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service rates that minimize costs.
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1. Introduction

Queueing systems with server vacation has been the subject of focused study because of the broad range of
applications they offer in computer, manufacturing, service, and communication networks as well as production
systems. Excellent surveys of the earlier vacation model works were provided in papers by [14, 16], and the book
by [39].

Altman and Yechiali [4] examined the M/M/1 queue with vacation periods and impatient customers, laying
foundational work in this area. Later, Adan et al. [1] studied synchronized reneging in queueing systems with
vacations. Five years later, Ibe and Isijola [18] analyzed a single-server system subject to multiple differentiated
vacations. Ammar [2] proposed a novel solution framework for the M/M/1 queue, incorporating vacations,
customer impatience, and a waiting server mechanism. The topic has continued to receive significant attention
in the queueing theory literature [3, 8, 10, 13, 22, 36], reflecting its relevance to real-world service systems.

In traditional queueing models with server vacations, it is often assumed that the server ceases all operations.
However, in many practical scenarios, a server may remain partially operational during these periods, serving
customers at a reduced rate. This concept, known as a working vacation, was pioneered by Servi and Finn [37] in
their foundational work.
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Building on this foundational concept, the research community quickly began to explore its variations and apply
it to more complex scenarios. Wu and Takagi [40] extended the model to an M/G/1 queue with multiple working
vacations, while Li and Tian [27] investigated an M/M/1 queue where vacations could be interrupted, adding a
new layer of realism.

The analytical tools used to study these systems also evolved. Li et al. [28] successfully applied the
supplementary variable method to analyze a GI/M/1 working vacation model. For more complex environments,
Jain and Upadhyaya [19] utilized the matrix-geometric method to examine an unreliable multi-server system with
synchronous working vacations. A crucial aspect was introduced by Yue et al. [42], who were among the first to
integrate customer impatience with the working vacation framework, a theme central to our work.

More recent advancements and comprehensive discussions on Markovian queueing systems with working
vacations can be found in the works of Selvaraju and Goswami [38] and Bouchentouf et al. [9], with further
relevant studies available in [6, 7, 11].

The characteristic of customer impatience is of significant importance in queueing theory [23, 24, 25]. This
behavior primarily manifests as balking (when customers refuse to join a queue) and reneging (when they leave
after joining), along with the related concept of customer retention, where the system persuades a reneging
customer to stay. It has been established that this research area is both intriguing and challenging, particularly
in contexts such as customer service operations for online retailers, critical patient handling in hospital emergency
rooms, as well as inventory systems, and various pertinent domains.

In the literature on queueing systems, significant attention has been devoted to models that incorporate both
working vacations and customer impatience. For example, Laxmi et al. [26] conducted a comprehensive analysis of
a finite-capacity Markovian queueing system incorporating customer impatience behaviors, balking, and reneging,
alongside a working vacation policy. Building on this, Majid and Manoharan [29] studied an M/M/c queueing
model incorporating customer impatience and synchronous working vacations, underlining the impact of collective
server unavailability and time-dependent reneging on the system’s stability and performance metrics. Subsequently,
Majid [30] further examined an M/M/1 queueing model that also integrated customer impatience and working
vacations, offering valuable insights into how reneging behavior and reduced service efficiency during vacation
periods influence overall system performance.

Research has also explored systems with added layers of operational complexity. For instance, Bouchentouf et al.
[12] studied a multi-station unreliable machine model incorporating working vacations, customer impatience, and
retention mechanisms, offering analytical and computational insights into system reliability and performance under
complex service dynamics. Similarly, Dehimi et al. [15] analyzed a multi-server queueing system with customer
impatience under differentiated working vacation policies, providing both analytical and computational insights.
More specialized contexts have also been addressed, such as the finite-capacity M/M/2 machine repair model
investigated by Kadi et al. [21], which featured a triadic service discipline and dual working vacation policies.

Addressing more dynamic customer behaviors, Narmadha and Rajendran [32] analyzed anM/M/1/K queueing
model incorporating encouraged arrivals, single working vacations, and customer impatience, demonstrating
how dynamic arrival patterns and reneging behavior influence system performance. Further extending the study
of complex interactions, the work of Kadi et al. [20] is of particular relevance as it incorporates feedback
mechanisms. They developed anM/M/1/K queueing model incorporating working vacations, customer feedback,
and impatience behavior under an N-policy, offering an integrated analytical and optimization framework for
managing finite-capacity service systems.

