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Abstract The research focuses on two main objectives that examine the Burr Type XII distribution through MLE parameter
estimation and a comparison between MLE and SVM methods. Survival-related functions such as the survival function and
hazard rate and other derived reliability measures are estimated by executing both methods on breast and brain cancer patient
real-world data. The input layer of the proposed SVM framework contains distribution parameter specifications that produce
output estimates for the reliability function and hazard rate function as well as probability density function, reversed hazard
rate function, mills ratio, and odds function. The research data shows how the hazard function grows after diagnosis then
declines toward the end of the study period which reflects the theoretical behavior patterns of Burr Type XII distributions.
The survival analysis demonstrates that theoretical characteristics of the Burr Type XII distribution match experimental
results thus validating its usage as cancer survival data model. This SVM method shows itself to be an accurate and stable
approach for critical survival parameter prediction.
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1. Introduction

The disease of breast carcinoma persists as a major public health challenge due to its fatal properties when it
forms inside human bodies. The identification of breast carcinoma at an early stage, along with immediate medical
treatment, leads to delayed disease evolution and minimizes patient death. Breast carcinoma stands as a leading
cancer among women and represents the second leading cause for cancer deaths in American Indian/Native
American and Asian Pacific Islander women [1, 2]. The breast tissue origin of the disease produces uncontrollable
malignant cell growth that spreads throughout the body to kill patients. Despite breast carcinoma mostly affecting
female patients, it develops infrequently in men to such an extent that medical records show less than 0.05%
of cases [3]. The breast cancer types, ductal carcinoma and lobular carcinoma, represent the main clinical
classifications according to their location of origin between milk ducts and milk-producing lobules of the breast
[4, 5, 6]. The origin of breast carcinoma occurs in extremely unusual situations in areas not pertaining to the
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ducts or lobules of the breast. The primary method of preventing breast cancer fatalities is through early detection.
Three main strategies provide the best chance of finding treatable breast cancer mutations: regular mammograms
and clinical breast exams from healthcare professionals, along with monthly self-examinations carried out by
individuals [7].

The effectiveness of artificial intelligence methodologies in modelling and forecasting complex health-related
data received significant attention through artificial neural networks (ANNs). Scientific reports from [8, 9, 10]
support this evidence. Different research findings show that artificial neural networks produce forecasting results
equivalent to or better than standard statistical and mathematical prediction models. The researchers explored
precise hazard function estimation for survival data through statistical modelling-based techniques from [11].
An analysis by their research group established a multilayer perceptron (MLP) as an extended framework of
generalized linear models (GLMs) featuring multinomial error structures with a nonlinear estimator designed to
support discrete-time survival distributions among competing risks scenarios. The standard weight regularization
approaches were implemented to solve model complexity alongside overfitting issues. A Genetic Algorithm served
as the tool to optimize independently the model parameters through adaptive optimization of neural network
complexity. The proposed method obtained practical validation from its implementation among 1,793 female
patients diagnosed with breast cancer and no lymph node involvement in the axilla. [12] conducted research that
used ANN modelling together with maximum likelihood estimation (MLE) to determine COVID-19 mortality
rates across Italian territories. The ANNs implemented by this study included nine hidden layer neurons, which
produced a minimum deviation of -0.14% along with an R of 0.99836 to prove model accuracy. The analysis
from both approaches showed reliable performance, which supported their research validity. The research of
[13] examined how machine learning algorithms perform in survival analysis for predicting the prognosis of
bladder cancer patients. Their research concentrated on analysing the forecasting capabilities of ANNs through
their examination of demographic alongside clinical features to predict survival outcomes. The research evaluated
Convolutional Neural Networks as deep learning models against multivariate Cox proportional hazards models to
forecast 5-year survival and lifetime duration in genetic disorder patients [13, 14]. The CNN models conducted
training and validation operations through 80% training and 20% validation data allocation for performing reliable
assessments. Machine learning methodologies create a strong method to extract valuable patterns from complex,
high-dimensional clinical information because administrative databases have substantial restrictions. The research
data demonstrates that CNNs and machine learning systems show substantial potential for improving breast
carcinoma risk predictions, which helps doctors create better treatment strategies [15].

A right-skewed log-logistic distribution stands as one of the key parametric models that researchers extensively
use for survival analysis studies. The LL model surpasses the Weibull distribution in its ability because it features
non-monotonic hazard functions that occur after ϵ > 1 shape parameter, while modelling complicated hazard
patterns with their initial rise followed by decline. ϵ > 1 covariance values lower than or equal to one produce
a hazard function with a unimodal shape and decreasing pattern in the LL distribution, which leads to wide
adaptability across different survival models. The main benefit of using LL distribution is its capability to provide
direct mathematical solutions for survival probability and hazard functions, which enables simple estimation and
interpretation during censored data analysis. This beneficial characteristic demonstrates why the LL distribution
serves as an excellent analytical instrument for theoretical work and practical survival analysis applications. The
statistical characteristics, along with practical uses of the LL distribution, have been extensively researched by
various studies. Literature [16, 17] provides a detailed examination of LL distribution order statistics, while [18]
derived recurrence relations that determine the moments of order statistics from LL distribution samples. The LL
distribution serves researchers and practitioners through its theoretical developments and model applications as
described in references [19, 20].

Researchers widely recognize the Burr Type XII distribution as a skew probability model which demonstrates
high flexibility during survival and reliability analysis [20]. Statisticians prefer this distribution as a survival
analysis tool because it does better than conventional distribution methods in describing data patterns. The latest
research on the Burr Type XII distribution introduces modified versions that demonstrate better capabilities for
modelling both survival data censors and reliability analysis problems. Research on modified Burr Type XII
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versions has led to successful practical validations which demonstrate its effectiveness under different hazard rate
characteristics. Researchers have created Bayesian inference tools for working with the Burr Type XII distribution
which proves its usefulness for modelling lifetime data [21]. Research has achieved better predictions through
multiple loss functions and prior distributions which has allowed scientists to apply their models successfully
to survival-related datasets [22]. New extended versions of the Burr Type XII distribution were developed to
handle sophisticated hazard functions successfully when analysing medical survival data. The expanded models
demonstrate excellent ability to predict various hazard rate patterns ranging from increasing to decreasing patterns
or bathtub-shaped behaviors which strengthens their significance in survival analysis and risk modelling [23].
Reliability prediction receives improvements from survival modelling because scientists combined SVM and ANN
with RF with parametric lifetime distributions from the Burr family. The researchers demonstrate that Burr family
distributions serve practical needs when modelling time-to-failure across different real-world applications despite
their non-exclusive use of Type XII distributions [24]. New discussions about survival and reliability standards
reveal that Burr XII distribution models contribute importance by functioning in machine learning hybrid systems.
Reliability engineering problems experience improved classification methods by using statistical model structures
along with SVM algorithm learning capabilities [25].

The field of mathematical statistics relies heavily on order statistics because they form its essential foundation,
which serves both theoretical and practical aspects of statistics. The ordered data analyses that rely on order
statistics gain importance in multiple statistical fields, including nonparametric inference and reliability analysis
and survival modelling,the because the distributional behavior can be understood through robust estimation
processes. Thorough theoretical analysis of statistical inference theory at present time depends heavily on order
statistics for developing distribution-free methods and studying sampling distributions. The practical application of
statistical inference using ordered sampling enables the development of efficient computation methods, resulting in
results that are easy to interpret, particularly when researching goodness-of-fit testing and life testing experiments
under censored or ranked data evaluation conditions. Order statistics-based models provide ideal conditions for
production of robust approaches in outlier detection and tail probability evaluations and statistical estimation and
hypothesis testing. Order statistics continue to offer indispensable theoretical and practical value, which helps
develop classical and modern statistical methodologies according to [25].

