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Abstract This paper deals with the optimal risk management strategies for an insurer with a diffusion approximation of
dependent compound Poisson process who wants to maximize the expected utility by purchasing proportional reinsurance
and managing reinsurance counterparty risk with investment and he/she can invest in the financial market and in a risky asset
such as stocks. It is assumed that this dependent risk model consists of the constant reinsurance premium rate, combination
of the number of claims occurring by policyholders within a finite time, and perturbed by correlated standard Brownian
motions, where the price of the risk-free bond is described by a stochastic differential equation. We use the alternative real
measure technique to derive the optimal strategies and solution of the associated Hamilton-Jacobi-Bellman equation for the
optimization problem which is formed by the expectation of combination of financial market factors and an exponential
utility function. We prove the verification theorem to guarantee the optimal strategy. Finally, some numerical illustrations
are presented to analyze our theoretical results and investigate the sensitivity of optimal strategies on some parameters.
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1. Introduction

The study of optimal reinsurance and investment has been an active field over the past three decades. The researches
in actuarial science and mathematical finance belongs to analysis and optimisation the investment returns of
insurance companies including ruin probabilities, dividend payment, reinsurance, and investment. The level of
development of insurance and the overall economy are interlinked and mutually reinforced. The role of insurance in
economic development is highlighted by the fact that insurance promotes economic development while maintains
social stability. In the insurance market, insurers improve the economic efficiency of the system by spreading
individual risks. Additionally, the insurance companies might face the risk of making substantial claim payments in
a short period. In the event of major disasters, they may not be able to cover excessive losses. Therefore, reinsurance
is a powerful tool for insurance companies to share some of their losses, control their liability to some extent, and
reduce the risks involved. In the reinsurance market, by paying reinsurance fees, the insured business is partially
transferred to other insurers. As reinsurance is for insurance, reinsurance is a very important part of the overall
insurance system. on the cash flows created by their insurance portfolio, reinsurance can also function as risk
management and a financial decision. Optimal reinsurance and investment problems have been widely investigated
under different criteria, especially through expected utility maximization, the mean variance criterion, and ruin
probability minimization. In the literature, most optimal strategies with investment and reinsurance dynamic were
studied under the assumption of independent risks. However, most of the portfoilios of insurance companies in
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A. BAZYARI 1

practice are often dependent on each other in some way.

Currently, the main approach of dealing with model uncertainty is the robust control approach developed by [1]. The
fundamental idea behind this method lies in that the decision-maker takes the reference model as a starting point,
and she knows that the reference model cannot describe the real insurance or financial market correctly. Based on
the above approach, [2] considered a robust optimal reinsurance and investment problem under the risk stochastic
volatility model for an insurer with ambiguity aversion, the closed-form expression of the optimal strategy is
obtained under the objective of maximizing the expected exponential utility. [3] investigated the optima investment
and reinsurance problem with more generally multiscale stochastic volatility. When the price process of the risky
asset satisfies constant elasticity of variance model, [4] derived the optimal investment and proportional reinsurance
strategies. To investigate the influence of the misspecification for jump parameter on the optimal strategy of the
insurer, [5] considered the robust optimal excess-of-loss reinsurance and investment strategies for the model with
jumps. Under the mean-variance criteria, [6] obtained the robust optimal reinsurance and investment strategies with
a benchmark. [7] derived the robust equilibrium reinsurance—investment strategies with jumps in the framework of
game theory.

[8] considered the robust optimal reinsurance-investment strategy selection problem with price jumps and
correlated claims for an ambiguity-averse insurer and obtained closed-form solutions for the robust optimal
reinsurance—investment strategy and the corresponding value function by using the stochastic dynamic
programming approach. [9] analyzed a optimal reinsurance and investment problem in a model with default risks
and jumps for a general company which holds shares of an insurer and a reinsurer. Applying stochastic dynamic
programming approach, they established the robust Hamilton-Jacobi-Bellman (HJB) equations for the post-default
case and the pre-default case, respectively. [10] studied the optimal excess-of-loss reinsurance contract between
an insurer and a reinsurer in a dynamic risk model and obtained the simultaneous equilibrium strategy in this
reinsurance dynamic risk setting using the objective functions of insurer and reinsurance.

In the literature mentioned above, the optimal reinsurance or/and investment problems are investigated under the
risk model with only one business for an insurer. To the best of our knowledge, there is little research on the robust
optimal decision-making problem under the multiple dependent risks for an insurer. Many insurance companies
have two or more claims occurring by policyholders within a finite time, and most of them are not independent of
each other due to the risk of suffering from a common claim shock. In this structure of risk model, the investigation
of risk management strategies is the key point. Thus, many scholars begin to investigate the optimal strategies
under the multivariable dependent risks.

