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Abstract In this study, a hybrid numerical method is presented, combining Fuzzy Transform (FT) and PCHIP (Piecewise
Cubic Hermite Interpolating Polynomial) interpolation techniques in developing the accuracy and flexibility of function
approximation and solutions to differential equations. The method operates in two stages: first, a low-dimensional fuzzy
approximation is constructed using basis functions on a coarse grid, capturing global trends efficiently. Second, residuals
between the fuzzy approximation and the true solution (or observed data) are interpolated using PCHIP, which preserves
monotonicity and local shape characteristics while avoiding spurious oscillations. Numerical validation demonstrates a
reduction of over 98% in mean square error compared to the standalone fuzzy transform, confirming the enhanced accuracy
of the improved method across the tested cases. Theoretical error bounds are derived via the superposition principle,
demonstrating that the total error is governed by the sum of FT approximation and PCHIP interpolation errors. Using
this method, discrete measurements or sample observations can be mathematically modeled, and the method creates an
interpolant in continuous space for any empirical data by using PCHIP, which makes it possible for any real-world data
sets to be treated analytically (e.g., differentiated or integrated) over the observed values. So, this spoken itself satisfies the
gap between measurements taken as discrete observations and using continuous representations in modeling. This would
be highly useful for experimental science and engineering applications, such as when retrieving sensor data or performing
irregularly sampled measurements that need intensive numerical treatment.
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1. Introduction

The FT, a method developed by Perfilieva [9, 10], is an attempt to merge Zadeh’s theoretical framework of fuzzy
set theory [21] with functional analysis for function approximation and efficient data processing. The methods
based on classical orthogonal basis, such as Fourier or Wavelet Transforms, independently work at capturing
local data variations using fuzzy partitions and balance them with the whole data sample [1, 9, 13]. Because
of such an ability, the FT has gained tremendous importance in handling uncertainty for many applications
like signal/image processing [3, 4, 5, 11], data analysis [2, 15, 16], and noise reduction. But then, some of the
classical FT methods suffer from limitations: (i) Sensitivity against partition design; improper node placement
or too little overlap would compromise stability of approximation [1, 10]; (ii) difficulties at the edges produce
boundary discontinuities—this occurs if one does not handle edge regions properly with special techniques like
reflection or extended partitions [10, 12]; (iii) ever-decreasing efficiency under nonlinear or high-dimensional
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setups with increasing computational complexity—such that approximation would give in for lack of support from
hybrid frameworks or higher degree extensions [8, 14, 20]. The presented work develops a promising two-phase
hybrid technique, linking FT with the PCHIP to overcome the mentioned disadvantages. In its first phase, a low-
order FT approximation is created over a coarse grid due to its efficiency in capturing global trends [9, 14]. The
residuals between the FT approximation and the real solution are then interpolated through PCHIP [6, 7]; thereby,
monotonicity and characteristics of local shape are preserved, while spurious oscillations that often plague classical
interpolation methods are evaded [18]. Key insights include the exclusion of fuzzy nodes in residual interpolation to
prevent overfitting in accordance with residual-driven adaptation in FT [17], and to exert initial/boundary conditions
explicitly to ensure physics consistency [8]. Numerical validation shows that compared to independent FT, the
current method yields a 98% mean square error reduction while outperforming the existing hybrid approaches
[8, 19, 20]. This progress also connects theoretical fuzzy methodologies [21, 22] with computability; thus, this
presents a powerful framework to tackle complex data-driven problems. The organization of this paper proceeds as
follows: Section 2 examines the theoretical and mathematical groundwork underpinning the proposed framework,
establishing essential definitions and principles necessary for deriving the contributions outlined in later sections.
Section 3 introduces a novel approach to enhancing the FT methodology through PCHIP-driven residual correction.
This technique is systematically derived, with its algorithmic workflow and theoretical basis rigorously formalized.
Section 4 evaluates the proposed methodology via comprehensive numerical simulations, benchmark validations,
and comparative analyses to verify its computational efficacy and adaptability across diverse scenarios. Section
5 synthesizes the core findings, discusses their significance for practical applications, and identifies prospective
avenues for advancing research in this domain.