Various aspects of queueing systems have been explored in previous research, stating vacation policies analysis,
and impatience. Different vacation policies have been inspected for the system’s main performance determination,
and specifically the influence on customer waiting times. The goal of studying vacations is to collect insights about
their impact on service quality. Whereas the investigation of impatience in queueing systems serves the analysis of
how customer behavior abandonment implies on system’s design. Nonetheless, to our information scope, literature
on the holistic consideration of various features, such as vacation, working vacation, balking, reneging, retention,
and feedback, within the context of different vacation queueing models incorporating vacation policies remains
with gaps. Even in recent studies, the mentioned features lack collective exploration, therefore, the rationale for
this research is to treat this specific lack by inspecting a comprehensive system with a simultaneous combination of
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all the cited features. The study of this integrated system contributes to queueing theory improvement within this
context.

In addressing the complexities of queueing systems, artificial neural networks, particularly Multi-Layer
Perceptrons (MLPs), provide a robust approach for capturing nonlinear patterns. As a class of deep learning models,
MLPs consist of multiple interconnected layers that enable them to model complex relationships within data. By
leveraging hidden layers and non-linear activation functions, they excel in tasks such as classification, regression,
and pattern recognition. The evolution of neural networks began with Rosenblatt’s [34] perceptron model and was
significantly enhanced by Rumelhart et al. [35] through the development of the backpropagation algorithm, which
allowed for efficient training of MLPs. Given their adaptability and learning efficiency, MLPs have been widely
applied across various fields, including science, healthcare, finance, and engineering [5, 33, 41], where data-driven
decision-making is crucial.

Our modest contribution to this topic extends the model discussed in [17] by incorporating hybrid vacations.
In this approach, the server takes a working vacation upon emptying the queue and transitions to a vacation
period when returning from the working vacation to find an empty system. By employing recursive methods, we
calculate steady-state probabilities and derive various performance measures. Graphical representations illustrate
how system parameters impact performance metrics. Furthermore, MLP-based results are also obtained for
comparing the numerical results obtained with the analytical results. Recognizing the importance of optimization,
we develop a cost function and formulate an optimization problem to determine the optimal service rates. This is
achieved through the application of swarm intelligence, specifically the Grey Wolf Optimizer (GWO) algorithm.
The numerical results further enhance the expected cost function. To situate our contribution within the existing
literature, Table 1 provides a comparative overview of the characteristics of our proposed model against several
relevant recent works.

Table 1. Comparison of queueing models based on system characteristics

Models
System characteristics Bouchentouf et al. [9] Gupta [17] Keerthana et al. [22] Proposed model
Working vacation ✓ ✓ × ✓
Complete vacation × × ✓ ✓
Balking ✓ ✓ × ✓
Reneging ✓ ✓ × ✓
Retenetion × × × ✓
Feedback × ✓ × ✓
Optimization Quadratic fit search method × PSO GWO
AI method × × × MLP

This paper is structured as follows: Section 2 introduces the mathematical description of the suggested queueing
model. Section 3 presents the steady-state distribution of the system. In Section 4, key performance metrics are
explored alongside the Multilayer Perceptron (MLP) approach. Section 5 provides graphical illustrations to analyze
the impact of various system parameters on performance metrics and further discusses the MLP method. Section
6 presents the development of a cost optimization, where the Grey Wolf Optimizer (GWO) method is employed to
minimize the cost function. Finally, Section 7 offers concluding insights and discusses the implications for future
studies

2. Mathematical model

Consider a M/M/1/K queue with hybrid vacation, Bernoulli feedback, balking, reneging, and retention. This
queueing system is founded on the following basic assumptions:
The Arrival Pattern

▷ Customers arrive at the system according to a Poisson process at an average rate of λ.
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▷ The system’s assumed finite capacity is denoted as K.
▷ Upon a customer’s arrival, a decision is made based on the following probabilities: The customer either joins

the queue with probability βk or balks (refuses to join) with the complementary probability β
′

k = 1− βk.
The probabilities βk adhere to the conditions 0 ≤ βk+1 ≤ βk ≤ 1, 1 ≤ k ≤ K − 1. Specifically, β0 = 1 and
βK = 0.

The Service Pattern

▷ During the normal busy period, the service time follows an exponential distribution with rate µb. In the
working vacation period, the service time also follows an exponential distribution, but with a lower rate µw

(µw < µb).
▷ Customers are served respectively by the FCFS (First-Come-First-Served) principle.

The hybrid vacation mechanism

▷ A hybrid vacation combines both a working vacation (WV) and a complete vacation (CV). During the
vacation period, the server first enters a working vacation, where it continues to serve customers but at a
reduced service rate. The duration of the working vacation follows an exponential distribution with parameter
γ. When the working vacation ends, if no customers are waiting, the server takes a complete vacation, with its
duration following an exponential distribution with parameter η. If customers are present during the working
vacation, the server remains in the working vacation and continues serving them. Once the complete vacation
is over, the server resumes normal service for customers waiting in the queue.

