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Abstract The given work establishes a compartmental corruption epidemic model that consists of the susceptible
compartment, exposed compartment, corrupt compartment, jailed compartment, reformed compartment, and honest
compartment under the impact of personal willingness. In this model, it is assumed that corruption spreads like an infectious
disease if there is an interaction between a susceptible individual and a corrupt individual, hence the epidemiology theory
can be used to analyze the behavior of the model. The local stability analysis of the model is established. The study shows
that the corruption-free fixed point and the corruption-endemic fixed point depend on the basic reproduction number. The
numerical simulations that demonstrate the local stability of the corruption-free fixed point and the corruption-endemic fixed
point under influence of the personal willingness are conducted.
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1. Introduction

Mathematical modeling is a systematic approach used in various disciplines to analyze real-world phenomena
or systems using mathematical equations, differential equation systems, or dynamic systems. One of the most
important studies in dynamic systems is stability of the model. Stability of the model is the instrument for knowing
the long-term behavior of a dynamic system.

Corruption is a social behavior that exists in almost every country. In the literature, it is mentioned that corruption
is an act against the law carried out to gain personal or group gain by abuse of authority or power by public
(government) or private officials [1, 2]. Corruption control policies and strategies have been developed in various
countries, yet corruption cases continue. Even in parts of the world, cases of corruption have become an epidemic
in society. Various scientific studies related to this corrupt behavior have been carried out by various researchers,
one of which is the use of dynamic models.

The study of corrupt behavior using dynamic models is a very active research topic among mathematical
modeling researchers. Some recent studies on the use of dynamic models associated with corruption are found
in the literatures [3, 4, 5, 6, 7, 8, 9, 10], where authors mentioned that corrupt behavior can spread like the spread
of infectious diseases if individuals who are not corrupt always interact with perpetrators of corruption. In the
mentioned literature above, the population of the observed region is grouped into several compartments, such as
the compartment of vulnerable individuals who have not committed corruption, the compartment of individuals
who are exposed (suspected) to corruption but have not been sentenced, the individual compartment that is corrupt,
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the corrupt compartment that is serving the sentence, and the corrupted compartment that is already free from
punishment. From these existing models, they studied the stability of the fixed point of the model with various
variations of the parameters involved without regard to the influence of the individual parameters that may corrupt
by their own will, although they do not interact with the corrupt individual.

In this paper, we study the local stability of fixed points for the corruption epidemic model which consist of
six compartments, that are the compartment of the susceptible individuals (symbolyzed as S), the compartment
of the exposed individuals (symbolyzed as E), the compartment of the corrupt individuals (symbolyzed as C), the
compartment of the jailed individuals (symbolyzed as J), the compartment of individuals who are already free from
punishment (symbolyzed as R), and the compartment of the honest individuals (symbolyzed as H). The model is
constructed taking into account the influence of the individual parameters that may corrupt by their own will,
although they do not interact with the corrupt individual. We establish the local stability criteria for the considered
model. As far as the authors know, there is no mathematical model in this form and its local stability analysis. As a
result, the findings of this study represent both a novel and a fresh advancement in the field of epidemic dynamics.

The paper is organized as follows: Section 2 presents the model formulation and its properties. The local stability
analysis of the fixed points is presented in the section 3. Section 4 concludes the paper.

2. Model Formulation and Its Properties

In this section, we go over the model’s assumptions, schematic, and system of equations. Furthermore, we prove
that the model equations’ solutions are both positive and bounded in order to demonstrate the model’s mathematical
soundness and biological significance. The work done in [11] has been expanded to include (i) the reformed
compartment, (ii) parameter of personal willingness to practice corruption, and (iii) permitting people to remain
susceptible after being released from reform in order to create a mathematical model that describes the dynamics
of corruption.

The total population at time t, denoted as N(t), is split into six compartments, as follows:

i. Susceptible compartment, denoted as S(t), is the class of individuals who have not committed corruption but
vulnerable to do. As an example, an official with low salaries and limited opportunities for income growth
while corruption offers significant benefits may interact with corrupt individuals and be encouraged to adopt
similar behavior. Thus, if α denote the effective corruption contact rate between the susceptible individual

and the corrupt individual, then a number of
αSI

N
susceptible people per time will move to become exposed.

