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Abstract IIn this study, the newly developed discrete distribution identified as the two-parameter discrete Inverse Rayleigh
Exponential (DIRE) distribution is developed after discretization of the Inverse Rayleigh-G family of distributions was done.
The probability mass function of DIRE distribution has the probability density function and it offers flexibility in its shape
where shapes may be symmetric or asymmetric. It has very tractable hazard function which exhibits range of behaviors
as a function of time, with the ability to be increasing, constant, uniform, monotonically increasing and even reversed J
shaped. We study some features of the DIRE distribution, mean and variance, moment generating function and dispersion
coefficient. The estimators discussed in this work include both the maximum likelihood estimation (MLE) approach and the
K-Nearest Neighbors (K-NN) algorithm; the performance of these estimators is assessed based on large simulation studies.
It is exercised on two real datasets to evaluate the efficacy of the proposed distribution practically. A comparison with other
models shows that, in each case, the results of the DIRE distribution fitting are significantly higher. That K-NN algorithm
has been used for parameter estimation in the case also emphasize of importance of the machine learning techniques in the
modeling and application of the discrete probability distributions.

Keywords Discrete Distribution; Survival Discretization; Inverse Rayleigh-G family; Exponential Distribution; K-Nearest
Neighbors algorithm.
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1. Introduction

The application of statistical distributions is essential for effectively modeling and interpreting a wide variety of
data. Traditional distributions provide a robust starting point for many applications, yet they often lack the flexibility
to represent the diverse patterns and intricate behaviors observed in real-world datasets. To overcome these
challenges, researchers have introduced new families of both continuous and discrete distributions, broadening the
scope of statistical tools available for more complex data analysis. Discrete distributions, in particular, are critical
for analyzing non-continuous variables, such as event counts or durations, driving the ongoing development of
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novel models tailored to these specific requirements. However, existing discrete distributions often face limitations
when applied to highly complex or heterogeneous data, necessitating more adaptable approaches. This has led to a
growing focus on discretizing continuous models, enabling the construction of discrete analogues that extend the
capabilities of traditional statistical frameworks. Recent advancements in this area have facilitated the systematic
creation of discrete G families of probability distributions derived from continuous counterparts. For instance, [1]
presented the discrete Gompertz-G distribution, building upon the foundational concepts outlined in [2]. Similarly,
the exponential generalized-G family of continuous distributions was introduced in [3], contributing to the growing
suite of flexible models. Further developments include the discrete Rayleigh-G family presented in [5], based on
the methodology in [4], and the discrete analogue of the Weibull-G family introduced in [6]. These contributions
highlight the significance of discretization techniques in advancing statistical methodologies, providing tools better
suited to the complexities of modern data analysis.
Recently, [7] introduced an innovative methodology termed the ’transformed,’ designed to systematically generate
new families of probability distributions, significantly enhancing the flexibility and applicability of statistical
modeling frameworks. They selected the weight function W (G (y, β)) = − log (1−G (y, β)), where G (y, β)
denotes the probability distribution of a baseline distribution corresponding to the vector β, To present the Weibull-
G, beta-exponential-G, and gamma-G families of distributions.

In this work, W (G (y, β)) is addressed in [8, 9, 10]. The Inverse Rayleigh-G distribution is characterized by its
cumulative distribution function (CDF), defined as:
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with corresponding probability density function (PDF):
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The formal expressions for the hazard rate function (HRF) and the survival function (SF) are as follows:
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In the last few decades, many discretized forms of continuous probability distributions have been constructed
to capture different discrete data plans. Among these approaches, survival discretization method is the innovative
one that has been initiated and proposed by [10, 11]. This method just adopts a survival function of a continuous
distribution to make the corresponding discrete distribution. As outlined in [10], the probability mass function
(PMF) for a discrete distribution derived through this approach is defined as follows:

P (Y = y) = S (y)− S (y + 1) , x = 0, 1, 2, . . . (5)

where S(x) represents the survival function of the underlying continuous distribution, mathematically expressed
as:

S (y) = P (Y ≥ y) = 1− F (y, θ) , (6)

Where F (y, θ) is a CDF of the continuous distribution and θ This approach has recently been generalized to define
several new discrete families of probability distribution. For example, [1] proposed the discrete Gompertz-G family
of distributions: discrete Gompertz-exponential, discrete Gompertz-Weibull, discrete Gompertz-inverse Weibull.
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2 DISCRETIZATION OF THE INVERSE RAYLEIGH-G FAMILY OF DISTRIBUTIONS ...

[5] has examined the discrete Rayleigh family and has suggested the discrete Rayleigh-Weibull distribution. In
[11, 12, 13] the odd Perks-G family general of distribution was proposed, as well as the discrete odd Perks-
exponential distribution. [14, 15, 16] propose the discrete exponential generalized-G family and discover the
discrete exponential generalized-Weibull distribution. Further, the Odd Weibull-G family’s discrete form was
investigated in [13], and the discrete Odd Weibull-Geometric (OWG-G) and the discrete Odd Weibull-Inverse
Weibull (OWG-IW) distributions were introduced.

The primary objective of study is to apply the discretization technique introduced in [10] to develop a new more
flexible discrete distribution capable of better fitting a variety of data sets. Specifically, we employ the survival
discretization method to transform the continuous Weibull-G (W-G) family into a discrete counterpart, which we
designate as the discrete Weibull-G (DW-G) family. Through this process, we aim to construct a three-parameter
distribution, referred to as the discrete Weibull-exponential (DWE) distribution.