Customer behavior and impatience

▷ Customers show impatience while waiting for service. Whether during a busy period, a working vacation, or a
complete vacation, each customer is associated with an internal patience timer (T0, T1, and T2), respectively,
which follows an exponential distribution. The impatience rates (ζ0, ζ1, and ζ2) depend on the server’s current
state. If a customer’s patience runs out, they may abandon the queue (renege). In such cases, the system gets
a final chance to convince the customer to stay: the customer leaves permanently with probability α, or may
be retained in the queue with probability α

′
= 1− α.

The Feedback Rule

▷ If a customer is dissatisfied with the service, they may choose to leave the system with probability θ, or return
with probability θ

′
= 1− θ. Customers who return are treated as new arrivals.

The variables introduced are mutually independent.

2.1. Practical example

This study delves into a M/M/1/K queueing system tailored for a call center environment, where the dynamics
of customer arrivals, service times, and operational states are meticulously examined. Incoming calls follow a
Poisson process, with service durations exponentially distributed; these times are shorter during normal operations
µb and longer during reduced-capacity periods (µw < µb ). The call center can manage up to K simultaneous
calls, with customers having the option to balk if all lines are occupied, governed by a probability βk. Operational
modes include hybrid vacations, alternating between working (at reduced capacity) and complete vacation (no
service) depending on queue congestion and staffing levels. Dissatisfied customers can either exit the queue θ
or return later θ

′
= 1− θ, treated as new arrivals upon re-engagement. Additionally, during various operational

phases, customers are subject to impatience timers (T0, T1, T2), abandoning the queue with probability α if service
does not commence before timer expiration (reneging), or remaining in the queue with probability α

′
= 1− α

(retention). This model offers insights into optimizing call center efficiency by balancing service capacity, customer
satisfaction, and operational flexibility under varying demand conditions.
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3. Steady-state Solution

We will now examine the bi-variate process {(L(t), S(t)), t ≥ 0}, where L(t) represents customers roster in
the system at time t, and S(t) is the server’s status at time t, which can take one of three values, such as
S(t) = 0 : when the servers are in normal busy period at time t, S(t) = 1 when the server is in a working
vacation period at time t, and S(t) = 2: when the server is on vacation at time t. The combined probability
Pk,j = lim

t→∞
P (L(t) = k, S(t) = j), denotes the steady-state probabilities of the system.

Where
(k, j) ∈ {{(k, 0) : k = 1, ...,K} ∪ {(k, 1) : k = 0, ...,K} ∪ {(k, 2) : k = 0, ...,K}}. Figure 1 illustrates the
transitions in the model represented by a diagram. Using the principle of balance equations

Figure 1. State transition diagram.

(λβ1 + µbθ + αζ0)P1,0 = (θµb + 2αζ0)P2,0 + ηP1,2 + γP1,1, k = 1, (1)

(λβk + θµb + kζ0)Pk,0 = λβk−1Pk−1,0 + (θµb + (k + 1)αζ0)Pk+1,0 + ηPk,2 + γPk,1,

2 ≤ k ≤ K − 1, (2)

(θµb +Kαζ0)PK,0 = λβk−1Pk−1,0 + ηPK,2 + γPK,1, k = K, (3)

(λ+ γ)P0,1 = (θµb + αζ)P1,1 + (θµb + αζ0)P1,0, k = 0, (4)

(λβ1 + γ + θµw + 2αζ1)P1,1 = λP0,1 + (θµw + 2αζ1)P2,1, k = 1, (5)

(λβk + γ + θµw + kαζ1)Pk,1 = λβk−1Pk−1,1 + (θµw + (n+ 1)αζ1)Pk+1,1,
2 ≤ k ≤ K − 1,

(6)

(γ + θµw +Kαζ1)PK,1 = λβK−1PK−1,1, k = K, (7)

λP0,2 = γP0,1 + αζ2P1,2, k = 0, (8)

(λβ1 + αζ2 + η)P1,2 = λP0,2 + 2αζ2P2,2, k = 1, (9)

(λβk + kαζ2 + η)Pk,2 = λβk−1Pk−1,2 + (k + 1)αζ2Pk+1,2,
2 ≤ k ≤ K − 1,

(10)

(η +Kαζ2)PK,2 = λβK−1PK−1,2, k = K. (11)
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The normalizing condition is
K∑

k=0

(Pk,0 + Pk,1 + Pk,2) = 1. (12)

Presented below is the theorem outlining the solution to the above equations.

