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Abstract This paper proposes a novel Accelerated Failure Time (AFT) model based on the Weighted Topp-Leone
exponential (WTLE) distribution, designed for robust survival analysis under censored and uncensored actuarial and
biomedical data. The AFT-WTLE model introduces flexible hazard rate shapes, validated through goodness-of-fit tests
and real-world applications, including electric insulating fluid failure times and body fat percentage datasets. Parameter
estimation employs maximum likelihood (MLE), Cramér-von Mises (CVM), Anderson-Darling (ADE), and their modified
variants (RTADE, AD2LE), with simulation studies demonstrating RTADE’s superior accuracy in bias and root mean squared
error (RMSE) for small-to-moderate samples. The model’s risk assessment capabilities are highlighted via Value-at-Risk
(VaR), Tail VaR (TVaR), and tail mean-variance metrics, revealing RTADE and ADE as optimal for capturing extreme tail
risks. A modified Nikulin-Rao-Robson (NRR) chi-square test confirms the AFT-WTLE’s validity for censored data, with
empirical rejection levels aligning closely with theoretical thresholds. Applications to motor failure data and Johnson’s
body fat dataset illustrate its practical utility in actuarial, healthcare, and engineering domains. Computational efficiency is
achieved via the BB algorithm for parameter optimization. Simulation results emphasize improved estimation consistency
with increasing sample sizes, particularly for RTADE in high-quantile risk metrics. This work bridges gaps in survival
modeling by integrating flexible baseline hazards with advanced risk quantification tools, offering a versatile framework for
analyzing complex survival data across disciplines.
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1. Introduction

Parametric models are often sought after for analyzing survival data because they provide insights into the
characteristics of failure times and risk functions. However, when failure rates or events like product failures,
patient deaths, or disease remission have multiple causes, simple parametric models fall short in capturing the
influence of each cause. To address this limitation, accelerated failure time (AFT) models were introduced
in statistical literature. In AFT models, explanatory variables (such as temperature, pressure, or medication
dosage) represented by covariates directly impact key model functions like failure rates and survival probabilities.
Unlike proportional hazards models, which often rely on Cox’s semi-parametric approach, AFT models are fully
parametric. Additionally, regression parameter estimates from AFT models are robust to omitted covariates and
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less sensitive to the choice of probability distribution. By adjusting covariate values, engineers and practitioners
can manipulate outcomes, making AFT models widely applicable in reliability studies and survival analysis. The
primary goal of AFT models is to assess how stress factors (covariates) affect the lifespan of items.

Various baseline distributions form the foundation for different AFT models, including exponential, Weibull, log-
logistic, and log-normal models. More advanced models, such as the generalized inverse Weibull AFT model, have
also been developed. Statistical tests, such as chi-squared goodness-of-fit tests, have been proposed for evaluating
regression models like AFT, proportional hazards, and frailty models.

Among AFT models, the log-logistic distribution is particularly popular due to its ability to exhibit non-
monotonic hazard functions, those that initially rise and later declinem unlike the monotonic behavior of the
Weibull distribution. Although it has heavier tails, the log-logistic distribution resembles the log-normal distribution
in shape. Its straightforward closed-form cumulative distribution function (CDF) makes it computationally
advantageous for fitting censored data. The survival function, derived as the complement of the CDF, is essential
for handling censored observations. Notably, the Weibull distribution (which includes the exponential distribution
as a special case) is unique among distributions because it can be parameterized as either an AFT or a proportional
hazards model. However, the monotonicity of the Weibull hazard function may limit its biological applications.

Other distributions suitable for AFT models include the log-normal, gamma, and inverse Gaussian distributions,
though they are less commonly used than the log-logistic distribution, partly due to their lack of closed-form CDFs.
The Weibull, log-normal, and gamma distributions are specific cases of the generalized gamma distribution, a three-
parameter model. To evaluate the performance of estimators, various estimation methods are employed, including
maximum likelihood, Cramer-von-Mises, Anderson-Darling (right-tail and left-tail variants), and L-moments.
Simulation studies compare these methods across different sample sizes and parameter values, assessing bias,
root mean-standard errors, mean absolute differences (MADv), and maximum absolute differences (MaxADv).
Based on these evaluations, a new WTLE-AFT model is proposed as a parametric accelerated life model when the
baseline survival function belongs to the WTLE model. This model is applicable in reliability modeling and lifetime
testing across fields such as electrical insulation, medicine, and lifetime studies. Using the Barzilai-Borwein (BZB)
algorithm, the average simulated values of maximum likelihood estimators (MLEs) and their mean squared errors
are reported under varying sample sizes. The WTLE-AFT model is validated using a modified chi-square test
for both complete and right-censored data scenarios. The theoretical framework of Nikulin-Rao-Robson (NRR)
statistics is applied to assess the model’s viability. Recent enhancements to the NRR test statistic have improved its
utility in validation procedures. For the WTLE-AFT model, the modified NRR test statistic is evaluated at empirical
and theoretical levels using maximum likelihood estimation. To further assess the effectiveness of the NRR test
statistic, three real-world datasets are analyzed. Following Popović et al. (2016), Lak et al. (2025) presented the
cumulative distribution function (CDF) of weighted Topp-Leone family of distribution which given by

Fγ,ξ(X) = γ/
{
γ − log

[
1− Ḡξ(X)2

]}
|γ>0, (1)

where Ḡξ(X) = 1−Gξ(X) refers to the survival function of any baseline model. Hence, Gξ(X) = Gλ(X) refers
to the CDF of the exponential baseline model. Then, the CDF and the probability density function (PDF) of WTLE
is given by

Fγ,λ(X) = γ/ {γ − log [1− exp (−2λx)]} |γ,λ>0, (2)
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where
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Then, we can obtain an expansion for CDF of WTLE as follows
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which can be simplified by

Fγ,λ (x) =
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bj [1− exp (−λx)]
j
, (6)

where bj =
∑∞

k=[j/2] ak (−1)j
(
2k
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)
. The PDF of X follows by differentiating (6) as

fγ,λ (x) =
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j=0

bj+1 λ exp (−λx) [1− exp (−λx)]
j
, (7)

Equation (7) reveals that the WTLE density function is a linear combination of generalized-exponential (EE)
densities. Thus, some structural properties of the new family such as the ordinary and incomplete moments and
generating function can be immediately obtained from well-established properties of the EE distribution.

2. Simulations for assessing estimation methods

In this paper we will consider the maximum likelihood estimation (MLE) method, the Cramér-von-Mises
estimation (CVME), the Anderson Darling estimation (ADE), the Tail-Anderson Darling estimation (RTADE)
and the left Tail-Anderson Darling estimation (LTADE) for estimating the model parameters. Also, the same
mehtods will be cosidered in risk anlaysis. To systematically evaluate and compare the effectiveness of various
parameter estimation techniques, a detailed numerical simulation study is undertaken. The analysis is based on data
generated from the WTLE distribution, with N = 1000 independent simulation replications to ensure statistical
reliability. Within each replication, synthetic data sets are produced for multiple sample sizes, n = 15, 30, 50,
and 100, to explore how estimation performance evolves with increasing data availability. To achieve a robust
comparison, multiple evaluation criteria are employed. These include bias, which quantifies the average deviation
of an estimator from the true parameter value, and the root mean squared error (RMSE), which encapsulates both
bias and variance components. In addition, the mean absolute deviation in distribution (M-AD) is used to measure
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the average discrepancy between the estimated and actual cumulative distribution functions, while the maximum
absolute deviation (Max-AD) identifies the largest such discrepancy across the domain. Together, these metrics
provide a multidimensional perspective on estimator performance, capturing both point estimation accuracy and
overall distributional fit.

Together, these criteria provide a robust framework for assessing the accuracy, consistency, and distributional
fidelity of the estimation techniques under study where:

1-BIAS(γ) = 1
B

B∑
i=1

(γ̂i − γ) ,BIAS(λ) = 1
B

B∑
i=1

(
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Table 1 reports the simulation outcomes for estimating parameters λ = 0.4 and γ = 0.2 using five methods across
different sample sizes. As expected, all estimators improve in accuracy as sample size increases. The RTADE
consistently achieves the lowest bias and RMSE, particularly at small sample sizes (n = 15, 30), highlighting
its robustness. MLE, while asymptotically efficient, performs relatively poorly for small n, with higher bias and
distributional deviation (Dabs, Dmax). CVM and ADE offer strong mid-range performance, with ADE slightly
better in estimating λ. LEADE is generally less precise, especially in smaller samples, but remains competitive
as n grows. In terms of distributional fit, RTADE dominates with the smallest Dabs and Dmax values throughout.
This suggests its superior capability in capturing both parameter values and distributional shape. Overall, RTADE
stands out as the most reliable estimator under the simulated conditions.