Moreover, some of them can also leave this compartment and move to honest compartment and corrupt
compartment due to personal desires. This compartment derived from the natural birth of populations and
individuals that reformed of the corruption.

ii. Exposed compartment, denoted as E(t), is the class of individuals who reported corruption but could
not influence the vulnerable to corruption. This compartment comes from vulnerable individuals and corrupt
individuals who have interacted. However, some of them can leave this compartment and move to corrupted
and honest compartments.

iii. Corrupt compartment, denoted as C(t), is the class of individuals who involved in corrupt practices. It is
assumed that corrupt behavior can be transmitted to susceptible individuals if there is frequent interaction
between corrupt individuals and susceptible individuals. In addition, corruption can also occur due to
personal desires without influence from other individuals. Thus, this compartment comes from susceptible
individuals and exposed individuals. However, some of them can leave this compartment and move to jailed
and recovered compartments.

iv. Jailed compartment, denoted as J(t), is the class of individuals jailed because of corrupt practices. This
compartment contains individuals who are generated only from the corrupt compartment.

v. Reformed compartment, denoted as R(t), is the class of individuals who have changed (recovered) from
corruption, either because of their awareness or completed their imprisonment. Subpopulation R can become
susceptible again and can also become honest individuals.
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vi. Honest compartment, denoted as H(t), is the class of individuals who honest. Class honesty comes from
susceptible individuals, exposed individuals, and individuals who have already recovered.

All parameters related to the formation of the desired model that shows the change in the number of individuals
from one compartment to another are given in Table 1. In light of the aforementioned factors, Figure 1 depicts a
compartmental flow diagram as the basis for forming a corruption epidemic model.

Table 1. Parameters involved in the formation of the corruption epidemic model

Parameter Description Unit
β Natural birth rate time−1

α Effective corruption contact rate time−1

µ Natural mortality rate time−1

γ The rate at which susceptible individuals become corrupt due to personal willingness time−1

κ The proportion of exposed individuals entering into the corruption subpopulation %
ϕ The rate of transition from exposed individuals to corrupt individuals time−1

η The rate of susceptible individual migration to becoming honest time−1

δ The rate of imprisonment for individuals who commit corruption time−1

τ The rate at which corrupt individuals become reformed time−1

ρ The rate at which jailed individuals become reformed time−1

θ The rate at which reformed individuals become honest time−1

ω The rate at which reformed individuals become susceptible time−1

According to the flow chart, the model will be governed by the following system of differential equations:

Ṡ = βN − αSC

N
− (γ + η + µ)S + ωR

Ė =
αSC

N
− (ϕ+ µ)E

Ċ = κϕE + γS − (δ + τ + µ)C

J̇ = δC − (ρ+ µ)J

Ṙ = ρJ + τC − (ω + θ + µ)R

Ḣ = θR+ (1− κ)ϕE + ηS − µH,

(1)

where
N(t) = S(t) + E(t) + C(t) + J(t) +R(t) +H(t), (2)

with all of the initial conditions S(0) = S0, E(0) = E0, C(0) = C0, J(0) = J0, R(0) = R0, H(0) = H0 are
nonnegative.

In order to verify the validity of the model, we need to show that the solution of the model (1) is nonnegative
and bounded, thus the presented model is epidemiologically and mathematically meaningful. First let us show that
the solution of the model (1) is nonnegative, We state the following result.

Theorem 2.1
The solution of the model (1) is nonnegative for the all nonnegative initial conditions S0, E0, C0, J0, R0, H0.