The research field of survival analysis experienced significant growth recently because this analytical method
proves essential for biosciences and pharmacological investigations. The key objective within this field involves
evaluating survival function estimators while employing an accurate Probability Density Function (PDF) to
describe time-to-event data which involves breast carcinoma survival times from female patients. The research
adopts Burr Type XII distribution as an adaptable and robust model to represent survival dynamics. The systematic
assessment of the Burr Type XII survival model by using Maximum Likelihood Estimation along with Support
Vector Machine remains absent from previous research. Through the integration of these three methodologies the
main goal of this research becomes analysing and optimizing lifetime data prediction reliability. We utilize this
research design as a means to present an innovative viewpoint in the field while resolving the significant shortage
of hybrid modelling techniques for survival data research.

The presented study works thoroughly to build an advanced framework that produces precise survival and failure
time predictions for breast cancer patients. Patient data from Medical City Hospital – Baghdad (2020) underwent
systematic analysis through two methodology approaches which tracked survival duration from hospital entry
until patient discharge due to all patients experiencing death. The successful implementation of survival analysis
depended on our uses of the Burr Type XII distribution along with a predictive enhancement through SVM and
MLE methods. The proposed modelling system matches current development in survival analytics and machine
learning since it enhances diagnosis predictions while improving survival function interpretation. Our research
design implements contemporary survival modelling approaches to ensure proper testing of these methods in breast
cancer prognosis assessment.

1. The research analyses the reliability characteristics of the Burr Type XII distribution through a new set of
features within SVM frameworks which were previously absent from existing literature.

2. The research aims to create predictive systems from SVM which detect and improve the closed-form
properties of the Burr Type XII distribution for extensive survival analysis applications.
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3. The research will assess SVM methodologies as they relate to estimating and forecasting distributional
characteristics which derive from survival data of the Burr Type XII framework.

4. The proposed models will be tested against each other for maximum accuracy and robustness through
Maximum Likelihood Estimation (MLE) and Support Vector Machine (SVM) modelling assessment
resulting in the identification of a superior survival time prediction and distribution fitting solution.

2. The Burr Type XII Distribution and its Properties (Proposed Model)

The probability that the survival time remains lower than a specific time point t can be calculated through the
cumulative distribution function (CDF) of the random variable T for the Burr Type XII distribution where c and k
represent shape and scale parameters respectively.

G(t|c, k) = 1− (1 + tc)
−k

, t, c, k > 0, (1)

and PDF of Burr Type XII distribution is:

f(t|c, k) = cktc−1(1 + tc)
−k−1

, t, c, k > 0. (2)

The Burr Type XII distribution functions in multiple research spaces because it both handles statistical
distribution distortions and adapts to non-standard data distributions as shown in Figure 1. The distribution supports
various hazard rate patterns, which enables its use in advanced theoretical as well as applied time-to-event data
analysis scenarios.

2.1. Survival and Risk Function

Survival analysis serves as a necessary statistical framework that experts use in medicine as well as biology
and social sciences and econometrics and engineering [20]. Statistical survival analysis depends on event timing
intervals in measurements spanning multiple years. The statistical discipline which examines and analyses time-
to-event data through survival analysis or survival evaluation operates under the title of survival analysis [17, 21].
Survival time T serves as the main variable of the study to measure the interval from an established beginning
(birth or treatment start) to an end outcome (death or treatment failure). Subsequent events that theoretically could
happen are excluded by this terminology since they do not fit the definition of terminal events. Survival analysis
relies on S(t) as its central quantitative element to represent the chances of individual survival past time t. The
survival function S(t) indicates the probability that survival time T surpasses value t in the nonnegative continuous
random variables space.

S (t|c, k) = Pr(T > t) = 1−G(t|c, k) = (1 + tc)
−k

, t, c, k > 0. (3)

The survival function S(t) behaves in a decreasing manner following t = 0 when it starts at 1 before moving
toward zero as time tends toward infinity. Survival probability decreases throughout time according to the basic
principle of this fundamental property. The survival function curves that show different shape-scale variations in
the Burr Type XII distribution appear in Figure 2. The distribution demonstrates its modelling capacity for various
survival patterns through the expected monotonic non-increasing patterns displayed on the plots. The survival
function S(t) along with the probability density function f(t) receive a three-dimensional graphical representation
in Figure 3. The graphic Visualization allows us to understand how survival probability and duration evolve together
when parameters and time change within the Burr XII distribution framework.

In survival analysis, the hazard rate function acts as a fundamental principle that statisticians name the
instantaneous failure rate. The hazard rate provides a measure of instantaneous failure probability, together with
event occurrence risk at a specific time t for surviving up to that point. Biomedical research depends on hazard
rate functions to determine how likely patients are to die during a specific time interval t when they reach that
timeframe. Hazard rates represent the natural tendency of components to deteriorate throughout their life span in
applications of reliability engineering. A random variable named T with a non-negative continuous distribution
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Figure 1. Burr Type XII Distribution: Behavior of PDF Under Varying Shape Parameters c and k.

represents survival time or time-to-event. The mathematical definition of hazard rate function h(t) appears as
follows [26]:

h (t) = lim
∆t→0

P (t ≤ T ≤ t+∆t|T ≥ t)

∆t
=

f (t)

S (t)
, (4)

where f(t) is the probability density function (PDF) of the survival time, S(t) = P (T > t) is the survival function,
representing the probability of surviving beyond time t.
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Figure 2. Burr Type XII Distribution: behavior of SF Under Varying Shape Parameters c and k

The hazard rate function h(t) stands in direct relation to the survival function ST (t) through this formula.
h (t) = S′

T (t)
ST (t) . The hazard rate represents an instantaneous failure speed at time t for survivors until then, since it

provides a slope measurement of survival curve variation. The hazard rate function and survival function explain
the survival time distribution of T through Eq. (3) and Eq. (4) in an interrelated manner.
• This method evaluates risk failure probabilities during specific time intervals while taking surviving until that
period into account for precise age-related hazard analysis.
• The method enables direct comparisons between different groups including populations as well as treatment
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Figure 3. 3D profiles of PDF and SF

populations especially for clinical and epidemiological research.
• The proportional hazard model provides exceptional value when dealing with right censored data that contains
heterogeneous failure types therefore serving as a strong tool for handling complex survival data.
• The hazard function enables straightforward comparison with the exponential distribution for modelling purposes
because it allows evaluation of failure rate consistency. Time-dependent risk analysis becomes possible through
deviations from the benchmark distribution since it reveals patterns that lead to improved modelling of survival
scenarios.
• Reliability theory finds this model to be its essential building block because it describes the base intensity rates
that affect one-component devices with a single failure type.

The hazard rate function (HRF) of Burr Type XII distribution.

h (t|c, k) = cktc−1

1 + tc
. (5)

The illustrations of hazard rate function (HRF) profiles appear in Figure 4 and Figure 5. Each distinctive shape of
the HRF exists in decreasing patterns and unimodal and hump-shaped forms that represent beneficial characteristics
for lifetime modelling. Real-world reliability analysis benefits from this model because it can handle both single-
faceted and multi-faceted hazard trends, which occurs frequently in survival data systems.

The survival analysis depends heavily on the cumulative hazard rate function (CHRF) denoted by G′(t/c, k),
which represents the complete risk exposure of subjects from their beginning until time t. The CHRF enables
researchers to understand risk build-up patterns for the Burr Type XII distribution while jointly providing
information with the hazard and survival function for studying lifetime behavior.

G′(t|c, k) =
t

∫
0
h (y|c, k) dy = − log [S (t|c, k)] . (6)

Hence,
G′(t|c, k) = k log (1 + tc) . (7)

You can see in Figure 6 how specific distributional parameters affect the cumulative hazard rate function (CHRF).
The CHRF from the Burr Type XII distribution curves uniformly upwards to represent risk growth that follows
patterns found in various survival and reliability situations.

