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Abstract Feature selection plays a pivotal role in high-dimensional data analysis by reducing model complexity, improving
generalization, and enhancing interpretability. This paper introduces Hybrid Butterfly-Grey Wolf Optimization (HB-GWO),
a novel metaheuristic that fuses the global exploration capacity of the Butterfly Optimization Algorithm (BOA) with the
local exploitation strength of the Grey Wolf Optimizer (GWO) through an adaptive exponential switching mechanism.
The algorithm is designed to dynamically adjust exploration and exploitation phases over time, driven by a theoretically
justified decay function. Extensive experiments were conducted on both benchmark datasets (e.g., Madelon, Colon Cancer,
Arrhythmia) and a real-world high-dimensional RNA-seq dataset containing over 120,000 features, using multiple classifiers
including Random Forest, SVM, XGBoost, and MLP. Results demonstrate that HB-GWO consistently outperforms classical
(GA, PSO) and recent hybrid methods (Spider Wasp Optimization, Puma Optimizer), achieving superior performance in
classification accuracy, AUC, F1 score, and feature reduction. Statistical tests, feature stability analysis (Jaccard index), and
multi-objective extensions (Pareto front analysis) further validate its robustness. The full implementation, parameter settings,
and reproducibility toolkit are released as open source.
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1. Introduction

The exponential growth of high-dimensional data across various domains—such as bioinformatics, cybersecurity,
and healthcare—has intensified the need for effective feature selection techniques. High-dimensional datasets
often contain redundant, irrelevant, or noisy features that can degrade the performance of machine learning
models, leading to overfitting and increased computational complexity. Feature selection aims to identify the
most informative subset of features, enhancing model accuracy, interpretability, and efficiency [1]. Metaheuristic
algorithms have emerged as powerful tools for feature selection due to their ability to navigate large and complex
search spaces without requiring gradient information [2]. Algorithms such as Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) have been widely applied to feature selection
problems. However, these algorithms often face challenges such as premature convergence, slow convergence
speed, and getting trapped in local optima, especially when dealing with high-dimensional data [3]. To address these
limitations, hybrid metaheuristic algorithms have been proposed, combining the strengths of different algorithms
to balance exploration and exploitation capabilities [4]. For instance, integrating the global search ability of one
algorithm with the local refinement capability of another can lead to more robust and efficient feature selection
methods [5]. In this context, we propose a novel hybrid algorithm that combines the exploratory behavior of
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the Butterfly Optimization Algorithm (BOA) with the exploitative strength of the Grey Wolf Optimizer (GWO),
termed Hybrid Butterfly-Grey Wolf Optimization (HB-GWO) [6]. This hybrid approach aims to leverage the
complementary strengths of BOA and GWO to effectively navigate the feature selection search space, avoiding
local optima and enhancing convergence speed [7]. The contributions of this paper are as follows:

• We introduce HB-GWO, a novel hybrid metaheuristic algorithm that synergizes BOA and GWO for feature
selection.

• We evaluate the performance of HB-GWO on multiple benchmark datasets, comparing it with state-of-the-art
algorithms in terms of classification accuracy, feature reduction rate, and computational efficiency.

• We conduct an ablation study to analyze the impact of each component of the hybrid algorithm, providing
insights into the effectiveness of the hybridization strategy.

• We present visualizations and charts to illustrate the performance improvements achieved by HB-GWO over
existing methods.

2. Related Work

Feature selection is a critical preprocessing step in machine learning, particularly when dealing with high-
dimensional data. Traditional feature selection methods are categorized into filter, wrapper, and embedded
approaches. While filter methods are computationally efficient, they often ignore feature dependencies. Wrapper
methods consider feature interactions but are computationally intensive. Embedded methods integrate feature
selection within the model training process but are model-specific [8]. Metaheuristic algorithms have been
extensively employed for feature selection due to their flexibility and effectiveness in handling complex
optimization problems. Recent studies have explored various metaheuristic algorithms and their hybrids for feature
selection:

• Hybrid Metaheuristic Algorithms: A systematic literature review by [9] highlights the growing interest in
hybrid metaheuristic algorithms for feature selection. The review emphasizes that hybrid algorithms often
outperform their single counterparts by effectively balancing exploration and exploitation.

• Hybrid GA and GWO: A study by [10] introduced a hybrid approach combining Genetic Algorithm
and Grey Wolf Optimizer for feature selection. The hybrid algorithm demonstrated improved classification
accuracy and reduced feature subsets compared to individual algorithms.

• Hybrid PSO and Rough Set Theory: In the healthcare domain, [11] proposed a hybrid algorithm
integrating Particle Swarm Optimization with Rough Set Theory for non-communicable disease prediction.
The approach achieved higher classification accuracy and better feature reduction rates.

• Emerging Metaheuristic Algorithms: Recent developments have introduced novel metaheuristic
algorithms such as the Spider Wasp Optimization and Puma Optimizer. These algorithms have shown
promise in various optimization tasks, including feature selection, by offering new strategies for exploration
and exploitation [12].

Despite these advancements, challenges remain in achieving an optimal balance between exploration and
exploitation, avoiding premature convergence, and ensuring scalability to high-dimensional datasets [13]. The
proposed HB-GWO algorithm aims to address these challenges by combining the global search capability of BOA
with the local refinement strength of GWO, providing a more robust and efficient solution for feature selection
[14].

Recent Metaheuristic Algorithms and Hybrid Approaches In addition to classical metaheuristic algorithms
like GA, PSO, and GWO, several recently proposed nature-inspired algorithms have demonstrated promising
results in high-dimensional optimization problems. For instance, the Whale Optimization Algorithm (WOA),
inspired by the social hunting behavior of humpback whales, has shown effective global search capabilities and is
particularly useful in continuous feature spaces [15]. Similarly, the Harris Hawks Optimization (HHO) algorithm
mimics the cooperative hunting strategy of Harris hawks, providing a dynamic balance between exploration and
exploitation phases, and has been successfully applied in biomedical and image-based feature selection tasks
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[16]. Moreover, hybrid metaheuristics such as PSO-GA, which integrate the swarm intelligence of PSO with the
evolutionary diversity of GA, have also gained traction. These hybrid models aim to leverage the exploration
strength of PSO with GA’s mutation-driven diversity to avoid premature convergence and local optima [17].
Studies have shown that such hybrids can improve classification accuracy while reducing the size of the selected
feature subset. Despite these advancements, comparative evaluations across diverse datasets remain limited in
scope. Our proposed HB-GWO builds on this direction by incorporating not just hybridization but also an adaptive
switching mechanism, enabling the algorithm to respond dynamically to different search phases. This further
distinguishes HB-GWO from fixed hybrid models like PSO-GA and enhances its robustness across varying dataset
characteristics.

3. Tools and Datasets

3.1. Tools

For the experimental setup, we used the following tools and environments to ensure reproducibility and leverage
recent advances in libraries:

• Programming Environment: Python 3.11
• Core Libraries:

– NumPy 1.26 (for matrix and numerical operations)
– Pandas 2.2 (for data handling and preprocessing)
– scikit-learn 1.4 (for machine learning models, evaluation metrics, and preprocessing pipelines)
– Optuna 3.4 (for hyperparameter optimization of classifiers)
– Matplotlib 3.8 and Seaborn 0.13 (for data visualization)
– MAFESE library (recently released tool dedicated to metaheuristic-based feature selection).

• Hardware: Intel Core i9-12900K CPU, 64GB RAM, NVIDIA RTX 4090 GPU
• Environment: Experiments run on Ubuntu 22.04 LTS with Conda virtual environments for dependency

isolation.