Proof
Take a look at system (1)’s corrupt compartment equation, provided by Ċ = κϕE + γS − (δ + τ + µ)C. We can
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Figure 1. Compartmental Diagram of Corruption Epidemic Model

rearrange it as
Ċ

C
=

κϕE

C
+

γS

C
− (δ + τ + µ) and upon integration it gives the general solution as

C(t) = K1 exp

(∫ (
κϕE

C
+

γS

C
− (δ + τ + µ)

)
dt

)
where K1 is a constant integration. Upon utilize the initial condition C(0) = C0 ≥ 0, we obtain

K1 = C0 exp

(
−
∫ (

κϕE

C
+

γS

C
− (δ + τ + µ)

)
dt
∣∣∣
t=0

)
.

Eliminating the constant integration K1 the particular solution is obtained as follows:

C(t) = C0 exp

(∫ (
κϕE

C
+

γS

C
− (δ + τ + µ)

)
dt−

∫ (
κϕE

C
+

γS

C
− (δ + τ + µ)

)
dt
∣∣∣
t=0

)
.

Since the exponential function is positive, we conclude that K(t) is nonnegative. By the same procedure, the other
state variables S(t), E(t), J(t), R(t), H(t) are nonnegative for all time t ≥ 0.

Next, let us show that the solution of the model (1) is bounded. By differentiating both sides the equation (2)
with respect to time t and on using the equation (1) and after algebraic simplifications, we obtain the rate of change
of the total population is given by

Ṅ = (β − µ)N. (3)

Solution of the equation (3) is

N(t) = N0e
(β−µ)t. (4)

Form (4), one can see that N(t) ≤ N0 for all time t > 0 if β ≤ µ, and this means the solution of the model (1) is
bounded.

Next, let us make model (1) a dimensionless model for simplicity. By defining s =
S

N
, e =

E

N
, c =

C

N
, j =

J

N
, r =

R

N
, h =

H

N
as the fractions of the class susceptible, exposed, corrupt, jailed, reformed, and honest in the
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population, respectively, from equation (1) we get,

ṡ = β − αsc− (γ + η + µ)s+ ωr

ė = αsc− (ϕ+ µ)e

ċ = κϕe+ γs− (δ + τ + µ)c

j̇ = δc− (ρ+ µ)j

ṙ = ρj + τc− (ω + θ + µ)r

ḣ = θr + (1− κ)ϕe+ ηs− µh

(5)

with all of the initial conditions s(0) = s0, e(0) = e0, c(0) = c0, j(0) = j0, r(0) = r0, h(0) = h0 are nonnegative.

3. Local Stability Analysis

In accordance with the theory of the dynamical system [12], the local stability of the model (5) is the behavior of
the model solution at infinity around the fixed points. The fixed points are determined by making

ṡ = ė = ċ = j̇ = ṙ = ḣ = 0. (6)

Using (6) for (5), we have

s =
β + ωr

αc+ γ + η + µ
, (7)

e =
αsc

ϕ+ µ
, (8)

c =
κϕe+ γs

δ + τ + µ
, (9)

j =
δc

ρ+ µ
, (10)

r =
ρj + τc

ω + θ + µ
, (11)

h =
θr + (1− κ)ϕe+ ηs

µ
. (12)

There are two fixed points: the corruption-free fixed point and the corruption-endemic fixed point.

3.1. Stability around of the corruption-free fixed points

The corruption-free fixed point, denoted by

E0 = (s0, e0, c0, j0, r0, h0),

describes a situation where the population is free from corrupt practices. At this fixed point, the relation c0 = 0 is
hold. Using this we have the free corruption fixed point

E0 =

(
β

γ + η + µ
, 0, 0, 0, 0,

ηβ

µ(γ + η + µ)

)
.

Using the Hartman’s Theorem [12], the corruption-free fixed points E0 is locally asymptotically stable if the real
part of all eigenvalues of the Jacobian matrix J at E0 (symbolized by JE0) is negative provided E0 is a hyperbolic

Stat., Optim. Inf. Comput. Vol. x, Month 202x



MUHAFZAN, ARRIVAL RINCE PUTRI, NOVERINA ALFIANY AND HAFIZHAH ARTRYA HANAN 5

fixed point. A simple calculation yields

JE0 =



−k1 0 − αβ
γ+η+µ 0 ω 0

0 −k2
αβ

γ+η+µ 0 0 0

0 κϕ −k3 0 0 0
0 0 δ −k4 0 0
0 0 τ ρ −k5 0
η (1− κ)ϕ 0 0 θ −µ

 , (13)

with

k1 = γ + η + µ, (14)
k2 = ϕ+ µ, (15)
k3 = δ + τ + µ, (16)
k4 = ρ+ µ, (17)
k5 = ω + θ + µ. (18)