Theorem 1. The steady-state probabilities representing the system size during various operational phases,
specifically the vacation period (P2,k), the working vacation period (P1,k), and the regular busy period (P0,k),
are given respectively and expressed as follows:

Pk,2 = ΓkPK,2,

= Γk

(
K∑

k=1

(ϱ2ψk − ϕk) +

K∑
k=0

(ϱ1δk + Γk)

)−1

.
(13)

Pk,1 = ϱ1δkPK,2. (14)

Pk,0 = (ϱ2ψk − ϕk)PK,2, (15)

where

Γk =



1, k = K,

Kαζ2+η
λβK−1

, k = K − 1,

λβk+1+(k+1)αζ2+η
λβk

Γk+1 − (k+2)αζ2
λβk

Γk+2, 0 ≤ k < K − 2,

(16)

δk =



1, k = K,

γ+θµw+Kαζ1
λβK−1

, k = K − 1,

λβk+1+γ+θµw+(k+1)αζ1
λβk

δk+1 − θµw+(k+2)αζ1
λβk

δk+2, 0 ≤ k < K − 2,

(17)

ϱ1 =
λΓ0 − αζ2Γ1

γδ0
. (18)

ψk =



1, k = K,

θµb+Kαζ0
λβK−1

, k = K − 1,

λβk+1+θµb+(k+1)αζ0
λβk

ψk+1 − θµb+(k+2)αζ0
λβk

ψk+2, 1 ≤ k < K − 2,

ϕk =


0, k = K,

η+γϱ1

λβK−1
, k = K − 1,

ηΓk+1+γϱ1δk+1

λβk
, 0 ≤ k < K − 2,

ϱ2 =
δ0ϱ1(λ+ γ)− δ1(θµw + αζ1)ϱ1 + ϕ1(θµb + αζ0)

ψ1(θµb + αζ0)
, (19)
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and

PK,2 =

(
K∑

k=1

(ϱ2ψk − ϕk) +

K∑
k=0

(ϱ1δk + Γk)

)−1

. (20)

Proof
by solving equations recursively (9)− (11), we find Pk,2 = ΓkPK,2, such that (16) represent Γk. By equations
(5)− (7), we get Pk,1 = δkPK,1, such that (17) represent δk. We use equation (8) and we obtain (14)− (18). Via
equations (2)− (3), we obtain Pk,0 in terms of PK,0 and PK,2. Using (4), we can obtain Pk,0 in terms of PK,2 that
is given by (15). Finally, by applying the normalization condition we derive equation (20).

4. Performance measures

▷ The probabilities representing the different server states–busy normal period, working vacation, and vacation–are
specified as follows:

Pb = PK,2

K∑
k=1

(ϱ2ψk − ϕk).

Pwv = ϱ1PK,2

K∑
k=0

δk.

Pv = PK,2

K∑
k=0

Γk.

▷ The formulas for the expected number of customers in the system (Ls) and in the queue (Lq) are defined as
follows:

Ls =

K∑
k=0

k(Pk,0 + Pk,1 + Pk,2)

= PK,2

[
K∑

k=1

(ϱ2kψk − kϕk + ϱ1kδk + kΓk)

]
.

(21)

Lq =

K∑
k=1

(k − 1)(Pk,0 + Pk,1) +

K∑
k=1

kPk,2

= PK,2

[
K∑

k=1

(ϱ2(k − 1)ψk − (k − 1)ϕk + ϱ1(k − 1)δk + kΓk)

]
.

(22)

▷ The expected balking rate:

Br = λ

K∑
k=1

(1− βk)(Pk,0 + Pk,1 + Pk,2)

= λPK,2

[
K∑

k=1

(ϱ2β
′

kψk − β
′

kϕk + ϱ1β
′

kδk + β
′

kΓk)

]
.

(23)

▷ The formulas for the expected waiting time of customers in the system (Ws) and in the queue (Wq) are given by:

Ws =
Ls

λ′ , where λ
′
= λ−Br, Wq =

Lq

λ′ . (24)
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▷ The expected reneging rate:

Rr = αζ0

K∑
k=1

kPk,0 + αζ1

K∑
k=1

kPk,1 + αζ2

K∑
k=1

kP2,k

= αPK,2

[
K∑

k=1

(ζ0ϱ2kψk − ζ0kϕk + ζ1Θ1kδk)

]

+αPK,2

[
ζ2

K∑
k=1

kΓk

]
.

(25)

▷ The expected retention rate:

Rt = α
′
ζ0

K∑
k=1

kPk,0 + αζ1

K∑
k=1

kPk,1 + αζ2

K∑
k=1

kP2,k

= α
′
PK,2

[
K∑

k=1

(ζ0ϱ2kψk − ζ0kϕk + ζ1Θ1kδk)

]

+α
′
PK,2

[
ζ2

K∑
k=1

kΓk

]
.