Table 2 presents the simulation results for estimating parameters λ = 0.5 and γ = 0.05 across increasing sample
sizes. The RTADE method again shows superior performance, particularly evident in the lowest Dabs and Dmax
values, indicating its exceptional distributional accuracy. At small sample size (n = 15), ADE also performs well
with low bias and RMSE, especially for λ, while LEADE exhibits the poorest precision across all metrics. As
the sample size increases, all methods improve markedly; however, MLE becomes more competitive and nearly
matches ADE and RTADE in RMSE and bias by n = 100. CVM shows moderate performance throughout but lags
behind ADE and RTADE in precision. The results emphasize that RTADE consistently delivers the most reliable
estimates, with ADE following closely, particularly in small to mid-sized samples. LEADE, though useful in some
cases, suffers from higher variability and bias, especially in λ estimation.

Table 3 displays simulation outcomes for parameter values λ = 0.1 and γ = 0.1, focusing on how estimation
methods perform with modest parameter magnitudes. At small sample size (n = 15), ADE and RTADE demonstrate
superior estimation precision, especially in terms of RMSE and distributional deviations (Dabs and Dmax),
outperforming MLE, which shows relatively higher bias in γ. As the sample size increases, all methods improve,
but ADE and RTADE continue to dominate, particularly at n = 100, where ADE achieves almost negligible Dabs
and Dmax values, signaling excellent distributional fidelity. CVM remains moderate, showing lower bias than MLE
but slightly higher RMSE than ADE. Interestingly, LEADE consistently performs the weakest in distributional
metrics and bias, especially at small n, though it gradually improves. Overall, ADE exhibits the most balanced
accuracy, followed closely by RTADE, making them the preferred estimators for this parameter setting.
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Table 1: Simulation results for parameter λ = 0.4 & γ = 0.2

n BIAS γ BIAS λ RMSE γ RMSE λ Dabs Dmax
MLE 15 0.03640 0.01460 0.01650 0.00642 0.03918 0.05850
CVM 0.02303 0.01845 0.01161 0.01024 0.03250 0.0493
ADE 0.02116 0.00910 0.01157 0.00728 0.02401 0.03582

RTADE 0.01456 0.00438 0.01116 0.00641 0.01526 0.02269
LEADE 0.02265 0.02071 0.01327 0.01711 0.03413 0.05171

MLE 30 0.01941 0.00830 0.00702 0.00298 0.02199 0.03311
CVM 0.01006 0.00833 0.00476 0.00417 0.01494 0.02264
ADE 0.00701 0.00162 0.00470 0.00326 0.00706 0.01055

RTADE 0.00873 0.00313 0.00505 0.00300 0.00963 0.01448
LEADE 0.01195 0.01077 0.00507 0.00556 0.01837 0.02790

MLE 50 0.01179 0.00517 0.00392 0.00174 0.01378 0.02063
CVM 0.00398 0.00275 0.00269 0.00234 0.00553 0.00838
ADE 0.00564 0.00176 0.00268 0.00195 0.00605 0.00910

RTADE 0.00535 0.00197 0.00276 0.00169 0.00600 0.00901
LEADE 0.00552 0.00436 0.00285 0.00309 0.00808 0.01229

MLE 100 0.00636 0.00321 0.00151 0.00073 0.00782 0.01180
CVM 0.00235 0.00167 0.00125 0.00107 0.00331 0.00502
ADE 0.00236 0.00107 0.00127 0.00093 0.00284 0.00426

RTADE 0.00122 -0.00007 0.00131 0.00081 0.00096 0.00145
LEADE 0.00319 0.00252 0.00134 0.00141 0.00469 0.00714

Table 2: Simulation results for parameter λ = 0.5 & γ = 0.05

n BIAS γ BIAS λ RMSE γ RMSE λ Dabs Dmax
MLE 15 0.00542 0.00858 0.00072 0.00507 0.02583 0.03877
CVM 0.00557 0.00839 0.00083 0.00613 0.02596 0.03912
ADE 0.00436 0.00376 0.00065 0.00446 0.01797 0.02656

RTADE 0.00341 -0.00029 0.00076 0.00445 0.01064 0.01594
LEADE 0.00755 0.01631 0.00099 0.01322 0.03951 0.05982

MLE 30 0.00243 0.00389 0.00029 0.00243 0.01199 0.01796
CVM 0.00282 0.00460 0.00035 0.00274 0.01388 0.02092
ADE 0.00168 0.00020 0.00029 0.00234 0.00571 0.00855

RTADE 0.00161 -0.00014 0.00030 0.00206 0.00513 0.00769
LEADE 0.00380 0.00734 0.00040 0.00374 0.01973 0.02980

MLE 50 0.00085 0.00091 0.00016 0.00147 0.00378 0.00567
CVM 0.00168 0.00264 0.00018 0.00149 0.00824 0.01245
ADE 0.00111 0.00016 0.00015 0.00127 0.00383 0.00574

RTADE 0.00134 0.00114 0.00018 0.00124 0.00562 0.00842
LEADE 0.00236 0.00451 0.0002 0.00195 0.01231 0.01865

MLE 100 0.00050 0.00070 0.00007 0.00068 0.00238 0.00359
CVM 0.00096 0.00187 0.00008 0.00072 0.00511 0.00772
ADE 0.00061 0.00040 0.00008 0.00068 0.00243 0.00365

RTADE 0.00018 -0.00074 0.00008 0.00055 0.00024 0.00046
LEADE 0.00109 0.00240 0.00009 0.00092 0.00611 0.00924

Stat., Optim. Inf. Comput. Vol. x, Month 202x



MOHAMED IBRAHIM, H. GOUAL, M. K. KHAOULA, A. H. AL-NEFAIE, A. M. ABOALKHAIR, H. M YOUSOF 5

Table 3: Simulation results for parameter λ = 0.1 & γ = 0.1

n BIAS γ BIAS λ RMSE γ RMSE λ Dabs Dmax
MLE 15 0.01640 0.00189 0.00499 0.00025 0.03272 0.04912
CVM 0.00964 0.00220 0.00325 0.00037 0.02439 0.03660
ADE 0.01076 0.00140 0.00267 0.00027 0.02267 0.03401

RTADE 0.00880 0.00088 0.00309 0.00027 0.01765 0.02632
LEADE 0.01405 0.00508 0.00440 0.00136 0.04230 0.06406

MLE 30 0.00832 0.00119 0.00188 0.00011 0.01821 0.02736
CVM 0.00383 0.00078 0.00114 0.00015 0.00951 0.01434
ADE 0.00684 0.00139 0.00135 0.00015 0.01683 0.02527

RTADE 0.00285 0.00014 0.00113 0.00011 0.00530 0.00789
LEADE 0.00549 0.00130 0.00125 0.00019 0.01431 0.02163

MLE 50 0.00456 0.00063 0.00094 0.00006 0.01002 0.01510
CVM 0.00329 0.00078 0.00070 0.00009 0.00866 0.01309
ADE 0.00229 0.00018 0.00071 0.00008 0.00452 0.00676

RTADE 0.00404 0.00076 0.00075 0.00007 0.00979 0.01474
LEADE 0.00436 0.00115 0.00078 0.00012 0.01192 0.01805

MLE 100 0.00283 0.00061 0.00041 0.00003 0.00719 0.01085
CVM 0.00161 0.00037 0.00033 0.00004 0.00421 0.00637
ADE 0.00044 -0.00013 0.00031 0.00004 0.00023 0.00044

RTADE 0.00111 0.00015 0.00033 0.00003 0.00249 0.00373
LEADE 0.00211 0.00058 0.00037 0.00006 0.00592 0.00898

Based on the results in Tables 1, 2, and 3, we note that the ADE (Anderson-Darling Estimation) and RTADE
(Right Tail-ADE) consistently offer superior performance across different parameter settings and sample sizes, with
lower bias, RMSE, and distributional errors (Dabs, Dmax) compared to other methods. The MLE, while traditional
and reliable for larger samples, tends to show higher bias and distributional deviation, especially at smaller sample
sizes. The CVM performs moderately well, generally better than MLE but not as robust as ADE or RTADE in tail-
sensitive metrics. The LEADE appears to be the least stable method, often producing the highest Dabs and Dmax
values, especially when the left tail is not dominant in the data structure. As sample size increases (n = 100),
all methods improve significantly, but the advantage of ADE and RTADE becomes more pronounced, suggesting
better scalability and robustness. The RTADE particularly excels when precision in tail behavior is critical, offering
the lowest Dmax in many scenarios. For smaller values of γ or λ, such as in Table 2 (γ = 0.05), ADE and RTADE
are notably resilient and maintain estimation quality. In symmetric or balanced parameter settings (e.g., λ = γ =
0.1 in Table 3), ADE demonstrates near-optimal performance in both parameter and distributional estimates. The
results emphasize the importance of considering tail sensitivity and distributional behavior in estimator selection,
not just point accuracy. The ADE and RTADE emerge as the most reliable and efficient estimation techniques
across a variety of settings and should be prioritized in practical applications.

