution are given, respectively, by

SAPMWG(x; θ, p) =
(p− 1)

(
α− α1−e−(λx)γ

)
1− α+ αp− pα1−e−(λx)γ

(7)

and

hAPMWG(x; θ, p) =
(α+ p− pα− 1)logαγλγxγ−1α1−e−(λx)γ

e−(λx)γ

(p− 1)
(
α− α1−e−(λx)γ

) (
1− α+ αp− pα1−e−(λx)γ

) , (8)

Where, θ=(α,γ,λ) is considered to be the set of parameters.

Lemma 1: The hrf of the APMWG distribution is
i. decreasing if η′(x) < 0.
ii. increasing if η′(x) > 0.
iii. bathtub if there exist x= xo, such that η′(xo) = 0, η′(x) < 0 for x < x0 and η′(x) > 0 for x > x0.
iv. upside down bathtub if there exist x= xo, such that η′(xo) = 0, η′(x) < 0 for x > x0 and η′(x) > 0 for x < x0.
For η (x) = f ′(x;θ,p)

f(x;θ,p) , f ′(x; θ, p) is the first derivative of the pdf f(x;θ,p) of APMWG distribution with respect to x
and η′ (x) is the first derivative of η (x) with respect to x. The lemma was introduced and proven by [1], and it is
widely recognized as Glaser’s Theorem.

In addition to the above mathematical derivation, Figure 1 and 2 represent the graphical representation of the
pdf and the hrf, showing the possible shapes for some selected values of the parameters respectively. Figure 1 and
2 shows that the APMWG Distribution has a very supple and agile trait , with the pdf having a diverse unimodal

Stat., Optim. Inf. Comput. Vol. 14, August 2025



M NAMSAW ET AL. 1063

Figure 1. Plots of the pdfs of APMWG distribution for four different set of parameters values

shapes and the hrf with increasing, decreasing, bathtub, upsidedown bathtub and increasing-decreasing-increasing
shapes.

The graphical statistical analysis of Figure 1 and 2, shows that the peak of the pdf of APMWG distribution
sharpen gradually as we increase the value of the parameter α and γ, where as the pdf flattens and stretches with
the decrease in the value of the parameter λ, giving a heavy-tailed behaviour. Similarly, We observe that the shape of
the hrfs changes significantly with each of the four parameters, resulting in a wide range of dynamic hrf behaviors.
Additionally, as shown in Figure 2, decreasing the value of parameter p while holding the other parameters constant
leads to a noticeable flattening of the hrf.

3. Statistical Properties

In this section various statistical properties of the APMWG distribution have been studied
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Figure 2. Plots of the hrfs of APMWG distribution for four different set of parameters values

3.1. Quantiles

The quantile function of a random variable X is the inverse of its distribution function. Thus, the quantile function
denoted by xq, for 0 < q < 1 , can be easily obtained from Eq. 5 and is obtained as

xq =

−1

λγ
log

1−
log
(

q−qα+pαq−1
pq−1

)
logα


1
γ

(9)

Hence, the first (25 percentile), second (median or 50 percentile) and the third (75 percentile) quantile of the
distribution can be obtained by simply putting q= 0.25, 0.5 and 0.75 respectively in the above equation.

3.2. Moments

Let the rv X have APMWGD with pdf as given in Eq. 6. Then, for r=1,2,...., the rth moment of X is given by

Stat., Optim. Inf. Comput. Vol. 14, August 2025



M NAMSAW ET AL. 1065

µ′
r =

(∫ ∞

0

xrf(x) dx

)
(10)

Substituting Eq. 6 in the above equation, we get

µ′
r =

[∫ ∞

0

xr
(α+ p− pα− 1)logαγλγxγ−1α1−e−(λx)γ

e−(λx)γ[
1− α+ αp− pα1−e−(λx)γ

]2 dx

]
If |z| < 1 and k > 0, we have the series representation

(1− z)−k =

∞∑
i=0

Γ(k + i)zi

Γ(k)i!
(11)

We also have the series representation

α−w =

∞∑
k=0

−(−logα)kwk

k!
(12)

Using the series representation in Eq. 11, the binomial expansion and the series representation in Eq.12, the rth

order moment of X following the APMWG distribution is obtained as,

µ′
r =

(α+ p− pα− 1)Γ( rγ + 1)

λ(γ)
r
γ

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
r
γ +1

. (13)

Thus, the mean of the distribution is obtained as,

µ′
1 =

(α+ p− pα− 1)Γ( 1γ + 1)

λ(γ)
1
γ

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
1
γ +1

. (14)

In addition, using the first four comulants denoted by Cr, the coefficient of skewness and kurtosis can also be
calculated from the ordinary moments of X , where

Cr = µ′
r −

r−1∑
i=0

(
r − 1

i− 1

)
Ciµ

′
r−i (15)

Therefore we have,
C1 = µ′

1 (mean)
C2 = µ′

2 − (µ′
1)

2 (variance)
C3 = µ′

3 − 3µ′
2µ

′
1 + (µ′

1)
3

C2 = µ′
4 − 4µ′

3µ
′
1 − 3(µ′

2)
2 + 12µ′

2(µ
′
1)

2 − 6(µ′
1)

4

Now, the coefficients of skewness (denoted by CS) and kurtosis (denoted by CK) is respectively obtained, as
i. CS= C3

C
3/2
2

and

ii. CK=C4

C2
2
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3.3. Moment Generating Function

The Moment Generating Function of a random variable X plays a very crucial role in Probability theory and
statistics, providing the basis for an alternative route of analysis, enabling us to derive moments and probability
distribution with ease, as the name suggests. The MGF of X is defined as the expected value of etx, given by

MX(t) =

(∫ ∞

0

etxf(x) dx

)
(16)

Using the Maclaurin series expansion etx =
∑∞

l=0
(tx)l

l! , we have

MX(t) =

(∫ ∞

0

∞∑
l=0

(tx)l

l!
f(x) dx

)
.