2. Basic concepts

Before setting into all the technical minutiae of the enhancements proposed, it is important to review the basic
principles of FT. This section offers the required mathematics background and sets the notation that will be
used throughout the paper. Interested readers are redirected with the rest of the information given through
[10, 12, 21, 22].

2.1. Fuzzy sets and membership functions

A fuzzy set A is defined through its membership function with the following properties: µA : X → [0, 1] represents
the degree of membership of an element x in A. Different types of membership functions—used by fuzzy logic
applications—include triangular, trapezoidal, Gaussian, and bell-shape forms. The triangular membership function
is expressed as follows:

µA(x) =


0, x < a1
x−a1

a2−a1
, a1 ≤ x ≤ a2

a3−x
a3−a2

, a2 ≤ x ≤ a3

0, x > a3

the parameters a1, a2 , and a3 set the shape of the function.

2.2. Fuzzy partitions

On a closed real interval [a, b], consider the fixed nodes x1, x2, . . . , xn, such that x1 = a, xn = b, and n ≥ 2. The
fuzzy sets A1, A2, . . . , Ak, identified with µA1

(x), µA2
(x), . . . , µAn

(x) on [a, b], construct a fuzzy partition in [a, b]
if, for every k = 1, 2, . . . , n, the following holds:

1. µAk
(x) : [a, b] → [0, 1] is continuous and µAk

(xk) = 1.
2. µAk

(x) = 0 if x /∈ (xk−1, xk+1) where xk−1 = a, xk+1 = b.
3. In [xk−1, xk], the function µAk

(x) monotonically increases, while in [xk, xk+1], it monotonically decreases.
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2 ENHANCING FUZZY TRANSFORM USING PCHIP INTERPOLATION

4.
n∑

k=1

µAk
(x) = 1 for all x ∈ [a, b].

Membership functions µA1
(x), µA2

(x), . . . , µAn
(x) referred to as basic functions. A fuzzified partition is defined

as uniform when its nodes x1, x2, . . . , xn exhibit equidistant spacing. Mathematically, the position of the k-th node
is expressed as

xk = a+ h(k − 1),

where h denotes the fixed distance between adjacent nodes, computed as

h =
b− a

n− 1
.

This framework holds for integers n ≥ 2 and indices k = 1, 2, . . . , n. For the partition to qualify as uniform, two
essential properties must also be satisfied:

5. Symmetry: The membership function µAk
(x) is symmetric about its respective node xk, satisfying the

condition
µAk

(xk − x) = µAk
(xk + x) for all x.

This applies to nodes xk, k = 2, . . . , n− 1 when n > 2.
6. Shift Invariance: The membership function of the subsequent node µAk+1

(x) corresponds to a shifted
version of µAk

(x) by the distance h, such that

µAk+1
(x) = µAk

(x− h).

This property holds for all x and indices k = 2, . . . , n− 2 when n > 2.

Figure 1 visually demonstrates the configuration of uniform fuzzy partitions generated using triangular and
sinusoidal membership functions.

Figure 1. Uniform fuzzy partitions. (a): triangular membership function. (b): sinusoidal membership function.

These properties ensure that fuzzy partitions can adequately represent continuous domains while maintaining
flexibility for accommodating local variation modeling.

2.3. Fuzzy transform (FT)

Given a function f(x) and a set of membership functions µA1(x), µA2(x), . . . , µAn(x) defined over the interval
[a, b]. The FT of f with respect to these membership functions is defined as the ordered set [F1, F2, . . . , Fn], where
each component Fk is computed as:

Fk =

∫ b

a
f(x)µAk

(x) dx∫ b

a
µAk

(x) dx
, k = 1, 2, . . . , n.

Here, the numerator represents the weighted integral of f(x) over the interval [a, b], scaled by the membership
function µAk

(x), while the denominator normalizes this value by the integral of µAk
(x) itself. The elements

F1, F2, . . . , Fn are termed the FT components of f . When the function f(x) is discretely defined at a finite set
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of sampling points p1, p2, . . . , pm ∈ [a, b], its FT is calculated using the discrete formulation:

Fk =

∑m
i=1 f(pi)µAk

(pi)∑m
i=1 µAk

(pi)
, k = 1, 2, . . . , n.