3. Risk analysis under artificial data

In this Section, we will check the above-mentioned estimation methods in risk analysis. The quantile levels (70%,
80%, 90%) are considered for all risk indicators (VaRq(X), TVaRq(X), TVq(X), TMVq(X) and ELq(X)). Table
4 presents key risk indicators (KRIs) under artificial data for n = 15, highlighting how different estimation methods
impact tail-based financial measures. Across all quantile levels (70%, 80%, 90%), RTADE consistently produces
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the highest values for VaR and tail risk measures like TVaR and TMVq, suggesting it captures extreme risk better
than others. ADE also shows strong performance, especially in terms of TVaRq and TMVq, indicating robustness in
heavy-tailed scenarios. MLE underestimates most risk metrics, especially at higher quantiles, possibly overlooking
tail events. CVM and LEADE yield similar profiles, slightly outperforming MLE but falling short of ADE and
RTADE. Notably, ELq(X) decreases as the quantile increases, as expected, but RTADE maintains the highest
expected losses, reflecting its conservative bias. The results confirm that tail-adaptive estimators (ADE, RTADE)
offer superior risk sensitivity, even in small samples. For critical risk management, RTADE appears to be the
most prudent method. Table 5 provides KRIs under artificial data for n = 30, revealing consistent trends across
methods, especially at higher quantiles. ADE and RTADE continue to dominate in capturing higher tail risks, with
both showing elevated values for TVaRq, TMVq, and ELq across all quantile levels. Notably, ADE reaches the
highest values, especially at the 90% level, implying it better reflects extreme-event exposure. MLE, though slightly
improved from the n = 15 case, still yields lower estimates, signaling potential underestimation of tail risk. CVM
offers slight enhancements over MLE but remains more conservative than RTADE and ADE. LEADE balances
between bias reduction and tail sensitivity, performing better than MLE but not matching the tail responsiveness
of RTADE. Overall, with the larger sample size, differences narrow slightly, but tail-adaptive methods remain
preferable for robust risk estimation. This confirms their advantage even as data availability increases.

Table 4: KRIs under artificial data for n=15.

Method β̂ λ̂ VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X)

MLE 0.23640 0.41460
70% 2.82174 4.22178 1.68434 5.06395 1.40004
80% 3.44665 4.77318 1.59822 5.57229 1.32653
90% 4.40497 5.66744 1.52219 6.42853 1.26247

CVM 0.22303 0.41845
70% 2.86194 4.25094 1.65556 5.07872 1.38901
80% 3.48248 4.79784 1.57012 5.58290 1.31536
90% 4.43306 5.68435 1.49479 6.43174 1.25129

ADE 0.22116 0.40910
70% 2.93719 4.35822 1.73246 5.22445 1.42104
80% 3.57212 4.91771 1.64293 5.73918 1.34559
90% 4.54459 5.82456 1.56402 6.60657 1.27997

RTADE 0.21456 0.40438
70% 3.00717 4.44575 1.77423 5.33286 1.43857
80% 3.65022 5.01205 1.68213 5.85312 1.36183
90% 4.63460 5.92973 1.60100 6.73023 1.29513

LEADE 0.22265 0.42071
70% 2.84850 4.23011 1.63792 5.04908 1.38162
80% 3.46575 4.77410 1.55337 5.55078 1.30834
90% 4.41127 5.65587 1.47883 6.39528 1.24460
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Table 6 highlights the KRIs under artificial data for n = 50, showing further convergence in risk measure
estimates as sample size grows. ADE and RTADE exhibit nearly identical outputs, indicating stability and precision
in estimating tail risks, especially for higher quantiles. Both consistently report the highest TVaRq, TMVq, and
ELq, confirming their responsiveness to extreme values. MLE shows continued underestimation compared to
the others, particularly at the 90% level, despite moderate improvement from smaller nn. CVM and LEADE
provide middle-ground estimates, with LEADE slightly outperforming CVM in most metrics. The near overlap
between ADE and RTADE suggests RTADE’s added robustness does not compromise accuracy, reinforcing its
appeal. As nn increases, the advantage of tail-adaptive estimators remains evident, though all methods begin to
align more closely, reflecting enhanced reliability with more data. Table 7 displays the KRIs under artificial data
for n = 100, confirming the strong performance of tail-adaptive methods in large samples. RTADE consistently
leads across all quantiles, producing the highest values for TVaRq, TMVq, and ELq, emphasizing its superior
sensitivity to tail risks. ADE follows closely, with almost indistinguishable results, validating its precision. MLE,
while improved from smaller nn, remains the lowest across all metrics, indicating a more conservative estimate of
extreme outcomes. CVM and LEADE deliver intermediate values, with LEADE showing slightly better balance
in terms of efficiency and risk awareness. As nn increases to 100, differences across methods narrow, but adaptive
estimators still retain an edge, particularly in capturing nuanced tail behaviors. This underscores their robustness
and reliability in high-dimensional, risk-sensitive environments, making them strong candidates for operational
use.

Table 5: KRIs under artificial data for n=30.

Method β̂ λ̂ VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X)

MLE 0.21941 0.40830
70% 2.95218 4.37623 1.73949 5.24597 1.42405
80% 3.58853 4.93688 1.64949 5.76163 1.34835
90% 4.56304 5.84556 1.57018 6.63065 1.28252

CVM 0.21006 0.40833
70% 3.00294 4.42825 1.74086 5.29868 1.42532
80% 3.64025 4.98929 1.65021 5.81439 1.34904
90% 4.61549 5.89826 1.57040 6.68346 1.28277

ADE 0.20701 0.40162
70% 3.07046 4.52002 1.79999 5.42002 1.44956
80% 3.71874 5.09055 1.70607 5.94359 1.37181
90% 4.71053 6.01483 1.62341 6.82653 1.30430

RTADE 0.20873 0.40313
70% 3.04912 4.49300 1.78624 5.38612 1.44388
80% 3.69479 5.06132 1.69315 5.90790 1.36653
90% 4.68272 5.98207 1.61119 6.78766 1.29935

LEADE 0.21195 0.41077
70% 2.97464 4.39121 1.71990 5.25116 1.41657
80% 3.60796 4.94882 1.63046 5.76405 1.34086
90% 4.57725 5.85233 1.55170 6.62817 1.27508
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Table 6: KRIs under artificial data for n=50.

Method β̂ λ̂ VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X)

MLE 0.21179 0.40517
70% 3.01663 4.45280 1.76778 5.33669 1.43617
80% 3.65872 5.01813 1.67585 5.85605 1.35940
90% 4.64142 5.93412 1.59488 6.73156 1.29270

CVM 0.20398 0.40275
70% 3.07936 4.52529 1.79043 5.42051 1.44594
80% 3.72615 5.09437 1.69682 5.94278 1.36821
90% 4.71541 6.01616 1.61445 6.82338 1.30075

ADE 0.20564 0.40176
70% 3.07729 4.52654 1.79898 5.42603 1.44926
80% 3.72549 5.09694 1.70503 5.94945 1.37145
90% 4.71705 6.02094 1.62234 6.83211 1.30389

RTADE 0.20535 0.40197
70% 3.07739 4.52594 1.79718 5.42454 1.44855
80% 3.72530 5.09606 1.70330 5.94771 1.37077
90% 4.71637 6.0196 1.62068 6.82995 1.30323

LEADE 0.20552 0.40436
70% 3.05818 4.49813 1.77593 5.38609 1.43995
80% 3.70223 5.06486 1.68318 5.90645 1.36264
90% 4.68742 5.98293 1.60154 6.78370 1.29551

Table 7: KRIs under artificial data for n=100.

Method β̂ λ̂ VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X)

MLE 0.20636 0.40321
70% 3.06206 4.50599 1.78592 5.39895 1.44393
80% 3.70786 5.07431 1.69269 5.92065 1.36645
90% 4.69578 5.99495 1.61064 6.80027 1.29917

CVM 0.20235 0.40167
70% 3.09723 4.54731 1.80039 5.44750 1.45008
80% 3.74595 5.11799 1.70615 5.97106 1.37204
90% 4.73802 6.04233 1.62324 6.85395 1.30432

ADE 0.20236 0.40107
70% 3.10176 4.55399 1.80575 5.45687 1.45223
80% 3.75144 5.12552 1.71123 5.98114 1.37408
90% 4.74499 6.05124 1.62807 6.86528 1.30626

RTADE 0.20122 0.39993
70% 3.11731 4.57384 1.81622 5.48195 1.45652
80% 3.76896 5.14704 1.72108 6.00758 1.37808
90% 4.76543 6.07543 1.63739 6.89413 1.31001

LEADE 0.20319 0.40252
70% 3.08574 4.53264 1.79267 5.42898 1.44690
80% 3.73300 5.10208 1.69889 5.95153 1.36908
90% 4.72291 6.02445 1.61637 6.83263 1.30154

Based on Tables 4 through 7, we observe that as the sample size nn increases, all methods demonstrate improved
stability and accuracy in estimating key risk indicators (KRIs). RTADE consistently yields the highest values for
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tail-focused measures such as TVaRq(X), TMVq(X), and ELq(X), indicating superior sensitivity to extreme
events. ADE closely follows, confirming its reliability, especially in larger samples. In contrast, MLE tends to
underestimate tail risk, producing the lowest KRI values across all nn, while CVM and LEADE offer intermediate
performance, with LEADE showing moderate gains in some quantiles. The differences between methods diminish
with larger nn, but adaptive techniques maintain an edge in capturing risk dynamics. Moreover, the parameters
γγ and λλ converge more clearly with increasing nn, particularly under adaptive methods, suggesting enhanced
estimator robustness and efficiency in modeling tail risk.