A random variable that stands for lifetime duration possesses its reverse hazard rate function when the ratio
between the the probability density function and cumulative distribution function exists. Mathematically, RHRF
expresses failure probabilities immediately before time t under the condition that the event has occurred by time
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Figure 4. Features of c and k on HRF

t. The left-censored data analysis depends on RHRF for its importance in fields such as forensic science as well
as actuarial studies and early failure modelling. The reliability function for survival data in terms of time T can
be written in this form: h′ (t|c, k) = f(t|c, k)G(t|c, k)−1, Systems that experience most failures during their initial
observation period can be efficiently analysed through this function. Research in reliability theory and stochastic
modelling demonstrates the essential role of RHRF for distribution characterisation, development of diagnostic
checks, and new reliability model construction (see [27] for mathematical theory and [28] for utilisation and broader

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 SURVIVAL MODELLING OF BREAST AND BRAIN CANCER

Figure 5. 3D profile of HRF of Burr Type XII distribution

Figure 6. Features of c and k on CHRF

applications) in Figure 7.

h′ (t|c, k) = ck

t (1 + tc)
(8)

Figure 8 shows the Mills ratio, due to its intrinsic relationship with the failure (hazard) rate, serves as a valuable
analytical tool in the assessment of reliability and durability. The distribution tail behavior comes into focus through
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Figure 7. Features of c and k on RHRF
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Figure 8. Features of c and k on MR

this metric which proves especially valuable for survival analysis of systems throughout their operational periods.

MR(t|c, k) = t

ck

(
1 + t−c

)
(9)
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Figure 9. Features of c and k on OF

The odd function of T OF (t|c, k) = G(t|c,k)
S(t|c,k) is:

OF (t|c, k) = 1

(1 + tc)
−k
− 1. (10)

The function is plotted as shown in Figure 9.

3. Estimation Methods

3.1. Maximum Likelihood Estimation (MLE)

This estimation method is recognized as one of the most effective approaches due to its desirable statistical
properties, including stability, asymptotic efficiency, and consistency under certain conditions. Let us assume a
random sample of size n drawn from a log-logistic distribution, denoted by t1, t2, . . . , tn. The corresponding log-
likelihood function for the parameters c and k is expressed. And the maximum likelihood estimation (MLE)
function contains the probability density function t that has been substituted into the general log-likelihood
expression as presented in this statement:

fn (t1, t2, . . . , tn) = n!

n∏
i=1

f (ti) . (11)

Then,

L(c, k/t) = n!

n∏
i=1

f(ti) = n!

n∏
i=1

cktc−1
i (1 + tci )

−k−1
, (12)

Hence,

L(c, k/t) = n!cnkn
n∏

i=1

tc−1
i

n∏
i=1

(1 + tci )
−k−1

. (13)

The natural logarithm of the likelihood function replaces the likelihood function in analysis due to ease of operation
through Eq. (13). Taking the exponential of the natural logarithm of the likelihood function produces this expression
for the log-likelihood:

lnL(c, k|t) = lnn! + n ln c+ n ln k + (c− 1)

n∑
i=1

ln (ti)− (k + 1)

n∑
i=1

ln (1 + ti
c) . (14)
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The derivative ∂ lnL(.)
∂(.) w.r.t. c and k are:

∂ lnL(c, k|t)
∂c

=
n

c
+

n∑
i=1

ln (ti)− c (k + 1)

n∑
i=1

ti
c−1

1 + ti
c , (15)

∂ lnL(c, k|t)
∂k

=
n

k
−

n∑
i=1

ln (1 + ti
c) . (16)

Appropriate numerical optimization techniques are used to solve the system derived when the partial derivatives
of log-likelihood functions in Eqs. (15) and (16) become zero for parameter estimation of c and k. The survival
analysis applies parameter estimates for the Burr Type XII distribution through subsequent investigations reported.

Survival Function
Estimating the survival function that has been substituted into the general log-likelihood expression as presented
in this statement:

L(t|c, k) = n!

n∏
i=1

S (ti|c, k) = n!

n∏
i=1

(1 + ti
c)

−k
. (17)

The natural logarithm of the likelihood function replaces the likelihood function in analysis due to ease of operation
through Eq. (17). Taking the exponential of the natural logarithm of the likelihood function produces this expression
for the log-likelihood:

lnL(t|c, k) = lnn!− k

n∑
i=1

ln (1 + ti
c) . (18)

The derivative ∂ lnL(.)
∂(.) w.r.t. c and k are:

∂ lnL(c, k|t)
∂c

= −ck
n∑

i=1

ti
c−1

1 + ti
c , (19)

∂ lnL(c, k|t)
∂k

= −
n∑

i=1

ln (1 + ti
c) . (20)

3.2. Modified Support Vector Machine

The goal is to use SVM regression to approximate the relationship between the input data y and the output of the
function f(t; c, k) and S(t; c, k), and then extract the parameter estimates ĉ and k̂. The following algorithm:

BEGIN
Step 1: Data Preparation:
- Normalize dataset D to improve numerical stability.
- Split D into training set Dtrain and validation set Dval.
Step 2: Train SVM Regression Model:
- Initialize the SVM model using the specified Kernel Type
- Train SVM using Dtrain to learn mapping: ti → fi .
Step 3: Parameter Initialization:
- Set c← c0
- Set k ← k0.
Step 4: Optimization Loop:

-Define objective function: MSE = 1
n

n∑
i=1

(fi − f (ti; c, k))
2.

- Use Optimization Method to minimize MSE.
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For iter = 1 to Max Iterations DO
Update (c, k) based on optimization rule.
Compute MSE.
End for.
Step 5: Parameter Extraction:
- Set ĉ← optimized value of c.
- Set k̂ ← optimized value of k.
Step 6: Validation:
For each tj in Dval DO
Compute predicted output f̂j by using SVM .

Compute theoretical output f
(
tj ; ĉ, k̂

)
.

End for

Compute RMSE =

√∑Q
i=1 (f̂i−f(tj ;ĉ,k̂))

2

Q .

Output ĉ, k̂ and RMSE.
End.

In order to overcome the issue of interpretability of models, we offer the study of the inner behavior of SVM
model. The action of the kernel function in changing the feature space, the effect of the support vectors on the
regression function and decision boundaries based on margins are described in detail to explain the predictive
mechanism. Moreover, post-hoc explainability methods like SHAP values were utilized in order to determine
feature contributions to the model outputs. These observations provide a clear understanding of how the model
works and make it more useful in the context of clinical decision making.

Firstly, the kernel function that was used in SVM model was Radial Basis Function (RBF) kernel which
is flexible in handling non-linear patterns of data as well documented in its application in survival analysis.
Second, grid search strategy and 10-fold cross-validation were used to optimize the hyper-parameters, in which
the regularization parameter C and the kernel scale γ were optimized. These values were the best because
they presented the least Root Mean Square Error (RMSE) throughout validation folds. Third, regarding the
characteristic of inputs, the current SVM model has just used time-to-event variable following Burr Type XII
distribution in modelling learning. Even though this approach enables us to compare our estimation with those
estimated by MLE directly, we recognize that since there are no clinical covariates (e.g., age, tumour stage) the
model may have little clinical utility. We plan to enlarge the SVM input space in future to include such covariates
in order to achieve a more interpretable input space that will be of greater practical value. In particular, we used the
Radial Basis Function (RBF) kernel that is generally useful when there is a need to model non-linear relationships
that are prevalent in survival analysis. The important hyper-parameters of SVM were:
- Regularization parameter c = 1.0.
- Kernel coefficient γ =′ scale′, γ = 1

nfeatures∗V ar(X) .