To promote transparency and reproducibility, the complete implementation of the HB-GWO algorithm, including
all benchmark dataset loaders, classifier wrappers, and evaluation scripts, has been made publicly available on
GitHub: https://github.com/Mhmdaly/HB-GWO-feature-selection-1. The repository includes detailed instructions
for environment setup, data preprocessing, and execution commands for all experiments reported in this paper.

3.2. Datasets

To evaluate HB-GWO comprehensively, we selected recent and widely benchmarked datasets across different
domains, ensuring inclusion of high-dimensional, imbalanced, and noisy datasets [15]. A summary of the datasets
used in this study, including their source, dimensionality, sample size, and number of classes, is provided in Table
1. To evaluate the effectiveness of the proposed HB-GWO algorithm, we selected several benchmark datasets from
different domains, covering a range of feature dimensions and sample sizes. The selected datasets include Breast
Cancer, Madelon, Colon Cancer, and Arrhythmia, as well as a single-cell RNA-seq dataset. A summary of these
datasets, including their source, number of features, number of samples, and number of classes, is provided in
Table 1.

All datasets were normalized to [0,1] and missing values (if any) imputed using median values. In addition to
benchmark datasets, we incorporated a real-world high-dimensional genomics dataset to assess the scalability of
HB-GWO. Specifically, we selected a single-cell RNA-seq dataset from the Human Cell Atlas, containing over
120,000 gene expression features and approximately 4,000 single-cell samples across multiple tissue types. This
dataset introduces challenges such as extreme sparsity, class imbalance, and biological noise, making it ideal for
validating the robustness and scalability of feature selection algorithms. Preprocessing included normalization,
missing value imputation, and dimensionality integrity checks.
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Table 1. Description of the benchmark datasets used in the experiments, including dataset source, number of features, number
of samples, and number of classes.

Dataset Source Features Samples Classes
Breast Cancer (Diagnostic) UCI Machine Learning Repository 30 569 2

Arrhythmia UCI Machine Learning Repository 279 452 16
Colon Cancer Kent Ridge Biomedical Repository 2000 62 2

Madelon UCI Machine Learning Repository 500 4400 2
Single-cell RNA-seq PBMC 10x Genomics Dataset Hub 20,000 2700 10

4. Methodology

This section details the proposed Hybrid Butterfly-Grey Wolf Optimization (HB-GWO) algorithm for feature
selection. The methodology includes the problem definition, algorithmic framework, fitness function, and stopping
criteria.

4.1. Problem Definition

Feature selection is formulated as an optimization problem: given a dataset D = {(xi, yi)} where xi ∈ Rd and yi
is the corresponding class label, the goal is to find a subset S ⊆ {1, 2, . . . , d} such that the classifier trained on S
maximizes predictive performance while minimizing the number of features. The objective function is defined as:
Fitness(S) = α · (1− Accuracy(S)) + (1− α) ·

(
|S|
d

)
where:

• α balances classification accuracy and feature reduction.
• Accuracy(S) is the cross-validated accuracy achieved using the subset S.
• |S| is the number of selected features.
• d is the total number of features.

In addition to classical metaheuristics (GA, PSO, BOA, GWO), we expanded our comparison set to include recent
hybrid and nature-inspired methods such as Spider Wasp Optimization (SWO) and the Puma Optimizer (PO), both
of which were cited in our Related Work section. These algorithms were implemented using publicly available
repositories and integrated into the same evaluation pipeline. To provide further context beyond metaheuristics, we
also benchmarked against two strong non-metaheuristic feature selection techniques:

• LASSO (L1-regularized logistic regression).
• Tree-based feature importance using scikit-learn’s SelectFromModel with Extra Trees.

These additions ensure that HB-GWO is evaluated against both recent evolutionary advances and deterministic
filter/wrapper baselines, providing a broader empirical perspective.

4.2. HB-GWO Algorithm Framework

The HB-GWO algorithm integrates the exploration capability of Butterfly Optimization Algorithm (BOA) and the
exploitation capability of Grey Wolf Optimizer (GWO) to effectively search the feature selection space.

4.2.1. Initialization: A population of N candidate solutions is randomly initialized. Each solution is a binary
vector X ∈ {0, 1}d, where 1 indicates feature inclusion and 0 indicates exclusion [18], [19], [20], [21].

4.2.2. BOA Phase (Global Exploration): In the BOA phase, butterflies (solutions) move guided by a fragrance
function:

fi = c · Ii
Xt+1

i = Xt
i + r · (gBest−Xt

i )

where:
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• c is a sensory coefficient.
• Ii is the stimulus intensity proportional to fitness.
• r is a random number in [0,1].
• gBest is the global best solution found so far.

This phase encourages exploration of the search space by moving candidates toward promising regions. Intuitively,
the fragrance function in BOA simulates how real butterflies use scent (fragrance intensity) to communicate and
locate food or mates. In the optimization context, each candidate solution (butterfly) emits a scent proportional to its
fitness—stronger fitness implies stronger fragrance. Other butterflies move toward more fragrant ones based on the
global best position, encouraging exploitation of good solutions. The sensory modality coefficient (c) adjusts how
sensitive butterflies are to scent differences. A small c leads to more aggressive movement toward better solutions,
while larger values maintain exploratory behavior. This mechanism enables the BOA phase to navigate the global
search space effectively in early iterations.

4.2.3. GWO Phase (Local Exploitation): In the GWO phase, the top three wolves (α, β, δ) guide the others.

Dα = |C1 ·Xα −X|

X1 = Xα −A1 ·Dα

Similarly for X2 and X3.
Each wolf updates position by averaging X1, X2 and X3.
Where A,C are coefficient vectors controlling the balance between exploration and exploitation. The GWO
algorithm mimics the hierarchical hunting strategy of grey wolves, where alpha, beta, and delta wolves guide
the rest of the pack toward prey. Mathematically, this behavior is encoded using the coefficient vectors A and C:

• Vector A controls the distance and direction of the wolf’s movement. When the value of A is small (|A| < 1),
wolves converge tightly toward leaders, favoring exploitation. When |A| > 1, wolves spread out, enhancing
exploration.

• Vector C introduces stochasticity and encodes prey location perturbation, preventing premature convergence.

Together, these vectors maintain a balance between exploration and exploitation throughout the GWO phase.

4.2.4. Switching Mechanism: An adaptive switching mechanism controls the balance:

pBOA = e−λt

pGWO = 1− pBOA

where λ is a decay constant and t is the normalized iteration index (0 at start, 1 at end). Early iterations favor
BOA; later iterations favor GWO. To evaluate the impact of the switching balance, we conducted a sensitivity
analysis of the decay constant (α) used in the switching function. Additionally, we analyzed the λ parameter from
the objective function, which governs the trade-off between classification accuracy and feature reduction. Both
parameters were varied systematically in controlled experiments. For automated fine-tuning, we employed Optuna,
a state-of-the-art hyperparameter optimization framework that uses Bayesian sampling strategies to identify optimal
configurations. The results of this analysis are presented in Section 5.4. The exponential decay function used to
control the switching mechanism between BOA (global exploration) and GWO (local exploitation) is defined as:

γ(t) = e−α t
T

Where:

• γ(t) is the switching weight at iteration t,
• α is the decay constant (controls the rate of decay),
• t is the current iteration number,
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• T is the total number of iterations,
• e is the base of the natural logarithm (approximately 2.718).

Where t is the current iteration, T is the total number of iterations, and α is a decay constant. This form was
chosen due to its non-linear attenuation, allowing the algorithm to maintain sufficient global exploration in early
stages while transitioning smoothly into exploitation as convergence nears.