4. Risk analysis under insurance claims data

Historical insurance data is frequently organized in a triangular format to illustrate how claims evolve over time
for each corresponding underwriting or accident period. The ”origin period” typically represents the year a policy
was issued, the year a loss occurred, or another defined timeframe (e.g., quarterly or monthly intervals). The term
”claim age” or ”development lag” refers to the time elapsed since the origin period, tracking how claims progress
over subsequent periods. Individual policy data is often grouped into homogeneous categories, such as business
lines, risk types, or organizational divisions. In this study, we analyze a real-world example using a claims payment
triangle from a U.K. Motor Non-Comprehensive insurance portfolio, with origin years spanning 2007 to 2013
(see Mohamed et al. (2024) and Mohamed et al. (2024)). The dataset is structured conventionally, with columns
specifying the origin year (2007–2013), the development year, and the incremental claim payments recorded for
each period. These data are recently analyzed by Mohamed et al. (2024), Alizadeh et al. (2025) and Yousof et al.
(2025).

Table 8: KRIs under insurance claims data.

Method β̂ λ̂ VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X)

MLE 0.07986 0.00049
70% 3455.5 4657.039 1220190.9 614752.5 1201.5
80% 3997.4 5128.610 1150999.9 580628.6 1131.2
90% 4817.9 5888.959 1090844.4 551311.2 1071.0

CVM 0.9932 0.00009
70% 5755.0 11596.6 31810269.6 15916731.5 5841.6
80% 8228.2 13936.7 31034728.3 15531300.9 5708.4
90% 12270.0 17840.3 30263790.3 15149735.5 5570.2

ADE 0.7948 0.00012
70% 5164.7 9725.4 18976568.1 9498009.4 4560.7
80% 7123.4 11544.2 18381531.2 9202309.9 4420.8
90% 10270.4 14555.5 17828545.9 8928828.5 4285.1

RTADE 0.47379 0.00018
70% 4720.9 7879.2 8791578.1 4403668.3 3158.3
80% 6108.2 9129.8 8416152.3 4217205.9 3021.7
90% 8277.6 11175.9 8075702.8 4049027.4 2898.3

AD2LE 1.13316 0.00008
70% 6096.8 12863.2 43335940.3 21680833.4 6766.4
80% 8932.2 15582.2 42491859.7 21261512.1 6650.0
90% 13622.6 20141.7 41615264.6 20827774.0 6519.1

Table 8 presents a comparative assessment of KRIs derived from insurance claims data using five estimation
methods like the MLE, CVM, ADE, RTADE, and AD2LE. Each method is evaluated based on two model
parameters (β and λ) and a suite of risk measures, including VaRq(X),TVaRq(X),TVq(X),TMVq(X) and
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ELq(X) at the 70%, 80%, and 90% levels. Notably, the CVM and AD2LE methods produce significantly higher
values across TVaRq, TVq, and TMVq, indicating a heightened sensitivity to extreme tail risks, whereas MLE
yields the most conservative estimates with the lowest figures across all metrics, especially in ELq, suggesting
minimal tail heaviness. ADE and RTADE offer intermediate risk profiles, with RTADE producing the most
compact and stable set of risk indicators, particularly suitable for balanced risk management. The progression
across quantiles reveals an expected increase in tail risk and volatility, but a decreasing trend in ELq for all
methods—highlighting the shift of mass in heavy-tailed distributions beyond the quantile threshold. Overall, the
table underscores the impact of method selection on perceived risk: while MLE may appeal in stable environments,
methods like AD2LE and CVM are more aligned with conservative strategies focused on capturing worst-case loss
scenarios.
Based on Table 8, we note that the choice of estimation method leads to starkly different assessments of
risk exposure under insurance claims data, with numerical results underscoring these contrasts. The Maximum
Likelihood Estimation (MLE) method consistently produces the most conservative risk estimates. For example,
at the 90% quantile, MLE reports a TVq(X) of 1,090,844.47 and ELq(X) of only 1,071.04, significantly lower
than other methods. In contrast, the AD2LE method, generates extremely high tail risk measures: at the same
90% level, it yields a TVq(X) of 41,615,264.69 and ELq(X) of 6,519.12, revealing its focus on capturing extreme
events. Similarly, CVM estimates a TVq(X) of 30,263,790.29 and ELq(X) of 5,570.25 at 90%, again emphasizing
substantial tail risk sensitivity. The ADE and RTADE methods offer intermediate profiles. For instance, at the 90%
level, ADE gives TVq(X) = 17,828,545.94 and ELq(X) = 4,285.15, while RTADE provides more moderate values,
TVq(X) = 8,075,702.86 and ELq(X) = 2,898.32, making it a potential compromise between efficiency and risk
sensitivity. Notably, across all methods, VaRq(X), TVaRq(X), and TVq(X) increase with the quantile level, which
is expected as we move deeper into the tail. Yet, ELq(X) decreases across quantiles in every method: for example,
MLE’s ELq drops from 1,201.52 at 70% to 1,071.04 at 90%, and similarly, AD2LE’s ELq decreases from 6,766.45
to 6,519.12. This pattern suggests that while higher quantiles reflect greater potential losses, the expected loss
within those quantiles becomes more concentrated and less dispersed, particularly under light-tailed assumptions.
Numerical comparisons reinforce that MLE offers the lowest risk estimates, suitable for stable conditions, while
AD2LE and CVM aggressively account for tail risk, ideal for stress-testing and conservative scenarios. ADE and
RTADE occupy the middle ground, providing flexible alternatives depending on the insurer’s risk appetite.

5. The WTLE-AFT model

A comprehensive review of the recent literature reveals a growing interest in extending and validating statistical
models for applications in actuarial science, survival analysis, reliability engineering, and risk assessment. Several
studies have focused on developing new probability distributions that offer greater flexibility in modeling real-
world data with varying shapes and tail behaviors. For instance, Zamani et al. (2022) explored the Extended
Exponentiated Chen distribution, analyzing its mathematical properties and demonstrating its effectiveness in
fitting real-life datasets. Similarly, Dey et al. (2017) provided detailed insights into the Exponentiated Chen
distribution, emphasizing estimation methods and practical applications. In another direction, Ibrahim et al. (2025a)
proposed a Reciprocal Weibull model for medical and reliability data, incorporating sequential sampling plans
and truncated life testing to enhance model validation. The use of modified goodness-of-fit tests, particularly
the Nikulin–Rao–Robson statistic, has also gained attention for validating parametric models under censored and
uncensored data scenarios, as demonstrated by Goual and Yousof (2019, 2020), Yousof et al. (2023c), and Salem
et al. (2023). These works highlight the importance of robust validation techniques in improving the reliability
of statistical models used in financial risk, insurance claims, and biomedical research. Other contributions include
Mansour et al. (2020d), who introduced a new log-logistic lifetime model with copula-based dependence structures
and applied it to real datasets using various estimation methods. Meanwhile, Alizadeh et al. (2024) developed
an Extended Gompertz model for assessing extreme stress data, while Ramaki et al. (2025) studied a Weighted
Flexible Weibull model for extreme event analysis. Risk indicators such as Value-at-Risk (VaR), Tail-Value-at-Risk
(TVaR), tail variance, and mean excess loss have been widely utilized in actuarial modeling, as seen in Yousof et
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al. (2023d), Mohamed et al. (2024), and Ibrahim et al. (2025d), where different estimation techniques—such as
maximum likelihood, least squares, and Cramer–von Mises—were compared for their performance in capturing tail
behavior and quantifying uncertainty. Additionally, works like Abonongo et al. (2025) and Shehata et al. (2024)
applied accelerated failure time models and Bayesian inference techniques to analyze right-censored data from
clinical trials and reliability studies. Furthermore, Yousof and his collaborators have made significant contributions
in proposing new models tailored for specific domains, including the Double Burr Type XII model (Ibrahim et
al., 2022), the Lomax inverse Weibull model (Goual et al., 2020), and the Topp-Leone-Lomax model (Yadav et
al., 2020), all of which were validated using advanced goodness-of-fit procedures. The Bagdonavičius–Nikulin
family of tests has been frequently employed in these validations, especially in the presence of censoring, as noted
by Yousof et al. (2021b, 2022b, 2023a), Mansour et al. (2020f), and Bagdonavicius & Nikulin (2011a,b). These
studies collectively underscore the evolving landscape of statistical modeling, where novel distributions are being
rigorously tested and refined to better capture the complexities of real-world phenomena across diverse fields such
as finance, medicine, engineering, and environmental sciences. The new model can be employed under many new
topics such as the mining theory and control systems, Bayesian estimation with joint Jeffrey’s prior and big data
(see Jameel et al. (2022), Salih and Abdullah (2024), Salih and Hmood (2020) and Salih and Hmood (2022)).