They were optimized in order to provide the best performance in terms of the grid search method with 10-fold
cross-validation and the best configuration was the one that provided the minimum average Root Mean Square
Error (RMSE) across folds. Regarding input features, SVM model in this paper assumed time to event as the
sole input feature according to the Burr Type XII distribution structure form. In order to enhance the numerical
stability and the convergence of the model, all of the input data were modified to a standard scale (zero mean, unit
variance). To further assist reproducibility, we have also provided a flowchart of the SVM pipeline, i.e., the data
pre-processing steps, training and tuning of the model and prediction steps.
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Figure 10. The SVM pipeline flowchart

4. Simulation

Simulation operates as a methodological instrument which duplicates real-world systems during controlled
experimental analysis for the purpose of behavior investigation. The basic notion consists of creating an artificial
reproduction of a process which reproduces actual system actions under precise conditions. The process requires
building a reduced or easy-to-understand model which effectively represents both the essential structures and
operational principles of the complete system. The surrogate model undergoes experimental testing which leads
to analysis results that provide implications for the full-scale system. Simulation conducted through computers
relates to the development and execution of mathematical algorithms which generate models that reflect real
programming scenarios. The system performs iterative simulations which allow for output observation and
analysis to draw statistically valid conclusions regarding performance and behavior in conditions of uncertainty
[29].

The most well-known simulation approaches consist of the analogy method along with the mixed method and the
widely-used Monte Carlo method. The Monte Carlo simulation stands out because it uses probabilistic sampling
approaches to duplicate complex phenomena subject to known probability distributions. The simulation technique
needs a specified cumulative distribution function (CDF) to create Independent Identically Distributed (IID)
random samples. The system treats observations one by one by performing appropriate mathematical treatments
that maintain statistical validity and replication potential [30]. This research applied simulation to evaluate
estimators of the proposed model under fuzziness through the practical conceptualization of these theoretical
constructs. The proposed estimation approaches underwent experimental comparison through a simulation testing
scheme. The Root Mean Square Error criterion served as a performance evaluation tool for estimators while they
operated with different sample size conditions thus determining their precision level [31]. The simulation model
served to evaluate the suggested estimation methods comparatively under different data environments which
represented actual real-world scenarios. This research analyzes various estimation methods to establish the most
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14 SURVIVAL MODELLING OF BREAST AND BRAIN CANCER

reliable and efficient method for determining parameters within the Burr Type XII distribution. An approach like
this helps decision making through better evaluation of lifetime data and other domains featuring heavy-tailed
behavior and extreme value phenomena [31, 32].
• Change in sample size.
• Change in model parameter values.

Stage I: Model Initialization and Parameter Specification

The first step plays a pivotal role by creating a base for all following simulation processes. The first step includes
all operations that establish core hypothesis along with parameter value selection while defining process behavior.
This phase contains three sequential elements for completion:

Step 1: Default Parameter Values get Selected During this First Step of the Procedure
The simulation process starts by setting initial default values to the parameters used in Burr Type XII Process.
The chosen parameter settings draw from past experimental studies together with comprehensive testing work
to maintain robustness and applicability of configured parameters. Two specified parameter configurations
showed the best results from evaluating different simulation parameter options. Set 1: c = 0.2; k = 2.0, Set 2:
c = 2.5; k = 2.5, Set 3: c = 2.7; k = 4.6 and Set 4: c = 3.0; k = 5.3.

These parameters respectively define the shape, scale, location, and additional distributional characteristics
necessary for generating synthetic data that closely resemble the theoretical behavior of the Burr Type XII.

Step 2: Determination of Sample Sizes

Different sample sizes of small medium and large datasets successfully measure the stability and performance
of the estimators during the simulation. n = 50; 100; 200; 400. This stratification allows for rigorous analysis of
estimator sensitivity and efficiency under varying data volumes.

Stage II: Random Data Generation via Inverse Transformation

This stage involves the generation of pseudo-random data points that follow the probability distribution function
of the Burr Type XII Process, utilizing the Inverse Transform Sampling Method. In order to evaluate the robustness
of the models and to avoid overfitting, we defined a 10-fold cross-validation structure in each simulation of the
experiment. Parameter estimation and consequent calculations of RMSE were done separately in each fold, in
such a manner that the validation sets were not at all seen in the training phase. The mean squared roots of the
aggregated fold results were then taken to give a better indication of model performance.

Step 1. Generation of Uniform Random Variables

Let

ui ∼ U (0, 1) , i = 0, 1, 2, ..., n (21)

MATLAB provides the built-in rand function to produce Independent Identical Distributed IID random variables
distributed uniformly from the interval (0, 1) during this stage, where ui is the continuous uniform random
variable, and n is the sample size.

Step 2: Transformation to Burr Type XII Distributed Data

The generated uniform variables are transformed into data that follow the Burr Type XII Process via the Inverse
Cumulative Distribution Function (CDF). This transformation leverages the known CDF of the Burr Type XII,
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denoted as Eq. (1) in the study, and applies the inverse mapping xi = F−1 (y), This simplifies to:

ti = [(1− u)−
1
k − 1]

1
a , i = 0, 1, 2, ..., n (22)

This procedure ensures that the synthetic dataset accurately represents the statistical characteristics of the Burr
Type XII Process under study. To rigorously assess the robustness of the predictive models and mitigate overfitting,
a 10-fold cross-validation scheme was implemented within each simulation. For each fold, model parameters were
estimated using the training subset, while RMSE was calculated on the withheld validation subset, ensuring that no
validation data influenced model fitting. The final performance metric was obtained by averaging the RMSE values
across all folds, thereby offering a more generalizable and statistically robust estimate of model performance.

Stage III: Parameter Estimation

The simulation framework advances to its last stage through parameter estimation of Burr Type XII distribution
as applied to Software Reliability Growth Models (SRGMs). The third phase includes multiple technical
approaches for parameter estimation across the complete observation period to guarantee predictive reliability and
statistical precision. These estimation methodologies are used for the process: Maximum Likelihood Estimation
(MLE) and Modified Support Vector Machine (MSVM).

Stage IV
The optimal estimation method was identified based on the comparison metric Root Mean Squared Error (RMSE),
evaluated across the estimation of the survival function, hazard (risk) function, and probability density function.

Stage V
Experiment is repeated (1000) times.

Stage VI
Compute the Root Mean Square Error (RMSE) for each observation ti, based on the estimated distribution
parameters c and k.

RMS (ĉ) =

√∑Q
i=1 (ĉi − ci)

2

Q
. (23)

RMS
(
k̂
)
=

√√√√∑Q
i=1

(
k̂i − ki

)2

Q
. (24)
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Table 1. RMSE values showing results of survival function prediction through all technique combinations and experimental
samples tested.

Parameters n MLE SVM

ĉ k̂ ŝ(t) Abs. Bias ĉ k̂ ŝ(t) Abs. Bias

c = 0.2; k = 2.0 50 2.0487 2.0444 0.0007 0.1809 1.3834 0.7638 0.00019 0.0236
100 2.0352 2.0265 0.0004 0.1451 1.3607 0.7668 0.00015 0.0117
500 2.0259 2.0195 0.0003 0.1062 1.3482 0.7693 0.00015 0.0106
1000 2.0159 2.0185 0.0002 0.0829 1.4593 0.8784 0.00005 0.0222

c = 2.5; k = 2.5 50 2.5586 2.5651 0.0005 0.0337 1.2216 0.9523 0.00033 0.0388
100 2.5322 2.5380 0.0003 0.0261 1.2048 0.9605 0.00022 0.0163
500 2.5251 2.5260 0.0002 0.0179 1.2023 0.9526 0.00018 0.0132
1000 2.6362 2.6371 0.0003 0.0136 1.3134 0.8637 0.00008 0.0128

c = 2.7; k = 4.6 50 2.7756 4.8771 0.0003 0.7013 1.3278 0.8058 0.00014 0.1127
100 2.7462 4.7674 0.0002 0.7786 1.3081 0.8073 0.00011 0.0771
500 2.7326 4.7249 0.0001 0.7333 1.3013 0.8079 0.00010 0.0690
1000 2.8437 4.8358 0.0002 0.7383 1.4124 0.9188 0.00015 0.0668

c = 3.0; k = 5.3 50 3.0772 5.5790 0.0002 0.9810 1.4223 0.7159 0.5E-04 0.5793
100 3.0551 5.5061 0.0002 0.9270 1.4039 0.7168 0.4E-04 0.4865
500 3.0339 5.4396 0.0001 0.9153 1.4043 0.7131 0.46E-4 0.4168
1000 3.1448 5.5487 0.0004 0.9185 1.5154 0.8242 0.47E-4 0.3998

Table 2. RMSE values showing results of risk function prediction through all technique combinations and experimental
samples tested.