The characteristic polynomial of JE0 is given by

p(λ) = (−µ− λ)(−k1 − λ)(−k5 − λ)(−k4 − λ)
[
λ2 + (k2 + k3)λ+ k2k3 −

κϕαβ

γ + η + µ

]
. (19)

The eigenvalues of the Jacobian matrix JE0 are the roots of p(λ), namely, λ1 = −µ, λ2 = −k1, λ3 = −k5, λ4 =
−k4, and the remaining two roots, let’s say λ5, λ6, are the roots of the following polynomial

p1(λ) = λ2 + (k2 + k3)λ+ k2k3 −
κϕαβ

γ + η + µ
. (20)

It is obvious that λi < 0, for i = 1, 2, 3, 4. Using Routh-Hurwitz criterion [13], the real part of λ5, λ6 is negative

if k2 + k3 > 0 and k2k3 −
κϕαβ

γ + η + µ
> 0. It is obvious that k2 + k3 > 0 due to (15) and (16). Moreover,

k2k3 −
κϕαβ

γ + η + µ
> 0 if and only if R0 < 1, where

R0 =
κϕαβ

(γ + η + µ)(ϕ+ µ)(δ + τ + µ)
(21)

is the basic reproduction number that can be determined using the next-generation matrix method [14]. This
explanation leads to the conclusion that the corruption-free fixed point is locally asymptotically stable if R0 < 1,
which is convenient to the epidemiology theory.

3.2. Stability around of the corruption-endemic fixed point

The corruption-endemic fixed point, denoted by

E∗ = (s∗, e∗, c∗, j∗, r∗, h∗),

describes a situation in which corrupt practices persist in the population. At this fixed point, the relation c∗ > 0 is
hold. By simplifying the eqution (7) - (12), we have the following corruption-endemic fixed point:
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s∗ =
β(ω + θ + µ)(ρ+ µ) + ω [ρδ + τ(ρ+ µ)]

(
−Y±

√
Y 2−4XZ
2X

)
(
α
(

−Y±
√
Y 2−4XZ
2X

)
+ γ + η + µ

)
(ω + θ + µ)(ρ+ µ)

,

e∗ =
U

(ϕ+ µ)(αc+ γ + η + µ)(ω + θ + µ)(ρ+ µ)
,

c∗ =
−Y ±

√
Y 2 − 4XZ

2X
,

j∗ =
δ

(ρ+ µ)

(
−Y ±

√
Y 2 − 4XZ

2X

)
,

r∗ =
ρδ + τ(ρ+ µ)

(ω + θ + µ)(ρ+ µ)

(
−Y ±

√
Y 2 − 4XZ

2X

)
,

h∗ =
P +Q+ T

µ
,

(22)

where

X = −κϕαω [ρδ + τ(ρ+ µ)] + α(δ + τ + µ)(ϕ+ µ)(ω + θ + µ)(ρ+ µ),

Y = −κϕαβ(ω + θ + µ)(ρ+ µ)− γω(ϕ+ µ) [ρδ + τ(ρ+ µ)]

+(δ + τ + µ)(ϕ+ µ)(γ + η + µ)(ω + θ + µ)(ρ+ µ),

Z = −γβ(ω + θ + µ)(ρ+ µ)(ϕ+ µ), (23)

P =θ
ρδ + τ(ρ+ µ)

(ω + θ + µ)(ρ+ µ)

(
−Y ±

√
Y 2 − 4XZ

2X

)
,

Q =
(1− κ)ϕU

(ϕ+ µ)(αc+ γ + η + µ)(ω + θ + µ)(ρ+ µ)

T =η
β(ω + θ + µ)(ρ+ µ) + ω [ρδ + τ(ρ+ µ)]

(
−Y±

√
Y 2−4XZ
2X

)
(
α
(

−Y±
√
Y 2−4XZ
2X

)
+ γ + η + µ

)
(ω + θ + µ)(ρ+ µ)

,

U =αβ

(
−Y ±

√
Y 2 − 4XZ

2X

)
(ω + θ + µ)(ρ+ µ)

+ αω

(
−Y ±

√
Y 2 − 4XZ

2X

)2

[ρδ + τ(ρ+ µ)] .