In both continuous and discrete formulations, the FT components represent weighted averages of the function’s
values, with weighting factors derived from the associated basis functions. Let [F1, F2, . . . , Fn] be the FT of f with
respect to µA1

(x), µA2
(x), . . . , µAn

(x). The function

ffuzzy(x) ≈
n∑

k=1

Fk µAk
(x),

on [a, b] is called the inverse FT of f . This reconstruction optimizes the mean squared error between the original
function and its approximation. In other words, it achieves the best trade-off between simplicity and fidelity.

2.4. Piecewise Cubic Hermite Interpolation Polynomial (PCHIP)

PCHIP is a piecewise interpolation method that uses cubic polynomials to ensure smoothness and monotonicity. It
is particularly effective for interpolating data with varying slopes [? ]. For intervals [xi, xi+1], the interpolant Pi(x)
is a cubic polynomial expressed using Hermite basis functions Hi,j(x):

Pi(x) = Hi,0(x) · fi +Hi,1(x) · fi+1 +Hi,2(x) · f ′
i +Hi,3(x) · f ′

i+1

PCHIP provides a balance between smoothness and shape preservation, making it ideal for applications where
maintaining data trends is critical.

3. Proposed method: Enhanced FT with PCHIP residual correction

This section presents a novel methodology that combines the classical FT with residual correction via the PCHIP.
This combination improves both functional approximation accuracy and computationally efficient numerical
solutions to initial value problems (IVPs). The proposed method establishes an optimal trade-off between
accuracy and economy by synergizing global approximation capability of FT with localized PCHIP residual
error refinements. The smoothness of PCHIP and interpretability of FT thus enable faithful reconstruction of
functions and highly accurate numerical solutions for IVPs. The subsequent subsections explain the methodological
architecture in detail, with focus on its theoretical foundation and algorithm development.

3.1. Function approximation framework

Given a target function f(x) defined on x ∈ [a, b], the goal is to approximate f(x) through a two-step process:

1. Coarse approximation via classical FT.
2. Refinement using PCHIP-based residual correction.

Algorithmic Steps

1. Domain Discretization

• Uniformly partition [a, b] into n nodes with spacing h:

xk = a+ (k − 1) · h, h =
b− a

n− 1
, k = 1, 2, . . . , n.

• Define a grid resolution N (number of sample points) to evaluate f(x) over [a, b].

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 ENHANCING FUZZY TRANSFORM USING PCHIP INTERPOLATION

2. Fuzzy Basis Construction
Define triangular basis functions µAk

(x) centered at xk:

µAk
(x) = max

(
1− |x− xk|

h
, 0

)
.

3. FT Coefficient Computation
Calculate coefficients Fk via discrete weighted averaging:

Fk =

∑N
i=1 f(xi)µAk

(xi)∑N
i=1 µAk

(xi)
, k = 1, 2, . . . , n.

4. FT Reconstruction
Reconstruct the approximation:

ffuzzy(x) ≈
n∑

k=1

FkµAk
(x).

5. Residual Error Calculation
Compute residuals between f(x) and ffuzzy(x):

r(x) = f(x)− ffuzzy(x).

6. Validation Points Selection
Select mval validation points xval ⊂ [a, b], excluding initial nodes xk.

7. PCHIP Residual Interpolation
Interpolate r(x) at xval using PCHIP:

rpchip(x) = PCHIP(xval, r(xval), x).

8. Final Enhanced Approximation
Combine FT and residual correction:

ffinal(x) = ffuzzy(x) + rpchip(x).

3.2. Application to Initial Value Problems (IVPs)

Consider a second-order IVP:

y′′(x) = αy′(x) + βy(x) + g(x), x ∈ [a, b],

with initial conditions y(a) = c and y′(a) = d.
Methodology

1. Taylor Series Discretization
Discretize [a, b] into N points with step size t = b−a

N−1 .
Initialize vectors y = [y1, y2, . . . , yN ] and y′ = [y′1, y

′
2, . . . , y

′
N ], where y1 = c and y′1 = d.

For i = 1, 2, . . . , N − 1 compute:

y′′i = αy′i + βyi + g(xi),

y′′′i = (α2 + β)y′i + αβyi + αg(xi) + g′(xi).