In a way similar to the moments, using the series representation in Eq. 11, the binomial expansion, and the series
representation in Eq. 12, we have

MX(t) =
(α+ p− pα− 1)Γ( rγ + 1)

λ(γ)
r
γ

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

∞∑
l=0

(−log)(k+1)(i−m+ 1)ktl

k!l!(k + 1)
r
γ +1

. (17)

3.4. Mean Deviation

The Mean Deviation about the mean and the median gives us insight into the variability of a population. Now, let
us denote the mean and median of the APMWG distribution by µ and M respectively. The Mean deviation about
the mean and the mean deviation about the median, denoted by Dµ(X) and DM (X) respectively can be calculated
as,

Dµ(X) = E(|X − µ|) =
∫ ∞

0

|X − µ|f(x)dx

= 2

∫ µ

0

(µ− x)f(x)dx

= 2µF (µ)− 2

∫ µ

0

xf(x)dx (18)

DM (X) = E(|X −M |) =
∫ ∞

0

|X −M |f(x)dx

= µ− 2

∫ M

0

xf(x)dx (19)

For short, let us set ϕ=(µ or M) and ψ(ϕ)=
∫ ϕ

0
xf(x)dx. Therefore, using the series representation given in Eq.

11, the binomial expansion and the series representation given in Eq. 12, we have
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ψ(ϕ) =

∫ ϕ

0

x
(α+ p− pα− 1)logαγλγxγ−1α1−e−(λx)γ

e−(λx)γ[
1− α+ αp− pα1−e−(λx)γ

]2 dx

=
(α+ p− pα− 1)

λ(γ)
1
γ

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
1
γ +1

γ

[
(
1

γ
+ 1), (k + 1)λγϕγ

]
(20)

By substituting the above in Eq. 18 and Eq. 19, the mean deviation about the mean and about the median of
APMWG distribution is repectively obtained as

Dµ(X) = 2µ

[
1− α1−e−(λx)γ

1− α+ αp− pα1−e−(λx)γ

]
− 2

(α+ p− pα− 1)

λ(γ)
1
γ

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
1
γ +1

γ

[
(
1

γ
+ 1), (k + 1)λγµγ

]
(21)

DM (X) = µ− 2
(α+ p− pα− 1)

λ(γ)
1
γ

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
1
γ +1

γ

[
(
1

γ
+ 1), (k + 1)λγMγ

]
(22)

3.5. Numerical computation of Descriptive statistics and Sensitivity analysis

In this section, we have obtained some numerical value of the mean, variance, skewness, and kurtosis of the
APMWG distribution for different parameter values using R software by generating random numbers following
the distribution and is presented in Table 1, 2, 3 and 4.

Some of the conclusions that can be made about the APMWG distribution from the above Table 1, 2, 3 and 4
are;

(i) The APMWG distribution is suitable for modeling both positively and negatively skewed data sets.
(ii) The APMWG distribution is suitable for modeling both platykurtic (kurtosis < 3) and leptokurtic (kurtosis

> 3) data sets.
(iii) Mean and variance are an increasing function of α for fixed value of γ, λ and p in the APMWG distribution.
(iv) The mean and variance are decreasing function of the parameter λ and p in the APMWG distribution.
(v) The mean is an increasing function of the parameter γ, while the variance is decreasing function of the

parameter γ in the APMWG distribution.
The Latin Hypercube Sampling (LHS) is employed to evaluate the sensitivity of key distributional

characteristics—namely, skewness, kurtosis, and hazard rate trend to the parameters. Through systematic sampling
, simulation and 3D plots for Visualize parameter interactions, as shown in Figure 3, 4 and 5, we derived several
key insights into how these parameters influence the shape and reliability properties of the distribution.

In Figure 3 we see that skewness varies with parameters α and λ. Most parameter combinations lead to low
skewness (symmetric distributions), but specific regions—particularly at moderate α and lower λ—exhibit high
skewness, indicating significant asymmetry. This highlights that skewness is highly sensitive to certain parameter
ranges. We also see that skewness tends to be below for a wide range of p and γ values but Skewness becomes
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Table 1. Mean, variance, skewness and kurtosis of APMWG distribution as α value increases

α γ λ p mean variance skewness kurtosis

0.5 2 0.05 0.01 16.4919 84.27481 0.4961771 2.575285

1.5 18.563 94.9559 0.3094247 2.369644

2.5 20.63 97.13079 0.2302769 2.344075

3.5 21.483 97.59072 0.182331 2.348406

4.5 22.108 97.97559 0.149058 2.361107

Table 2. Mean, variance, skewness and kurtosis of APMWG distribution as γ value increases

α γ λ p mean variance skewness kurtosis

0.5 2 0.05 0.01 16.2394 94.7416 0.6817071 3.003957

2.5 16.42333 65.89901 0.4041645 2.676255

3 16.66 49.6011 0.1959899 2.596411

3.5 16.903 39.16202 0.0308571 2.629892

4.5 17.319 26.65246 -0.217905 2.834037

Table 3. Mean, variance, skewness and kurtosis of APMWG distribution as λ value increases

α γ λ p mean variance skewness kurtosis

0.5 2 0.05 0.01 16.3404 74.33436 0.5217119 2.817425

0.5 1.63403 0.7433436 0.5217119 2.817425

0.9 0.90780 0.229427 0.5217119 2.817425

1.5 0.54468 0.08259374 0.5217119 2.817425

2.5 0.3268 0.02973374 0.5217119 2.817425
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Table 4. Mean, variance, skewness and kurtosis of APMWG distribution as p value increases

α γ λ p mean variance skewness kurtosis

0.5 2 0.05 0.0001 1.7022 0.8419467 0.5576899 2.758013

0.009 1.6977 0.8403312 0.5610282 2.762775

0.01 1.6972 0.8401484 0.5614055 2.763316

0.5 1.36884 0.701565 0.8299848 3.26549

0.9 0.75400 0.3606913 1.58557 5.84756

Figure 3. 3D-Plots of the Skewness as the function of the parameters
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Figure 4. 3D-Plots of the Kurtosis as the function of the parameters

higher in certain regions, suggesting that the underlying distribution becomes more asymmetric depending on
specific combinations of p and γ. Figure 4 shows that most combinations yield low kurtosis (thin tails), but some
lead to extremely heavy tails. Low values of α, λ and γ tend to be associated with high kurtosis, suggesting these
parameters drive tail risk.This suggests that the model is capable of capturing heavy-tailed behavior, a desirable
property in contexts such as finance, reliability, or survival analysis where extreme values play a critical role.