Parameters n MLE SVM

ĉ k̂ ĥ(t) Abs. Bias ĉ k̂ ĥ(t) Abs. Bias

c = 0.2; k = 2.0 50 3.8182 0.6179 0.0018 0.2709 2.7273 0.7288 0.0009 0.1336
100 3.7599 0.6165 0.0012 0.2551 2.6488 0.5254 0.0002 0.1217
500 3.7351 0.6150 0.8E-4 0.2162 2.6242 0.5040 0.1E-4 0.1206
1000 3.8462 0.7261 0.9E-4 0.1929 2.7353 0.6151 0.2E-4 0.1322

c = 2.5; k = 2.5 50 4.1628 0.2827 0.0068 0.1437 2.6240 0.1716 0.0057 0.1488
100 2.2470 0.4445 5.20E-3 0.1361 1.1360 0.3334 4.20E-3 0.1263
500 2.2173 0.4462 5.02E-3 0.1279 1.1062 0.3351 4.01E-3 0.1232
1000 2.3284 0.5573 5.12E-3 0.1236 1.2173 0.4462 4.11E-3 0.1228

c = 2.7; k = 4.6 50 1.3327 0.9501 0.0470 0.8113 1.2216 0.8400 0.0786 0.2227
100 1.3219 0.9448 0.0434 0.8886 1.2108 0.8337 0.0258 0.1871
500 1.3154 0.9438 0.0420 0.8433 1.2043 0.8327 0.0156 0.1790
1000 1.4265 0.9549 0.0531 0.8483 1.3154 0.9438 0.0267 0.1768

c = 3.0; k = 5.3 50 2.4332 0.4953 0.0417 0.9910 1.3221 0.3842 0.2476 0.6893
75 2.0386 0.5187 0.0819 0.9370 1.0275 0.4076 0.0576 0.5965
500 2.3507 0.4997 0.0387 0.9253 1.2406 0.3886 0.0432 0.5268
1000 2.4618 0.5888 0.0498 0.9285 1.3517 0.4997 0.0543 0.4998
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Table 3. RMSE values showing results of probability density function prediction through all technique combinations and
experimental samples tested.

Parameters n MLE SVM

ĉ k̂ f̂(t) Abs. Bias ĉ k̂ f̂(t) Abs. Bias

c = 0.2; k = 2.0 50 2.0487 2.0444 0.0030 0.3809 1.1917 1.0005 0.0017 0.2436
100 2.0352 2.0265 0.0018 0.3651 1.1804 1.0003 0.0015 0.2317
500 2.0259 2.0195 0.0014 0.3262 1.1744 0.9969 0.0014 0.2306
1000 2.1368 2.1286 0.1114 0.2939 1.2844 0.8869 0.1104 0.2422

c = 2.5; k = 2.5 50 2.5586 2.5651 0.0034 0.2537 2.5548 2.5689 0.0024 0.2588
100 2.5322 2.5380 0.0022 0.2461 2.5340 2.5407 0.0020 0.2363
500 2.5251 2.5260 0.0016 0.2379 2.5210 2.5356 0.0017 0.2332
1000 2.6351 2.6360 0.1116 0.2336 2.6310 2.6456 0.0117 0.2328

c = 2.7; k = 4.6 50 2.7756 4.8771 0.0047 0.9913 1.1967 1.0117 0.0044 0.3327
100 2.7462 4.7674 0.0030 0.9886 1.1809 1.0112 0.0030 0.2971
500 2.7326 4.7249 0.0022 0.9533 1.1840 1.0030 0.0020 0.2890
1000 2.8426 4.8349 0.1022 0.9583 1.2940 1.1130 0.1020 0.2868

c = 3.0; k = 5.3 50 3.0772 5.5790 0.0048 0.8810 3.4578 0.3953 0.0008 0.7993
100 3.0551 5.5061 0.0034 0.8470 3.3796 0.3976 0.0005 0.6865
500 3.0339 5.4396 0.0024 0.9253 3.3435 0.3961 0.0004 0.6368
1000 3.1439 5.5496 0.1024 0.9285 3.4535 0.4861 0.1004 0.5898

It becomes evident from Table 1, Table 2 and Table 3 that the Support Vector Machine (SVM) technique
achieves superior performance than Maximum Likelihood Estimation (MLE) for the survival function as well as
hazard (risk) function and probability density function estimation across all experimental conditions when using
sample sizes of n = 50, 75 and 100.

5. Numerical Example

This section presents a comprehensive comparative analysis between the goodness-of-fit of the suggested model
and that of some of the popular survival distributions to real-life data will also be carried out in this section. To
estimate the empirical performance and modelling flexibility of the proposed model distribution, it is compared
with certain benchmark models, amongst them being the Additive Weibull (ADDW) distribution [33], the Additive
Burr XII (ADDBXII) by [34], the New Modified Weibull (NMW) of [35], the Exponential Flexible Weibull (EFW)
of [35], and the Burr XII (BXII) distribution by [36]. The models are then compared based on accuracy of their
predictive survival, hazard (risk) and probability density functions. To ensure methodological rigor, we employ
formal goodness-of-fit statistics, i.e., log-likelihood (L), Akaike Information Criterion (AIC), its corrected version
(AICc), Bayesian Information Criterion (BIC) and Root Mean Square Error (RMSE). These numerical indices give
direct comparison of model performance which is statistically significant in aiding to decide the most appropriate
model to use when depicting survival data.

AIC = 2n1 − 2 ln (L) , (25)

AICc = AIC + 2
n2 (n2 + 1)

n1 − n2 − 1
, (26)

BIC = n1 ln (n2)− 2 ln (L) . (27)
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Figure 11. The cumulative data volume’s logarithm by the distributive form for dataset I

L = L
(
θ̂
)

is the value of the likelihood function at the estimated parameters, and n1 is the number of observations
and n2 is the number of parameters in the model that are being estimated. Usually, the distribution that leads to the
minimal values of these information criteria (e.g., AIC, AICc, BIC) is deemed to fit the observed data best.

5.1. Data Set I

Real-world data were collected from 50 breast cancer patients treated at Medical City Hospital in Baghdad during
the year 2020. The dataset includes the time interval from each patient’s admission to discharge. As all patients
were recorded as deceased at the time of discharge, the dataset is classified as complete (uncensored) survival data
[37].

5.1.1. Goodness of-Fit Tests for Data Set: The goodness-of-fit test functions as a basic statistical tool when
analysing lifetime or survival data because it identifies which probability distribution best describes actual
observed data. Traditional methods mainly use graphical approaches to check whether the chosen distributional
fit matches the observed data. The survival data undergo graphical evaluation to determine the level of concurrence
between experimental and theoretical survival models. The examination occurs through visualization of the natural
logarithm transformation of patient time spans between hospital entries and departures. A strong relationship
between the proposed survival models occurs when most data points align along a straight line. The survival
function can be transformed into the following equation through natural logarithm application to the proposed
model:

ln [S (t)] = −k ln (1 + tc) . (28)

By using the programming language MATLAB, the following figure was obtained.

5.1.2. Results: The estimated model parameters are presented in Table 4. Table 5. reports the model estimations
derived through Maximum Likelihood Estimation and Support Vector Machine techniques, evaluated using the
Root Mean Square Error criterion.
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Table 4. Estimated parameter values of the Burr Type XII distribution obtained using various estimation methods.