For example, [11] firstly converted the two-dimensional compound Poisson reserve risk process into a two-
dimensional diffusion approximation process, and derived the optimal reinsurance strategy to minimize the ruin
probability of the insurer. [12] obtained the optimal proportional reinsurance strategy when the surplus of insurance
company is described by a two-dimensional dependent compound Poisson process and its diffusion approximation,
respectively. Meanwhile, [13] extended the work of [12] to the risk model with multiple dependent classes of
insurance business. [14] investigated the optimal reinsurance strategy with common shock dependence based on
mean-variance criteria. Later, [15] extended the model of [14] to the case that the surplus can be invested in the
financial market, and both the optimal investment and reinsurance strategies are obtained.

In this paper, we focus on the effect of uncertainty about the diffusion risk arising from risky asset and surplus
process of the insurer, and consider the robust optimal investment and reinsurance problem with multiple dependent
risks. We assume that the insurer adopts proportional reinsurance to disperse risk. Refer to [16] the reinsurance
premium is calculated under the generalized mean-variance premium principle, which includes the expected value
principle and the variance principle as special cases. The surplus of the insurance company can be invested in
the financial market consisting of one risk-free asset and a risky asset or a market index. Inspired by [17] and
[18] the price process of the risky asset is assumed to satisfy a square-root factor process, which can describe the
randomness of volatility. We assume that the insurer is both risk and ambiguity averse. Thus, under the objective
of maximizing expected exponential utility, using the method of robust optimal control, we obtain the closed-form
expressions of optimal investment and reinsurance strategies and corresponding value function.

Our goal in this paper is to depart from the common assumption of independent risks occurring by policyholders
which are linked by a common variation (or shock) in the parameters of each line’s risk model by a counting
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2 RISK MANAGEMENT STRATEGIES IN A COMPOUND POISSON MODEL

process within a finite time to obtain the explicit expressions for optimal strategies of dependent risk model using
the alternative real measure. Motivated by the above-mentioned literatures, considering that maximizing the wealth
process of insurance company with a dependent structure where the self-financing insurance company is allowed to
invest a risk-free bond and a risky asset under the reinsurance premium rate, using a set of progressively measurable
process is embedded in this paper and thus, it is necessary to take the management of the insurer into account.
Although research on the optimal risk management strategies problem has been rapidly increasing in recent years,
none of these contributions deals with finding the optimization problem with consideration of the several dependent
risks occurring by policyholders. The main novelty of this paper is to consider the optimal risk management
strategies to maximize the wealth process of insurance company according to the dependent compound Poisson
process whose the optimization problem is the expectation of combination of the financial market factors and an
exponential utility function contains a set of progressively measurable process. To find the optimal strategies, we
consider the risk model and its parameters under an alternative real measure.

The rest of this paper is organized as follows. In Section 2, we present the well-known compound Poisson process
and describe the details of financial maket and dependent structure of risk model. Moreover, we exhibit the
reformulation of the surplus process in investment and reinsurance dynamic strategies and give the framework
of optimization problem which is formed by the combination expectation of financial market factors and an
exponential utility function. Section 3 is devoted to solve the HIB equation related to our optimal control problem
with exponential objective function and progressively measurable process, to find the explicit expressions for the
given strategies in the dependent risk model. The verification theorem is proved in Section 4. In Section 5, we
present the numerical examples and offer detailed interpretations of model parameters effects on investment and
reinsurance strategies of the outcomes. Concluding remarks are provided in Section 6.

2. Model formulation and the optimization problem

The main mission of insurance companies is to market insurance contracts and provide risk protection to
policyholders. However, with continuous evolution of the economy and the subsequent accumulation of wealth,
maybe there are implications for insurers. In this study, we describe the modified compound Poisson process with a
dependent structure and give the optimization problem faced by a value-maximizing insurance company that seeks
to enhance its profitability (value) through dynamic risk management strategies. To maximize its profitability,
the company dynamically adjusts its dependent risk exposure through a risky asset and one risky asset under
the reinsurance premium rate. The optimization problem is to determine the optimal investment and reinsurance
strategies that maximize the company profitability. In the following section, we will employ a dependent compound
Poisson process and present the mathematical set-up that formalizes this optimization problem and provide a
framework for analysing the optimal strategies.

2.1. Dependent compound Poisson process and financial maket

Let us start with a Cramér-Lundberg model, which is a classical actuarial model used to analyse the risk of an
insurance portfolio. The company experiences two opposing cash flows: incoming premiums from the policyholder
and outgoing claims. Let 7" be a finite-time index, where 1" < oo is the terminal time of decision making. In the
sequel, we will always work on the probability space (2, F, P), which is endowed with the information filtration
F = {Fi}tejo,r) Which carries all stochastic quantities and right continuous, where P is a real-world probability
measure.