Update y(i+ 1) and y(i+ 1)′:

yi+1 = yi + t · y′i +
t2

2
· y′′i +

t3

6
· y′′′i ,

y′i+1 = y′i + t · y′′i +
t2

2
· y′′′i .
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2. FT Projection

• Project the Taylor solution y onto n fuzzy nodes xk.
• Compute fuzzy coefficients Fk:

Fk =

∑N
i=1 yi · µAk

(xi)∑N
i=1 µAk

(xi)
, k = 1, 2, . . . , n.

• Reconstruct the approximation:

yfuzzy(x) ≈
n∑

k=1

Fk · µAk
(x).

3. Residual Correction

• Compute residuals:
errorval = yTaylor(xval)− yfuzzy(xval).

• Interpolate residuals via PCHIP:

errorpchip(x) = PCHIP(xval, errorval, x).

• Correct the approximation:
yfinal(x) = yfuzzy(x) + errorpchip(x).

4. Results and numerical implementation

This section includes several examples, exemplifying and testing the correctness as well as performance of
the suggested method in deriving various numerical results for a wide variety of instances and contrasting the
outcomes with the examples’ analytical solutions. We had both symbolic and numerical calculations performed
with MATLAB software.
Example 1

f(x) = e−x sin(5x), x ∈ [0, 2π]

Example 2

f(x) = 1 + sin

(
1

0.1 + x2

)
, x ∈ [0, 1]

Before assessing the relative performance of the enhanced Fuzzy Transform (EFT) versus the conventional Fuzzy
Transform (FT) technique, we will quantify the approximation accuracy of FT. In this work, we compute the
mean squared errors (MSE) corresponding to the functions defined in Examples 1 and 2. The MSE values for
various node numbers are presented in Table 1. It illustrates that node density influences the FT approximation
error. Figures 2 and 3 show the approximations of the functions in Examples 1 and 2 obtained with the FT and its
enhanced version with n = 5 nodes (fuzzy sets). Table 2 presents the mean square error (MSE), which underpins
the accuracy of the proposed method.

The method of EFT can enhance approximation accuracy by using data in minimal amounts. EFT achieves the
MSE of 2.663× 10−11 from only 5 nodes (1%) of the available 500-point dataset. The FT method for the same
5 nodes produces an MSE of 0.029881, which is roughly 133 million times larger than that of EFT. In addition,
FT needs at least 475 nodes (95% of the data) to achieve an MSE of around 2.663× 10−11, which is the level
of accuracy achieved by EFT. This indicates the 95% reduction in node requirement by EFT. As shown in the
comparison in Table 3, FT and EFT differ in their computational efficiencies due to node reduction. In fact, as
much as 95% in node reduction (5 versus 475) effectively minimizes matrix dimensionalities and operations of
EFT. Though both exhibit linear complexities O(n ·N) with respect to input size N (of which n is number of
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6 ENHANCING FUZZY TRANSFORM USING PCHIP INTERPOLATION

Table 1. Mean squared errors for FT approximation in examples 1 and 2 using varying numbers of nodes.

Number of Nodes MSE (Example 1) MSE (Example 2)
40 6.9257× 10−4 2.4240× 10−4

100 3.846× 10−5 6.046× 10−6

140 1.3288× 10−5 1.598× 10−6

200 3.9791× 10−6 3.9037× 10−7

260 1.3251× 10−6 2.2197× 10−7

300 1.1858× 10−6 3.668× 10−7

340 6.0806× 10−7 6.2869× 10−8

400 5.8634× 10−7 3.3632× 10−7

420 4.9245× 10−7 4.6029× 10−7

475 1.3938× 10−7 1.6169× 10−7

Table 2. Mean square errors for the approximations in examples 1 and 2 (n = 5).

Method MSE
Example 1 Example 2

FT 2.988× 10−2 0.23162
EFT 2.663× 10−11 4.5918× 10−9

0 1 2 3 4 5 6 7
-0.4

-0.2

0

0.2

0.4

0.6

0.8

Original

FT Approx.

EFT

Figure 2. Approximation by FT and EFT with n = 5 the example 1.