(26)

4.1. Multilayer Perceptrons (MLP)

Multilayer Perceptrons (MLP) are a class of artificial neural networks designed to model complex relationships in
data through multiple layers of interconnected neurons. Each neuron processes inputs using weighted connections
and activation functions, enabling nonlinear transformations. The foundation of MLPs traces back to Frank
Rosenblatt’s Perceptron [34], but their full potential was realized with the development of the backpropagation
algorithm by Rumelhart, Hinton, and Williams (1986) [35], which allowed efficient training of deep networks. As
a key component of soft computing, MLPs are widely applied in classification, regression, and pattern recognition,
playing a crucial role in fields such as finance, healthcare, and engineering. The MLP model was implemented with
three hidden layers, each containing 64 neurons, using the ReLU activation function. The output layer consists of
a single neuron with a linear activation function for regression. The model was trained for 420 epochs with a batch
size of 32, using the Adam optimizer with a learning rate of 0.001. The Mean Squared Error (MSE) was used as
the loss function. The dataset for training was generated from our analytical model by creating 4001 data points
based on combinations of the arrival rate (λ) and service rate (µb). These data points were divided into training
(80%) and validation (20%) sets to ensure robust model performance.

The following algorithm describes the training process of a Multilayer Perceptron (MLP):
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Algorithm 1 Multilayer Perceptron (MLP) Training Algorithm
Input: λ, µb

Output: Lq.
1 Step 1: Initialize MLP Model

- Define network architecture (input, hidden, and output layers).
- Initialize weights and biases randomly.

2 Step 2: Training Process
for t = 1 to MaxIter do

3 Forward Pass: Compute activations for each layer.

4 Compute Loss: Evaluate the difference between predictions and actual values.

5 Backward Pass: Compute gradients using backpropagation.
Update weights and biases using Adam optimizer.

6 Step 3: Output the Optimized MLP Model
Return Lq.

5. Performance and sensitivity analysis

5.1. Performance analysis

The objective of this subsection of the study is to empirically validate the analytical results presented earlier while
also demonstrating the effect of various parameters. A computational experiment was conducted on diversified
performance measures of interest governed by different scenarios, and to accomplish this, numerical results are
depicted through the graphs. The following cases are being considered to achieve this objective:

♦ λ = 0.01 : .01 : 5, µb = 2, µw = 1, γ = 1.5, α = 0.7, θ = 0.5, K = [5; 15; 25], η = 0.5, ζ0 = 1,
ζ1 = 1.5, ζ2 = 2, βk = 1− k/K.

♦ λ = 3.5, µb = 2, µw = 1, γ = 1.5, α = 0.7, θ = 0.5, K = 10, η = [0.01 : .01 : 2], ζ0 = 1, ζ1 = 1.5
, ζ2 = 2, βk = 1− k/K.

♦ λ = 3.5, µb = 2, µw = 1, γ = [0.01 : .01 : 3], α = 0.7, θ = 0.5, K = 10, η = 0.5, ζ0 = 1, ζ1 = 1.5,
ζ2 = 2, βk = 1− k/K.

♦ λ = 3.5, µb = [0.01 : .01 : 4], µw = 1, γ = 1.5, α = [0.1; 0.5; 0.9], θ = 0.5, K = 10, η = 0.5, ζ0 = 1,
ζ1 = 1.5, ζ2 = 2, βk = 1− k/K.

♦ λ = 3.5, µb = 2, µw = 1, γ = [0.01 : .01 : 3], α = 0.7, θ = 0.5, K = 10, η = 0.5, ζ0 = [1; 1.3; 1.5],
ζ1 = 1.8, ζ2 = 2, βk = 1− k/K.

♦ λ = 3.5, µb = 2, µw = 1, γ = [0.01 : .01 : 3], α = 0.7, θ = 0.5, K = 10, η = 0.5, ζ0 = 1,
ζ1 = [1.5; 1.8; 2.1], ζ2 = 2, βk = 1− k/K.

♦ λ = 3.5, µb = 2, µw = 1, γ = [0.01 : .01 : 3], α = 0.7, θ = 0.5, K = 10, η = 0.5, ζ0 = 1, ζ1 = 1.5,
ζ2 = [2; 2.3; 2.6], βk = 1− k/K.
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Figure 2. Effect of λ on Br and Rt for different values of K.
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Figure 3. The probabilities of system in different states according to η and γ.
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Figure 6. Effect of γ on Rt for different ζ2 values.