Analysis of the hazard rate trend revealed predominantly positive values, indicating that the hazard function
often increases with time. This characteristic is consistent with systems exhibiting wear-out failures or aging-
related degradation. From Figure 5, we see that Hazard rate is highly sensitive to all the parameters. Hazard rate
tends to decrease with increasing of the parameters α and γ, but the influence of the other parameters modulates
this effect. The flexibility in hazard rate behavior further validates the distribution for a wide range of applications
involving lifetime or failure-time data.

3.6. Incomplete Moments

Incomplete moments are easily interpreted and form natural building blocks from which measure of inequality may
be constructed.

Stat., Optim. Inf. Comput. Vol. 14, August 2025
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Figure 5. 3D-Plots of the Hazard Rate as the function of the parameters

The hth incomplete moment of the APMWG distribution is define by

I(t;h) =

∫ t

0

xhf(x) dx (23)

Similarly using the series representation as given in Eq. 11 and Eq. 12 and the binomial expansion, the hth

incomplete momemt of X following APMWG distribution is obtained as

I(t;h) =
(α+ p− pα− 1)

λ(γ)
h
γ

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
h
γ +1

γ

[
(
h

γ
+ 1), (k + 1)λγtγ

]
, (24)

where, γ(a,x) is the lower incomplete gamma function.
The first two incomplete moments, where we set h=0 and h=1, provide especially useful information in many

application about the shape of the distribution. The first incomplete moment is also known to be related to
Bonferroni and Lorenz curve, mean residual and mean waiting time.
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3.7. Conditional Moments

The conditional moment of random variable X is defined by

E [Xn/X > n] =
1

S(x)

∫ ∞

t

xnf(x) dx (25)

Now substituting from Eq. 6 and Eq. 7, the conditional moment of the APMWG distribution is obtained as

E [Xn/X > n] =
(α+ p− pα− 1)

λ(γ)
n
γ

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
n
γ +1

Γ

[
(
n

γ
+ 1), (k + 1)λγtγ

]
, (26)

where, Γ(a,x) is the upper incomplete gamma function.

3.8. Mean Residual Life

In the context of life testing situation or reliability studies, the expected additional lifetime that a component has
survived until time ”t” is a function t, called the mean residual life µR(t) and is defined as

µR(t) =
1

S(t)

(∫ ∞

t

xf(x)dx− t

)
(27)

µR(t) =
1

S(t)

(
µ′
1 − t− (α+ p− pα− 1)

λ(γ)
1
γ

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
1
γ +1

γ

[
(
1

γ
+ 1), (k + 1)λγtγ

])
, (28)

where, S(t) is the survival function defined in Eq. 7, µ′
1 is the mean define in Eq. 14 and γ(a,x) is the lower

incomplete gamma function.

3.9. Measures of Inequality and uncertainty

In this subsection, we will obtained the Lorenz and Bonferroni curve as the measures of inequality. Also, Renyi
Entropy will be obtained as an important measures of uncertainty.

3.9.1. Lorenz and Bonferroni curve The Lorenz and Bonferroni curve for a random variable X is obtained as,

L(x) =
I(t; 1)

E(x)
and B(x) =

L(x)

E(x)
, (29)

Where, I(t;1) is the first incomplete moment. Now, using Eq. 12 and Eq. 14, the Lorenz curve expression is obtained
as,
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L(x) =
1

Γ( 1γ + 1)

∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
1
γ +1

γ

[
(
1

γ
+ 1), (k + 1)λγtγ

]
[ ∞∑
i=0

(i+ 1)

i∑
m=0

(
i

m

)
(α− pα)mp(i−m)α(i−m+1)

∞∑
k=0

(−log)(k+1)(i−m+ 1)k

k!(k + 1)
1
γ +1

]−1

, (30)

where, γ(a,x) is the lower incomplete gamma function.
Thus, the Bonferroni curve can be obtained by substituting the value from the above equation and the mean value

in the given formula.

3.9.2. Renyi Entropy The entropy of a random variable X with density function f(x) is a measure of uncertainty or
randomness of a system. One of the entropy measure that is often used is Renyi entropy which is defined by

IR(β) =
1

1− β
log

(∫ ∞

0

(f(x))βdx

)
(31)

Substituting Eq. 6 in the above equation, we have

IR(β) =
1

1− β
log((α+ p− pα− 1)β(logαγλγ)β∫ ∞

0

(
xγ−1α1−e−(λx)γ

e−(λx)γ[
1− α+ αp− pα1−e−(λx)γ

]2
)β

dx) (32)

Using the binomial expansion and the series expansion as given in Eq. 12 we have,

IR(β) =
β

1− β
(log(α+ p− pα− 1) + log(logαγλγ) + logα)

+
1

1− β
log

 2β∑
m=0

∞∑
k=0

−(−logα)kΓ
(

β(γ−1)
γ + 1

)
(
m
2β

)
(1− α+ pα)m(−p)mγ (λγ(k(β −m)− β)

β(γ−1)
γ +1

 . (33)