Let us start with a compound Poisson process, which is a classical actuarial model used to analyze and management
the risks of an insurance portfolio. The insurance company actives in a continuously evolving environment, where
it receives premiums continuously and faces dependent claims modeled by a compound Poisson process. The
main application of this risk model is in casualty insurance, health insurance and so on. We suppose that the
insurer has k£ > 2 dependent policyholders in its portfolio and he/she manages them simultaneously. Let X",
i=1,2,..., be the claim amount random variable occurring by the mth policyholder with common distribution
function F,,(x) and Poisson process N,,(¢) with intensity parameter A,,, m = 1,2,...,k, and assume that the
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A. BAZYARI 3

k policyholders are linked by a common variation in the parameters of each line’s risk model by the counting
process N(t) within the interval time [0,¢] as a Poisson process with intensity parameter \. Moreover, the
processes Ny (t), Na(t),..., Ni(t), and N(¢) are k + 1 independent Poisson processes with intensity parameters
A1, A2,..., A and A, respectively. The first-order and second-order moments of claim random variable X",
i =1,2,...,are denoted by y1,, = E(X!™) and v,, = E((X[")?), respectively. According to the Cramér-Lundberg
model (also known as compound Poisson model or classical risk model), the surplus process dX(t) of a
homogeneous insurance portfolio can be described by the modified risk process

ko Nm(®)+N(D)
dX(t)=cdt— > d( Y XM, t>0, (1)
m=1 i=1

with an initial deterministic surplus X (0) = u is the positive initial reserve, where N, (t) + N(t) represents the
total claim number for the mth policyholder in the insurance portfolio at time interval [0, ¢], the positive amount ¢
corresponds to the premium income rate, which is calculated according to the expected value premium principle
with positive safety loading 6 as

hE

c=140)( > pm(Am+N), )

m=1

where S, (t) = Zij\;"{(tHN(t) X" is the aggregate claim process generated from mth insured. Therefore, the risk
model (1) can be rewritten as

dX(t) = cdt — > dSm (1), t>0. 3)

Now, we approximate the compound Poisson risk process in terms of reinsurance contract with the standard
Brownian motion and constant reinsurance premium. To spread risk in the portfolio and protect from potential large
claims, it is assumed that the insurer is allowed to purchase proportional reinsurance with a constant reinsurance
premium rate. More precisely, we allow the insurance company to continuously reinsure a fraction of its claim
with the retention level g,,(t) € [0,1], ¢ € [0, T for mth policyholder at time ¢. If for the mth policyholder the
risk exposure of the insurance company is fixed, then the cedent pays 100¢,,(t)% of each claim while the rest
100(1 — ¢ (t))% is paid by the reinsurer. Therefore, 1 — g,, () is the proportional reinsurance to the reinsurance
company associated to the mth policyholder.

Let R?(t) be the proportional reinsurance risk process associated with the strategy q(t) = (q1 (), g2(t), - . ., qi(t)),
and for > 0, nq(t) be the constant reinsurance premium rate at time ¢, then the corresponding risk process (3) for
insurer in term of dynamic proportional reinsurance becomes:

dX(t) = (c—nq(t)) = >  qm(t)dSm(1), t>0. @)

-

From Grandell (1991), the compound Poisson S,,(t), m = 1,2,...,k, can be approximated by the following
Brownian motion:

S (t) = apmdt + CudWin(t), >0, 5)

With @y = fm (A + ), and 2, = vy (A + X), where W;(t) and W;(t), i # 4, i,j = 1,2,..., k, are standard
Brownian motions with the correlation coefficient

T NBEXD), /(g + VE(x2) GG
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4 RISK MANAGEMENT STRATEGIES IN A COMPOUND POISSON MODEL

where p;; € [—1, 1]. From [12] the diffusion approximation of the surplus process is given by

k
dX(t) = (c—mnq(t ZaQO
m=1
k k .
H(D R M+ Muipsai(t)g; () *dBu(t), 6)
m=1 i#£]

where B (t) is a standard Brownian motion.

To manage the reinsurance risk, selection of the reinsurance premium rate in relation (6) is so important. We assume
that the insurance company can choose the reinsurance premium rate policy according to [16] by the following
generalized mean-variance principle

k

nq(t N[ am(1—am(®) + BF(a(1))], (7
with § > 0 and 8 > 0, where f(q(t)) = >k _, ¢2 (1 — gm(t) ) + Z#J (1—q; () (1 = Apaprjq; ().