▷ Arrival rate and system capacity impact: The system size shows a state of increase when λ is large to a certain
degree. This leads to a high probability of normal busy period Pb. Additionally, the average balking and
average retention rates are seen to increase (see Figures 2a and 2b). As K escalates, more customers
are incentivized to merge into the queue, leading to a fall in the average balking rate (see Figure 2a ).
However, this scenario also results in a higher average rate of customers abandoning the queue prematurely,
Consequently, the system adopts a specific strategy to retain these customers, thereby increasing the average
retention rate (see Figure 2b).

▷ The effect of working vacation rate(γ): As the working vacation rate γ increases, the system transitions more
rapidly between periods of normal business and vacation. This results in a growth in the probabilities of
the normal busy period Pb and vacation period Pv, while the probability of the working vacation period
Pwv drops (see Figures 3b and 5a). Furthermore, an increase in the working vacation rate leads to a shorter
average waiting time for customers. Consequently, this reduction in waiting time results in a decrease in both
the average reneging rate and the average retention rate (see Figures 5b and 6 ).
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▷ The effect of vacation rate (η): As the vacation rate rises higher, the probability of vacation tends to drop, and the
probability of the normal busy period is in a growth state. Additionally, the probability of a working vacation
also increases, albeit at a slower rate.

▷ The effect of service rate and (µb) and non-retention (α): As the service rate (µb) increases to a certain
extent, both the mean number of customers and the average reneging tend to decrease (see Figures 4a and
4b). Furthermore, a higher probability of non-retention results in a decrease in Ls (see Figure 4a) while
simultaneously high the average reneging (see Figure 4b).

▷ The effect of impatience rates ζi: As the impatience rates ζi (i = 0, 1, 2) increase, whether during the normal
busy period, working vacation, or complete vacation, they become crucial factors that directly influence key
system outcomes. These include increasing the average rates of reneging and retention and affecting the
probability of the server being in a working vacation state (see Figures 5a, 5b, and 6).

5.2. Results MLP

This part presents the results obtained from both the Multilayer Perceptrons (MLP) model and the analytical
queueing approach. The MLP was trained using system parameters such as arrival rate and service time to estimate
queue length. After the training phase, the model’s predictions were evaluated and compared to the analytical
results derived from classical queuing theory formulas. The comparison reveals the degree of accuracy in MLP
predictions and highlights any deviations from the theoretical values.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
λ

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Lq

μb=2
μb=2 (MLP)
μb=3
μb=3 (MLP)
μb=4
μb=4 (MLP)

Figure 7. Effect on Lq of λ by varying µb

− From Figures 7-8, it can be observed that as the arrival rate increases, the average number of customers in
the queue also rises, aligning with real-world scenarios. Additionally, Figure 7 illustrates that an increase in
the service rate µb leads to a decrease in Lq. Furthermore, Figure 8 demonstrates that the average number
of customers in the queue decreases as the probability of non-feedback (θ) increases. Figure 9 indicates
that an increase in the service rate during busy periods leads to a reduction in Lq, whereas a rise in arrival
rate corresponds to an increase in Lq. Table 2 summarizes the performance of the Multilayer Perceptron
(MLP) model for key hyperparameters (θ, λ, and µb). The results demonstrate that the model achieves high
accuracy, as indicated by the low Root Mean Square Error (RMSE) values and R2 coefficients consistently
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Figure 9. Effect on Lq of µb by varying λ

close to unity across the training, validation, and full datasets. These findings are consistent with the graphical
results in Figures 7, 8, and 9, where MLP predictions closely match the analytical solutions across various
parameter settings. The minimal discrepancies between predicted and theoretical values confirm the MLP
model’s robustness in capturing the nonlinear dynamics of the system and providing accurate queue length
estimations, underscoring its value as a reliable alternative to traditional analytical methods for complex
queueing dynamics.
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Table 2. Performance Metrics for MLP Regression Under Different Hyperparameters

Hyperparameter Value Train RMSE Train R² Val RMSE Val R² Full RMSE Full R²
2 0.0030493 0.999855 0.0022239 0.999904 0.0029017 0.999864

µb 3 0.0031152 0.999683 0.0033828 0.999537 0.0031710 0.999659
4 0.0013290 0.999852 0.0013043 0.999821 0.0013240 0.999847

0.1 0.0026849 0.999815 0.0027139 0.999725 0.0026908 0.999802
θ 0.5 0.0044138 0.999697 0.0040089 0.999696 0.0043350 0.999697

0.9 0.0012186 0.999936 0.0012772 0.999921 0.0012307 0.999934
6 0.0056883 0.999680 0.0058633 0.999570 0.0057241 0.999662

λ 7 0.0038856 0.999840 0.0038714 0.999802 0.0038828 0.999834
8 0.0035342 0.999855 0.0034197 0.999831 0.0035114 0.999851

6. Cost optimization

We present a model to quantify the costs incurred in our model. In this context, the first step is to define the total
pricing that the system costs per unit of time:

Λ(µb, µw) = CbPb + CvPv + CwvPwv + CqLq + Cr(Rr +Br)

+ CtRt + µbCµb
+ µwCµw

+ θ
′
(µb + µw)Cf + Ca.