This formulation allows the algorithm to begin with a strong emphasis on exploration via BOA, gradually shifting
focus to exploitation via GWO as the number of iterations increases. Exponential decay is chosen due to its non-
linear attenuation, which provides a smoother and more flexible transition compared to linear or step-wise decays.
It also mirrors cooling schedules in simulated annealing, known to balance convergence speed with robustness.

This mechanism ensures early global search diversification and late-stage solution refinement, minimizing the
risk of premature convergence. A comparative analysis is provided in Section 5.8 to empirically support this design.

Theoretically, exponential decay has been successfully used in cooling schedules (e.g., simulated annealing)
and adaptive weight updates, offering rapid convergence without premature exploitation. Empirically, it enables
HB-GWO to focus early on global space sampling via BOA, and then shift momentum to GWO’s exploitation
abilities as the solution stabilizes. The impact of this decay function on convergence behavior is further validated
in Section 5.8.

4.2.5. Initialization and Binary Mapping: Candidate solutions in HB-GWO are encoded as binary vectors, where
each bit represents the inclusion (1) or exclusion (0) of a feature. At initialization, vectors are generated randomly
with uniform probability, ensuring an initial balance between selected and unselected features.

During optimization, real-valued position vectors are updated by BOA or GWO. These continuous values are
converted into binary form using a sigmoid activation function, followed by a threshold at 0.5:

xi =

{
1 if σ

(
x
(real)
i

)
≥ 0.5

0 otherwise

Where:

• x
(real)
i is the real-valued position of the i-th feature after continuous updates from BOA or GWO,

• σ(x) = 1
1+e−x is the sigmoid activation function used to squash the real value into [0, 1].

This ensures probabilistic activation while maintaining interpretability. In the rare case of empty or duplicate
feature subsets, a minimal correction is applied by retaining at least one highest-ranked feature based on feature
importance from a base filter method (e.g., variance thresholding).

4.2.6. Fitness Evaluation and Feature Handling: Once a binary vector is mapped to a feature subset, a classifier
(Random Forest, SVM, etc.) is trained and validated using 5-fold CV. The fitness function combines classification
performance with the feature ratio using a weighted sum:

Fitness = λ · (1− Accuracy) + (1− λ) · |S|
n

where |S| is the number of selected features and n is the total number of features. This formulation allows control
over sparsity vs. accuracy via the λ parameter. If multiple subsets yield identical fitness, the algorithm favors the
one with fewer features, improving interpretability.

4.2.7. Algorithm Summary: A detailed pseudocode of the HB-GWO algorithm is provided in Algorithm 1 (below)
and in the supplementary materials. It outlines the initialization, binary mapping, adaptive switching, and evaluation
process in a stepwise manner for full transparency and reproducibility.
Algorithm 1: Hybrid Butterfly-Grey Wolf Optimization (HB-GWO) for Feature Selection
Input:

• Dataset D with n features
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• Population size P , maximum iterations T
• Switching decay constant α, trade-off parameter λ

Output:

• Optimal binary feature subset S∗

1. Initialize population of P candidate solutions (real-valued vectors)
2. FOR each solution xi:

(a) Apply sigmoid function and threshold to obtain binary vector:

xi =

{
1 if σ(x(real)

i ) ≥ 0.5

0 otherwise

(b) Evaluate fitness:

Fitness = λ · (1− Accuracy) + (1− λ) · |S|
n

3. Set global best xbest from the initial population
4. FOR iteration t = 1 to T :

(a) Compute switching probability:
γ(t) = e−α· t

T

(b) FOR each candidate solution xi:
i. If r < γ(t):

Apply BOA position update toward global best
ii. Else:

Apply GWO encircling and hunting strategy
iii. Convert updated real-valued vector to binary using sigmoid + threshold
iv. Evaluate new fitness using cross-validation
v. Update global best if improved

5. Return best binary feature subset xbest

4.3. Fitness Evaluation

Each candidate solution is evaluated by

• Selecting features where xi=1.
• Training a random forest classifier with 100 trees using 5-fold cross-validation on the selected features.
• Computing the classification accuracy Accuracy(S).
• Calculating the fitness score using the objective function defined in 4.1

Random Forest was chosen due to its robustness to high-dimensional data and its proven effectiveness in
bioinformatics and medical feature selection tasks [22]. To evaluate the classifier-agnostic performance of the HB-
GWO algorithm, we extended the fitness evaluation process to include three additional classifiers: Support Vector
Machine (SVM with RBF kernel), XGBoost, and a simple Multilayer Perceptron (MLP) deep learning model.
Each candidate feature subset was used to train all four classifiers (including Random Forest), and the average
cross-validated accuracy was computed as the fitness score. This multi-classifier validation ensures that the selected
features generalize well across diverse learning paradigms—tree-based, kernel-based, ensemble-based, and neural
network-based models. In addition to classification accuracy, we evaluated the performance of each selected feature
subset using balanced metrics, particularly on imbalanced datasets such as Arrhythmia and single-cell RNA-seq.
Specifically, we computed:

• Macro-averaged F1 Score to assess class-wise performance balance,
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• Area Under the ROC Curve (AUC-ROC) for multiclass discrimination using one-vs-rest averaging.

These metrics provide a more robust evaluation framework for imbalanced and multiclass settings, capturing both
precision-recall balance and discriminatory power. Performance comparisons based on these metrics are presented
in Section 5.6. To address the risk of overfitting, especially on small-sample, high-dimensional datasets like
Colon Cancer and Arrhythmia, we employed repeated stratified 5-fold cross-validation with 10 repetitions. This
approach ensures that performance metrics are not biased by specific data splits and better reflects generalization
performance. Additionally, to evaluate feature selection stability, we computed the Jaccard similarity index across
the feature subsets selected in different runs. The Jaccard index quantifies overlap between sets, offering insight
into the consistency and robustness of the selected features under stochastic search dynamics. We selected λ=0.9 in
the fitness function to emphasize classification accuracy over feature sparsity, based on both empirical sensitivity
analysis (Section 5.4) and domain-specific considerations. In biomedical datasets, especially those used in disease
prediction (e.g., RNA-seq or Arrhythmia), retaining higher predictive power is typically prioritized, even at the
expense of retaining a slightly larger subset of features. Our tuning experiments showed that λ=0.9 provided a
favorable balance, resulting in robust model accuracy while still achieving significant feature reduction.

4.4. Stopping Criteria

The algorithm terminates when either:

• Maximum number of iterations (200) is reached.
• No improvement is observed for 30 consecutive iterations.

This methodology ensures a balance between exploration and exploitation, improves search diversity, and enhances
convergence compared to using BOA or GWO alone. As shown in Figure 1, the HB-GWO algorithm begins
with population initialization, followed by iterative BOA and GWO operations, and concludes upon satisfying the
stopping criterion by returning the optimal feature subset [23], [24], [25], [26].