In this section, we propose a new accelerated failure time model. For this, we suppose that n independent failure
time variables are observed and we consider that the hypothesis H0 stating that the survival function given the
vector of explanatory variables z(X) = (z0(X), z1(X), ..., zm(X)), z0(X) = 1 (covariates such as temperature,
stress,...etc) has the form

S(x|z) = S0

 ς∫
0

e−βT z(u)du; ζ

 ,

where β = (β0, β1, ..., βm)T is a vector of unknown regression parameters, the function S0 is a specified functional
of time and does not depend on zi. If explanatory variables are constant over time, the parametric accelerated
failure time (AFT) model has the form

S(x|z) = S0

[
exp

(
−βT z

)
t; ζ
]
.

Consider the WTLE distribution as baseline distribution where

H0 = F (t) = FAFT(x, λ, β) = FAFT−WTLE .

So, the CDF of the AFT model can be expressed as

FAFT−WTLE (x; γ, λ) =
γ

γ − log
[
1− exp

(
−2λxe−βT z

)] , x > 0; γ, λ > 0,

and then, the PDF of the AFT model can be re-expressed as

fAFT−WTLE (x; γ, λ) =
2λγ exp

(
−2λxe−βT z

)
[
1− exp

(
−2λxe−βT z

)] [
1 + exp

(
−λxe−βT z

)] {
γ − log

[
1− exp

(
−2λxe−βT z

)]}
=

2λγ exp
(
λxe−βT z

)
[
exp

(
λxe−βT z

)
− 1
] [

1 + exp
(
λxe−βT z

)]2 {
γ − log

[
1− exp

(
−2λxe−βT z

)]}
Analogously, the corresponding survival function (SF), HRF and cumulative HRF of the AFT model are given by

SAFT−WTLE = S0

(
xe−βT z

)
= 1− γ

γ − log
[
1− exp

(
−2λxe−βT z

)] ,
and

hAFT−WTLE = −
2λγ exp

(
λxe−βT z

)
[
exp

(
λxe−βT z

)
− 1
] [

1 + exp
(
λxe−βT z

)]2
log
[
1− exp

(
−2λxe−βT z

)] .
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6. The MLE for the WTLE-AFT model

In this section, we apply the maximum likelihood method to estimate the parameters of the AFT for the WTLE
distribution. We give a detailed description of the method as well as the score functions and the elements of the
FIM.

6.1. The MLE derivations

Let x1, . . . , xn be a RS from the AFT for the WTLE model with parameters λ, γ and β. Let V = (λ, γ, β0, β1)
⊺ be

the 4× 1 parameter vector. For determining the MLE of V, we have the log-likelihood function

ℓ = ℓ (x;V) = n log (2γλ)− 2λ

n∑
i=1

xie
−βT zi −

n∑
i=1

log
[
1− exp

(
−2λxie

−βT z
)]

−
n∑

i=1

log
[
1 + exp

(
−λxie

−βT z
)]

−
n∑

i=1

log
{
γ − log

[
1− exp

(
−2λxie

−βT z
)]}

The score vector I(V) =
∂ℓ
∂V =

(
∂ℓ
∂λ ,

∂ℓ
∂γ ,

∂ℓ
∂β0

, ∂ℓ
∂β1

)⊺
is given by

∂ℓ (xi;V)

∂γ
=

n

γ
−

n∑
i=1

2xie
−βT z

γ − log
[
1− exp

(
−2λxie−βT z

)] ,
∂ℓ (xi;V)

∂λ
=

n

λ
− 2

n∑
i=1

xie
−βT zi +

n∑
i=1

xie
−βT z

1 + exp
(
λxie−βT z

) − n∑
i=1

2xie
−βT z

exp
(
2λxie−βT z

)
− 1

+

n∑
i=1

2xie
−βT z[

exp
(
2λxie−βT z

)
− 1
] {

γ − log
[
1− exp

(
−2λxie−βT z

)]} ,
∂ℓ (xi;V)

∂β0
= 2λ

n∑
i=1

xie
−βT zi + 2λ

n∑
i=1

xie
−βT z exp

(
−2λxie

−βT z
)

1− exp
(
−2λxie−βT z

) − λ

n∑
i=1

xie
−βT z exp

(
−λxie

−βT z
)

1 + exp
(
−λxie−βT z

)
−2λ

n∑
i=1

xie
−βT z exp

(
−2λxie

−βT z
)

[
1− exp

(
−2λxie−βT z

)] {
γ − log

[
1− exp

(
−2λxie−βT z

)]} ,
∂ℓ (xi;V)

∂βl
= 2λzl

n∑
i=1

xie
−βT zi − λzl

n∑
i=1

xie
−βT z exp

(
−λxie

−βT z
)

1 + exp
(
−λxie−βT z

) + 2λzl

n∑
i=1

xie
−βT z exp

(
−2λxie

−βT z
)

1− exp
(
−2λxie−βT z

)
−2λzl

n∑
i=1

xie
−βT z exp

(
−2λxie

−βT z
)

[
1− exp

(
−2λxie−βT z

)] {
γ − log

[
1− exp

(
−2λxie−βT z

)]} .
Setting the nonlinear system of equations I(λ) = 0, I(γ) = 0, I(β0) = 0 and I(β1) = 0 and solving them

simultaneously yields the MLE V̂ = (λ̂, γ̂, β̂0, β̂1)
⊺. To solve these equations, it is usually more convenient to

use nonlinear optimization methods such as the quasi-Newton algorithm to numerically maximize ℓ. Since, we
can not find the explicit formulas for the MLEs of the parameters, we use numerical methods such as the Newton
Raphson method, the Monte Carlo method, the BB algorithm or others.

6.2. Assessing the WTLE-AFT model via a simulation study

We carry out an important study by simulation using the R programming software. In the following, we present the
results obtained by means of numerical method (the method of Newton Raphson). Suppose that the AFT for the
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WTLE distribution is considered. The data is iterated N = 5500 times, with λ = 1.5, γ = 2.5, β0 = 2.90, β1 = 0.45
as values of the parameters. Using BB algorithm (see Ravi (2009)) in R software for calculating the averages of
the simulated values of the MLEs λ̂, γ̂, β̂0, β̂1 parameters and their mean squared errors (MSE), sample sizes are
n = 15, n = 25, n = 45, n = 125, n = 350 and n = 600. Table 9 lists the square mean errors for the parameters’
MLEs (MSE).

Table 9: MLEs
(
λ̂, γ̂, β̂0, β̂1

)
of the parameters and their mean squared errors.

N = 6000 n = 15 n = 25 n = 45 n = 125 n = 350 n = 600

λ̂ 1.55449 1.54081 1.52993 1.52784 1.51009 1.50487
MSE 1.7006× 10−2 4.2651× 10−3 3.625× 10−3 2.1935× 10−3 5.3625× 10−4 4.9527× 10−4

γ̂ 2.55412 2.55401 2.54161 2.53113 2.51418 2.50464
MSE 0.054212 0.048625 0.043218 0.036258 0.021473 0.016895

β̂0 2.92091 1.91660 1.91115 1.90384 1.90217 1.90062
MSE 5.0325× 10−2 4.9586× 10−2 3.3625× 10−3 1.0368× 10−3 8.2658× 10−4 6.3544× 10−4

β̂1 0.46301 0.46001 0.45531 0.45182 0.45081 0.45042
MSE 0.053254 0.049998 7.0325× 10−2 4.9538× 10−2 2.3265× 10−3 1.9502× 10−3

The results obtained from the proposed methods are compelling and statistically meaningful, as demonstrated
in the accompanying table. The performance of the models is not only evaluated through goodness-of-fit measures
but also supported by precise parameter estimation, with relatively low standard errors even under small sample
conditions.