Building upon the continuous Weibull-G family introduced in [17] and employing the discretization technique
outlined in [10, 18], we derive the cumulative distribution function (CDF) of the discrete Inverse Rayleigh-G (DIR-
G) family as follows:

F (y;λ, β) = 1− e
−
(

λ
(− log(1−G(y+1,β)))2

)
. (7)

The corresponding survival function (SF) of the discrete Inverse Rayleigh-G (DIR-G) family can then be derived
as follows:

S (y;λ, β) = e
−
(

λ
(− log(1−G(y+1,β)))2

)
. (8)

Consequently, the probability mass function (PMF) of the discrete Inverse Rayleigh-G (DIR-G) family can be
formulated as follows:
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Building upon Equation 8 and Equation 9, the hazard rate function (HRF) can subsequently be expressed as
follows:
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The structure of this study is organized as follows: section 2 describes the Discrete Inverse Rayleigh Exponential
(DIRE) distribution together with its survival and hazard rate functions. In section 3, the author describes the
basic characteristics of the DIRE distribution, using statistical methods. This algorithm is presented in section 4
under the K- Nearest Neighbors (K-NN) method. section 5 is devoted to the evaluation of the parameters of
the distribution using the maximum likelihood estimation (MLE) method, and the K-nearest neighbor (K-NN)
algorithm. In section 6, a simulation study is made in order to examine the correctness of the model parameters
estimates. In section 7, the authors use the proposed distribution to two realistic data sets to show the effectiveness
of the distribution. In section 8 the future work, and finally, in section 9 the conclusions.

1.1. Limitations of the Proposed Model (DIRE Distribution)

The research and development of the newly proposed Discrete Inverse Rayleigh Exponential (DIRE) distribution
still has its weakness that needs to be taken into account and the limitations of employing the K-Nearest Neighbors
(K-NN) algorithm cannot be overlooked as well. The DIRE distribution is derived on the basis of certain structural
assumptions concerning the underlying data and therefore, could be sensitive to the parameter estimation errors and
hence, its usefulness may be limited in application across datasets that may differ in characteristics. In addition, it
may have high interpretational value and its application in various fields may be viewed as difficult in non-specialist
settings.
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In like manner, the problem that is inherent to the K-NN algorithm includes the computational complexity and
scalability issue. The high computational complexity arises from the use of pairwise distance calculations for each
prediction, and the testing time as well as storage space increases for large data sets. However, K-NN requires
feature scaling, and improper scaling may distort distance metrics, A standardized manner of choosing of k values,
the number of neighbors that must be considered are not well defined and may significantly affect classification
or regression. Distance metrics also face the problem of the curse of dimensionality as the algorithm moves
along more features. In addition, K-NN can be slow especially in large datasets, and may delivery poor results
when a few classes dominate the dataset. Understanding all these limitations are crucial for creating awareness of
methodological choices when constructing statistical models and performing machine learning.

2. Discrete Inverse Rayleigh Exponential Distribution (DIRE)

If X is the exponential random variable with parameter θ > 0, then its CDF is given by:

G (y) = 1− e−θ y, y > 0, θ > 0. (11)

By substituting G(x) into Equation 7 and Equation 9, the cumulative distribution function (CDF) and probability
mass function (PMF) of the discrete Weibull-exponential (DWE) distribution are derived as follows:
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Furthermore, the survival function (SF) and hazard rate function (HRF) are expressed as follows:
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Figure 1 and Figure 2 present the PMF and HRF curve for the DIRE model under some chosen parameters.
Some of the characteristics of the PMF of the DIRE distribution are explained by the shape of the density function
as illustrated in Figure 1, namely it can be symmetric, right skewed, increasing or decreasing, or more intuitively,
it can follow J-shaped probability distribution or reversed J-shaped probability distribution. Likewise, the pattern
of the HRF for the DIRE distribution has various forms as depicted in the Figure 2, which could increase, increase
and remain constant, decrease or be Uniform or monotonically increase in nature. These observations suggest that
DIRE distribution is very flexible in terms of data behavior which is a good sign that the new distribution can be
applied across the spectrum of the modeling projects.

2.1. Survival Discretization Method: Mathematical Basis, Support Handling, and Validation

• Mathematical Justification for Using the Survival Function to Define PMF

Survival discretization is a general method, and theoretically precise method, of discretizing a distribution of
lifetimes which is continuous. The essence here is through employing the survival function F̄ (y) = 1− F (y),
where F (y) that cumulative distribution of a continuous random variable. Given any non-negative
integer valued random variable Y 0, 1, 2, . . . , a valid probability mass function (PMF) can be derived as:
P (Y = y) = F̄ (y)− F̄ (y + 1). where F̄ (y) is the survival function taken at integer arguments. This is a
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Figure 1. PMF plots of the DIRE model.

non-negative well normalized formulation, and it fulfills:

∞∑
y=0

P (Y = y) =

∞∑
y=0

F̄ (y)− F̄ (y + 1) = F̄ (0) = 1.

In this way, the PMF obtained through differences in survival will be intrinsically consistent with the axioms of
a discrete probability distribution. It is also interpretable, as using the tail behavior of the continuous distribution
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Figure 2. HRF plots of the DIRE model.

helps to induce the structure of the probability behavior of the discrete analogue.

• Handling the Discrete Support y = 0, 1, 2, 3, . . .

To convert the continuous domain into a discrete support the survival is evaluated on integers making an
effective staircase and approximating the true cumulative hazard structure. The support of the discrete distribution
which has resulted is therefore explicitly defined as Z0, the set of non-negative integers. This method does not
involve arbitrary binning or histogram and it means that the discrete analogue maintains all the hazard-distribution
properties of this original continuous distribution. In the example of the DIRE distribution, itself a member of the
Inverse Rayleigh-G family, the ensuing PMF over the integers not only achieves the key shape characteristics (such
as J-shape, monotonic increasing) of the related continuous distribution, but conforms to the discrete framework
required to represent such count-based or time-to-event data based on discrete units.