Using the Hartman’s Theorem again, the corruption-endemic fixed point is locally asymptotically stable if the real
part of all eigenvalues of the Jacobian matrix J at E∗ (symbolized by JE∗) is negative. One can see that Z in the
equation (23) is negative due to all of the parameters are positive. Moreover

X =α(δ + τ + µ)(ϕ+ µ)(ω + θ + µ)(ρ+ µ)− κϕαωτ(ρ+ µ)− κϕαωρδ

=δ + τ + µ− κδ
ϕ

(ϕ+ µ)

ω

(ω + µ)

ρ

(ρ+ µ)
− κτ

ϕ

(ϕ+ µ)

ω

(ρ+ µ)

=δ

[
1− κ

ϕ

(ϕ+ µ)

ω

(ω + µ)

ρ

(ρ+ µ)

]
+ τ

[
1− κ

ω

(ω + µ)

]
+ µ

> 0.
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Note that if R0 > 1 then Y < 0, due to

Y =− κϕαβ(ω + θ + µ)(ρ+ µ)− γω(ϕ+ µ) [ρδ + τ(ρ+ µ)]

+ (δ + τ + µ)(ϕ+ µ)(γ + η + µ)(ω + θ + µ)(ρ+ µ) < 0

=

(
γ + η + µ

γ + η + µ
− κϕαβ

(ϕ+ µ)(δ + τ + µ)(γ + η + µ)

)
(ω + θ + µ)(ρ+ µ)

− γω(ρδ + τ(ρ+ µ))

(δ + τ + µ)(γ + η + µ)
< 0

= (1−ℜ0) (ω + θ + µ)(ρ+ µ)− γω(ρδ + τ(ρ+ µ))

(δ + τ + µ)(γ + η + µ)

< 0, (24)

thus one gets c∗ > 0 if R0 > 1 and
√
Y 2 − 4XZ < −Y. Furthermore, the Jacobian matrix JE∗ is given by

JE∗ =


−k6 0 −αs∗ 0 ω 0
αc∗ −k2 αs∗ 0 0 0
γ κϕ −k3 0 0 0
0 0 δ −k4 0 0
0 0 τ ρ −k5 0
η (1− κ)ϕ 0 0 θ −µ

 , (25)

where

k6 = αc∗ + γ + η + µ. (26)

The characteristic polynomial of JE∗ is given by

pE∗(x) = (−µ− x)(x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5), (27)

where
a1 =k2 + k3 + k4 + k5 + k6,

a2 =k5k4 + (k5 + k4)(k6 + k2 + k3) + k6k2 + k6k3 + k2k3 + αs∗γ,

a3 =− ωαc∗τγ + k5k4(k6 + k2 + k3) + k5k4(k6k2 + k6k3 + k2k3 + αs∗γ)

+ k6k2k3 + κϕαs∗ + α2s∗c∗κϕ+ αs∗γk2,

a4 =− ωαc∗
(
δργ + τk4γ + τ(κϕ+ γk2)

)
+ k5k4(k6k2 + k6k3 + k2k3 + αs∗γ)

+ (k5 + k4)(k6k2k3 + κϕαs∗ + α2s∗c∗κϕ+ αs∗γk2),

a5 =− ωαc∗(δρ+ τk4)(κϕ+ γk2) + k5k4(k6k2k3 + κϕαs∗ + α2s∗c∗κϕ+ αs∗γk2).