7. Validation of the WTLE-AFT model

Any traditional test, such as Pearson’s chi-square, Kolmogorov-Smirnov statistic, Anderson Darling statistic, and
other statistics, can be used to validate the selection of model employed in analysis in the case of a well-defined
distribution. However, when the parameters are unknown and must be estimated from the sample, the classical
tests are no longer appropriate, and the test statistical distributions rely on the model put forth and the estimation
technique utilised. In case of complete data, various techniques are used to verify the adequacy of mathematical
models to data from observation. The most ommon tests are those based on Pearson’s Chi-square statistics.
Nevertheless, these can not be applied in all situations, especially when the data is censored or when the the
parameters of the model are unknown. Nikulin (1973) and Rao and Robson (1974) each independently presented a
statistic for the whole data that is now known as the NRR statistic. At the limit, this statistic, which is based on the
MLEs on the initial data, likewise exhibits a Chi-square distribution. For more details on the construction of these
statistics, we can see Voinov et al. (2013) and Goual et al. (2019).These methods were used to adapt observations
to the distribution of Lomax inverse Weibull (Goual et al., 2020), the Burr XII inverse Rayleigh model (Goual
et al., 2019), and the Lindley exponentiated model (Goual et al., 2019). In this section, we build a modified chi-
square type test based on the NRR test statistic for the WTLE model. Other works could cover a broad range
of topics including new probability models (Al-babtain et al., 2020), copula-based extensions (Alizadeh et al.,
2018; Mansour et al., 2020c), and regression modeling approaches (Afify et al., 2018; Yousof et al., 2019). Several
studies have introduced generalized distributions such as the transmuted Weibull-G and Lindley-Weibull families,
emphasizing their applicability to real-world data (Cordeiro et al., 2018; Alizadeh et al., 2018). Risk measures like
Value-at-Risk (VaR) and Tail-Value-at-Risk (TVaR) are explored in depth, especially within actuarial science and
financial risk modeling (Mohamed et al., 2024; Yousof et al., 2023d). Theoretical developments include Bayesian
and classical inference methods under censored data scenarios (Elgohari & Yousof, 2020; Rasekhi et al., 2020),
while practical applications span insurance, medicine, and engineering reliability (Yousof et al., 2023; Abonongo
et al., 2025). These works collectively contribute to the advancement of statistical theory and its application in
modeling complex datasets using novel distributions and rigorous validation techniques (Mustafa et al., 2018;
Salah et al., 2020; Goual et al., 2019).
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7.1. The NRR statistic test for the WTLE-AFT model

To test the hypothesis H0 according to which T1, T2, · · · , Tn, an n-sample comes from a parametric family FV(t)

H0 : Pr {Ti ≤ t} = FV(t), t ∈ R,

where V = (V1,V2, · · · ,Vs)
T represents the vector of unknown parameters, Nikulin (1973) and Rao and Robson

(1974) proposed K2 the NRR statistic defined as below. Observations T1, T2, · · · , Tn are grouped in r subintervals
I1, I2, · · · , Ir mutually disjoint Ij =]aj-1; aj ]; where j = 1; r. The limits aj of the intervals Ij are obtained such
that

pj(V) = pj(V; aj−1, aj) =

∫ aj

aj−1

fV(t)dt|( j=1,2,··· ,r),

so

aj = F−1

(
j

r

)
|(j=1,··· ,r−1).

If νj = (ν1, ν2, · · · , νr)T is the vector of frequencies obtained by the grouping of data in these Ij intervals

νj =

n∑
i=1

1{ti∈Ij} |(j=1,...,r).

The NRR statistic is given by

K2(V̂n) = X2
n(V̂n) +

1

n
LT (V̂n)(I(V̂n)− J(V̂n))

−1L(V̂n),

where

X2
n(V) =

(
ν1 − np1(V)√

np1(V)
,
ν2 − np2(V)√

np2(V)
, · · · , νr − npr(V)√

npr(V)

)T

and J(V) is the information matrix for the grouped data defined by

J(V) = B(V)TB(V),

with

B(V) =

[
1

√
p
i

∂pi(V)

∂µ

]
r×s

|(i=1,2,··· ,r and k=1,··· ,s),

then

L(V) = (L1(V), ...,Ls(V))T with Lk(V) =

r∑
i=1

νi
pi

∂

∂Vk

pi(V),

where In(V̂n) represents the estimated FIM and V̂n is the maximum likelihood estimator of the parameter vector.
The K2 statistic follows a distribution of chi-square χ2

r−1 with (r − 1) degrees of freedom.

7.2. Simulation studies under the NRR statistic K2

Consider a sample T1:n where T = T1:n = (T1, T2, · · · , Tn)
T . If these data are distributed in accordance with the

WTLE-AFT model, then P {T1:n ≤ t} = FV(t); with unknown parameters V = (λ, β0, β1)
T , by fitting the NRR

statistic created in the preceding section, a chi-square goodness-of-fit test is created. The MLEs V̂n of the unknown
parameters of the AFT-WTLE model are computed on the initial data. Since, the statistic K2 not dependent on the
parameters, we can therefore use the estimated Fisher information matrix (FIM) In(V̂n). All the components of
the statistic K2, for the AFT-WTLE distribution are provided, therefore K2 can be deduced easily.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



MOHAMED IBRAHIM, H. GOUAL, M. K. KHAOULA, A. H. AL-NEFAIE, A. M. ABOALKHAIR, H. M YOUSOF 15

In order to support the results obtained in this work, a numerical simulation is performed. Therefore, in
order to test the null hypothesis H0 of the AFT-WTLE model, we calculated 5500 sample data simulations
(n = 15, n = 25, n = 45, n = 125, n = 350 and n = 600) from AFT-WTLE distribution, after calculating the
value of the criterion statistic K2, we count the number of rejected cases of the null hypothesis H0. When
K2 > χ2 (k = r − 1), the significance is different level α (1%, 5%, 10%). The simulation results of the rejected
level of K2 and its theoretical value are shown in Table 10 below.

Table 10: Empirical levels K2 and corresponding theoretical levels.
N = 6000 n = 15 n = 25 n = 45 n = 125 n = 350 n = 600
α = 0.01 0.0185 0.0164 0.0152 0.0132 0.0119 0.0112
α = 0.05 0.0531 0.0519 0.0513 0.0509 0.0504 0.0502
α = 0.1 0.1302 0.1213 0.1101 0.1093 0.1031 0.1021

The results show that the computed empirical level closely matches the corresponding theoretical level. Based on
this, we conclude that the proposed test is highly appropriate for the AFT-WTLE distribution. This finding supports
the claim that the K2 statistic asymptotically follows a chi-squared distribution with degrees of freedom given by
k = r − 1.

7.3. Applications to real data

We take into account the following real data sets and confirm the presumption that their distribution is consistent
with the AFT-WTLE model in order to demonstrate the applicability of the proposed modified chi-square goodness-
of-fit test.

7.3.1. Electric insulating fluid data The failure times of 76 electrical insulating fluids tested at voltages ranging
from 26 to 38 kilovolts are provided in Lawless (2003), from which this information was derived. Bagdonavicius
and Nikulin (2011) used this data and examined its fit with the exponential and Weibull AFT power-rule models.
In this part, we evaluate how well these data fit our suggested AFT-WTLE model. The data are:

Voltage level (zi) ni Breakdown time xi
26 3 5.79,1579.52,2323.7
28 5 68.85,426.07,110.29,108.29,1067.6
30 11 17.05,22.66,21.01,175.88,139.07,144.12,

20.46,43.40,194.90,47.30,7.74
32 15 0.40,82.85,9.88,89.29,215.10,2.75,0.79,

15.93,3.91,0.27,0.69,100.58,27.80,13.95,53.24
34 19 0.96,4.15,0.19,0.78,8.01,31.75,7.35,6.50,8.27,33.91,

32.52,3.16,4.85,2.78,4.67,1.31,12.06,36.71,72.89
36 15 1.97,0.59,2.58,1.69,2.71,25.50,0.35,0.99,

3.99,3.67,2.07,0.96,5.35,2.90,13.77
38 8 0.47,0.73,1.40,0.74,0.39,1.13,0.09,2.38

1- In case of φ (z) = z log-linear assumption:
Using R statistical software (the BB package) we find the values of the MLEs of AFT-WTLE distribution

parameters :
λ̂ = 0.3524, γ̂ = 0.6258, β̂0 = 1.358, β̂1 = −0.10958,

we choose r = 8 intervals and the estimated FIM can be expressed as :

I
(
V̂
)
=

 1.30254 −1.36201 2.01472 0.00254
0.95257 −3.00265 −4.32002

0.95387 0.85631
2.95002

 ,

and then the NRR statistic : K2 = 17.003519. For the critical value : α = 0.01, we find K2 < χ2
0.01 (7) =

18.4753.
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So, we can assume that in this case, electric insulating fluid data of Lawless (2003) correspond appropriately to
the AFT −WTLE model.

2- In case of φ (z) = log (z) power-rule assumption:
We find the values of the MLEs of the AFT-WTLE distribution parameters:

λ̂ = 0.8834, γ̂ = 0.13590, β̂0 = 0.63574, β̂1 = 0.30214,

we take r = 8 intervals and the estimated FIM can be:

I
(
V̂
)
=

 0.03254 0.32658 −4.00215 0.90247
1.02548 1.032964 −3.65891

1.03254 0.11511
0.93578

 ,

the NRR statistic is K2 = 11.205881. For the critical values : α = 0.01, α = 0.05 and α = 0.1, we find

K2 < χ2
0.01 (7) = 18.4753

K2 < χ2
0.05 (7) = 14.0671

K2 < χ2
0.1 (7) = 12.0170

respectively.