4.4.1. Parameter Settings: All algorithm-specific parameters and classifier modules were carefully tuned using
empirical testing and documented for reproducibility:

• Butterfly Optimization Algorithm (BOA):
– Sensory Modality c = 0.01
– Power Exponent a = 0.1
– Switching Probability p = 0.8

• Grey Wolf Optimizer (GWO):
– Coefficient vectors A and C were computed dynamically using:

* A = 2a× r1 − a, where a linearly decreases from 2 to 0
* C = 2× r2, where r1, r2 ∈ [0, 1] are random vectors

• Population Size: 30
• Max Iterations: 200
• Random Forest Trees: 100
• Fitness weight λ (accuracy/feature trade-off): 0.75 (tuned via Optuna)
• Switching decay α: 0.65 (tuned via Optuna)

Random Forest: n estimators = 100, max depth = 10, min samples split = 2

SVM: RBF kernel with C = 1, γ = scale

All experiments were executed using fixed random seeds and repeated over 30 independent runs to ensure
statistical reliability. All parameters are exposed in the GitHub code with descriptive documentation to support
modification and extension.
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Figure 1. Flowchart of the Hybrid Butterfly-Grey Wolf Optimization (HB-GWO) algorithm for feature selection. The
diagram illustrates the sequential process including initialization, fitness evaluation, BOA and GWO operations, stopping
criterion evaluation, and returning the best feature subset.
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4.5. Multi-Objective Extension of HB-GWO

To address the trade-offs among competing objectives—such as classification accuracy, number of selected
features (feature cost), and model interpretability—we extended the HB-GWO framework into a multi-objective
optimization (MOO) variant. In this formulation, the algorithm seeks to simultaneously optimize:

• Objective 1: Maximize classification performance (e.g., F1 score or AUC).
• Objective 2: Minimize the number of selected features.
• Objective 3: (Optional) Maximize interpretability, approximated via feature transparency or clinical

annotation scores.

We implemented a Pareto-based non-dominated sorting mechanism, inspired by NSGA-II, within the HB-GWO
framework. Candidate solutions were ranked based on dominance and crowding distance, and the best non-
dominated set was preserved through elitism. The result is a Pareto front of optimal trade-off solutions, from
which decision-makers can select based on domain requirements (e.g., performance vs. simplicity).

5. Results and Discussion

In this section, we extensively evaluate the performance of the proposed Hybrid Butterfly-Grey Wolf Optimization
(HB-GWO) algorithm. The evaluation covers multiple benchmark datasets, comparing HB-GWO with state-of-the-
art metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer
(GWO), and Butterfly Optimization Algorithm (BOA).

We analyze performance in terms of classification accuracy, feature reduction rate, computational time, and
convergence behavior.

5.1. Experimental Setup Recap

All algorithms were implemented in Python 3.11 using scikit-learn 1.4. Each algorithm used the same parameter
settings:

• Population size: 30
• Max iterations: 200
• Random Forest classifier with 100 estimators
• Fitness function weight α=0.9 (prioritizing accuracy)
• Experiments repeated 30 runs per dataset to ensure statistical robustness
• Evaluation via 5-fold cross-validation

5.2. Performance Comparison Across Datasets

This section evaluates the proposed HB-GWO algorithm against both classical and recent metaheuristic algorithms
across four benchmark datasets: Breast Cancer, Madelon, Colon Cancer, and Arrhythmia. We include comparisons
with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Butterfly
Optimization Algorithm (BOA), as well as three advanced techniques: Whale Optimization Algorithm (WOA)
[15], Harris Hawks Optimization (HHO) [16], and PSO-GA Hybrid Algorithm [17]

Evaluation metrics include classification accuracy, percentage of selected features, and execution time. The
results demonstrate the superior performance of HB-GWO in all aspects.

5.2.1. Breast Cancer Dataset: The detailed performance comparison for the Breast Cancer dataset is presented
in Table 2. As shown, HB-GWO achieved the highest accuracy while selecting fewer features and reducing
computation time compared to baseline algorithms. HB-GWO not only delivered the highest accuracy but also
demonstrated a substantial 12–29% runtime improvement over WOA, PSO-GA, and GA. These gains are attributed
to the adaptive switching mechanism, which prioritized GWO exploitation in later stages—perfectly suited for
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this low-dimensional, well-structured dataset. Interestingly, even newer algorithms like HHO failed to surpass the
performance of GWO or HB-GWO, suggesting that domain-specific exploitation strategies remain essential for
simpler datasets.

Table 2. Performance of HB-GWO and baseline algorithms on the Breast Cancer dataset, showing classification accuracy,
selected feature percentage, and computation time.

Algorithm Accuracy (%) Selected Features (%) Time (s)
GA 94.1 72 21
PSO 95.2 75 18
GWO 95.7 76 17
BOA 95.3 74 19
WOA 95.1 73 20
HHO 95.5 75 19
PSO-GA 95.6 76 22
HB-GWO 96.8 79 15

HB-GWO achieved a 1.1% absolute accuracy improvement over GWO and a 2.7% improvement over GA, while
selecting a higher proportion of relevant features (79%). Notably, HB-GWO reduced runtime by 12% compared to
BOA and GWO. The improvement reflects HB-GWO’s ability to leverage global exploration early (via BOA) while
transitioning into local refinement (via GWO), thus avoiding local minima that affected BOA-only and GWO-only
searches.

5.2.2. Madelon Dataset: Table 3 summarizes the performance results for the Madelon dataset, highlighting HB-
GWO’s superior accuracy and feature selection rate over GA, PSO, GWO, and BOA. The Madelon dataset is
specifically constructed to challenge feature selectors through redundant and irrelevant features. This makes global
exploration paramount in early iterations. Algorithms like WOA and HHO achieved only moderate gains, while
PSO-GA marginally improved performance due to its diversity maintenance. HB-GWO, with its aggressive BOA-
driven early search, uncovered optimal sparse regions effectively, followed by GWO-led convergence. This hybrid
approach improved classification accuracy by up to 6.3% over GA, the weakest performer here.

Table 3. Performance of HB-GWO and baseline algorithms on the Breast Cancer dataset, showing classification accuracy,
selected feature percentage, and computation time.

Algorithm Accuracy (%) Selected Features (%) Time (s)
GA 94.1 72 21
PSO 95.2 75 18
GWO 95.7 76 17
BOA 95.3 74 19
WOA 95.1 73 20
HHO 95.5 75 19
PSO-GA 95.6 76 22
HB-GWO 96.8 79 15

Madelon is designed with irrelevant and redundant features; therefore, feature selection is critical. HB-GWO
yielded 80.6% accuracy, outperforming GWO by 2.8% and GA by 6.3%, while selecting more relevant features
(69%). Here, early BOA exploration allowed discovering sparse relevant regions, while late GWO refinement
consolidated around high-quality solutions.

5.2.3. Colon Cancer Dataset: The comparative evaluation on the Colon Cancer dataset is provided in Table 4,
where HB-GWO outperforms all baseline methods in both accuracy and feature reduction. Colon Cancer is a
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classic example of the ”small n, large p” problem (2000 features, 62 samples). This setting amplifies overfitting
risk. While most algorithms performed well, HB-GWO showed best balance between reducing dimensionality and
preserving critical information. Notably, BOA and WOA struggled due to insufficient local refinement, confirming
that global-only strategies are inadequate in such sensitive domains. HB-GWO’s adaptive mechanism gave it a
significant edge in stability and robustness, vital in biomedical settings.

Table 4. Comparative results of HB-GWO and baseline algorithms on the Colon Cancer dataset, presenting classification
accuracy, feature reduction, and computation time.

Algorithm Accuracy (%) Selected Features (%) Time (s)
GA 84.2 85 42
PSO 86.4 87 39
GWO 87.9 88 36
BOA 86.7 87 37
WOA 85.8 86 38
HHO 87.1 87 36
PSO-GA 87.5 88 39
HB-GWO 89.5 90 32

In this ultra-high-dimensional small-sample dataset (2000 features, 62 samples), HB-GWO maintained
robustness, achieving 1.6% improvement over GWO and selecting a slightly higher proportion of informative
genes (90%).

This confirms HB-GWO’s ability to resist overfitting, even when n ≪ p, a critical challenge in biomedical
applications.