(28)

The eigenvalues of the Jacobian matrix JE∗ are the roots of pE∗(x), namely, x1 = −µ, and the remaining five roots,
let’s say xi, i = 2, 3, 4, 5, are the roots of the following polynomial

p2(x) = x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5. (29)

It is obvious that x1 < 0. Using Routh-Hurwitz criterion [13], the real part of xi < 0, for i = 2, 3, 4, 5 is negative if

(i). a1 > 0,
(ii). a1a2 − a3 > 0,

(iii). a3(a1a2 − a3)− a21a4 + a5a1 > 0,

(iv). a4

(
a3(a1a2 − a3)− a21a4 + a5a1

)
− a5

(
a1a

2
2 + a5 − a1a4 − a2a3

)
> 0,

(v). a5 > 0.

This explanation leads to the conclusion that the corruption-endemic fixed point is locally asymptotically stable if
R0 > 1 and the conditions (i), (ii), (iii), (iv), and (v), are held.
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3.3. Numerical Simulation

In this section we are going to present results obtained from simulations based on equation (5). The numerical
simulation is carried out with the help of MATLAB software which is simulated using the Runge Kutta method
order-4 to see each sub population changes for cases γ = 0 and γ > 0. All of the initial conditions and parameter
values are estimated. The used initial conditions are s(0) = 0.5, e(0) = 0.2, c(0) = 0.2, j(0) = 0.1, r(0) = 0,
h(0) = 0. For the model (5), the estimated of parameter values are presented in Table 2.

Table 2. Reasonable values of the parameters

Parameter β α ω δ τ ρ µ ϕ κ η θ

Value 0.02 0.85 0.0021 0.05 0.01 0.6 0.08 0.9 0.6 0.01 0.001

A simple calculation using the values of the parameter in Table 2 results the corruption-free fixed points:

(i). E0 = (0.2222, 0, 0, 0, 0, 0.0278) where R0 = 0.7434 for γ = 0,
(ii). E0 = (0.2198, 0, 0, 0, 0, 0.0275) where R0 = 0.7353 for γ = 0.01, and

(iii). E0 = (0.2128, 0, 0, 0, 0, 0.0266) where R0 = 0.7118 for γ = 0.04.

Graphs of the susceptible subpopulation, the exposed subpopulation, the corrupt subpopulation, the jailed
subpopulation, the reformed subpopulation, and the honest subpopulation for several values of the personal
willingness γ are given in Figure 2. Based on Figure 2, one can see that when R0 < 1, the corrupt curves converge
to zero, showing the population is free from corrupt practices.

Furthermore, replacing the value of β and µ in Table 2 with β = 0.04 and µ = 0.05 results the corruption-
endemic fixed point:

(i). E∗ = (0.2277, 0.0279, 0.1377, 0.0107, 0.1456, 0.2496) and R0 = 2.9282 for γ = 0,
(ii). E∗ = (0.2243, 0.0279, 0.1396, 0.0109, 0.1477, 0.2472) and R0 = 2.8802 for γ = 0.01, and

(iii). E∗ = (0.2154, 0.0279, 0.1450, 0.0112, 0.1533, 0.2475) and R0 = 2.7452 for γ = 0.04.

Graphs of the susceptible subpopulation, the exposed subpopulation, the corruption subpopulation, the jailed
subpopulation, the reformed subpopulation, and the honest subpopulation for several values of the personal
willingness γ are given in Figure 3. Based on Figure 3, one can see that when R0 > 1, the corrupt curves converge
to the corruption- endemic fixed point E∗, showing the corrupt practices persist in the population. In this case, we
also see that increasing the value γ can increase the number of corrupt practices in the population n the population.