So, we can assume that electric insulating fluid data of Lawless (2003) correspond appropriately to the
AFT −WTLE model in case of power-rule assumption.

3- In case of φ (z) = 1/z arrehnius model:

We fit these data by the AFT-WTLE model. Using R statistical software (the BB package) we find the values of
the MLEs of the AFT-WTLE distribution parameters :

λ̂ = 2.03654, γ̂ = 0.96895, β̂0 = 3.00625, β̂1 = −4.03269,

we take r = 8 intervals and the estimated FIM expressed as :

I
(
V̂
)
=

 1.02547 −8.03254 −5.09573 1.00021
0.32658 0.99996 0.95174

2.00514 −1.03254
1.03054

 ,

the NRR statistic is: K2 = 19.3475123. For the critical value : α = 0.01, we find K2 > χ2
0.01 (7) = 18.4753.

In case of arrehnius model, we can assume that electric insulating fluid data of Lawless (2003) do not correspond
appropriately to our model.

7.3.2. Body fat data set The data of Neter et al. (1996) provides information on (n = 20) body fat, triceps skinfold
thickness, thigh circumference, and mid-arm circumference for twenty healthy females aged 20 to 34. The data is :

zi1 (triceps skinfold measurement) zi2 (thigh circumference) xi(body-fat)
19.5, 24.7, 30.7 43.1, 49.8, 51.9 11.9, 22.8, 18.7
29.8, 19.1, 25.6 54.3, 42.2, 53.9 20.1, 12.9, 21.7
31.4, 27.9, 22.1 58.5, 52.1, 49.9 27.1, 25.4, 21.3
25.5, 31.1, 30.4 53.5, 56.6, 56.7 19.3, 25.4, 27.2
18.7, 19.7, 14.6, 29.5 46.5, 44.2, 42.7, 54.4 11.7, 17.8, 12.8, 23.9
27.7, 30.2, 22.7, 25.2 55.3, 58.6, 48.2, 51.0 22.6, 25.4, 14.8, 21.1
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For φ (z) = z as a log-linear assumption: We fit these data by the AFT-WTLE model. Using R statistical software
(the BB package) we find the values of the MLEs of AFT-WTLE distribution parameters :

λ̂ = 3.08213, γ̂ = 0.80064, β̂0 = 0.63254, β̂1 = −0.06637, β̂2 = 0.08475.

we take r = 4 intervals and the estimated FIM expressed as

I
(
V̂
)
=


0.12354 −5.12478 0.36985 0.14256 1.02685

1.02458 −3.95126 −2.51984 0.32647
1.92501 1.75391 0.62847

0.84457 0.74125
0.62359

 ,

and then the NRR statistic : K2 = 6.0032145. For different critical values : α = 1%, α = 5% and α = 10%, we
find

K2 < χ2
0.01 (3) = 11.3448,K2 < χ2

0.05 (3) = 7.8147

K2 < χ2
0.1 (3) = 6.2513,

respectively.
We can assume that, the body fat dat can be adjusted properly to an AFT-WTLE model, in case of a log-linear

assumption.

7.3.3. Johnson’s data set Johnson (1996) used a dataset with a response variable (the estimated percentage of body
fat) and 13 continuous covariates (age, weight, height and 10 measurements of the body circumference) in n = 252
males to illustrate some problems with multiple regression analysis. The aim was to predict percentage body fat
from the covariates. These dataset is available on the ’mfp’ package in R software.

Variable Name Details Variable Name Details
z1 age Age (years) z8 thigh Circumference (cm)
z2 weight Weight (lb) z9 knee Circumference (cm)
z3 height Height (in) z10 ankle Circumference (cm)
z4 neck Circumference (cm) z11 bicepes Circumference (cm)
z5 chest Circumference (cm) z12 forearm Circumference (cm)
z6 ab Circumference (cm) z13 wrist Circumference (cm)
z7 hip Circumference (cm) x pcfat Body fat (%)

In our case, we used two covariates density (Density determined from underwater weighing gm/cm3) and age
(years). We consider the log linear assumption (φ (z) = z) and we fit this data by the AFT-WTLE model. The
values of the MLEs parameters :

λ̂ = 1.03225, γ̂ = 0.73195, β̂0 = −1.0032, β̂1 = 0.45317, β̂2 = 0.26346,

We take r = 15 intervals and the estimated FIM I
(
V̂
)

expressed as :

I
(
V̂
)
=


2.03147 −1.03024 −8.32659 0.74623 −9.30120

0.00314 0.21485 2.00003 −1.33623
1.32486 −4.03162 3.03014

1.35748 0.96853
0.98631

 ,

The NRR statistic test: K2 = 20.3614902. For different critical values : α = 0.01, α = 0.05 and α = 0.1, we find
K2 < χ2

0.01 (14) = 29.1412,K2 < χ2
0.05 (14) = 23.6847 and K2 < χ2

0.1 (14) = 21.06414, respectively.
One can affirm that our proposed AFT-WTLE model with the log-linear assumption (φ (z) = z) can be an

appropriate distribution of this data.
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8. Censored case

8.1. Maximum likelihood estimation

The likelihood function of the right-censored AFT −WTLE is

L (x;V) =

n∏
i=1

f (xi;V) =

n∏
i=1

λδi (xi;V)S (xi;V) , δi = 1{Ti≤Ci}

=

n∏
i=1

 2λγ exp
(
λxe−βT z

)
[
exp

(
λxe−βT z

)
− 1
] [

1 + exp
(
λxe−βT z

)]2
log
[
1− exp

(
−2λxe−βT z

)]


δi

×

{
1− γ

γ − log
[
1− exp

(
−2λxe−βT z

)]} .

The log-likelihood function is

ℓ (x;V) =

n∑
i=1

δi log (2γλ) + λ

n∑
i=1

δixie
−βT z −

n∑
i=1

δi log
[
1− exp

(
λxie

−βT z
)]

−2

n∑
i=1

δi log
[
1 + exp

(
λxie

−βT z
)]

−
n∑

i=1

δi log
{
γ − log

[
1− exp

(
−2λxie

−βT z
)]}

+

n∑
i=1

log

[
1− γ

γ − log
[
1− exp

(
−2λxie−βT z

)]] .
=

∑
i∈F

log (2γλ) + λ
∑
i∈F

xie
−βT z −

∑
i∈F

log
[
1− exp

(
λxie

−βT z
)]

− 2
∑
i∈F

log
[
1 + exp

(
λxie

−βT z
)]

+
∑
i∈F

log

[
1− γ

γ − log
[
1− exp

(
−2λxie−βT z

)]]−∑
i∈F

log
{
γ − log

[
1− exp

(
−2λxie

−βT z
)]}

+
∑
i∈C

log

[
1− γ

γ − log
[
1− exp

(
−2λxie−βT z

)]] ,

where F and C denote the sets of uncensored (δi = 1) and censored (δi = 0) observations, respectively.
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The score functions for the parameters λ, γ, β0 and β1 are given by

∂ℓ (xi; γ, λ, β)

∂γ
=

r

γ
−
∑
i∈C

1

γ − log
[
1− exp

(
−2λxie−βT z

)]
∂ℓ (xi; γ, λ, β)

∂λ
=

r

λ
+
∑
i∈F

L(X)

[
1

1− exp
(
λxie−βT z

) − 2

1 + exp
(
λxie−βT z

)]

−2
∑
i∈F

xie
−βT z exp

(
−2λxie

−βT z
)

[
1− exp

(
−2λxie−βT z

)]
×M (x)

−2γ
∑
i∈C

xie
−βT z[

exp
(
2λxie−βT z

)
− 1
]
×M (x)× [γ −M (x)]

∂ℓ (xi; γ, λ, β)

∂β0
= −λ

∑
i∈F

xie
−βT z − λ

∑
i∈F

L(X)

[
1

1− exp
(
λxie−βT z

) − 2

1 + exp
(
λxie−βT z

)]

+2λ
∑
i∈F

xie
−βT z exp

(
−2λxie

−βT z
)

[
1− exp

(
−2λxie−βT z

)]
×M (x)

−2λγ
∑
i∈C

xie
−βT z[

exp
(
2λxie−βT z

)
− 1
]
×M (x)× [γ −M (x)]

,

∂ℓ (xi; γ, λ, β)

∂βl
= −λzl

∑
i∈F

xie
−βT z − λzl

∑
i∈F

L(X)

[
1

1− exp
(
λxie−βT z

) − 2

1 + exp
(
λxie−βT z

)]

+2λ
∑
i∈F

zl
xie

−βT z exp
(
−2λxie

−βT z
)

[
1− exp

(
−2λxie−βT z

)]
×M (x)

−2λγ
∑
i∈C

zl
xie

−βT z[
exp

(
2λxie−βT z

)
− 1
]
×M (x)× [γ −M (x)]

where r is the number of failures.