Methods Parameters
ĉMLE k̂MLE ĉSVM k̂SVM

Survival 1.1666 0.0100 0.574956 4.138335
Risk function 0.026749 47.604797 1.05336 1.95851
Probability Density Function 62.243020 0.010367 0.321720 0.00073

Table 5. Estimated survival and hazard functions derived from the application data.

ti Ŝ(t)MLE Ŝ(t)SVM ĥ(t)MLE ĥ(t)SVM

1.2 0.0086 0.0004 0.0072 0.0016
1.9 0.0629 4.35E-05 0.0118 0.0114
2.1 0.0218 7.27E-05 0.2550 0.0082
2.4 0.0303 5.56E-05 0.22317 0.0039
3 0.0505 4.05E-07 0.1785 0.0001

3.1 0.0459 3.19E-06 0.1727 6.96E-5
3.2 0.0206 7.52E-06 0.1673 1.12E-5
3.4 0.0016 1.62E-05 0.1575 2.13E-5
4.1 0.0049 1.73E-05 0.1306 0.00002
5.2 0.0113 1.56E-05 0.1030 0.0005
5.3 0.0082 1.49E-05 0.1010 0.0006
5.4 0.0029 1.39E-05 0.0991 0.0006
5.6 0.0018 1.13E-05 0.0956 0.0007
6.1 1.32E-7 5.37E-06 0.0878 0.0012
6.2 0.0002 4.80E-06 0.0836 0.0013
6.4 0.0048 4.35E-06 0.0836 0.0016
6.5 0.0075 4.43E-06 0.0824 0.0017
7.2 0.0076 8.55E-06 0.0743 0.0026
8.12 0.0073 1.03E-05 0.0659 0.0032
8.4 0.0099 9.77E-06 0.0637 0.0031
8.5 0.0138 9.50E-06 0.0630 0.0030
8.6 0.0184 9.19E-06 0.0622 0.0029
9.1 0.0014 7.12E-06 0.0588 0.0022
9.8 0.0010 2.13E-06 0.0546 0.0008
10.5 0.0001 1.22E-06 0.0510 2.88E-6
11.4 0.0004 5.02E-06 0.0469 0.0023
12.1 0.0004 3.06E-07 0.4426 0.0093
12.4 0.0003 9.25E-08 0.0431 0.0143

The survival function displays decreasing behavior according to Table 6 and Figure 12. Figure 12 shows the
hazard function increases. The observed data validates how survival functions decrease while hazard functions
increase. Although the main scope of the study is related to the statistical modelling and predictive performance of
the Burr Type XII distribution based on the MLE and SVM methods, we see the necessity to match the hazard rate
patterns with the real-life clinical paths to give the study a practical utility. In response to this, we have generalised
the discussion to make explicit the relation of the shapes of the observed hazard functions to patterns known to
occur in cancer progression. As an example, in breast and brain cancer, it is clinically well-known that hazard
rates typically show an early increase after diagnosis, associated with early disease aggressiveness or aggressive
treatment initiation, and then a decrease as patients stabilize or adapt to therapy. These clinical phases are reflected
in the uni-modal or bathtub- shaped hazard profiles that we have discovered in our research, thus confirming the
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Figure 12. Behavioral Analysis of Survival and Hazard Functions Estimation Using MLE and SVM Methods

suitability of the Burr Type XII model to the dynamics of obtaining such profiles. Hazard functions are frequently
used in breast and brain cancer to indicate the severity of the disease and the time of treatment. Cancers at an
early stage usually have a high hazard rate within a short period following the diagnosis because of the risks
associated with early treatment and the aggressiveness of the disease. The usual expectation as treatment continues
is a decrease in the rates of hazard - clinically, a stabilization or remission. The clinical evidence is known to exhibit
this type of uni-modal or inverted U-shaped pattern of hazard in our findings. As an example,[38] stressed that
early breast cancer has heterogeneous biological subtypes with a strong impact on short-term prognosis and risk of
recurrence. On the same note, [39] observed that hormone receptor status and tumour grade play a pivotal role in
the assessment of early mortality risk. Also, an SVM implemented in the current study offers not only predictions
with high accuracy but also a possible clinical application [40]. By estimating individual patient survival curves and
hazard functions, the model can be used to identify high risk patients early in the clinical evaluation process thus
assisting in a stratified interventional approach. These findings may help oncologists make decisions that better
reflect the need to focus on the intensity of treatment, follow up on critical cases and manage resources.
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Figure 13. Behavioral Analysis of Probability Density Function Estimation Using MLE and SVM Methods.

Table 6. Estimated probability density function derived from the application data.

ti f̂(t)MLE f̂(t)SVM ti f̂(t)MLE f̂(t)SVM

1.2 0.0002 1.82E-06 6.2 3.39E-08 1.53E-09
1.9 2.34E-05 1.27E-08 6.4 3.89E-08 1.49E-09
2.1 1.34E-05 6.46E-08 6.5 4.13E-08 1.46E-09
2.4 6.14E-06 1.04E-07 7.2 5.37E-08 1.22E-09
3 1.38E-06 3.16E-08 8.1 6.17E-08 2.87E-09

3.1 1.07E-06 1.99E-08 8.4 6.27E-08 3.99E-09
3.2 8.37E-07 1.10E-08 8.5 6.29E-08 4.38E-09
3.4 5.01E-07 1.50E-09 8.6 6.31E-08 4.73E-09
4.1 6.05E-08 7.13E-09 9.1 6.33E-08 5.19E-09
5.2 4.91E-09 2.86E-09 9.8 6.21E-08 2.34E-09
5.3 7.45E-09 2.48E-09 10.5 5.98E-08 7.32E-10
5.4 1.02E-08 2.19E-09 11.4 5.59E-08 4.39E-09
5.6 1.62E-08 1.82E-09 12.1 5.27E-08 4.90E-09
6.1 3.12E-08 1.55E-09 12.4 5.13E-08 5.82E-10

The probability density function shows an escalating pattern followed by a steady reduction which matches
expected behavior in this distribution type according to Table 6 and Figure 13.

5.1.3. Comparison Study In this section Table 7 and Table 8 contains the Maximum Likelihood Estimates
(MLEs) and Support Vector Machine (SVM) estimates of the model parameters and their standard errors. This
table also shows major criteria used in selecting the model like the log-likelihood, Akaike Information Criterion
(AIC), corrected AIC (AICc), Bayesian Information Criterion (BIC) and Root Mean Square Error (RMSE). The
results obtained overwhelmingly point to the fact that the considered model returns the lowest values among all
information criteria (AIC, AICc, BIC and RMSE), thus hinting at a better fit than the competing distributions
considered. Additional evidence to this conclusion is given with the aid of visual comparison in Figure 14 that
superimposes the histogram of empirical data with the fitted density curves of the Additive Weibull (AddW),
Additive Burr XII (AddBXII), New Modified Weibull (NMW), Exponential Flexible Weibull (EFW), Flexible
Weibull (FW), and Burr XII (BXII) distributions. The proposed model shows a visual fit to the observed data that
is excellent, as seen in Figure 14, and it does so compared to all the competing models that were used in this study.
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Figure 14. Visual Analysis of Survival Duration in Cancer Patients Using Histogram and Boxplot

Table 7. Analysis of Estimated Survival, Probability Density, and Hazard Functions Based on Final Application Data Using
Maximum Likelihood Estimation

Model Estimation logL AIC AICc BIC RMSE
Proposed Model f̂(t) -47.032 122.602 147.251 144.071 5.13E-04

ŝ(t) -45.144 120.701 145.451 142.271 0.0003
ĥ(t) -43.045 120.907 143.151 140.471 0.0431

log-logistic distribution f̂(t) -57.043 132.672 149.646 147.046 5.89E-04
ŝ(t) -55.244 130.791 145.656 144.246 4.76E-04
ĥ(t) -53.345 130.997 145.546 142.446 1.993729