• Cb (resp. Cv): Denotes the cost per time unit when the server is in work state (resp. vacation) during normal
busy periods.

• Cwv (resp.Cq): Presents the cost per time unit when the server is in the work state during the working vacation
period (resp. in case of customer waiting in the queue).

• Cr (resp. Ct): Denotes the cost per time unit during the loss of the customer (resp. retains),
• Cµb

(resp. Cµw
): Determines the servicing cost per time unit in a normal busy period (resp. during the

working vacation period).
• Cf : The servicing cost per time unit for a feedback customer.
• Ca The purchase cost of the server is fixed per unit.

6.1. Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) algorithm was first introduced by [31], inspired by the social hierarchy and
hunting behavior of grey wolves in nature. Its simplicity, adaptability, and proven effectiveness make it a valuable
tool for researchers across various disciplines. The GWO algorithm demonstrates strong potential in solving
complex optimization problems by efficiently exploring the search space while ensuring rapid convergence. This
novel technique was employed to explore (µb, µw) in the purpose of searching the global minimum of Λ(µb, µw).

6.2. Numerical cost optimum

This subsection seeks the minimization of the total cost expected to be incurred by the system. To solve the
optimization problem, the Grey Wolf Optimizer (GWO) was employed. The GWO algorithm was configured with
a population size of 30 wolves and run for a maximum of 100 iterations. The convergence criterion was set to
a stagnation of the best solution for 30 consecutive iterations. Concretely, we perform an evaluation of the cost
function Λ based on the parameters µb and µw.

Due to the complexity and significant non-linearity of optimization problems, analytical solutions are often
challenging to obtain. However, by utilizing suitable nonlinear optimization techniques, we can derive optimal
solutions in the cost model. In this instance, we define the parameters and apply the grey wolf optimizer algorithm
to obtain the optimal values (u∗b , u

∗
w) for the service rates. We write the problem designed to optimize:
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min
µb,µw

Λ(µb, µw)

s.t


µb − µw > 0,

µw > 0,

(µb, µw) ∈ R2
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0

5

10

15

0

5

10

15

250

300

350

400

450

500

550

µw
µb

Λ
(µ

b
,
µ
w
)

Figure 10. Λ(µb, µw) vs. µb and µw

Figure 10 clearly illustrates the convex nature of the objective function Λ according the service rates µb and µw.
To proceed with analyzing the cost optimization of the queueing model, we firstly set the parameters regulating

the cost: Cb = 80 USD/hour, Cv = 60 USD/hour, Cwv = 70 USD/hour, Cq = 55 USD/hour, Cr = 30 USD/hour,
Ct = 15 USD/hour, Cµb

= 3 USD/customer, Cµw = 2 USD/customer, Cf = 7 USD/customer, Ca = 3 USD/hour.

Table 3. Optimal values of (µ∗
b , µ

∗
w) and Λ∗(µ∗

b , µ
∗
w) for various values of arrival rate (λ) and vacation rate (η), when

λ = 6 : 1 : 8, K = 12, α = 0.7, θ = 0.6, γ = 2, η = [2; 2.5; 3], ξ0 = 0.9, ξ1 = 1.6, ξ2 = 1.9.

η λ µ∗
b (cust/hr) µ∗

w (cust/hr) Λ∗ (USD/hr)
6 10.5074 2.1155 274.9516

2 7 11.8579 3.5971 304.1049
8 13.1917 5.1614 332.3367
6 10.7098 2.5624 273.0545

2.5 7 12.0748 4.1477 302.0183
8 13.4340 5.7542 330.1020
6 10.8870 2.9701 271.6902

3 7 12.2621 4.6054 300.4876
8 13.6206 6.1863 328.4362

− From Table 3, the minimum expected cost is seen to increase when λ increases. Nevertheless, when the vacation
rate is on the rise the minimum expected cost is dropping. This confirms that reducing the vacation rate is a
costly endeavor.
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Table 4. Optimal values of (µ∗
b , µ

∗
w) and Λ∗(µ∗

b , µ
∗
w) for various value of non-feedback probability (θ), when λ = 6.5,

K = 12, α = 0.7, θ = [0.4; 0.6; 0.8], γ = 2, η = 3, ξ0 = 0.9, ξ1 = 1.6, ξ2 = 1.9.