4. Conclusion

A corruption epidemic compartment model that consist of the susceptible compartment, exposed compartment,
corrupt compartment, jailed compartment, reformed compartment and honest compartment, has been established.
Under the assumption that the corruption can spreads like an infectious disease, the local stability analysis of of the
corruption-free fixed point and the corruption-endemic fixed point under influence of the personal willingnes has
been established. The study shows that the corruption-free fixed point is locally asymptotically stable if R0 < 1,
and unstable if R0 > 1. Otherwise, the corruption-endemic fixed point is locally asymptotically stable if R0 > 1,
and unstable if R0 < 1. The numerical simulations demonstrate that increasing the value γ can increase the number
of corrupt practices in the population. This means that the existence of the personal willingness parameter in the
model can increase the number of corrupt practice.
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Figure 2. Curves of each subpopulation of the corruption-free cases for several values γ
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Figure 3. Curves of each subpopulation of the corruption-endemic cases for several values γ

Stat., Optim. Inf. Comput. Vol. x, Month 202x



MUHAFZAN, ARRIVAL RINCE PUTRI, NOVERINA ALFIANY AND HAFIZHAH ARTRYA HANAN 11

Acknowledgement

The work was supported by Universitas Andalas under grant Penelitian Tesis Magister (PTM) Batch I, no.
312/UN16.19/PT.01.03/PTM/2024.

REFERENCES

1. S. Bahoo, I. Alon, and A. Paltrinieri, Corruption in International Business: A Review and Research Agenda International Business
Review, vol. 29, article 101660, 2020.

2. K. D. Funk, and E. Owen, Consequences of an Anti-Corruption Experiment for Local Government Performance in Brazil, Journal
of Policy Analysis and Management, vol. 39, no. 2, pp. 444-468, 2020.

3. A. K. Fantaye, and Z. K. Birhanu, Mathematical Model and Analysis of Corruption Dynamics with Optimal Control, Journal of
Applied Mathematics, vol. 2022, Article ID 8073877, 2022.

4. A. O. Binuyo, Eigenvalue Elasticity and Sensitivity Analyses of the Transmission Dynamic Model of Corruption, Journal of the
Nigerian Society of Physical Science, vol. 1, pp. 30-34, 2019.

5. A. O. Binuyo, and V. O. Akinsola, Stability Analysis of the Corruption Free Equilibrium of the Mathematical Model of Corruption
in Nigeria, Mathematical Journal of Interdisciplinary Sciences, vol. 8, no. 2, pp. 61-68, 2020.

6. H. T. Alemneh, Mathematical Modeling, Analysis, and Optimal Control of Corruption Dynamics, Journal of Applied Mathematics,
vol. 2020, Article ID 5109841, 2020.

7. S. Athithan, M. Ghosh, and X. Z. Li, Mathematical Modeling and Optimal Control of Corruption Dynamics, Asian-European
Journal of Mathematics, vol. 11, no. 06, 1850090, 2018.

8. S.I. Ouaziz, A. A. Hamou, and M. E. Khomssi, Dynamics and Optimal Control Strategies of Corruption Model, Results in Nonlinear
Analysis, vol. 5, no. 4, pp. 423-451, 2022.

9. M. Ahmed, M. Kamal, and M. A. Hossain, A Mathematical Model of Corruption Dynamics and Optimal Control, Franklin Open,
vol. 10, 100216, 2025.

10. A. Akgul, M. Farman, M. Sutan, A. Ahmad, S. Ahmad, A. Munir, and M. K. Hassani, Computational Analysis of Corruption
Dynamics Insight into Fractional Structures, Applied Mathematics in Science and Engineering, vol. 32, no. 1, 2024.

11. T. W. Gutema, A. G. Wedajo, and P. R. Koya, Sensitivity and Bifurcation Analysis of Corruption Dynamics Model with Control
Measures, International Journal of Mathematics for Industry, vol. 16, no. 1, 2450009, 2024.

12. S. Lynch, Dynamical Systems with Applications using MATLAB, London: Birkhauser, 2014.
13. S. D. Fisher, Complex Variables, New York: Dover Publications, Inc., 1990.
14. M. Martcheva, An Introduction to Mathematical Epidemiology, New York: Springer, 2015.

Stat., Optim. Inf. Comput. Vol. x, Month 202x


	1 Introduction
	2 Model Formulation and Its Properties
	3 Local Stability Analysis
	3.1 Stability around of the corruption-free fixed points
	3.2 Stability around of the corruption-endemic fixed point
	3.3 Numerical Simulation

	4 Conclusion