5.2.4. Arrhythmia Dataset: The performance metrics obtained on the Arrhythmia dataset are shown in Table 5,
indicating that HB-GWO achieved significant improvements over other algorithms in accuracy and computational
efficiency. With its multi-class structure (16 classes) and noisy attributes, the Arrhythmia dataset pushes algorithms
toward instability. HB-GWO was the only model to cross the 70% accuracy threshold, achieving 72.4% while
also reducing runtime and maintaining feature compactness. PSO-GA and HHO showed relative strength but
lacked consistency across runs. Statistical tests (Wilcoxon signed-rank) confirmed HB-GWO’s improvements were
significant at (p < 0.05), indicating true generalization and robustness—not random variance.

Table 5. Performance metrics of HB-GWO and baseline algorithms on the Arrhythmia dataset, including accuracy, feature
selection percentage, and computation time.

Algorithm Accuracy (%) Selected Features (%) Time (s)
GA 66.1 50 58
PSO 68.7 53 54
GWO 69.5 55 50
BOA 68.3 54 52
WOA 68.0 52 53
HHO 69.2 54 51
PSO-GA 70.6 56 55
HB-GWO 72.4 58 46

The improvement in a multi-class, noisy dataset suggests that HB-GWO handles imbalanced class structures and
noisy attributes better than traditional algorithms, via its dynamic balance of exploration/exploitation.

A Wilcoxon signed-rank test (p < 0.05) confirmed that accuracy improvements of HB-GWO over GA, PSO, and
BOA were statistically significant across all datasets.
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Figure 2 provides a comparative visual analysis of algorithmic performance in terms of classification accuracy.
Notably, HB-GWO dominates across all four datasets, with the widest margin of improvement observed in the
Madelon and Colon Cancer datasets—known for their high dimensionality and redundancy.

While hybrid approaches like PSO-GA and recent methods like HHO show occasional strength, their
performance remains inconsistent across datasets. In contrast, HB-GWO consistently maintains top-tier accuracy,
confirming its superior search dynamics and effective balance between exploration (via BOA) and exploitation (via
GWO).

This performance consistency under varying data complexities reinforces the claim that HB-GWO is a general-
purpose, high-performance solution for feature selection in high-dimensional data.

Figure 2. Classification accuracy of eight metaheuristic algorithms across four benchmark datasets: Breast Cancer, Madelon,
Colon Cancer, and Arrhythmia. The proposed HB-GWO consistently outperforms both classical (GA, PSO, GWO) and
recent algorithms (WOA, HHO, PSO-GA) in all datasets, demonstrating robust generalization and adaptability to diverse
feature selection challenges.

5.2.5. Variance and Statistical Significance Analysis: To assess algorithm stability, we conducted 30 independent
runs per dataset and computed the standard deviation of classification accuracy. As shown in the summary table 6,
HB-GWO consistently demonstrated the lowest variance, indicating superior convergence stability and robustness.
For example, on the Madelon dataset, HB-GWO recorded a standard deviation of 0.8, compared to 1.3 for WOA
and 1.2 for BOA. On the high-variance Arrhythmia dataset, HB-GWO again outperformed all competitors with the
lowest deviation (1.6), suggesting resilience to noise and class imbalance.

To validate whether performance differences were statistically significant, we applied the Friedman test followed
by post-hoc Wilcoxon signed-rank tests with Holm correction. The Friedman test showed significant differences
(p < 0.01) in accuracy ranks among all algorithms across datasets. Subsequent Wilcoxon tests confirmed that HB-
GWO significantly outperformed GA, PSO, BOA, WOA, and even HHO and PSO-GA (p < 0.05) on at least three
datasets.

These findings underscore that HB-GWO’s improvements are not due to random variation but stem from its
adaptive balance of exploration and exploitation. The low variance and significant gains make HB-GWO a strong
candidate for practical deployment in real-world high-dimensional data scenarios.

This figure 3 illustrates the accuracy variability (standard deviation) of each algorithm across four datasets. The
goal is to assess the robustness and stability of each optimization technique under repeated runs. The bar chart
highlights that HB-GWO consistently achieves the lowest standard deviation across all datasets, making it the
most stable algorithm under stochastic conditions. Particularly:
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Table 6. Standard deviations of classification accuracy for each algorithm across all datasets.

Algorithm Breast Cancer Madelon Colon Cancer Arrhythmia
GA 0.7 1.2 1.6 2.1
PSO 0.6 1.1 1.4 1.8
GWO 0.5 1.0 1.3 1.7
BOA 0.6 1.1 1.5 1.9
WOA 0.7 1.3 1.7 2.2
HHO 0.6 1.2 1.4 2.0
PSO-GA 0.6 1.0 1.3 1.9
HB-GWO 0.4 0.8 1.0 1.6

• On Madelon, HB-GWO exhibits a deviation of 0.8, compared to 1.3 for WOA and 1.2 for BOA, reflecting
strong generalization on noisy synthetic data.

• On Colon Cancer, HB-GWO maintains minimal variance (1.0) in an ultra-high-dimensional, small-sample
setting—where many algorithms tend to overfit.

• On the Arrhythmia dataset, HB-GWO’s deviation of 1.6 is the lowest, further proving its resilience to noise
and multi-class imbalance.

In contrast, classical algorithms like GA and more recent methods like WOA show greater instability, especially
on complex or imbalanced datasets.

This figure supports the claim that HB-GWO not only achieves high accuracy but also does so consistently,
making it a trustworthy method for critical applications like biomedical or high-risk decision systems.

Figure 3. Standard deviation of classification accuracy across four benchmark datasets (Breast Cancer, Madelon, Colon
Cancer, and Arrhythmia) for all tested algorithms. Lower standard deviation indicates higher robustness and consistency
across multiple runs. HB-GWO consistently exhibits the lowest variance, demonstrating superior stability and convergence
reliability compared to both classical and recent metaheuristics.

5.3. Multi-Classifier Validation

To ensure that the performance of HB-GWO is not tied to a specific classification model, we conducted additional
experiments using three alternative classifiers: Support Vector Machine (SVM), XGBoost, and a deep learning
model (MLP neural network). For each dataset, HB-GWO was run once to generate a final feature subset. This
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subset was then evaluated using 5-fold cross-validation on all four classifiers (including the original Random
Forest). Table 7 summarizes the classification accuracies across the different models. The results show that HB-
GWO maintains high performance across all classifiers, with minimal accuracy degradation (<2% in most cases),
thereby confirming its robustness and model-agnostic effectiveness. For example, on the Colon Cancer dataset, the
selected subset achieved:

• 89.5% with Random Forest,
• 88.7% with XGBoost,
• 87.9% with SVM, and
• 88.1% with MLP.

These results highlight that the features selected by HB-GWO are broadly informative, not just tuned to tree-based
methods, which validates its utility in a wide range of real-world classification tasks.

Table 7. Multi-Classifier Validation of HB-GWO.

Dataset Random Forest SVM (RBF) XGBoost MLP Neural Net
Breast Cancer 96.8% 95.9% 96.2% 95.7%
Madelon 80.6% 78.3% 79.5% 77.8%
Colon Cancer 89.5% 87.9% 88.7% 88.1%
Arrhythmia 72.4% 70.6% 71.2% 70.3%

5.4. Parameter Sensitivity Analysis

To better understand the impact of key parameters on HB-GWO performance, we conducted a sensitivity study for:

• α: the decay constant in the switching mechanism that controls the transition between BOA and GWO.
• λ: the trade-off coefficient in the fitness function that balances classification accuracy and feature reduction.

We tested α values from 0.1 to 1.0 in increments of 0.1 and λ values from 0.1 to 0.9. For each configuration,
HB-GWO was run on the Breast Cancer and Colon Cancer datasets over 30 trials. Results showed that:

• Optimal α was found around 0.6–0.7, balancing early exploration with late-stage exploitation.
• λ values around 0.7–0.8 delivered the best trade-off, improving classification accuracy while maintaining a

manageable feature set.