3.10. Order Statistics

Let X1, X2, ..., Xr be a random sample of size n following APMWG distribution and let X1:r, X2:r, ..., Xr:r be
their corresponding order statistics. The pdf of the ith order statistic, Xi:r denoted byfi:r(x) is given by

fi:r(x) =
1

B(i, r − i+ 1)
f(x)F (x)i−1(1− F (x))r−i

By using the binomial expansion in the above equation we have

fi:r(x) =
1

B(i, r − i+ 1)

k−i∑
l=0

Ck−i
l (−1)lf(x)F (x)l+i−1 (34)
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Substituting the value from Eq. 5 and Eq. 6 in the above equation and using the binomial expansion, the pdf of
the ith order statistics is obtained as

fi:r(x) =
1

B(i, r − i+ 1)

k−i∑
l=0

l+i−1∑
m=0

Ck−i
l Cl+i−1

m (−1)l+m(α+ p− pα− 1)

αm(1−e−(λx)γ ) + (1− e−(λx)γ )

(1− α+ αp− pα1−e−(λx)γ )l+i−1
logαγλγxγ−1e−(λx)γ . (35)

The associate cdf of the ith order statistic, Xi:r denoted byFi:r(x) is given by

Fi:r(x) =

k∑
i=0

Ck
l F (x)

i(1− F (x))k−i =

k∑
i=0

k−i∑
l=0

(−1)lCk
l C

k−i
l F (x)(i+l)

=

k∑
i=0

k−i∑
l=0

(−1)lCk
l C

k−i
l

[
1− α1−e−(λx)γ

1− α+ αp− pα1−e−(λx)γ

](i+l)

(36)

The pdf and cdf of the smallest X1:r and largest Xr:r order statistics can be obtain by simply setting i=1 and i=r
respectively Eq. 35 and Eq. 36 respectively.

4. Parameter Estimation

In this section, we estimate the parameter of APMWG distribution by using the maximum lilelihood estimation
(MLE) method.

4.1. Maximum Likelihood Estimation method

Suppose that X1,X2,....,Xn is a random sample of size n from the APMWG distribution with the density function
as given in Eq. 6.

Then the log-likelihood function is obtained as

l(θ, p) = nlog(α+ p− pα− 1) + nloglogα+ nlog (λγγα)− logα

n∑
i=1

e−(λxi)
γ

− λγ
n∑

i=1

xγi

+(γ − 1)

n∑
i=1

logxi − 2

n∑
i=1

log
(
1− α+ pα− pα1−e−(λxi)

γ )
. (37)

Now differentiating Eq. (19) w.r.t α,λ, γ and p respectively and equating them to zero, we obtain the maximum
likelihood estimates (MLEs) of α, λ, γ and p.

δl(θ, p)

δα
=

n(1− p)

(α+ p− pα− 1)
+

n

αlogα
+
n

α
− 1

α

n∑
i=1

e−(λxi)
γ

−2

n∑
i=1

p− 1 +
(
pα−e−(λxi)

γ

(e−(λxi)
γ

)
)

(
1− α+ pα− pα1−e−(λxi)

γ ) = 0 (38)
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δl(θ, p)

δλ
=
nγλ(γ−1)

λγ
+ logαγλ(γ−1)

n∑
i=1

e−(λxi)
γ

xγi − γλ(γ−1)
n∑

i=1

xγi

+2plogαγλ(γ−1)
n∑

i=1

α1−e−(λxi)
γ

xγi(
1− α+ pα− pα1−e−(λxi)

γ ) = 0 (39)

δl(θ, p)

δγ
=
n

γ
+
nlogλ

λγ
+ logαλγ

n∑
i=1

e−(λxi)
γ

xγi log(λxi)−
n∑

i=1

(λxi)
γ log(λxi)

+

n∑
i=1

logxi + 2p

n∑
i=1

logαα−e−(λxi)
γ

e−(λxi)
γ

(λxi)
γ log(λxi)(

1− α+ pα− pα1−e−(λxi)
γ ) = 0 (40)

δl(θ, p)

δp
=

n(1− α)

(α+ p− pα− 1)
− 2

n∑
i=1

α− α1−e−(λxi)
γ(

1− α+ pα− pα1−e−(λxi)
γ ) = 0 (41)

The maximum likelihood estimates (MLEs) of (α, λ, γ,p) are the simultaneous solutions of the Eq. 38, Eq.
39, Eq. 40 and Eq. 41. The above mentioned equations are not in closed form, thus numerical technique like the
Newton-Raphson method can be used to obtained the MLEs. Also, there are many well-established packages in R
language that can be used to obtained the maximization of Eq. 37.

Under certain regularity conditions, the asymptotic distribution of the MLEs, i.e.
√
n(ϕ̂− ϕ) follows multivariate

normal distribution with mean vector zero and variance covariance matrix ( I(ϕ̂)−1), where n is the sample size, ϕ̂
is the MLE of ϕ. Using this asymptotic properties of MLE we can obtain the standard Error of the estimates and
also construct the asymptotic confidence interval (ACI) of the parameters.

Therefore, for any arbitrary 0 < τ < 1 , the 100(1− τ)% ACI of the unknown parameters can be determined as
follows:

(α̂)± z τ
2

√
var(α̂), (λ̂)± z τ

2

√
var(λ̂), (γ̂)± z τ

2

√
var(γ̂), (p̂)± z τ

2

√
var(p̂), (42)

Where, z τ
2

is the upper ( τ2 )
th percentile point of the standard normal distribution.

4.2. Maximum Likelihood estimation for progressive type II censored samples

Researchers often faced problem with incomplete or censored data, as censored samples are always present in life
testing experiment when failures times of all units place on the life test is not observe.This may happen intentionally
based on the requirements or unintentionally.