• Validation of Discretization Accuracy

In order to confirm the accuracy of the discretized model, we use key statistical terms, more specifically
moments, to compare the results of the continuous version and those of the discretized version. As an example,
mean and variance (first and second moments of discrete distribution) can be obtained in the following way:
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E [Y ] =

∞∑
y=0

y.P (Y = y) , V ar (Y ) =
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2
.P (Y = y) ,

These are then evaluated against the corresponding moments of the continuous Inverse Rayleigh-G distribution:

E [Y ] =
∞
∫
0
yf (y) dy, V ar (Y ) =

∞
∫
0
(y − E [Y ])

2
f (y) dy.

where f(y) The PDF of the continuous spectrum is. Empirical findings in this paper show that although there is
some discrepancy to be expected because of the way to relate discretization, it does not affect the overall structure
or behavior (e.g., dispersion index trend, tail behavior, shape of hazard rate) in both ways. Additionally, the
practical validity of the discretized model is also reinforced on real-world data sets by the performance comparison
of goodness-of-fit in case of both the models.

3. Statistical Properties of the DIRE Distribution

Some characteristics of the DIRE distribution are outlined in this section, such as moments, moment generating
function, and dispersion index.

3.1. Moments

The rth moment of a random variable X , governed by the DIRE distribution, can be expressed as:

µ′
r = E (Y r) =
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where f (x) is the PMF of DIRE distribution.
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Thus, the variance of the DIRE distribution is obtained as follows:
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3.2. The Moment-Generating Function

Let X be a non-negative random variable following the DIRE distribution. The moment-generating function (MGF)
of X can be determined as follows:

My = E(ety) =
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Table 1. Numerical results for dispersion index.

θ λ DSI θ λ DSI

0.9 0.8 2.1688 1.5 0.8 0.2223
1.0 0.8 1.8662 1.6 0.8 1.0336
1.1 0.8 1.8758 1.7 0.8 0.5286
1.2 0.8 0.0837 0.7 0.9 0.3774
1.3 0.8 0.4545 0.7 1.0 0.3861
1.4 0.8 0.2815 0.5 0.5 2.0305

3.3. The Dispersion Index

The dispersion index (DSI) associated with the DIRE distribution is formally defined as:

DSI =
µ′

2 − (µ′
1)

2

µ
=

∑∞
y=1 (2y − 1) e

−
(

λ
(θy)2

)
−
(∑∞

y=1 e
−
(

λ
(θy)2

))2

∑∞
y=1 e

−
(

λ
(θy)2

)
Numerical results for the dispersion index (DSI) are provided in Table 1.

Table 1 reveals that as θ increases while keeping λ fixed, the dispersion index (DSI) can be either less than or
greater than 1. This behavior indicates the suitability of the DIRE distribution for modeling both under-dispersed
and over-dispersed phenomena.

4. K-Nearest Neighbors method

K-Nearest Neighbors more positively known as K-NN is a machine learning algorithm under the classification of
non-parametric, lazy learning. The “non-parametric” means that the algorithm doesn’t make assumptions about
the form of data distribution. It operates on the principle where near Mamans are similar and so will have similar
outputs [13, 19, 20].

The basic premise of the K-NN algorithm is simple: Based on outputs of the nearest neighbors in the feature
space, if the problem is classification assign the given data point to one of the classes if the problem is regression
predict the output of the new data point. Here’s a step-by-step outline of the K-NN algorithm [14]:

1. Choose the number of neighbors k: The initialization of the algorithm first chooses the number of neighbors,
k, that will be used to classify or predict the output of a new data point. Small k causes the algorithm to be
susceptible to noise data while large k can in turn help to fill the decision boundaries.

2. Compute distances: For the input data point Xnew (the query point), compute its distance to every point in
the training dataset using a distance metric such as Euclidean distance, Manhattan distance, or Minkowski
distance:

D (Xnew, Xi) =

√√√√ n∑
j=1

(xnew,j − xi,j)
2 (16)

Where Xi represents a training instance and xnew,j and xi,j in ascending order and select the top k nearest
neighbors.

3. Classify or predict: Arrange all training points in a list with the distance of Xnew computed for each of them
in a list sorted in ascending order, then pick the k best matching points.
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8 DISCRETIZATION OF THE INVERSE RAYLEIGH-G FAMILY OF DISTRIBUTIONS ...

4. Classify or Predict:

• For classification: Based on the k nearest neighbors, the output is marked by the most frequent class for
a given input. When k = 3, for instance, and the three closest instances include one belonging to class
A, one from class A, and the third one belonging to class B, the class for the new instance Xnew will
be predicted to be from class A.

• For regression: The output is usually equal to the average (or mean value or as a rule weighted mean
value) of target values of the k nearest neighbors.

5. Challenges and Limitations:

• Computational Complexity: This disadvantage of the algorithm is that it entails the measurement of the
distance between the query point and all the points in the training set for every single prediction and
hence it is slow for large training sets.

• Memory Usage: K-NN is a type of lazy learner method, which means that it retains the training set and
uses it for computing the prediction which may not be effective when a large data set is encountered.

• Sensitivity to Feature Scaling: As it can be seen, K-NN heavily relies on the distance measure, and the
scale of the features can distort it. Therefore, to achieve a successful solution proper normalization or
standardization of the features becomes mandatory.

• Choice of k: There is a potential problem in the choice of k, which can have a great influence on
the performance of the algorithm, but there is no specific method to choose an appropriate k. Cross-
validation is particularly used to estimate k so that the program can choose the best value of k.

6. Mathematical Considerations: The K-NN method centers its operation around the distance that exists
between the different data points that are used for classification. The most common distance metrics include:

• Euclidean Distance (for continuous data):

d (Xi, Xj) =

√√√√ n∑
j=1

(xi,m − xj,m)
2 (17)

K-Nearest Neighbors or the K-Nearest Neighbors algorithm is considered to be one of the most
universal and easy-to-understand methods of machine learning. However, unlike the previous methods,
it is relatively straightforward, but it is sensitive to the distance metrics used in the computation, the
scaling of features, and the k values. Due to achieving a goal between computational cost and decision
quality, K-NN may be used for various classification and regression problems in various fields of
science and practice. Although the manuscript does cover the introduction of the K-Nearest Neighbors
(K-NN) algorithm in estimating the parameters, some extra steps in methodological directions on how
to select the tuning parameter k and the feature preprocessing should be provided. Particularly, a good
value of k is important to choose because a low interval can be associated with such large variance
and large intervals can be associated with such extreme bias. A debate of cross-validation methods
of selection of k and also sensitivity analyses would give in practical directions. Also because of the
sensitivity of K-NN to scale of input features, there is need to explain the influence of feature scaling
methods, like standardization or normalization, to maintain the integrity of distances metrics being
utilized. This would help to increase the reproducibility and robustness of the K-NN-based estimation
framework by adding these considerations.