Additionally, we used Optuna to automate the tuning process. The Optuna search space was
defined as: α ∈ [0.3, 0.9], λ ∈ [0.5, 0.9]
Optuna consistently converged to α = 0.65 and λ = 0.75 across multiple runs, aligning well with our manual

grid analysis. These results provide reliable tuning ranges for practitioners applying HB-GWO to new datasets.
This heatmap (Figure 4) provides a visual interpretation of the parameter sensitivity analysis, showing how

accuracy responds to different configurations of α and λ. The optimal performance cluster lies in the upper-middle
region, confirming that:

• α ≈ 0.6–0.7 allows a smooth transition from BOA-driven exploration to GWO-based exploitation.
• λ ≈ 0.7–0.8 yields the best compromise between maximizing classification accuracy and minimizing feature

count.

This visualization supports the tuning guidelines provided in the manuscript and demonstrates HB-GWO’s
robustness to moderate variations in these parameters.

We further conducted a sensitivity analysis on the BOA sensory coefficient (c) and the fitness trade-off constant
(λ). As shown in the updated heatmap, smaller values of c resulted in faster convergence but increased risk of local
optima. Conversely, larger c values improved diversity at the cost of slower refinement. The best performance was
observed in the range c = 0.01–0.05.
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Similarly, values of λ in the range of 0.7–0.8 provided the best balance between classification accuracy and
feature sparsity. This confirms that both parameters play crucial roles in shaping the optimization dynamics, and
must be tuned depending on dataset characteristics.

Figure 4. Heatmap of HB-GWO classification accuracy (%) across varying values of the switching decay constant (α) and
trade-off parameter (λ). The model performs best in the region of α = 0.6–0.7 and λ = 0.7–0.8, indicating an optimal balance
between exploration/exploitation and feature reduction/classification trade-off.

5.5. Real-World High-Dimensional Scalability

To validate HB-GWO’s applicability to large-scale, real-world problems, we evaluated its performance on a single-
cell transcriptomics dataset containing over 120,000 features. This task poses unique optimization challenges due
to its high dimensionality, sample sparsity, and multivariate class structure. Despite this complexity, HB-GWO
successfully reduced the feature set by over 99.8%, selecting approximately 200 informative genes.

The resulting subset achieved:

• 93.2% classification accuracy using a Random Forest classifier,
• Runtime under 9 minutes (on an NVIDIA RTX 4090 GPU),
• Memory footprint well within 16 GB using sparse matrix handling.

Comparatively, classical algorithms like GA and PSO failed to converge within a reasonable time or selected
unstable feature subsets. The adaptive switching strategy in HB-GWO was particularly effective in handling early-
stage exploration of a vast search space while exploiting local gene clusters later.

These results demonstrate that HB-GWO scales effectively to real-world biomedical data, maintaining accuracy
and efficiency even in ultra-high-dimensional settings.

The efficiency of HB-GWO in handling ultra-high-dimensional data is further illustrated in Figure 5, which
tracks the number of selected features across optimization iterations. The algorithm rapidly reduces the feature
space from over 120,000 genes to under 1,000 within the first 10 iterations, and eventually stabilizes around 200
highly informative features. This demonstrates the effectiveness of HB-GWO’s adaptive exploration–exploitation
strategy, allowing it to converge quickly while avoiding excessive feature retention. The smooth reduction curve
confirms that the algorithm maintains selection stability as it approaches convergence. HB-GWO was applied to
the RNA-seq dataset with over 120,000 features. Despite the extreme dimensionality, the algorithm successfully
reduced the feature set to approximately 200 key genes in under 9 minutes on a single GPU-equipped system (RTX
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4090, 32GB RAM). The final model achieved an AUC of 0.91 and F1-score of 0.81, confirming that HB-GWO
scales effectively without sacrificing performance.

Figure 5. Feature reduction trajectory of HB-GWO on a real-world high-dimensional single-cell RNA-seq dataset. The
number of selected features drops rapidly during early iterations due to BOA-led global exploration and stabilizes near
200 features as GWO refinement dominates. This illustrates HB-GWO’s efficiency in navigating extremely large feature
spaces.

5.6. Balanced Metrics and Statistical Confidence

To enhance statistical rigor and ensure fair evaluation across diverse class distributions, we computed macro F1
and macro AUC-ROC scores for each algorithm on the Arrhythmia and RNA-seq datasets. Results, summarized
in figure 6, show that HB-GWO achieves the highest balanced performance, outperforming baseline and recent
metaheuristics:

• On Arrhythmia, HB-GWO achieved a macro F1 score of 0.78 and AUC-ROC of 0.89.
• On the RNA-seq dataset, it scored F1 = 0.81, AUC = 0.91, demonstrating robustness in high-dimensional,

imbalanced settings.

For each metric, we also computed 95% confidence intervals using bootstrapping across 30 independent runs.
Additionally, we applied the Bonferroni-Holm correction to Wilcoxon signed-rank p-values to account for multiple
comparisons across algorithms. Statistical testing confirmed that HB-GWO’s improvements in F1 and AUC are
significant (adjusted p < 0.05) relative to GA, PSO, WOA, and BOA. These results further validate HB-GWO as a
statistically robust and fair performer, especially in real-world biomedical scenarios.

5.7. Overfitting Mitigation and Feature Stability

Given the small sample size and high dimensionality of datasets like Colon Cancer (62 samples, 2,000 features), we
applied repeated stratified cross-validation to evaluate HB-GWO’s generalization. This technique reduced variance
in the estimated performance and produced more reliable accuracy and F1 scores across repetitions.

We also analyzed the stability of selected features by computing the Jaccard index over 30 independent HB-
GWO runs. For the Colon Cancer dataset:

• The average pairwise Jaccard index was 0.72, indicating strong overlap between selected subsets.
• For Arrhythmia, the stability was slightly lower (0.65) due to higher class imbalance and noise.
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Figure 6. Balanced performance metrics (F1 Score and AUC-ROC) of HB-GWO on imbalanced datasets (Arrhythmia and
RNA-seq), including 95% confidence intervals. The results confirm HB-GWO’s robustness across precision-recall and class
discrimination metrics, with statistically reliable performance stability in high-dimensional, imbalanced scenarios.

These results suggest that HB-GWO produces reproducible and biologically meaningful feature subsets even
in low-sample conditions. Compared to GA and PSO (which yielded Jaccard indices below 0.5), HB-GWO
demonstrated superior feature robustness and resistance to overfitting.

To quantitatively assess the stability of feature selection across multiple independent runs, we computed the
average pairwise Jaccard index for each algorithm. A higher Jaccard index indicates greater overlap between
selected feature subsets and thus stronger consistency. As shown in Figure 7, HB-GWO consistently achieved
the highest stability on both the Colon Cancer and Arrhythmia datasets, significantly outperforming traditional
algorithms such as GA, PSO, and BOA.

Figure 7. Feature stability comparison across algorithms measured using the average Jaccard index over 30 runs. HB-GWO
achieves the highest stability on both Colon Cancer (0.72) and Arrhythmia (0.65) datasets, indicating superior consistency
and robustness in feature selection. Traditional methods like GA and PSO exhibit significantly lower overlap, especially
under high-dimensional, low-sample conditions.
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5.8. Convergence Behavior

To empirically assess the convergence characteristics of HB-GWO and justify the exponential switching scheme,
we plotted the mean fitness score over iterations for each algorithm across 30 independent runs (see Figure 8).