Progressive censoring can be describe as a censoring method where units are removed from the life test at some
prefixed or random inspection times.Although various models of progressively censored data have been discussed
in the literature, Progressive type II can be considered as the most popular model. Under this scheme of censoring,
the removal are carried out at observed failure times. The prefixed number of units is immediately withdrawn from
the surviving units open observing a failure. Therefore, the number of observations is fixed in advance, while the
duration of the experiment is random[9].

Under this scheme, from a total of n units placed simultaneously under life test, only m(< n)are completely
observed until failure. Then given a censoring plan R=(R1, R2, ..., Rm), at the time x1:m:n of the first failure, R1

units are randomly censored from the (n-1) surviving units.At the time x2:m:n of the second failure, R2 units
are randomly censored from the (n-2-R1) surviving units and its continue until at the time xm:m:n of the mth

failure, all the remaining Rm = n−m−R1 − ...−Rm−1 surviving units are censored. The ordered failure times
X1:m:n;R1

≤ X2:m:n;R2
≤ ... ≤ Xm:m:n;Rm

are the progressive type II censored samples.
Now let x = (x1:m:n, x2:m:n;...xm:m:n;) with x1:m:n ≤ x2:m:n ≤ ... ≤ xm:m:n be the m observations under

progressive type ii censoring from a sample of size n drawn from the APMWG distribution with cdf and pdf
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given in Eq. 5 and Eq. 6 respectively. The likelihood function based on the progressive type ii censored sample x
is given by

LPC(θ, p;xi:m:n) = A

m∏
i=1

f(xi:m:n)[1− f(xi:m:n)]
Ri (43)

Where A = n(n− 1−R1)(n− 2−R1 −R2)...(n−m+ 1−R1 − ...Rm−1) [?]
Using Eq. 5 and Eq.6 and taking log on both side we obtained the log likelihood function as

lPC(θ, p;xi:m:n) = logA+mlog(α+ p− pα− 1) +mloglogα+ (n−m)log(p− 1)

+mlog (λγγα) + (n−m)logα− logα

m∑
i=1

e−(λxi:m:n)
γ

−λγ
m∑
i=1

xγi:m:n + (γ − 1)

m∑
i=1

logxi:m:n +

m∑
i=1

Rilog
(
1− α−e−(λxi:m:n)γ

)
−

m∑
i=1

(2 +Ri)log
(
1− α+ pα− pα1−e−(λxi:m:n)γ

)
. (44)

Now differentiating Eq. w.r.t α,λ, γ and p respectively and equating them to zero, we obtain the MLEs of α, λ,
γ and p.

δlPC(θ, p)

δα
=

m(1− p)

(α+ p− pα− 1)
+

m

αlogα
+
m

α
− 1

α

m∑
i=1

e−(λx1:m:n)
γ

+
(n−m)

α

+

m∑
i=1

Ri

(
α1−e−(λx1:m:n)γ

)
(e−(λx1:m:n)

γ

)(
1− α−e−(λxi:m:n)γ

) −
m∑
i=1

(2 +Ri)
p− 1 +

(
pα−e−(λx1:m:n)γ

(e−(λx1:m:n)
γ

)
)

(
1− α+ pα− pα1−e−(λx1:m:n)γ

) = 0 (45)

δlPC(θ, p)

δλ
=
mγλ(γ−1)

λγ
+ logαγλ(γ−1)

m∑
i=1

e−(λx1:m:n)
γ

xγ1:m:n − γλ(γ−1)
m∑
i=1

xγ1:m:n

+logαγλ(γ−1)
m∑
i=1

Rix
γ
1:m:n

(
α1−e−(λx1:m:n)γ

)
(e−(λx1:m:n)

γ

)(
1− α−e−(λxi:m:n)γ

)
+plogαγλ(γ−1)

m∑
i=1

(2 +Ri)
α1−e−(λx1:m:n)γ

xγ1:m:n(
1− α+ pα− pα1−e−(λx1:m:n)γ

) = 0 (46)

δlPC(θ, p)

δγ
=
m

γ
+
mlogλ

λγ
+ logαλγ

m∑
i=1

e−(λx1:m:n)
γ

xγ1:m:nlog(λx1:m:n)−
m∑
i=1

(λx1:m:n)
γ log(λx1:m:n)

+

n∑
i=1

logx1:m:n + p

m∑
i=1

(2 +Ri)logαα
−e−(λx1:m:n)γ

e−(λx1:m:n)
γ

(λx1:m:n)
γ log(λx1:m:n)(

1− α+ pα− pα1−e−(λx1:m:n)γ
)

+logαλγ
m∑
i=1

Rix
γ
1:m:nlog(λx1:m:n)

(
α1−e−(λx1:m:n)γ

)
(e−(λx1:m:n)

γ

)(
1− α−e−(λxi:m:n)γ

) = 0 (47)
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δlPC(θ, p)

δp
=

m(1− α)

(α+ p− pα− 1)
+

(n−m)

log(p− 1)

−
m∑
i=1

(2 +Ri)α− α1−e−(λx1:m:n)γ(
1− α+ pα− pα1−e−(λx1:m:n)γ

) = 0 (48)

The maximum likelihood estimates (MLEs) of (α, λ, γ,p) for the progressive type ii censored samples are the
simultaneous solutions of the Eq. 45, Eq. 46, Eq. 47 and Eq. 48. The above mentioned equations are not in closed
form, thus numerical technique like the Newton-Raphson method can be used to obtained the MLEs. Also, there
are many well-established packages in R language that can be used to obtained the maximization of Eq. 44.

The Standard Error and the ACI can be obtained in the similar way as the uncencored samples. Hence, for any
arbitrary 0 < τ < 1 , the 100(1− τ)% ACI of the unknown parameters can be determined as follows:

(α̂)± z τ
2

√
var(α̂), (λ̂)± z τ

2

√
var(λ̂), (γ̂)± z τ

2

√
var(γ̂), (p̂)± z τ

2

√
var(p̂), (49)

Where, z τ
2

is the upper ( τ2 )
th percentile point of the standard normal distribution.