θ µ∗
b (cust/hr) µ∗

w (cust/hr) Λ∗ (USD/hr)
0.4 13.7709 2.1155 344.1649
0.6 11.5769 3.7784 286.2084
0.8 10.7260 7.7133 238.7107

Table 5. Optimal values of (µ∗
b , µ

∗
w) and Λ∗(µ∗

b , µ
∗
w) for various value of working vacation rate (γ), when λ = 6.5, K = 12,

α = 0.7, θ = 0.6, γ = [1.5; 2; 2.5], η = 3, ξ0 = 0.9, ξ1 = 1.6, ξ2 = 1.9.

γ µ∗
b (cust/hr) µ∗

w (cust/hr) Λ∗ (USD/hr)
1.5 11.3372 7.0923 292.0922
2 11.5757 3.7884 286.2084
2.5 11.8271 2.1155 278.8619

Table 6. Optimal values of (µ∗
b , µ

∗
w) and Λ∗(µ∗

b , µ
∗
w) for various value of non-retention probability (α), when λ = 6.5,

K = 12, α = [0.3; 0.5; 0.7], θ = 0.6, γ = 2, η = 3, ξ0 = 0.9, ξ1 = 1.6, ξ2 = 1.9.

α µ∗
b (cust/hr) µ∗

w (cust/hr) Λ∗ (USD/hr)
0.3 13.1045 5.5258 297.005
0.5 12.3133 4.6534 291.4246
0.7 11.5754 3.7850 286.2048

− From Tables 4-6, we observe that with the leap of θ, there is a diminution in the minimum expected cost, and it
can also be seen that a drop of the optimal anticipated cost with the hike of γ and α. This means that reducing
the working vacation time, feedback probability, and retention probability results in additional cost savings.

7. Conclusion

Our modest paper examines a queue of M/M/1/K model including Bernoulli feedback under a hybrid vacation
policy scenario with impatient customers. Employing a recursive method, steady-state probabilities were derived,
and metrics were formulated to assess the system’s performance. Additionally, the results obtained from Multilayer
Perceptrons (MLP) are compared with the numerical results. Furthermore, numerical solutions were achieved
through the implementation of the Grey Wolf Optimizer to ensure optimizing the rates of the services and
minimizing the function that expresses the expected cost. Finally, experimental computation results were used
to emphasize the effects of several parameters on (µ∗

b , µ
∗
w) and Λ(µ∗

b , µ
∗
w).

This research can be extended in various directions by incorporating concepts such as retrial queues, priority
mechanisms, catastrophic events, and heterogeneous customer types into the queuing model in future studies.
Furthermore, a limitation of the current model is the assumption of linear balking and constant reneging
probabilities. In reality, customer impatience is often nonlinear and time-dependent. A significant direction for
future research would be to incorporate more dynamic customer behavior models, such as using exponential growth
functions for balking or for reneging rates that increase with waiting time. This would enhance the model’s realism
and predictive power, though it would likely necessitate a simulation-based approach rather than an analytical one.

It is also important to acknowledge the assumptions underlying our model, such as the Poisson arrival process
and exponentially distributed service and vacation times. While these Markovian assumptions are necessary for
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analytical tractability, they may not perfectly capture the dynamics of all real-world systems. Future research could
extend this work by considering more general distributions (e.g., phase-type distributions) or by using simulation to
analyze non-Markovian models, thereby broadening its applicability. Finally, a crucial next step for future research
will be to validate the entire framework using diverse, real-world datasets. Applying these methods to empirical
data from different industries would be essential to confirm the model’s generalizability and practical utility.
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41. E. Yüksel, D. Soydaner, and H. Bahtiyar, Nuclear binding energy predictions using neural networks: Application of the multilayer

perceptron, International Journal of Modern Physics E, vol. 30, no. 03, article 2150017, 2021.
42. D. Yue, W. Yue, and G. Xu, Analysis of customers impatience in an M/M/1 queue with working vacations, Journal of Industrial

and Management Optimization, vol. 8, no. 4, pp. 895–908, 2012.

Stat., Optim. Inf. Comput. Vol. x, Month 202x


	1 Introduction
	2 Mathematical model
	2.1 Practical example

	3 Steady-state Solution
	4 Performance measures
	4.1 Multilayer Perceptrons (MLP)

	5 Performance and sensitivity analysis
	5.1 Performance analysis
	5.2 Results MLP

	6 Cost optimization
	6.1 Grey Wolf Optimizer
	6.2 Numerical cost optimum

	7 Conclusion