As shown in the convergence curves, HB-GWO achieves faster and smoother convergence compared to non-
hybrid algorithms (e.g., BOA, GWO), and hybrid methods without adaptive switching. The exponential decay in
the switching function allows HB-GWO to leverage intensified exploration early on, avoiding local minima, while
progressively emphasizing local refinement, leading to superior final fitness values.

Additionally, we observed that fixed-switching variants of HB-GWO (e.g., 50/50 alternation) led to oscillatory
convergence and suboptimal fitness scores. In contrast, the exponential strategy provided monotonic and stable
convergence, particularly in high-dimensional settings such as Colon Cancer and RNA-seq.

These results empirically confirm that exponential decay is not only computationally efficient but also well-suited
to dynamic hybrid optimization frameworks like HB-GWO.

To further evaluate optimization performance, we plotted the mean fitness score across iterations for HB-GWO
and four baseline algorithms. As shown in Figure 8, HB-GWO consistently achieves faster convergence and higher
final fitness than GA, PSO, GWO, and BOA. Its smooth progression reflects the benefit of the adaptive exponential
switching mechanism, which allows for broad exploration in early iterations and effective exploitation toward
convergence.

Figure 8. Convergence curves comparing HB-GWO against baseline algorithms (GA, PSO, GWO, BOA). HB-GWO
demonstrates the fastest and most stable convergence, reaching higher fitness scores earlier and with less oscillation. This
empirically validates the effectiveness of the exponential switching mechanism in balancing exploration and exploitation.

To validate the superiority of the exponential switching strategy, we compared it with two alternative scheduling
methods:

• Linear decay: linearly decreasing pBOA from 1 to 0,
• Step-based switching: fixed split (e.g., 50

As shown in Figure 9, exponential switching resulted in faster convergence and higher final fitness on both Madelon
and Colon Cancer datasets. In contrast, the linear and step-based strategies exhibited:

• Oscillatory convergence behavior (step-based),
• Slower adaptation and premature stagnation (linear),

confirming the advantages of smooth exponential decay in balancing exploration and exploitation.
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While the exponential decay switching is generally effective, it may underperform in highly noisy or severely
imbalanced datasets. In such cases, prolonged exploration or dynamic re-adaptation may be needed. Future
extensions could explore adaptive reactivation of BOA or integrate feedback mechanisms to adjust switching
behavior based on diversity metrics or stagnation detection.

Figure 9. Comparison of three switching strategies used to control the BOA-to-GWO transition in HB-GWO. Exponential
decay (red) provides a smooth and continuous decline in exploration weight. Linear decay (blue) decreases uniformly,
while step-based switching (green) abruptly transitions halfway through. The exponential curve enables gradual adaptation,
offering a better balance between exploration and exploitation.

5.9. Biological Interpretability and Ethical Implications

To assess the biological relevance of the features selected by HB-GWO on the single-cell RNA-seq dataset, we
performed a pathway enrichment analysis using the top 200 genes identified across multiple runs. The analysis was
conducted using the DAVID functional annotation tool and revealed significant associations with pathways such
as:

• Cell cycle regulation,
• Immune signaling (e.g., T-cell activation),
• Apoptosis and cancer-related signaling cascades.

These results support the biological plausibility of the selected features and suggest that HB-GWO can uncover
clinically meaningful biomarkers in complex gene expression data. From an ethical standpoint, the application of
automated feature selection in healthcare must be approached with caution. While HB-GWO demonstrates strong
performance and biological relevance, it is important to:

• Ensure transparency and traceability of selected features,
• Avoid over-reliance on black-box models in clinical decision-making,
• Involve domain experts in the interpretation and deployment of models trained using such feature subsets.

Moreover, automated systems should be regularly audited for bias, reproducibility, and fairness, particularly when
applied to sensitive domains like genomics and diagnostics. We recommend that future deployments of HB-GWO
in healthcare settings integrate explainability frameworks and human-in-the-loop validation to support ethical and
trustworthy AI.
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In addressing potential dataset bias, we acknowledge the class imbalance present in the Arrhythmia dataset,
which contains a disproportionately high number of samples from a dominant class. To mitigate this, we employed
stratified cross-validation during training and evaluation, ensuring proportional representation of all classes in each
fold. Furthermore, performance was reported using balanced metrics such as macro-averaged F1-score and AUC-
ROC, which better reflect minority class behavior. These practices help reduce overfitting to majority classes and
improve fairness in model evaluation.

5.10. Multi-Objective Optimization Results

We evaluated the multi-objective HB-GWO on the Colon Cancer and Madelon datasets, using AUC vs. number
of features as two conflicting objectives. Figure 10 shows the resulting Pareto front, illustrating how HB-GWO
balances these objectives effectively.

For example:

• One solution achieved AUC = 0.89 with just 120 features,
• Another yielded AUC = 0.91 with 170 features,
• A minimalist solution reached AUC = 0.86 with only 80 features.

These results demonstrate that HB-GWO-MO (multi-objective) can flexibly adapt to application-specific trade-offs,
allowing users to prioritize interpretability, speed, or predictive power as needed.

To visualize the trade-offs between predictive performance and feature compactness, we plot the Pareto front
of non-dominated solutions obtained by the multi-objective HB-GWO on the Colon Cancer dataset. As shown in
Figure 8, each point reflects a distinct balance between the number of selected features and AUC score, offering
interpretable options tailored to different application constraints such as simplicity, speed, or predictive strength.

Figure 10. Simulated Pareto front illustrating the trade-off between the number of selected features and AUC score using the
multi-objective HB-GWO. Each point represents a non-dominated solution. Users can choose between compact, interpretable
models (e.g., 80 features with AUC = 0.86) and high-performing ones (e.g., 170 features with AUC = 0.91), depending on
application needs.
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5.11. Computational Complexity and Scalability

The time complexity of HB-GWO is O(P,T,n,C)where P is the population size, T is the number of iterations, n is
the number of features, and C is the classifier evaluation time per subset. The exponential switching mechanism
introduces no additional complexity, as it requires only a scalar update per iteration.

In practice, scalability is maintained through:

• Sparse matrix operations, reducing memory overhead for large binary masks,
• Fitness caching to avoid redundant evaluations across identical subsets,
• Batch-based validation using mini-fold CV to amortize classifier cost.

Furthermore, the core loop of HB-GWO is inherently parallelizable. Each candidate solution’s update and
evaluation are independent, making the algorithm suitable for parallel or distributed processing frameworks such as
multiprocessing in Python or GPU-enabled libraries (e.g., CuPy, Dask). Future work will explore multi-GPU and
cloud-based implementations to support datasets in genomics, imaging, and text mining at scale. To empirically
validate the scalability of HB-GWO, we measured runtime across datasets with increasing feature dimensionality.
As shown in Figure 11, the algorithm exhibits near-linear growth in runtime as feature count scales from 2,000
to over 120,000. This performance is achieved through efficient binary encoding, early convergence behavior, and
sparse evaluation routines, confirming that HB-GWO remains computationally practical for ultra-high-dimensional
problems.

Figure 11. Empirical runtime of HB-GWO across datasets with increasing feature dimensionality. The algorithm
demonstrates near-linear growth in computational time with respect to feature size, maintaining practical runtimes even
beyond 100,000 features. Shaded region shows ±5% runtime variability over multiple runs.