5. Simulation Analysis

In this section, we will be using the inversion method for simulating random samples from the APMWG
distribution, that is, simulation is done using Eq. 5.Also a simulation study will be performed to assess the behaviour
of the MLEs.

5.1. Generation method

The inversion method relies on the principle that continuous cdf range uniformly over the open interval (0,1). If u
is a uniform random number on (0,1), then x=F−1(u) generates a random number x from a continuous distribution
with the specified cdf F.

Thus,for APMWG distribution we have,

x =

−1

λγ
log

1−
log
(

u−uα+pαu−1
pu−1

)
logα


1
γ

(50)

5.2. Simulation

In this subsection, we have done a simulation study to assess the behaviour of the MLEs for uncencored data in
terms of sample size n. We have generated random numbers of sample size n=50, 100 and 150 following APMWG
distribution by using Eq. 50 by initially setting the parameters values. Then, by using the DEoptim function over
1000 replication in r, the average MLE (MLE), average bias (bias) and average standard error (MSE) values of the
parameters is obtained for different sets of parameters as follows

Set-1: α=0.9, γ=2.0, λ=0.5, p=0.9
Set-2: α=0.9, γ=2.5, λ=1.5, p=0.9
Set-3: α=0.9, γ=2.0 λ=2.5, p=0.5
Set-4: α=1.5, γ=4.5, λ=0.9, p=0.5
Set-5: α=0.5, γ=4.5, λ=1.5, p=0.9
The average MLE, bias and the Standard Error for five sets of parameter value are reported in Table 5

respectively and the conclusion that can be drawn from the result in Table 5 are as follow
1. The average MLE values of all the four parameter are very precise to the actual parameter value considered in
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Table 5. MLEs and MSE for 5 different sets of parameter value

MLE bias MSE
sets n α γ λ p α γ λ p α γ λ p

50 1.07073 1.94911 0.63598 0.71971 0.17073 -0.05089 0.13598 -0.180289 0.50687 0.11663 0.10555 0.12079

set 1 100 0.97317 1.97086 0.54989 0.78179 0.07318 -0.02913 0.04989 -0.11820 0.48377 0.06284 0.03648 0.07396

150 0.88851 1.97051 0.53278 0.78912 -0.01149 -0.02949 0.03278 -0.11088 0.438761 0.04476 0.02132 0.06345

50 1.03432 2.45528 1.76486 0.73459 0.134328 -0.04471 0.26486 -0.16540 0.58958 0.16812 0.45298 0.11162

set 2 100 0.92911 2.46716 1.61486 0.77530 0.02911 -0.03283 0.11485 -0.12469 0.43338 0.08978 0.19944 0.07442

150 0.87085 2.45845 1.58275 0.79402 -0.02914 -0.04154 0.08275 -0.10598 0.39516 0.06072 0.12507 0.05658

50 1.06434 2.09545 2.54903 0.40401 0.16434 0.09545 0.04903 -0.09598 0.43342 0.16647 0.49666 0.12896

set 3 100 1.05074 2.01356 2.57155 0.37752 0.15074 0.01356 0.07155 -0.12247 0.37809 0.093011 0.39223 0.10744

150 1.02251 2.01199 2.53619 0.39535 0.12251 0.01199 0.03618 -0.10464 0.33508 0.06609 0.32218 0.10002

50 1.50354 4.68743 0.89873 0.36658 0.00353 0.18743 -0.00127 -0.13341 0.90163 0.86385 0.01227 0.13127

set 4 100 1.43813 4.62509 0.89918 0.35946 -0.06186 0.12509 -0.00082 -0.14053 0.87416 0.51208 0.00864 0.11138

150 1.49655 4.56308 0.89906 0.37660 -0.00345 0.06307 -0.00093 -0.12340 0.76620 0.36465 0.006838 0.09779

50 1.022818 4.423928 1.63996 0.76981 0.52281 -0.07607 0.13996 -0.13018 0.64239 0.54575 0.13306 0.09248

set 5 100 0.91524 4.42542 1.56811 0.80734 0.41524 -0.07457 0.06810 -0.09265 0.56244 0.29496 0.06337 0.06126

150 0.83381 4.44147 1.53334 0.82623 0.33380 -0.05853 0.03334 -0.07376 0.47763 0.19670 0.03890 0.04556

the study.
2. The average bias move towards zero as the sample size n increases.
3. Also, the Standard Error of all the four parameters decreases as we increase the sample size n.

All the mention conclusion drawn shows the unbiasedness and consistency of the MLEs.

6. Applications to real data set

In this section, four different real data sets is consider to observe the efficiency of the proposed distribution.
Also, a comparative study with Alpha Power Modified Weibull (APMW), Exponentiated Inverse Flexible Weibull
(EIFW),Exponentoated Inverse Weibull-Geometric (EIWG), Additive Weibull- Geometric (AWG), Modified
Weibull (MW) and Weibull (W) distributions has been made to show the efficacy of the proposed distribution.

We calculate the analytical measures such as the negative log likelihood (-l), Akaike information criterion
(AIC), Consistent Akaike Information criterion (AICC), Bayesian Information Criterion (BIC) and Hannan-Quinn
Information criterion (HQIC) for the comparative study and the model having the lowest analytical measures value
will be considered to be the best model.