Table 3. Computational efficiency of FT vs. EFT methods

Method Node Count Matrix Size Operations Time (s)
FT 475 475× 500 O(n ·N) = 237,500 1.89

EFT 5 5× 500 O(n ·N) = 2,500 0.02

nodes), EFT maligns absolute operations by two orders of magnitude. Thus, it follows up to 94.5× improvement in
CPU times, as expected theoretically. Efficiency in the EFT arises from the decoupling of computational load from
the full node set; thus, EFT still shares the same asymptotic complexity of O(N) with the FT while minimizing
the constant factor of n, making it advantageous with respect to memory usage and runtime. For data of fixed scale
(N = 500), EFT decreases the transformation matrix size from 475500 (237.5k elements) down to 5500 (2.5k
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Figure 3. Approximation by FT and EFT with n = 5 the example 2.

elements) and thus reduced memory consumption by 99%. The empirical speedup of 94.5× confirms that there
is a near-linear scaling between the reduction of nodes and the performance gain. This principle would extend to
high-dimensional problems in which the reduction of parameters retains accuracy while enhancing efficiency.

Error correction within EFT helps to review the overfitting situation by excluding node points during evaluation.
PCHIP correction refines the initial FT approximation, allowing EFT to realize near-machine precision with a
minimum number of nodes. This remains robust, even when raw data are relatively sparse, and establishes EFT as
a scalable computational framework for data-efficient function approximation. The performance of five methods
of approximation-EFT, Wavelet (db4), Neural Network (NN), Cubic splines, and PCHIP-was judged against the
reconstruction of the function f(x) = e−x · sin(5x) (Example 1) using just 4 nodes over the interval [0, 2π]. The
reconstruction accuracy was evaluated by means of MSE, whereas execution time was taken into consideration for
efficiency (Table 4).

Table 4. Performance comparison of approximation methods

Method MSE Time (s)

EFT 3.256× 10−11 0.0214
Wavelet (db4) 1.245× 10−2 1.873
Neural Network 4.514× 10−4 7.952
Cubic Spline 4.382× 10−2 0.131
PCHIP 4.218× 10−2 0.0123

EFT reached extraordinary accuracy (MSE = 3.256× 10−11), 4–10 orders of magnitude more accurate than
the other methods. The reason for this behavior is its dual-step approach: triangular basis functions capture the
global trend at the coarse nodes followed by error correction using PCHIP to mitigate the local residuals. Second
to EFT was the Neural Network (MSE = 4.514× 10−4), but it was greatly hampered because of its shallow
architecture (4 neurons) and limited training epochs. Wavelet decomposition (MSE = 1.245× 10−2) also suffered
due to retaining only 4 coefficients, which could not resolve high-frequency components. Likewise, both the Cubic
Spline (MSE = 4.382× 10−2) and the PCHIP (MSE = 4.218× 10−2) suffered from large errors because of the
inability of piecewise polynomials to model sin(5x) at such a fast oscillation rate over just 4 nodes.
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8 ENHANCING FUZZY TRANSFORM USING PCHIP INTERPOLATION

PCHIP proved to be the fastest method (0.0123 s), making it 74% faster than EFT and 99.8% faster than Neural
Networks; this can be attributed to localized basis functions. While EFT demands reasonable time and accuracy
(0.0214 s), error correction warrants such an overhead. The greatest cost incurred was on the Neural Network (7.952
s) because of repeated training, while Wavelet processing (1.873 s) was inefficient for having worse accuracy. Best
suited in terms of fidelity for various applications (like scientific computing), EFT is most effective for oscillating
values which decay exponentially. The accuracy of any neural network is an increasing function of the number of
neurons and epochs used, yet incurs a nonlinear cost in computations which makes implementation unfeasible in
practice. Along with poor performance with sparse nodes, Cubic Spline is not as reliable as PCHIP for fairly steep
gradients. More definitely, the wavelets include more coefficients than required for oscillatory signals-bound by
only 4 dropped extremely high-frequency information.

EFT, with a minimum number of nodes, reconstructs e−x · sin(5x) with near-machine-precision accuracy at a
moderate computational cost. The hybrid architecture sets a new standard for sparse-data approximation.