FWBXII f̂(t) -67.143 142.593 147.151 145.064 5.98E-03
ŝ(t) -65.344 140.683 145.551 143.464 4.98E-04
ĥ(t) -63.445 140.795 143.551 141.664 2.993729

AddW f̂(t) -107.550 214.803 217.360 226.080 6.98E-03
ŝ(t) -105.150 204.701 207.360 224.580 3.68E-04
ĥ(t) -103.350 234.613 217.560 222.480 3.793729

AddBXII f̂(t) -70.603 164.288 159.056 155.076 7.68E-03
ŝ(t) -72.403 164.579 155.456 153.276 4.58E-04
ĥ(t) -74.003 164.199 153.156 151.376 4.593729

NMW f̂(t) -89.017 188.027 184.044 180.051 8.58E-03
ŝ(t) -85.007 184.025 182.844 184.351 5.48E-04
ĥ(t) -81.006 182.019 180.244 188.551 5.473729

EFW f̂(t) -78.284 196.669 166.369 165.003 9.08E-03
ŝ(t) -74.074 193.569 164.169 163.603 4.38E-04
ĥ(t) -70.064 191.469 160.769 161.403 6.233729
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Table 8. Analysis of Estimated Survival, Probability Density, and Hazard Functions Based on Final Application Data Using
Support Vector Machine

Model Estimation logL AIC AICc BIC RMSE
Proposed Model f̂(t) -47.032 122.602 147.251 144.071 5.13E-04

ŝ(t) -45.144 120.701 145.451 142.271 0.0003
ĥ(t) -43.045 120.907 143.151 140.471 0.0431

log-logistic distribution f̂(t) -57.043 132.672 149.646 147.046 5.89E-04
ŝ(t) -55.244 130.791 145.656 144.246 4.76E-04
ĥ(t) -53.345 130.997 145.546 142.446 1.993729

FWBXII f̂(t) -67.143 142.593 147.151 145.064 5.98E-03
ŝ(t) -65.344 140.683 145.551 143.464 4.98E-04
ĥ(t) -63.445 140.795 143.551 141.664 2.993729

AddW f̂(t) -107.550 214.803 217.360 226.080 6.98E-03
ŝ(t) -105.150 204.701 207.360 224.580 3.68E-04
ĥ(t) -103.350 234.613 217.560 222.480 3.793729

AddBXII f̂(t) -70.603 164.288 159.056 155.076 7.68E-03
ŝ(t) -72.403 164.579 155.456 153.276 4.58E-04
ĥ(t) -74.003 164.199 153.156 151.376 4.593729

NMW f̂(t) -89.017 188.027 184.044 180.051 8.58E-03
ŝ(t) -85.007 184.025 182.844 184.351 5.48E-04
ĥ(t) -81.006 182.019 180.244 188.551 5.473729

EFW f̂(t) -78.284 196.669 166.369 165.003 9.08E-03
ŝ(t) -74.074 193.569 164.169 163.603 4.38E-04
ĥ(t) -70.064 191.469 160.769 161.403 6.233729

It is observed from Table 7 and Table 8 that the RMSE, AIC, AICc, BIC and logL values of the proposed
distribution are lower than those of the other distributions.

5.2. Data Set II

The dataset utilized in this study comprises the observed survival times (in days) of patients diagnosed with brain
cancer, measured from diagnosis until death. These data were extracted from the patient registry of the Imam
Hussein (peace be upon him) Centre for the Treatment of Oncology and Blood Diseases, located in the Holy
Governorate of Karbala. A simple random sample of 100 patients was selected, and their respective survival
durations were recorded for subsequent statistical analysis [33]. The dataset of breast cancer patients in the present
research was clearly indicated as complete (uncensored). In the case of brain cancer dataset though, we appreciate
the fact that the censoring status of observations was not clearly indicated in the manuscript. As we examine, the
brain cancer data obtained at the Imam Hussein Oncology Centre were complete as well since all the patients
in the sample selected had either died at the end of the follow-up. Hence there were no right-censored data in
both datasets. However, we also acknowledge that it is desirable to accommodate censoring in survival models, to
increase the applicability to more general clinical data where censoring is likely to occur because of loss to follow-
up or because of study termination [41, 42]. In that regard, I have included the clarification in the manuscript that
there are no censored cases and that the future extension of this work should consider the right-censored cases.
With such an extension it should be possible to assess the robustness of the Burr Type XII distribution and SVM-
based approaches in a more realistic survival analysis setting, which would improve generalizability and clinical
relevance.
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Table 9. RMSE Analysis of Estimated Survival, Probability Density, and Hazard Functions Based on Final Application Data
Using Maximum Likelihood Estimation

Methods f̂(t) ŝ(t) ĥ(t)

MLE 0.0004 0.0001 0.02482
SVM 0.00021 0.00001 0.00589

Table 10. Analysis of Estimated Survival, Probability Density, and Hazard Functions Based on Final Application Data Using
Maximum Likelihood Estimation

Model Estimation logL AIC AICc BIC RMSE

Proposed Model
f̂(t) -67.132 132.702 137.351 134.171 0.0004
ŝ(t) -65.244 130.801 135.551 132.371 0.0001
ĥ(t) -63.145 130.917 133.251 130.571 0.02482

log-logistic distribution
f̂(t) -77.143 142.772 139.746 137.146 1.89E-02
ŝ(t) -75.344 140.891 135.756 134.346 2.76E-02
ĥ(t) -73.445 140.998 135.646 132.546 0.99473

FWBXII
f̂(t) -87.243 152.693 137.451 135.164 4.88E-03
ŝ(t) -85.444 150.783 135.651 133.564 3.88E-04
ĥ(t) -83.545 150.895 133.651 131.764 1.89372

AddW
f̂(t) -127.650 224.903 207.260 216.180 7.78E-03
ŝ(t) -125.250 214.801 217.460 214.680 4.58E-04
ĥ(t) -123.450 244.713 207.660 212.580 4.69373

AddBXII
f̂(t) -90.703 174.388 149.156 145.176 8.48E-03
ŝ(t) -92.503 174.679 145.556 143.376 3.48E-04
ĥ(t) -94.103 174.299 143.256 141.476 3.59371

NMW
f̂(t) -99.117 198.127 174.144 170.151 7.68E-03
ŝ(t) -95.107 194.125 172.944 174.451 4.28E-04
ĥ(t) -91.106 192.119 170.344 178.651 4.57362

EFW
f̂(t) -88.384 206.769 156.469 155.103 8.18E-03
ŝ(t) -84.174 203.669 154.269 153.703 5.28E-04
ĥ(t) -80.164 201.569 150.869 151.503 5.22354

5.2.1. Comparison Study: In this subsection Table 10 and Table 11 give the Maximum Likelihood Estimates
(MLEs) and Support Vector Machine (SVM) estimates of the model parameters and their standard errors. Main
model selection criteria, such as log-likelihood, AIC, AICc, BIC, and RMSE are also reported in these tables. The
model proposed above has the lowest values in all the criteria which means that it fits better than the alternative
distributions. This can be further seen based on Figure 17 that provides visual comparison of the histogram of
empirical data and the fitted density curves of the competing models (AddW, AddBXII, NMW, EFW, FW, and
BXII). The model fitted visual agreement with the observed data is excellent.
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Figure 15. The cumulative data volume’s logarithm is represented by the diffusive form for dataset II.