6.1. Application I

For the first application, we have considered a real-life data set which represents the failure times of the light-
emitting diode (LED) in a life test under normal use condition. The data was also considered by [23] The data set
1 is provided in Table 6.
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Table 6. Data set 1

0.18, 0.19, 0.19, 0.34, 0.36, 0.40, 0.44, 0.44, 0.45, 0.46, 0.47, 0.53, 0.57, 0.57, 0.63, 0.65, 0.70, 0.71,

0.71, 0.75, 0.76, 0.76, 0.79, 0.80, 0.85, 0.98, 1.01, 1.07, 1.12, 1.14, 1.15, 1.17, 1.20, 1.23, 1.24, 1.25,

1.26, 1.32, 1.33, 1.33, 1.39, 1.42, 1.50, 1.55, 1.58, 1.59, 1.62, 1.68, 1.70, 1.79, 2.00, 2.01, 2.04, 2.54,

3.61, 3.76, 4.65, 8.97

Figure 6. TTT plot for data set 1

The Total Time on Test (TTT) plot, [2] for the data is shown in Figure 6, which represent an upside-down bathtub
shaped hazard rate function. Thus, the data can be consider to be suitable to model using the APMWG distribution.
The maximum likelihood estimates (MLEs) along with their standard error (SE), the analytical measures i.e the
-l, AIC, AICC, BIC, HQIC, K-S test statistics and its p-value of the APMWG distribution and all the others
competitive ditribution is presented in Table 6 and 7 respectively.

From Table 8, we observe that the APMWG distribution has the lowest value of -l, AIC, AICC,BIC,HQIC
and K-S (p-vale >0.05), which is the analytical measures as compared to all the other competing distribution
considered with . Hence, The APMWG distribution can be considered to be more adequate for explaining the data
set 1 compared to all the other competing distribution. Figure 7 (a), (b) and (c) display the plot of the estimated
HRFs, estimated densities and estimated CDF respectively fitted to data set 1 for all the competing distributions.
In Figure 8 we also have the QQ-plot and PP-plot of the proposed distribution to the considered data set, showing
that the distribution is a good choice for the data set.

6.2. Application 2

For the second Application, we have considered the survival times (in years) of 45 patients who were randomized
to chemotherapy plus Radiotherapy for 8 years as reported in [6], and the survival time (data set 2) is provided in
Table 9. This data set was also recently considered by [24].
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Table 7. MLEs (SE) for all the distributions for data set 1

Distribution α γ λ β p

APMWG 0.6858(0.0263) 2.4081(0.2580) 0.1048 (0.0262) - 0.9948(0.0019)

APMW 0.0049(0.0066) 1.6242 (0.1511) 0.2856 (0.0556) - -

EIFW 0.1892(0.0715) 1.9745(0.5993) 1.1654(0.1986) -

EIWG 0.3259(0.2749) 7.0339(0.0261) - - 0.9992(71.5050)

AWG 2.2870 (0.2678) 0.0025 (0.3670) 2.3890 (0.2990) 0.0021 (0.3240) 0.9955 (0.4360)

MW 0.0100 (0.6816) 0.6237(0.6070) 1.2557(0.1451) - -

W 1.2544 (0.1119) 0.6941 (0.0771) - - -

Table 8. Analytical measures for data set 1 for all the competing distributions

Distribution -l AIC AICC BIC HQIC K-S p-value
APMWG 63.9650 135.9300 136.6847 144.1718 139.1404 0.08083 0.7894
APMW 66.5174 139.0347 139.4792 145.2161 141.4425 0.08915 0.7050
EIFW 67.3977 140.7954 141.2398 146.9767 143.2031 0.1072 0.5157
EIWG 65.9582 137.9165 138.3609 144.0978 140.3243 0.0976 0.8016
AWG 63.9915 137.9830 139.1368 148.2852 141.9959 0.0889 0.7481
MW 71.6092 149.2185 149.6629 155.3998 151.6262 0.1369 0.2269
W 71.6092 147.2185 147.4367 151.3394 148.8236 0.3601 0.0583

Figure 7. estimated densities with histogram for data set 1.

The TTT plot for this data reveals an upside down bathtub shaped HRF as shown in Figure 9 making APMWG
distribution a suitable model for modeling the data.In Table 10 and 11 , the MLEs along with their SE and the
analytical measure is presented respectively.
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Figure 8. (a) QQ-plot; (b) PP-plot of APMWG ditribution for data set 1.

Table 9. Data set 2

17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122,144, 167, 170, 183, 185, 193,195, 197,

208, 234, 235, 254, 307, 315, 401, 445, 464, 484, 528, 542, 547, 577,580,

795, 855, 1366, 1577, 2060, 2412, 2486, 2796, 2802, 2934, 2988

Figure 9. TTT plot for data set 2

From Table 11, we observe that the APMWG distribution has the lowest value of -l, AIC, AICC,BIC, HQIC
and K-S (p-vale >0.05) , which is the analytical measures as compared to all the other competing distribution
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Table 10. MLEs(SE) for all the distributions for data set 2

Distribution α γ λ β p

APMWG 1.0215(0.7071) 1.2349 (0.1846) 0.0004 (0.0027) - 0.9127 (7.79E-09)

APMW 0.11764(0.1653) 0.9550(0.1120) 0.0008 (0.0004) - -

EIFW 10(4.7249) 1.6681 (0.2968) 0.0017 (0.0003) - -

EIWG 0.4838 (0.1244) 10 (0.6387) - - 0.0050(1.2053)

AWG 0.8559 (0.0538 0.0006 (0.0025) 0.11037(0.0953) 0.0036 (0.0019) 0.3152(0.1420)

MW 0.00046 (0.0011) 0.0061 (0.0049) 0.7424 (0.1801) - -

W 0.8095 (0.0906) 0.0016(0.00032) - - -

Table 11. Analytical measures for data set 2 for all the competing distributions

Distribution -l AIC AICC BIC HQIC K-S p-value
APMWG 335.1269 678.2538 679.2538 685.4804 680.9478 0.1031 0.6867
APMW 338.4422 682.8845 683.4698 688.3045 684.9050 0.1233 0.4646
EIFW 345.7424 697.4849 698.0703 702.9049 699.5054 0.2246 0.01799
EIWG 347.3998 700.7997 701.3850 706.2197 702.8202 0.1823 0.5429
AWG 336.0936 682.1873 683.7257 691.2206 685.5548 0.1878 0.07301
MW 339.4885 684.9770 685.5624 690.3970 686.9975 0.14087 0.3044
W 337.6904 679.3807 679.6664 682.9941 680.7277 0.6339 0.0500