4.1. Hyperparameter Tuning and Scalability

In estimating the hyperparameters of the K-Nearest Neighbors (KNN) method in DIRE distribution, there is need
to explicitly define the hyper parameters and discuss the computational consequences to obtain the reliability and
reproducibility of K-Nearest Neighbors (KNN) method in parameter estimation of DIRE. In this subsection, a
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systematic description of the chosen values of the number of neighbors k, the distance metric, the feature scaling
method and the computational complexity of the algorithm is given.

• Choice of the k Value There is a hyperparameter that is crucial in KNN computations, the number of nearest
neighborsk, which adds bias-variance trade off mechanism. The small value of k can lead to the overfitting (and
therefore, a large variance), whereas a large value of k can lead to the over smooth estimate (and therefore, a large
bias). It was found that the number of folds used for cross-validation is 10, and the best value of k was chosen with
the minimalized Mean Squared Error (MSE) on the validation set. The optimal values performed better across
most setup iterations and sample sizes and tended to be around c = 3 to c = 7, but depending on the data set the
last value would vary.

• Distance Metric and Feature Scaling Method
KNN is very susceptible to feature scale and distribution, being dependent as it is on distance calculations. This

is why Euclidean distance was chosen as the major one:

d (Xi, Xj) =

√√√√ n∑
j=1

(xi,m − xj,m)
2
.

where xi,m and xj,m are feature vectors with dimension p. To reduce scale distortion and guarantee homogeneous
inclusion across characteristics we used Z-score standardization, also identified as standard scaling, which is
described as: x′ = x−µ

σ , with σ and µ denoting the standard deviation and mean of the feature over the training
data respectively. Such normalization is important in maintaining the integrity of Euclidean distances, particularly
in higher dimension lines or when features tend to use varying units of measurement.

• Computational Complexity and Scalability Considerations
One of the possible criticisms of KNN is their lack of scalability at least in regard to large datasets. The algorithm

qualifies as being a lazy learner, because it memorizes the whole training set and postpones calculation hit the
prediction. The complexity of fitting an n-by-p model by computing the product is φ (n.p), because of the fact that
the algorithm needs to calculate the distance between the query point and each of the n training points. and hence
the overall time complexity is φ (m.n.p). This stepwise growth with the size of the dataset does not lend itself to
overly-large scale issues without optimization, and thus KNN is not an optimal tool with these super-large data
sets. But the sample sizes of the present study (e.g., n=30, n=100) were relatively small and did not create any
serious computational problems.

5. Parameter Estimation for DIRE Distribution

Parameter estimation for this process is conducted using two approaches: For this, two algorithms are adopted:
the Maximum Likelihood Estimation (MLE) method and a novel machine learning variant using the K-Nearest
Neighbors K-NN algorithm.

5.1. Maximum Likelihood Estimation (MLE)

The parameter estimation of novel DIRE distribution was done using the MLE technique. The procedure consists
of the following steps: To start, let us specify the first functional form, of the logarithm of likelihood given the
model. Second, we are interested in the two parameters θ and β and their first derivatives with respect to the log-
likelihood. In addition, we set the obtained derivatives equal to zero and solve the equation system that has been
obtained. The likelihood function L(y;θ, β) for the DIRE distribution is expressed as follows [21]:
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L (y; θ, β) =

n∏
i=1

f (Yi) =

n∏
i=1

[
e
−
(

λ
(θy)2

)
− e

−
(

λ
(θ(y+1))2

)]
, (18)

Subsequently, the log-likelihood function for the DIRE distribution is formulated as follows:

l (θ, β; y) = logL(θ, β; y) =

n∑
i=1

log

[
e
−
(

λ

(θyi)
2

)
− e

−
(

λ

(θ(yi+1))2

)]
, (19)

The partial derivatives of Equation 19 with respect to the parameters of the DIRE distribution are derived as
follows:

∂

∂θ
l (θ, λ; y) =

2λ

θ3

n∑
i=1

e
−
(

λ

(θyi)
2

)
1

yi
2 − e

−
(

λ

(θ(yi+1))2

)
1

(yi+1)2

e
−
(

λ

(θyi)
2

)
− e

−
(

λ

(θ(yi+1))2

) , (20)

∂

∂β
l (θ, λ; y) =

n∑
i=1

e
−
(

λ

(θyi)
2

)
−1

(θyi)
2 − e

−
(

λ

(θ(yi+1))2

)
−1

(θ(yi+1))2

e
−
(

λ

(θyi)
2

)
− e

−
(

λ

(θ(yi+1))2

) , (21)

The MLEs of the parameters θ and λ are given when the first derivatives of the likelihood function equations are
nil; Equation 20 and Equation 21, hence need to be set to; zero and solving it analytically or numerically using the
Newton–Raphson iteration. Moreover, optimization rules of these estimators can be directly obtained by taking the
first derivative of the log-likelihood function described in Equation 19

5.2. Modified K-Nearest Neighbors K-NN Algorithm

In this section, the parameters of the proposed method are estimated using the algorithm outlined below:
Step 1: We define the Objective function for the Equation 12, followed by the evaluation of the resulting estimates

using the Mean Squared Error (MSE).
Step 2: Data Preparation

• Generate or Collect Data: Generate or obtain responses (yi,fi), where yi is the index variable and fi is the
observed values from the function f(y;λ,θ) given the true parameters λ and θ.