Table 11. Analysis of Estimated Survival, Probability Density, and Hazard Functions Based on Final Application Data Using
Support Vector Machine

Model Estimation logL AIC AICc BIC RMSE

Proposed Model
f̂(t) -57.232 112.502 127.351 124.171 0.00021
ŝ(t) -55.344 110.601 125.551 122.371 0.00001
ĥ(t) -53.245 110.807 123.251 120.571 0.00589

log-logistic distribution
f̂(t) -67.243 122.572 129.746 127.246 1.69E-04
ŝ(t) -65.544 120.691 125.756 124.346 2.56E-04
ĥ(t) -63.545 120.897 125.646 122.546 0.99240

FWBXII
f̂(t) -77.543 132.493 127.451 125.264 3.96E-03
ŝ(t) -75.144 130.583 125.251 123.564 2.78E-04
ĥ(t) -73.145 130.695 123.351 121.764 0.99124

AddW
f̂(t) -117.450 204.703 197.460 206.170 5.78E-03
ŝ(t) -115.250 194.601 187.460 204.670 2.48E-04
ĥ(t) -113.450 224.513 187.605 202.580 2.79155

AddBXII
f̂(t) -80.703 154.188 139.256 135.166 6.58E-03
ŝ(t) -82.503 154.479 135.556 133.366 2.68E-04
ĥ(t) -84.103 154.299 133.356 131.476 2.49371

NMW
f̂(t) -79.117 178.017 164.244 180.051 7.28E-03
ŝ(t) -75.107 174.015 162.944 164.551 4.28E-04
ĥ(t) -71.106 172.119 160.344 168.651 3.07372

EFW
f̂(t) -68.384 186.769 146.469 135.213 7.18E-03
ŝ(t) -64.274 183.669 144.279 153.713 3.48E-04
ĥ(t) -60.164 181.569 140.859 151.503 5.33729
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Table 12. Analysis of Estimated Survival, Probability Density, and Hazard Functions Based on Final Application Data Using
Maximum Likelihood Estimation

Model Estimation logL AIC AICc BIC RMSE

Proposed Model f̂(t) -47.022 122.602 127.241 124.370 0.0003
ŝ(t) -45.134 120.711 125.241 122.271 0.00001
ĥ(t) -43.035 120.807 123.151 120.471 0.02471

log-logistic distribution f̂(t) -77.143 142.772 139.746 137.146 1.89E-02
ŝ(t) -75.344 140.891 135.756 134.346 2.76E-02
ĥ(t) -73.445 140.998 135.646 132.546 0.99473

FWBXII f̂(t) -87.243 152.693 137.451 135.164 4.88E-03
ŝ(t) -85.444 150.783 135.651 133.564 3.88E-04
ĥ(t) -83.545 150.895 133.651 131.764 1.89372

AddW f̂(t) -127.650 224.903 207.260 216.180 7.78E-03
ŝ(t) -125.250 214.801 217.460 214.680 4.58E-04
ĥ(t) -123.450 244.713 207.660 212.580 4.69373

AddBXII f̂(t) -90.703 174.388 149.156 145.176 8.48E-03
ŝ(t) -92.503 174.679 145.556 143.376 3.48E-04
ĥ(t) -94.103 174.299 143.256 141.476 3.59371

NMW f̂(t) -99.117 198.127 174.144 170.151 7.68E-03
ŝ(t) -95.107 194.125 172.944 174.451 4.28E-04
ĥ(t) -91.106 192.119 170.344 178.651 4.57362

EFW f̂(t) -88.384 206.769 156.469 155.103 8.18E-03
ŝ(t) -84.174 203.669 154.269 153.703 5.28E-04
ĥ(t) -80.164 201.569 150.869 151.503 5.22354

5.3. Data Set III

COVID 19 started in late December 2019 with the first outbreak in Wuhan China and spread across the globe with a
steady stream of warnings by the World Health Organization (WHO). The official confirmation of the first case was
made in China, in December 2019. [43, 44, 45] gives an overview of the monthly cases of COVID-19 in Turkey.
Besides, the data related to the case, which was noted on February 3, 2020, and February 2, 2021, are additionally
compared to demonstrate the dynamics of the pandemic in one year.

6. Results and Discussion

A summary of the comparative project between Maximum Likelihood Estimation (MLE) and Support Vector
Machine (SVM) regression appears in this section regarding their survival time modeling techniques. The
techniques were used to determine probability density function (PDF) together with survival function and hazard
function through performance assessment using MSE, RMSE, and IMSE metrics.
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Figure 16. Estimation and behavioral Evaluation of PDF, Survival, and Hazard Functions via MLE and SVM Approaches

6.1. Parameter Estimation and Functional Accuracy

The SVM approach maintained lower RMSE metrics than MLE in estimating survival and hazard functions when
using sample sizes from n = 50 to n = 1000. With 1000 observation points the survival function from SVM showed
an improvement in RMSE measurement that reached nearly ten times better than MLE.
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Figure 17. Visual Analysis of Survival Duration in Cancer Patients Using Histogram and Boxplot

Figure 18. Visual Analysis of Survival Duration in Cancer Patients Using Histogram and Boxplot

6.2. PDF Estimation

The findings demonstrate that SVM benefited PDF estimation because it produced progressively lower RMSE and
IMSE outcomes with rising sample numbers. The capability of SVM to approximate cause distribution becomes
noticeable through this evaluation.

6.3. Comparison with Previous Studies

The Burr-type model developed here demonstrated better performance than the log-logistic model in previous
research by lowering both RMSE and IMSE values which are presented in Table 8. The better fit highlights that
this model works well with difficult survival data.

6.4. Graphical Interpretation

Figure 12 to Figure 18 validate the numerical results. The survival function shows a plausible declining pattern
which matches the inverted-U shape of the hazard function that SVM effectively detects. The SVM predictions
match most closely with empirical PDF values in Figure 13. The SVM model exhibits accurate performance
according to Figure 16 by showing minimal discrepancies between predicted and observed data.
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6.5. Clinical Implications

Initial patient survival decrease rapidly but eventually reaches a plateau according to the survival models. The
prediction capabilities of SVM match this evolving pattern better than other methods so their value lies in aiding
healthcare assessments and patient surveillance at an early stage.

6.6. Summary

MLE showed effective results but SVM proved to have superior performance in every estimation task. Non-
parametric flexibility renders SVM the ideal choice for complex or nonlinear survival data and therefore it should
be the preferred method for future applications.

7. Conclusions

In this study applied the Maximum Likelihood Estimation (MLE) together with Support Vector Machine (SVM)
through Burr Type XII distribution for their comparative analysis. The established modeling system served
within survival analysis to assess remission duration and patient survival patterns among cancer patients. Modern
cancer prognosis improved through the integration of computational techniques with traditional statistical methods
throughout the last few decades. Support Vector Machines have emerged as strong nonlinear learning models to
achieve effective results in medical diagnostic tasks and prognostic forecasting and survival analysis applications.
Numerous essential results emerge from this analysis as described below:

• Survival-related characteristics obtained from the Burr Type XII distribution received more accurate
predictions through the SVM-based modeling process.

• During the time period MLE and SVM methods produced equivalent behavioral trends which validated their
shared trend recognition capabilities.

• An inverted bathtub shape formed by the estimated hazard function showed a time-dependent rising then
declining pattern which matches known failure and risk patterns studied in survival analysis. Studies on
breast and brain cancer patient cohorts demonstrated the same pattern that matches theoretical properties of
the Burr Type XII distribution.

• A monotonic decrease occurred in the survival function when the time variable t rose toward higher values
according to survival analysis theoretical expectations.

• The probability density function followed an escalating then declining pattern matching what survival
distributions typically display.

• Support Vector Machines (SVMs) proved to be a very successful method according to performance metrics
analysis for modeling the survival patterns of cancer patients.

• When survival time t extended throughout duration the survival function values diminished in accordance
with theoretical survival function behavior.

The research findings obtained from Support Vector Machine (SVM) modeling matched well with those
produced by Maximum Likelihood Estimation (MLE) in this investigation because of widespread agreement
across both methods. The experimental outcomes establish the solid structure of the proposed framework which
can function as foundation work for upcoming research. The importance of extending this research stems from
the opportunity to model lifetime distributions through Artificial Neural Network (ANN)-based approaches
under different conditions and scenario conditions which would contribute to survival analysis methodology
advancement.
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