Figure 10. estimated densities with histogram for data set 2.

considered. Hence, The APMWG distribution can be considered to be the most adequate model for explaining
the data set 2 compared to all the other competing distribution. Figure 10 (a), (b) and (c) display the plot of the
estimated HRFs, estimated densities and estimated CDF respectively fitted to data set 1 for all the competing
distributions. The QQ-plot and PP-plot of APMWG for the data set is shown in Figure 11.
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Figure 11. (a) QQ-plot; (b) PP-plot of APMWG ditribution for data set 2.

Table 12. Data set 3

0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0,

2.2, 2.5, 2.7,3.0, 3.0, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.2, 22.0, 24.5

Table 13. MLEs(SE) for all the distributions for data set 3

Distribution α γ λ β p

APMWG 0.9043 (0.0125) 1.6478 (0.2316) 0.0448 (0.0398) - 0.9758 (0.0538)

APMW 0.0281 (0.0532) 1.1867 (0.1376 ) 0.1060 (0.0458) - -

EIFW 0.4543 (0.5349) 1.7682 (1.9096) 0.3169 (0.1869) - -

EIWG 1.1136 (0.1610) 1.0214 (0.2132) - - 0.0518 (0.2793)

AWG 1.5979 (0.5792) 0.0024 (0.2155) 1.6826 (0.2901) 0.0040 (0.0507) 0.9762 (0.7412)

MW 0.0037 (1.3449) 0.2650 (1.4002) 0.9601 (0.1511) - -

W 0.9604 (0.1089) 0.2546 (0.0446) - - -

6.3. Application 3

For the third application, we have considered a data sets which consists of 40 records of active repair times (in
hours) for airborne communication transceiver (data set 3). The data was recently studied by [25] and the data set
is given in Table 12.

As shown in Figure 12, the TTT plot of the third considered data set is an upside down bathtub shape which
makes the APMWG distribution suitable for modeling the data. In Table 13 and 14, the MLEs along with their SE
and the analytical measure is presented respectively.
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Figure 12. TTT plot for data set 3

Table 14. Analytical measures for data set 3 for all the competing distributions

Distribution -l AIC AICC BIC HQIC K-S p-value
APMWG 91.6167 191.2335 192.3763 197.9890 193.6760 0.1196 0.6977
APMW 93.4721 192.9441 193.6108 198.0108 194.7761 0.1240 0.5699
EIFW 93.4986 192.9972 193.6639 198.0638 194.8291 0.2495 0.03731
EIWG 93.2363 192.4726 193.1393 197.5393 194.3046 0.2109 0.0912
AWG 91.6291 193.2582 195.0229 201.7026 196.3115 0.1178 0.7477
MW 95.5119 197.0237 197.6904 202.0904 198.8557 0.1289 0.5190
W 95.5114 195.0227 195.3470 198.4005 196.2440 0.6910 0.0014

From Table 14, we observe that the APMWG distribution has the lowest value of -l, AIC, AICC,BIC, HQIC
and K-S (p-vale >0.05), which is the analytical measures as compared to all the other competing distribution
considered. Hence, The APMWG distribution can be considered to be the most adequate model for explaining
the data set 2 compared to all the other competing distribution. Figure 13 (a), (b) and (c) display the plot of the
estimated HRFs, estimated densities and estimated CDF respectively fitted to data set 3 for all the competing
distributions. The QQ-plot and PP-plot of APMWG distribution for the this data set is also shown in Figure 14.

7. Conclusion

In this work, we proposed a new four parameter lifetime distribution defined as Alpha Power Modified Weibull
geometric distribution. We obtain some of its statistical properties including the moments, moment generating
function, mean residual life, measure of Inequality and uncertainty and order statistics. The method of maximum
likelihood is used to obtain the model parameter and Monte Carlo Simulation technique is used to assess the
performance of the estimation method considered. we have analyzed three real life data to demonstrate the
capability and adequacy of the proposed distribution. The APMWG distribution is model fit for modeling the
considered data sets as shown by the TTT plot in Figure 6, 9 and 12. Hence we have shown and justify that the
APMWG distribution provides a better fit for all the three considered data sets showing its supremacy over the base
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Figure 13. estimated densities with histogram for data set 3.

Figure 14. (a)QQ-plot; (b) PP-plot of APMWG ditribution for data set 3.

APMW distribution and the other five competing distribution viz. Exponentiated Inverse Flexible Weibull (EIFW),
Exponentiated Inverse Weibull geometric (EIWG), Additive Weibull Geometric (AWG), Modified Weibull (MD)
and Weibull(W) distribution for the reference data sets.

The APMWG distribution can be ethically applied to support fair, data-driven decisions in fields such as
engineering, healthcare, reliability, and various biological or physical studies. However, its high flexibility poses
a risk of overfitting, particularly when applied to small or limited datasets. Additionally, the large number of
parameters can reduce interpretability, make communication more difficult, and increase complexity in both
parameter estimation and computational tasks—these are key limitations of the flexible APMWG distribution.

This paper can be extended in several ways, which can also be consider for future research. One can develop
the bi-variate and multivariate extension of the proposed distribution. Additional different estimation method can
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also be study alongside. Simulataneously, incorporating covariates for regression analysis, developing Bayesian
estimation methods, or exploring multivariate versions can be considered. As we know, system can have different
structural arrangement, with different failure time, hence compounding based on all this different failures time will
give us different characteristic for the new develop distribution.Thus, work on compounding on different failure
time of the system is appreciated.
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