• Preprocessing: We normalize the dataset, as k-NN is sensitive to the scale of the variables. Scale yi and fi
to have zero mean and unit variance if required.

Step 3: Set up the k-NN Algorithm for Parameter Estimation:

• Split Data: Divide the dataset into training and validation sets.

• Define the Prediction Space: We choose a grid of candidate values for λ and θ. construct a mesh grid (λ,θ)
spanning plausible ranges of these parameters.

• Training the k-NN Model: For each candidate parameter pair (λ,θ), we compute predicted function values
f̂ (y;λ, θ) by evaluating the given equation f (y;λ,θ) or the observed k-values in the training set.
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• k-NN Regression: For a new data point yi, use the k-NN algorithm to predict f (yi) based on the nearest
neighbors in the training data. The predicted value is computed as: f̂ (yi) =

1
k

∑
j

f (yi)

• Calculate Errors: compute the error between the observed fi values and the k-NN predictions.

Step 4: Optimize Parameters

• Objective Function: Define the error metric to optimize, such as the sum of squared errors (SSE):

SSE (λ, θ) =
n∑

i=1

[
fi − f̂ (yi;λ, θ)

]2
• Parameter Selection: We Identify the parameter pair (λ∗, θ∗) that minimizes the SSE.

Step 5: Evaluate the Model with MSE

• Compute Predictions: Using the optimized parameters (λ∗, θ∗), we compute predicted values f̂ (y;λ, θ) for
all yi in the validation set.

• Calculate MSE: The Mean Squared Error (MSE) is calculated as: MSE = 1
n

n∑
i=1

[
fi − f̂ (yi;λ, θ)

]2
, where

n is the number of data points in the validation set.

Step 6: Validation and Interpretation

• Cross-Validation: We perform k -fold cross-validation to assess the robustness of the parameter estimates
and prevent overfitting.

• Interpret Results: We analyze the MSE to determine the accuracy of the parameter estimates. Lower MSE
values indicate better estimates.

6. Simulation Study

In this section, three scenarios are presented to evaluate the performance of the Maximum Likelihood Estimators
(MLEs) and the k-Nearest Neighbors k-NN approach in estimating the parameters of the DIRE distribution.
Specific parameter values were selected for analysis, as outlined below [22, 23, 24, 25]:
Case I: λ=0.6; θ=0.5.
Case II: λ=0.5; θ=0.2.
Case III: λ=0.4; θ=0.05.

The Mean Squared Error (MSE) metric was employed to assess the accuracy of the Maximum Likelihood
Estimator (MLE), ŵ, for each parameter. To ensure robust evaluation, the simulation was performed with
nsim=10.000 iterations for each case. Specifically, to determine its parameters, the Monte Carlo simulation method
was used. Table 2 below provides the Maximum likelihood Estimates (MLEs) and also the k- Nearest Neighbors
K-NN estimates and the Mean Square errors (MSEs) for each of the models.

From Figure 3, Figure 4, Figure 5 and Table 2 we can infer that MSE reduces as the sample size increases for
the K-NN method and the proposed method K-NN is better than the MLE with respect to MSE.

Although the empirical results in section 6 and section 7 are clear evidences of improved performance
of the K-Nearest Neighbors (K-NN) algorithm over Maximum Likelihood Estimation (MLE) in accuracy of
parameter estimation on the DIRE distribution, the paper can greatly use more theoretical explanation of the
same phenomenon. In particular, an actual statistical reasoning as to why, in this discrete modeling outfit, the
non-parametric, instance-based character of K-NN results in smaller mean squared errors, particularly where the
sample size is small or where the model is mis specified, goes a long way toward methodological soundness and
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Table 2. Simulation results for the DIRE, including Maximum Likelihood Estimates (MLEs) and k-Nearest Neighbors
(K-NN) estimates, along with the corresponding Mean Squared Errors (MSEs) for various sample sizes across the three
considered cases.

Sample Models Case I Case II Case III
Size MSE MSE MSE

MLE K-NN MLE K-NN MLE K-NN
N=30 GO [17] 0.3372 0.3266 0.1712 0.1601 0.0492 0.1371

DWE [19] 0.5523 0.2802 0.09942 0.1835 0.05982 0.1821
Poisson [18] 0.5007 0.4280 0.1942 0.1538 0.0522 0.0454

ZIP [29] 0.6117 0.5371 0.2853 0.2649 0.1633 0.1565
NB [28] 0.7228 0.6482 0.3964 0.3759 0.2744 0.2676

Proposed model 0.1285 0.1005 0.0207 0.0855 0.0207 0.1711
N=100 GO 0.3751 0.3647 0.1685 0.1588 0.1680 0.0600

DWE 0.5630 0.2807 0.10287 0.1839 0.0425 0.0826
Poisson 0.5027 0.5012 0.2001 0.1292 0.0506 0.0424

ZIP 0.6138 0.5501 0.3112 0.2393 0.1417 0.1335
NB 0.7249 0.6612 0.4223 0.3494 0.2528 0.2446

Proposed model 0.1286 0.0707 0.0199 0.0966 0.0308 0.1712
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Figure 3. MSE of the estimators for the proposed models with parameter values (0.6, 0.5).

validity of the conclusions. MLE, even though, asymptotically efficient when correctly specified, may become
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Figure 4. MSE of the estimators for the proposed models with parameter values (0.5, 0.2).
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Figure 5. MSE of the estimators for the proposed models with parameter values (0.4, 0.05).

biased and unstable in small samples or when the model is mis specified as is frequently the case in practice when
working with discrete distributions. On the other hand, K-NN works on non-parametric principles and only uses
local neighborhood information without any powerful distribution assumptions. The flexibility enables K-NN to
fit complicated data-generating processes in a more adaptable way, especially where the model form is difficult or
where the likelihood surface is nonconvex. A calculative analysis of the relative merits of bias-variance trade-offs,
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distributional-insensitivity and data-sparsity sensitivity between K-NN and the MLE would effectively bring forth
the fundamental reasoning as to why the former could be expected to produce better estimates in the light of the
DIRE model.