In the following example, we demonstrate the extension of the EFT to higher dimensions, confirming its broader
applicability.
Example 3 (Multivariate Validation of EFT)
To establish the viability of the EFT beyond univariate domains, we consider the bivariate test function:

f(x, y) = e−(x2+y2) · sin(5x) · cos(3y), (x, y) ∈ [−2, 2]× [−2, 2]

where this function is designed to create two problems: the high-frequency oscillatory components
(sin(5x), cos(3y)) with a radial Gaussian decay. It is these features that require strong methodologies of
approximation with sparse data. Reconstruction was performed under extreme sparsity constraints:

• Node configuration: uniform 5×5 grid (25 nodes)
• Evaluation grid: 50×50 points (2,500 locations)
• Methodologies compared:

– EFT
– Cubic spline interpolation
– Neural Network (NN): 2 hidden layers, 20 neurons each

Table 5 does a tough comparative assessment of the reconstruction performance of each approach. EFT was
able to set a new accuracy record-level (MSE ∼ 10−11) while remaining practically computable (0.1 s). Cubic
splines are fast but bring about catastrophic error inflations (MSE ∼ 10−2), while NNs incur a totally prohibitive
computation cost for no increased accuracy. 9 orders of magnitude gain in accuracy of EFT are drawn from its dual-

Table 5. Performance metrics for bivariate function reconstruction under 5×5 node sparsity

Method MSE Time (s)

EFT 5.85× 10−11 0.0558
Cubic Spline 3.7247× 10−2 0.0016
NN 3.8786× 10−2 12.229

phase architecture-global approximation via tensorized triangular fuzzy bases followed by local error corrections
using PCHIP. This maintains the required C1 continuity while reducing the phase distortion in the high-frequency
regions. While cubic splines oscillate and overshoot between sparse nodes, NNs cannot converge to meaningful
solutions due to spectral leakage.

Visual evidence in Figure 4 is crucial for validating quantitative results. EFT retains pixel-level accuracy to the
ground truth, especially in areas of high curvature, for example, around the origin, while maintaining the phase
coherence of the high-frequency components. The cubic splines suffer from overwhelming overshoot/undershoot
artifacts, while the NNs display spatial incoherence with amplitude distortion. The visual evidence backs up
comments made on the metrics in Table 5 and confirms that EFT is the only method that achieves visually lossless
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Figure 4. Surface reconstruction of f(x, y) using 5×5 node grid..

reconstruction with extreme sparsity.
Table 6 summarizes the theoretical behaviors under a sparse node constraint. EFT uniquely achieves exponential

convergence while its counterparts suffer from polynomial convergence (splines) or instability (NNs). This explains
the high-frequency feature detection capacity by node density ∝ frequency rather than sound frequency methods
that require node density ∝ frequency².
The algorithm for EFT can be classified with a time complexity of O(n2 +m), which implies that it scales

Table 6. Theoretical properties under sparse node constraints.

Method Error Convergence Computational Complexity
EFT Exponential O(n2 +m)

Cubic Spline O(h4) O(n log n)
NN Unstable O(T · P )

Note: n = nodes per dimension; m = evaluation points; T = epochs; P = parameters.

well by keeping node processing (n2) separate from resolution based on evaluation (m). This way, rather high-
fidelity reconstruction can be achieved without incredible growth in computational time, which is the most crucial
aspect in a large-scale scientific application. When approximating high-frequency oscillatory functions in sparse
distributions of nodes, cubic splines are subject to intrinsic instability. The error arising from the method depends
on values scaling as O

(
h4

∥∥f (4)
∥∥
∞

)
, where h is node spacing and

∥∥f (4)
∥∥
∞ is the supremum norm of the

fourth derivative of the function. For high-frequency components, e.g., sin(kx) with k ≫ 1,
∥∥f (4)

∥∥
∞ scales as

O(k4); thus, the error is severely amplified when kh ≥ O(1) - exactly the realm of sparsely approximating rapidly
oscillating functions. Extreme Fast Training (EFT) sets a new benchmark for performance with machine-precision
accuracy (MSE < 10−10), practically achieved in a computation time of less than 2 seconds, for multivariate
approximation under extreme sparsity (25 nodes over a 16-unit square domain). This consideration of an accuracy-
efficiency trade-off is indeed a limitation for most traditional interpolation and machine-learning techniques. It is
an interesting candidate for computations in physics involving high-frequency phenomena and sparse experimental
measurements, such as turbulent flow modeling or seismic imaging. Its ability to carry the spectral features while
imposing continuity on derivatives constitutes a milestone for scientific data approximation.
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10 ENHANCING FUZZY TRANSFORM USING PCHIP INTERPOLATION

Example 4 (Second order IVP) Consider

y′′(x) = y′(x) + 2y(x), x ∈ [0, 2],

Initial conditions: y(0) = 2, y′(0) = 7,

Exact solution: y(x) = 3e2x − e−x.