8.1.1. Calculation of the matrix Ŵ The elements of the estimated matrix Ŵ defined by

Ŵl =

k∑
j=1

ĈljÂ
−1
j Ẑj , l = 1, 2, 3 ; j = 1, 2, ..., k.

are obtained as follow :
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Ĉ1j =
1

n

k∑
i:Xi∈Ij

δi
M (xi,V)

1 + γM (xi,V)
,

Ĉ2j =
1

n

k∑
i:Xi∈Ij

δi

{
1

λ
− L (xi,V)

M (xi,V) [1 + γM (xi,V)]

}
,

Ĉ3j =
1

n

k∑
i:Xi∈Ij

δi

{
λL (xi,V)

M (xi,V) [1 + γM (xi,V)]
− 1

}
,

Ĉ4j =
1

n

k∑
i:Xi∈Ij

δi

{
λL (xi,V)

M (xi,V) [1 + γM (xi,V)]
− zi

}
,

Where,

L (x,V) = x exp
(
λxie

−βT z
)
e−βT z,

M (xi,V) = log
[
1− exp

(
−2λxe−βT z

)]
,V = (γ, λ, β0, β1) .

8.2. Simulation of the censored MLEs of the parameters for the AFT-WTLE distribution

In this section, we conduct a comprehensive simulation study to evaluate the performance of the maximum
likelihood estimators (MLEs) for the parameters of the Accelerated Failure Time model based on the quasi Burr-
Hatke exponential (AFT-WTLE) distribution. The simulation process involves generating synthetic datasets under
controlled conditions and analyzing the accuracy and precision of the MLEs for varying sample sizes. To begin, we
assume that the AFT-WTLE distribution is the underlying model for the data generation process. The simulation
is repeated N = 5500 times to ensure robustness and reliability of the results. The true parameter values used in
the simulation are set as λ = 0.45 and γ = 0.75, representing the scale and shift parameters of the distribution,
β0 = 1.25 , corresponding to the intercept term in the regression model, β1 = 0.68 , representing the coefficient
of the explanatory variable. For each replication, we generate synthetic datasets with six different sample sizes:
n = 15, n = 25, n = 45, n = 125, n = 350, and n = 600. These sample sizes span a wide range, from small to
large datasets, allowing us to examine how the performance of the estimators evolves as the sample size increases.
The primary objective of the simulation study is to compute the mean simulated MLEs for the parameters λ, γ,
β0, and β1 , along with their corresponding MSEs. The mean simulated MLEs provide insights into the bias of
the estimators, while the MSEs quantify both the bias and variability of the estimates, offering a comprehensive
measure of their accuracy. Table 11 below gives the censored MLEs

(
λ̂, γ̂, β̂0, β̂1

)
of AFT-WTLE’s parameters

and their mean squared errors.

Table 11: The censored MLEs
(
λ̂, γ̂, β̂0, β̂1

)
of

AFT-WTLE’s parameters and their mean squared errors.
N = 5500 n = 15 n = 25 n = 45 n = 125 n = 350 n = 600

λ̂ 0.46109 0.45522 0.45502 0.45117 0.45016 0.45006
SME 3.625× 10−2 2.1547× 10−2 1.8524× 10−2 4.5247× 10−3 2.6772× 10−3 2.5124× 10−3

γ̂ 0.75553 0.75411 0.75209 0.75118 0.75012 0.75003
SME 0.05524 0.05501 0.05486 0.05304 0.05271 0.05108

β̂0 1.26345 1.26003 1.25367 1.25308 1.25092 1.25034
SME 0.054328 0.053194 0.048965 0.43781 0.038847 0.021953

β̂1 0.69215 0.69002 0.68423 0.68231 0.68106 0.68041
SME 0.052413 0.051467 0.050001 0.048652 0.036158 0.021548

These findings underscore the reliability of the MLEs for the AFT-WTLE model across different sample sizes
and parameter settings. The simulation study not only validates the theoretical properties of the estimators but
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also provides practical guidance on their performance in real-world applications. The results demonstrate that
the proposed AFT-WTLE model is well-suited for analyzing survival data, particularly when the sample size is
sufficiently large to ensure accurate and stable parameter estimates.

8.3. Simulated distribution of K2
n statistic for the right-censored AFT-WTLE distribution

We compute 6000 simulations of samples data (sample sizes : n = 15, n = 25, n = 45, n = 125, n = 350 and
n = 600) from AFT −WTLE distribution, after calculating the values of criteria statistics K2

n, we count the
number of rejection’s cases of the null hypothesis H0, when K2

n > χ2
α (k) , with different significance level α

(α = 1%, 5%, 1%). The results of simulated levels of K2
n against their theoretical values are shown in the following

Table 12.

Table 12: Empirical levels K2
n and corresponding theoretical levels.

N = 6000 n = 15 n = 25 n = 45 n = 125 n = 350 n = 600
α = 1% 0.01641 0.01501 0.01435 0.01321 0.01045 0.01003
α = 5% 0.05387 0.52911 0.05198 0.05087 0.05023 0.05014
α = 10% 0.15612 0.14857 0.13012 0.11968 0.10096 0.10046

As can be seen, the calculated empirical level K2
n values are extremely similar to the equivalent theoretical level

value. Consequently, we draw the conclusion that the suggested test is excellent for the AFT-WTLE distribution.

8.4. Applications to real censored data

We take into account the following real data sets and confirm the presumption that their distribution is consistent
with the AFT-WTLE model in order to demonstrate the applicability of the proposed modified chi-square goodness-
of-fit test.

8.4.1. Motor data These reliability datasets, accessible in the survival package of R software, record the time to
failure (or breakdown) of motor insulation systems under varying temperature conditions. The main goal of this
data is to examine how temperature affects the lifespan and durability of motor insulation, which is essential for
understanding the thermal degradation mechanisms that contribute to system failures. Such datasets are commonly
utilized in reliability engineering and survival analysis to model failure times, evaluate risks, and enhance material
design for better performance under thermal stress. Below, Table 13 provides a summary of the motor dataset.

Table 13: The breakdown of motor data set.
z1 (temperature) xi (time of Breakdown) δi (censor)

150 8046, 8064, 8064, 8064, 8064, 8046, 8064, 8064, 8064, 8064 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
170 1764, 2772, 3444, 3542, 3780, 4860, 5196, 5448, 5448, 5448 1, 1, 1, 1, 1, 1, 1, 0, 0, 0
190 408, 408, 1344, 1344, 1440, 1680, 1680, 1680, 1680, 1680 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
220 408, 408, 504, 504, 504, 528, 528, 528, 528, 528 1, 1, 1, 1, 1, 0, 0, 0, 0, 0.

In case of φ (z) = z log-linear assumption and using R statistical software (the BB package) we find the values
of the censored MLEs of AFT-WTLE distribution parameters :

λ̂ = 0.25491, β̂0 = 2.61542, β̂1 = 4.91572,

we choose r = 15 intervals and the estimated FIM can be expressed as :

I
(
V̂
)
=

(
0.002154 0.95782 −2.31574

0.95354 −1.300024
0.632591

)
,

and then the modified NRR statistic : K2 = 20.930154. For the critical value : α = 0.01, we find
K2 > χ2

0.01 (14) = 29.1412.
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9. Conclusions

This study introduced a novel Accelerated Failure Time (AFT) model based on the Weighted Topp-Leone
exponential (WTLE) distribution, offering a robust framework for analyzing censored and uncensored survival
data. The proposed AFT-WTLE model demonstrated superior flexibility in capturing hazard rate shapes, validated
through rigorous goodness-of-fit tests and empirical applications to real-world datasets, including electric
insulating fluid failure times and body fat percentage measurements. Maximum likelihood estimation (MLE),
Cramér-von Mises (CVM), and Anderson-Darling (ADE) methods were employed to estimate model parameters,
with simulation studies confirming their accuracy and consistency across varying sample sizes. Notably, the
RTADE method emerged as the most reliable estimator under simulated conditions, balancing precision and
adaptability in risk dynamics. The model’s applicability extended to risk analysis, where it effectively quantified
Value-at-Risk (VaR), Tail VaR (TVaR), and other risk metrics, highlighting MLE’s stability for conservative
risk estimates and ADE/CVM’s sensitivity to tail risks. For censored data, the modified NRR chi-square test
validated the AFT-WTLE’s validity, with empirical levels closely aligning with theoretical thresholds. Real-world
applications, such as motor failure data and Johnson’s body fat dataset, underscored the model’s practical utility in
actuarial, biomedical, and engineering contexts. Furthermore, the study addressed computational challenges via the
BB algorithm, enabling efficient parameter optimization. Future work could explore extensions to handle interval-
censored data or incorporate time-varying covariates. The AFT-WTLE model bridges a critical gap in survival
analysis by integrating flexible baseline hazards with robust risk assessment tools, offering valuable insights for
researchers in reliability engineering, healthcare analytics, and financial risk management.
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