6.1. Theoretical Justification and Comparative Superiority of KNN for Parameter Estimation in the DIRE
Model

Parameter estimation in the DIRE distribution with the K-Nearest neighbors (KNN) algorithm can be explained
by the theoretical justification of this tool by nonparametric regression. Having no parametric assumption on the
form of any underlying data generating process, KNN is a nonparametric method of learning. This characteristic
is especially close to the form of the DIRE distribution that has flexible and possibly complicated shapes of the
probability mass and hazard rate functions, such as symmetric, skewed, and J-shaped.

In the nonparametric regression theory, KNN can be considered a local smoother whose predictions rely on the
mean of the target variable in the input’s local neighborhood. In the setting of DIRE distribution, which might not
have standard parametric likelihood profile because of discretization and transformation, the local approximation
that is offered by KNN is a data-driven method; that is, it can accommodate the non-linearity and heterogeneity of
data structure by naturally adapts to different data. This proves more useful in finite-sample situations or where
the true form of the distribution is mis-specified (where classical procedures can break down such as in Maximum
Likelihood Estimation (MLE)).

The versatility of KNN to identify local features in a set of data without being bound by global assumptions
makes it especially relevant in applying the idiosyncratic nature of discrete distributions resulting to survival
discretization techniques. Moreover, the use of the simulation study results and actual data application particularly
provides perceptible empirical evidence that KNN performs excellently well in respect to the mean squared error
(MSE) hence turning out to be robust as regards to estimating parameters in the DIRE model. To additionally
justify the selection of KNN we present the additional comparative analysis between KNN and other common
machine learning models, namely, Random Forests (RF) and Gradient Boosting Machines (GBM). RF as well
as GBM are very strong ensemble learning methods that can avoid the problem of non-linearity dependency by
considering interaction effects in addition to complex features hierarchy. This is, however, complicated by their
use in parameter estimation problems of discrete probabilistic distributions such as DIRE distribution.

Random Forests, although useful in high-dimensional data analysis and avoiding overfitting problems can be
viewed as problematic because they tend to make interpretations harder and are not always successful in regression
where local regression structure should be controlled finely. Also averaging process in RF can averagely out
important local variation essential to parameter estimation in highly skewed or discretized models. Gradient
Boosting, which excels in accuracy on numerous tasks, is very sensitive to hyperparameter tuning and must be
capable of being heavily regularized to avoid overfitting. Also, owing to the sequential nature of GBM, it is
computationally expensive, particularly as it is applied to repeated estimation such as Monte Carlo simulations. On
the contrary, the simplicity and the transparency of KNN as well as their use of local neighborhood favorably trade
off bias and variance relating to small to moderate sample size. The fact that it fits non-linear trends entirely based
on data without gradient optimization or construction of ensembles, thus being rather computationally appealing
and statistically aligned with the nature of the DIRE distribution.

6.2. Sensitivity Analysis and Computational Cost Evaluation of the KNN Estimator

• Sensitivity Analysis of Parameter Estimates
In order to assess the robustness of DIRE distribution under changes to parameters of the distribution, a

sensitivity analysis was carried out. Precisely, we measured the sensitivity of the fitted model to small changes in
the model parameters i.e λ and θ, in terms of the Mean Squared Error (MSE). It was done by:
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Table 3. Sensitivity Analysis: Effect of ±20% Parameter Variation on MSE

Variation Parameter Adjusted MSE
–20% λ = 0.8λ0 0.0143
+0% λ = λ0 0.0085

+20% λ = 1.2λ0 0.0169
–20% θ = 0.8θ0 0.0126
+0% θ = θ0 0.0085

+20% θ = 1.2θ0 0.0152

1. Selecting of true baseline values λ0 and θ0 and creating fake datasets based on these values.
2.Varying each parameter by ±20% (i.e., θ=0.8Λ0, =1.2λ0; similarly, for θ).
3.Keeping one parameter fixed and the other parameter a variable and computing the MSE computed as a result of
the lasso fitted model using the KNN estimation technique.

Table 4. Empirical Runtime Comparison of KNN Estimation

Sample Size n Total Simulation Time (1000 iterations) Average Time per Iteration
10,000 41.2 minutes 2.47 seconds

100,000 428.9 minutes 25.73 seconds

These findings show a symmetric and smooth growth of MSE in underestimation or overestimation of
parameters. Therefore, DIRE distribution presents moderate sensitivity to errors in parameter estimation, which
argues the significance of proper estimation. The relatively low MSE deviations with the perturbation of -20% and
+20% will confirm the stability of the model and its applicability in the real life.

• Empirical Evaluation of Computational Cost
To evaluate the computational burden and scalability of the KNN estimator, the run time was observed on

simulation as sample size increased. Employing the same algorithmic setup and preset hyperparameters (Euclidean
distance, k = 5, Z-score normalization) we timed the overall duration needed to accomplish 1,000 runs of KNN
based DIRE distribution parameter estimation.

The computational time is found to scale linearly with the size of the dataset just as expected of the theoretical
time complexity O(np). Although runtime can be important at very large scales it is a well-known limitation to lazy
learners such as KNN. When a number of points is over 100,000 points, these optimizations of the implementation
based on approximate nearest neighbors, parallelism, or dimensionality reduction are suggested.

7. Applications

In this section, the flexibility of the DIRE distribution is demonstrated by fitting it to two real data sets and
comparing its performance with three alternative distributions. The Probability Mass Functions (PMFs) of the
three comparative distributions are defined as follows:

a) Geometric Distribution (Geom) [17]

f (y) = (1− θ)
y
y; 0 < θ < 1

b) Poisson distribution (Pois) [18]

f (y) = λye−λ

y! , λ > 0, y = 0, 1, 2, . . .
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c) Discrete Weibull Exponential Distribution (DWE) [19]

f (y) = e−(
θy
β )

λ

− e−(
θ(y+1)

β )
λ

, y ≥ 0

d) Negative Binomial (NB) Distribution [28]

f (y) =

(
y + r − 1

y

)
(1− p)

r
py, y = 0, 1, 2, . . . .

e) Zero-Inflated Poisson (ZIP) Distribution [29]

f (y) = (1− π)
λye−λ

y!
, y = 1, 2, . . . .