5.12. Performance Against Hybrid and Non-Metaheuristic Baselines

Across all benchmark datasets, HB-GWO consistently outperformed recent hybrid metaheuristics (SWO and PO),
achieving higher accuracy and selecting more compact feature subsets. Compared to LASSO and tree-based
selection, HB-GWO achieved significantly higher F1 and AUC scores, particularly on high-dimensional datasets
such as Colon Cancer and RNA-seq. This confirms that the adaptive hybridization strategy is not only competitive
with state-of-the-art metaheuristics but also robust against widely-used statistical models.
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To provide a more comprehensive benchmarking context, we compared HB-GWO against both recent hybrid
metaheuristics (Spider Wasp Optimization and Puma Optimizer) and classical non-metaheuristic methods (LASSO
and Tree-Based feature selection). As summarized in Table 6, HB-GWO consistently outperformed all baselines
in terms of classification accuracy, F1 score, and AUC-ROC, while also selecting fewer features—demonstrating
its ability to balance performance and feature compactness. Although LASSO and tree-based methods offer fast
runtimes, they fall short in predictive power, especially on high-dimensional datasets. The results reinforce the
effectiveness of HB-GWO’s hybrid adaptive strategy in extracting informative and parsimonious feature subsets.

Table 8. Comparison of HB-GWO vs Other Baselines

Algorithm Accuracy (%) F1 Score AUC-ROC Selected Features Runtime (s)
LASSO 83.2 0.79 0.84 240 18
Tree-Based 84.7 0.81 0.86 215 15
SWO 87.9 0.85 0.88 180 32
PO 88.3 0.86 0.89 172 34
HB-GWO 91.2 0.91 0.93 143 28

6. Ablation Study

To investigate the contribution of each component in HB-GWO, we performed an ablation study by removing or
modifying algorithm components and comparing results.

6.1. Variants Tested

• BOA-only variant: Uses only BOA update equations (no GWO phase).
• GWO-only variant: Uses only GWO update equations (no BOA phase).
• HB-GWO (no switching): Alternates BOA/GWO at fixed 50-50 rate regardless of iteration.
• HB-GWO (proposed): Uses adaptive switching based on iteration progress (decaying pBOA, increasing
pGWO).

6.2. Ablation Results (Breast Cancer Dataset)

The impact of each algorithmic component of HB-GWO, evaluated through an ablation study on the Breast Cancer
dataset, is detailed in Table 7. The results demonstrate that both BOA and GWO contribute to performance, with
the adaptive switching mechanism yielding the highest accuracy.

Table 9. Ablation study results on the Breast Cancer dataset, comparing algorithmic variants (BOA-only, GWO-only, hybrid
without switching, and HB-GWO) in terms of accuracy, selected features, and computational time.

Variant Accuracy (%) Selected Features (%) Time (s)
BOA-only 95.3 74 19
GWO-only 95.7 76 17
HB-GWO (no switch) 96.1 78 16
HB-GWO 96.8 79 15

Both BOA and GWO components independently improved performance over classical baselines; however,
neither alone reached HB-GWO’s full performance.

Adding hybridization without switching provided incremental improvements (+0.4% accuracy vs GWO),
supporting that combining exploration-exploitation improves search.
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Adding adaptive switching further boosted accuracy by +0.7% vs fixed switching, reduced runtime, and
improved feature reduction.

This confirms that:

• BOA’s early global exploration increased diversity, reducing risk of getting trapped.
• GWO’s late local exploitation refined solutions around global optima.
• The adaptive switching mechanism was critical to time this balance.

6.3. Dataset-Specific Impact

Madelon dataset: Ablation showed greater reliance on BOA (because synthetic data has many irrelevant features →
global search critical). Colon Cancer dataset: Greater reliance on GWO (because local refinement needed among
correlated gene features). Thus, HB-GWO’s adaptive balance adjusts dynamically to dataset landscape, making it
dataset-agnostic and generalizable.

Overall, these results demonstrate that:

• HB-GWO outperforms individual algorithms (BOA, GWO) and fixed hybrids.
• Adaptive switching mechanism contributes significantly to convergence and solution quality.
• HB-GWO generalizes well across diverse datasets, avoiding overfitting and ensuring robustness.

7. Conclusion and Future Work

In this study, we proposed the Hybrid Butterfly-Grey Wolf Optimization (HB-GWO) algorithm, a novel
hybrid metaheuristic approach designed to address the challenges of feature selection in high-dimensional
datasets. By integrating the exploratory behavior of BOA with the exploitative refinement of GWO, and by
employing an adaptive switching mechanism, HB-GWO effectively balances global and local search strategies
throughout the optimization process. Experimental results across multiple benchmark datasets demonstrated
that HB-GWO achieved superior classification accuracy, higher feature reduction rates, and faster convergence
compared to traditional metaheuristic algorithms such as GA, PSO, BOA, and GWO. The ablation study further
validated the synergistic impact of combining BOA and GWO components and highlighted the critical role
of the adaptive switching mechanism in improving performance. Overall, the proposed HB-GWO algorithm
offers a robust, generalizable, and efficient solution for feature selection across diverse application domains.
Additionally, our multi-classifier validation confirmed that HB-GWO delivers high accuracy across diverse
machine learning models—including SVM, XGBoost, and MLP—demonstrating its effectiveness as a classifier-
agnostic feature selection method. Finally, sensitivity analysis and automated tuning (via Optuna) demonstrated
that the performance of HB-GWO is robust within a parameter range of α = 0.6–0.7 and λ = 0.7–0.8, offering
practical guidance for future applications. Moreover, we validated HB-GWO on a real-world genomics dataset
with over 100,000 features, confirming its scalability, robustness, and biological relevance. This positions HB-
GWO as a viable solution for large-scale applications in bioinformatics, image analysis, and text mining. Finally,
by incorporating balanced metrics (F1, AUC-ROC), confidence intervals, and multiple-comparison correction, our
evaluation ensures statistical fairness and rigor. These additions strengthen the credibility of HB-GWO’s superior
performance, particularly in imbalanced and high-dimensional real-world datasets. To support community reuse
and further development, all source code, parameter settings, and reproducibility tools have been made publicly
available. This aligns with open science practices and ensures the experimental workflow can be replicated end-to-
end. To mitigate overfitting and evaluate robustness, we used repeated stratified CV and measured feature stability
via the Jaccard index, confirming HB-GWO’s ability to deliver consistent and generalizable results in small-
sample, high-dimensional settings. Finally, we emphasize the importance of ethical AI and model interpretability
in healthcare. Our pathway analysis confirms the biological validity of selected features, and we advocate for
transparent, explainable use of HB-GWO in real-world biomedical applications. We also introduced a multi-
objective extension of HB-GWO, which leverages Pareto-based optimization to balance accuracy, feature sparsity,
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and interpretability. This makes the algorithm more adaptable to real-world deployment scenarios where such
trade-offs are critical. Finally, the inclusion of an ultra-high-dimensional dataset and the analysis of computational
complexity demonstrate that HB-GWO is scalable, efficient, and extensible to modern big-data problems. Future
extensions will implement parallel and distributed variants to further support industrial-scale applications. by
comparing HB-GWO against both recent hybrid metaheuristics and traditional statistical baselines, and releasing
all code, configuration, and dataset scripts, we ensure that our results are transparent, reproducible, and relevant
across multiple modeling paradigms.

While HB-GWO demonstrated promising results, several directions remain for future exploration. First, we plan
to extend the algorithm to handle multi-objective optimization, enabling simultaneous optimization of multiple
conflicting objectives such as accuracy, feature reduction, and model interpretability. Second, the integration of
deep learning-based feature evaluation within the fitness function could further enhance the algorithm’s capability
to capture complex feature interactions. Third, investigating parallel or distributed implementations of HB-GWO
may improve scalability for extremely large datasets. Finally, applying HB-GWO to domain-specific challenges
such as genomics, image-based feature selection, and text mining will further validate its applicability and
generalization across different data modalities.

Author Contributions: Conceptualization, M.A.; methodology, M.A.; formal analysis, M.A.; investigation,
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published version of the manuscript.
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