Example 5 (Second order IVP) Consider

y′′(x) = y′(x)− 3y(x) + 5e2x, x ∈ [0, 1],

Initial conditions: y(0) = 1, y′(0) = 2,

Exact solution: y(x) = e2x.

Figs. 5 and 6 depict the analytical (exact) and numerical approximations for Examples 4 and 5, generated
through the classical FT and its enhanced (EFT) variant employing n = 20 nodal points. Table 7 compares the
least squares error metrics for the classical FT, the proposed methodology, and the analytical benchmark across
these examples. These results collectively furnish a rigorous quantitative and visual evaluation of computational
precision, underscoring the superior convergence properties of the proposed methodology relative to both the
classical FT framework and the theoretical solution.

0 0.5 1 1.5 2

x

0

20

40

60

80

100

120

140

160

180

y
(x

)

Exact

FT Approx.

EFT

Figure 5. Approximation by FT and EFT with n = 20 the example 4.

Table 7. Mean square errors for the approximations in examples 4 and 5 (n = 20).

Method MSE
Example 4 Example 5

FT 1.8326 1.1× 10−3

EFT 3.1× 10−6 1.4× 10−6

5. Conclusions

The PCHIP interpolation in conjunction with the classical FT method shows significant development in numerical
approximation techniques. This hybrid approach adopts the global approximation ability of fuzzy logic with local
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Figure 6. Approximation by FT and EFT with n = 20 the example 5.

precision of PCHIP, achieving very high accuracy while sustaining computational efficiency. Important conclusions
include:

1. Targeted Use of PCHIP Interpolation: The procedure explicitly employs PCHIP, a method specifically
designed in spline interpolation for monotonicity and shape retention over classical C2 smoothness. With
this choice, residuals—the difference between the exact analytical result and the fuzzy approximation—are
interpolated, preserving the lack of spurious oscillations and false extremes. In particular, PCHIP is qualified
as smooth residuals correction; up to 98% in mean square error reductions has been secured in benchmarking
tests.

2. Complementary Strengths of FT and PCHIP:

• Fuzzy Transform: Provides a low-dimensional global smoothing on a coarse grid, capturing wide
trends.

• PCHIP: Locally refines the solution by modeling high-frequency residuals excluded by the FT. The
method avoids overfitting by not interpolating on the fuzzy nodes, thereby preserving the original
problem’s constraints like the initial/boundary conditions.

3. Advantages for Data-Driven Applications: A crucial aspect of PCHIP is its ability to fit smooth elements
to data by providing a continuous interpolating function, even without prior knowledge of the curve being
fit. This means that, given a sampling of data, at least its main characteristics can be understood through
analytical manipulations (e.g., differentiation, integration). This is critical in real-world applications where
measured data points are sparse. For example:

• In sensor data analysis or experimental physics, PCHIP can generate continuous series from discrete
data.

• The corrected solution enables analytical representation for symbolic manipulation or integration into
larger systems.

4. Theoretical and Empirical Validation: The superposition principle underpins the error bound:

∥y − ycorrected∥ ≤ ∥y − yfuzzy∥︸ ︷︷ ︸
FT error

+ ∥r̃ − r∥︸ ︷︷ ︸
PCHIP error

,

where PCHIP minimizes the residual interpolation error ∥r̃ − r∥ for smooth functions.
5. Practical Advantages:

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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• Efficiency: The FT’s coarse grid reduces computation costs, while PCHIP’s local interpolation avoids
expensive global refinements.

• Robustness: Explicitly enforced initial conditions ensure physical consistency, as required for solving
IVPs and BVPs in engineering applications.
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