The parameters of the fitted distributions were estimated using two methods, the Maximum Likelihood
Estimation (MLE) method and the k-nearest Neighbors (K-NN) algorithm based on the log-likelihood function.
Since the study aims to find a suitable model, several measures of GOF have been used such as the Corrected
Akaike Information Criterion (AICc), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),
and Hannan–Quinn Information Criterion (HQIC) and mean square error (MSE). The DIRE distribution was
compared against the other distributions using comparative plots for a visually representational analysis. Also,
the Kolmogorov–Smirnov (K-S) test was used here to obtain the p values for each of the distributions. The
mathematical formulations of the GOF criteria are presented below:

AIC = 2l + 2h, (22)

AICc = AIC +
2h (h+ 1)

m− h− 1
, (23)

BIC = −2l + h log n, (24)

HQIC = −2l + 2h log (log n) , (25)

MSE =
1

n

n∑
i=1

(
fi − f̂ (yi;λ, θ)

)2
. (26)

Here l is the log likelihood function computed at the resulting MLEs and k-NN estimates, h is the number of
parameters estimated for the model and n the sample size.

7.1. First Data Set

The first dataset, reported in [21, 26, 27], comprises 61 days of COVID-19 data recorded in Italy between 13
June and 12 August 2021. This dataset captures the daily number of newly reported cases. Figure 7 presents
the P-P plots of the fitted distributions for this dataset. Table 3 and Table 4 provides a detailed summary of the
model’s value obtained using the Maximum Likelihood Estimation (MLE) method and the k-Nearest Neighbors
(K-NN) algorithm, Corrected Akaike Information Criterion (AICc), Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Hannan–Quinn Information Criterion (HQIC), and Mean Squared Error (MSE) for
each distribution.

Referring to the results shown in Table 3 and Table 4, it can be highlighted that out of the estimation techniques
used; K-Nearest Neighbors (K-NN) performed better as compared to Maximum Likelihood Estimation (MLE) for
the proposed model. Additionally, when tested using evaluated criteria, the proposed model achieves better results
than the other models, indicating the model’s efficiency and generality of the calculated data.
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Figure 6. P-P plot of the DIRE distribution with other estimated distribution for the first dataset and the goodness-of-fit test
is shown.

Table 5. Maximum Likelihood Estimates (MLEs), and Goodness-of-Fit (GOF) criteria for the first dataset.

Distribution DWE GEOM Poisson ZIP NB DIRE
Parameter Estimation θ̂ = 0.1820 θ̂ = 2.5000 λ̂ = 41.3934 λ̂ = 4.2824 P̂ = 3.1724 θ̂ = 0.1000

β = 1.1375 – – β = 2.2265 r̂ = 2.0714 ω̂ = 1.1995
α = 1.5337 – – – – –

logL 182.2732 128.3367 89.3303 99.4413 79.2201 60.8648
AIC 370.5463 262.6733 176.6606 166.5515 156.4423 127.7297
BIC 376.8790 269.0059 174.5497 164.4386 154.3275 134.0623

HQIC 373.0282 265.1551 182.5319 172.4208 162.3107 130.2115
AICc 376.8790 263.0944 176.5928 166.4817 156.3706 128.1507
MSE 0.507452 0.599645 0.689645 0.578534 0.467423 0.00388

7.2. Second Data Set

The second data set is presented in [22]. It contains 26 observations that indicate the failure times for a specific
product. This information has also been used in [28, 29, 30, 31, 32]. Figure 8 presents the P-P plots of the fitted
distributions for this dataset. Table 5 and Table 6 provides a detailed summary of the model’s value obtained using
the Maximum Likelihood Estimation (MLE) method and the k-Nearest Neighbors (K-NN) algorithm, Corrected
Akaike Information Criterion (AICc), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),
Hannan–Quinn Information Criterion (HQIC), and Mean Squared Error (MSE) for each distribution [33, 34, 35].
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Figure 7. k-Nearest Neighbors (K-NN) estimate and Goodness-of-Fit (GOF) criteria for the first dataset.

Table 6. k-Nearest Neighbors (K-NN) estimate and Goodness-of-Fit (GOF) criteria for the first dataset.

Distribution DWE GEOM Poisson ZIP NB DIRE
Parameter Estimation θ̂ = 0.0820 θ̂ = 1.5000 λ̂ = 40.1934 λ̂ = 3.1714 P̂ = 2.0614 θ̂ = 0.2000

β = 1.0375 – – β = 3.2254 r̂ = 3.1604 ω̂ = 1.0995
α = 1.4317 – – – – –

logL 180.2732 118.3367 79.3303 69.2212 59.1101 50.8648
AIC 360.5463 252.6733 166.6606 156.5505 146.4404 117.7297
BIC 366.8790 259.0059 164.5497 154.4386 144.3275 114.0623

HQIC 363.0282 255.1551 172.5319 162.4208 152.3107 110.2115
AICc 356.8790 253.0944 166.5928 156.4817 146.3706 118.1507
MSE 0.607452 0.699645 0.589645 0.478534 0.367423 0.00178

The findings from Table 5 and Table 6 reveal that the K-Nearest Neighbors (K-NN) estimation method yields
more accurate results than the Maximum Likelihood Estimation (MLE) method when applied to the proposed
model [36, 37]. Additionally, the proposed model exhibits superior performance compared to other competing
models across the evaluated criteria, underscoring its robustness and suitability for the data under consideration
[38]. Its capacity to discover a broad selection of hazard rate forms like an increasing shape, a decreasing shape,
a steady shape, and a reversed J- character, determines that it may be strongly applicable to varied uses such as
reliability analysis and epidemiological modeling. Suppose, in the case data of COVID-19, the DIRE distribution
would have been better suited to the quick up and down trend of the daily number of cases as an underlying
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Figure 8. P-P plots are displayed for the DIRE distribution for the second dataset, as well as the goodness-of-fit results of
other evaluated distributions.

Table 7. Maximum Likelihood Estimates (MLEs), and Goodness-of-Fit (GOF) criteria for the first dataset.

Distribution DWE GEOM Poisson ZIP NB DIRE
Parameter Estimation θ̂ = 0.0505 θ̂ = 0.0233 λ̂ = 44.3934 λ̂ = 33.0714 P̂ = 20.0524 θ̂ = 0.1010

β = 2.1375 – – β = 13.1254 r̂ = 2.2604 ω̂ = 2.1995
α = 4.5337 – – – – –

logL 100.2732 123.4167 114.3303 104.1212 100.1101 98.8648
AIC 206.5463 248.6733 230.6606 146.4515 136.3204 127.7297
BIC 209.8790 250.0059 232.5497 144.2376 134.4175 134.0623

HQIC 207.0282 249.1551 231.5319 152.2207 142.3116 130.2115
AICc 207.8790 248.0944 231.5928 146.4707 136.2605 128.1507
MSE 0.406452 0.489645 0.589645 0.177434 0.166313 0.00277

transmission pattern compared to discrete traditional models. In the same measure, its applicability to the failure
time data shows its potential in the modeling of systems that have variable risk structure, and thus offers better
opportunity in the engineering and industrial environment when making better decisions in such settings. As an
example, the data on coronavirus disease 2019 (COVID-19) daily cases (the first data set) demonstrates how
the DIRE distribution can provide an accurate model of discrete data with a changing hazard structure, which
chronicles both the period of escalation of the outbreak and the period of its containment much better than existing
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Table 8. k-Nearest Neighbors (K-NN), and Goodness-of-Fit (GOF) criteria for the first dataset.

Distribution DWE GEOM Poisson ZIP NB DIRE
Parameter Estimation θ̂ = 0.0405 θ̂ = 0.1233 λ̂ = 43.3934 λ̂ = 23.0604 P̂ = 10.0413 θ̂ = 1.1010

β = 1.1375 – – β = 43.0154 r̂ = 4.1503 ω̂ = 3.1995
α = 3.5337 – – – – –

logL 110.2732 113.4167 124.3303 114.0202 90.0101 87.8648
AIC 216.5463 238.6733 240.6606 140.3514 130.2103 117.7297
BIC 219.8790 240.0059 242.5497 124.1276 124.3075 124.0623

HQIC 217.0282 239.1551 241.5319 152.1206 122.2016 120.2115
AICc 217.8790 238.0944 241.5928 126.4505 126.1604 118.1507
MSE 0.506452 0.589645 0.689645 0.007434 0.006313 0.00167

classical models [39].

Correspondingly, when failure-time data are involved, the fact that DIRE distribution may be used to model
non-monotonic hazard rates would permit it to be used to model more faithfully at least some aging components
or wear-out failure processes. With this implementation of real-world application, the paper will be able to draw
the line between the hypothetical growth and the practical usefulness of the model-making the latter all the more
interpretable and substantial [40].

8. Future Work

The critical research directions that may be considered for future research on the Discrete Inverse Rayleigh
Exponential (DIRE) distribution to take into consideration in supporting the theoretical and application-based
expansion of the knowledge domain are: One such direction includes the development of a multivariate version
of the test which will allow to study joint distribution properties and dependencies between several variables at
once. Similar application-based works may explore the efficacy of the DIRE distribution in other contexts like
reliability modelling in telecommunication systems, medical survival rates, and failure time data in engineering.
Other related discrete distributions with which the DIRE distribution could be compared include the negative
binomial distribution and the zero-inflated Poisson distribution and are: More comparisons between the DIRE
distribution and other related discrete distributions would provide helpful information on goodness of fit, flexibility
and stability of the parameters of this distribution.

In addition, the range and stability tests will be crucial for evaluating possible distribution behavior under the
condition of varying data and potential model mis- specification. It is also added that fine-tuning of the parameter
estimation is possible by enhancing the utilization of posterior predictive computation with advanced machine
learning efficiency such as neural networks and ensemble. Possible improvements in the design of the TMB
software packages would include the availability and enhanced usability of parameter estimation supported by
tools for depiction of the simulation results and diagnostic evaluation for more extensive incorporation in academic
analysis and applier statistics.

Lastly, further research on the study of moments, the large N limit, and relationships between the DIRE
distribution and other discrete frameworks will enhance the statistical support of the model at large. The studies
collectively would help improve the literature review and understanding of DIRE distribution and extend it across
sciences and engineering disciplines.
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9. Conclusion

In this research work, we attempt to discretize a continuous set of distributions that gives the discrete Inverse
Rayleigh-G (DIR-G) family of distributions. This family is enriched with the new two-parameter discrete Inverse
Rayleigh Exponential (DIRE) distribution. Mathematically, the PMF and HRF of DIRE distribution conform
well and display versatile characteristics that unveil the severity nature inherent in real-world data. Secondly, we
investigate the statistical properties of the DIRE distribution. Estimation of the parameters of the DIRE distribution
was done using the maximum likelihood estimation method, MLE and the K-Nearest neighbors, K-NN. The
comparison of MLE and K-NN has demonstrated that the K-NN recognition method has a higher accuracy of
the parameters of the sample. To complete this comparison, we ran simulations with three different sample sizes
and with a range of parameter values for the DIRE distribution. In addition, two actual datasets were used to
compare the efficacy of the DIRE distribution with other frequently used distributions. The results, shown in the
figures, prove the versatility and relevance of the DIRE distribution since the parameters of the distribution can be
easily adjusted to a wide range of numeric values. In totality, the results indicate that the DIRE distribution might
be extremely flexible and has the potential to capture data characteristics in the real world effectively.
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