2.2. Dynamics portfolio choice of financial market

We assume that the standard assumptions of continuous-time financial models hold, that is, (1) continuous trading
is allowed, (2) no transaction cost or tax is involved in trading, and (3) assets are infinitely divisible. For simplicity,
we assume that there are only two assets in the financial market: a risk-free bond and a risky asset, namely stocks,
in this section. The risk-free interest rate is assumed to be non-negative in the model. The price of the risk-free
bond follows

dR(t) = rR(t)dt

where R(¢) is the price of the risk-free bond at time t, and r is the risk-free interest rate, which is assumed to be
constant > 0. In addition, the price process of stock at time ¢ is described by the following stochastic differential
equation

dP(t) = P(t)(k(t)dt + 7(t)dBs(t)), ®)

where «(t) and 7(t), for ¢ € [0, T, are the expected instantaneous rate of return of the stock rate and volatility of
the stock price rate, respectively, and By(¢) is a standard Brownian motion defined on the complete probability
space (2, F, P). As given in [17], we denote the market price of risk by the fraction

k(t) —r
0(t) = 0,T 9
( ) T(t) ) E [ Y ]7 ( )
and assume that the market price of risk process (9) is related to a stochastic factor process {c(t) }.e[0,1) as
=1Va(t), te0,T], ~eR\{0}, (10)

where the stochastic factor process {a(t)}+cjo,7) given in (10) satisfies the following affine-form mean-reverting
square root model

da(t) = a(b— a(t))dt + \/a(t) (l1dBa(t) 4 l2dBs(t)),
Oz(O) = O > 0,

where a, b, I; and [, are all positive constants and B3(t) is an other standard Brownian motion. Throughout this
paper, we assume that the three Brownian motions By (t), Bz (t), and Bs(t) are mutually independent. Remark
1. To provide the dynamics wealth process with an unique state variable and a tractable reformulation of the
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optimization problem, we assume that in the price process of risky asset model (8), for increasing rate {£() }+c[o,7]
and volatility rate {7 () };c[0,1), at least one of these two factors is stochastic process and simultaneously related to

th process {c(t)}+c[0,7) Which satisfies the equality K(Tt()t;T = vy/a(t).

Beside proportional reinsurance, the insurance companies have two types of investments at time ¢: risky assets
(such as securities or funds) and risk-free assets (fixed-rate income investments). Here, 7(¢) denotes the amount
of insurance company invested in risky securities, According to [19] assumption, the investment amount can be
either positive or negative, that is, —oo < 7(¢) < oco. A negative investment amount indicates a short position,
while a positive amount indicates a long position. In our risk optimization problem, we find a pair of estimator for
investment and reinsurance strategy s(t) = ((t),q(t)), t € [0,T]. The dynamics wealth process associated with

strategy s(t) is given by

k k

dx*(t) = (c—nq(t Z A () dt + Z CRam () + > Mg ai(t)g; (1)) 4By (1),
=1 m=1 i#£]
P(t) dR(t)
+m(t )T (X3(t) — W(t))m
k
= (c—mnq(t) - Z AmGm () + 7(t) (k(t) — ) +rU°(t))dt
k k
H(D R M+ Muipsai(t)g; (1) *dBa(t),
m=1 i£]
+7(t)7(t)dBa(t), (11)

K(t)—r

V()

Remark 2. We find that the dynamics wealth process given in (11) depends on the factors x(t) and 7(¢). As
mentoined in Remark 1, if for any ¢ € [0, T, the process x(t) is stochastic which is assumed to be a function of
a(t), then the wealth process given in (11) has the unique state variable «(t).

where 7(t) =

2.3. Optimization problem using the alternative real measure

The insurance company tries to increase the amount of its portfolio in order to prevent losses and ruin at the terminal
time 7'. In the next section, we will derive the optimal reinsurance and investment strategies for insurer by solving
the HIB equation related to our optimal control problem with the exponential utility function U (z) = —% exp(—yx)
at point x, where y > 0 a positive constant absolute risk aversion coefficient. In our risk model, the insurer desires
to use the following objective function:

sup B [U(X*(7))] = sup B” [ = ~ exp(~yX*(T))]

where S is the set of all admissible strategy s in the financial market, and E” is the expectaion under the probability
measure P.

A risk model which is created by statistical methods under the real-world data and probability measurer P can only
be considered as a reference model for the real. Therefore, the parameters are called reference model parameters.
Due to the estimation error, the insurer is uncertain about the reference model. He/she is aware that he/she does
not know the true model, but only looks at the reference model as an approximation of the true model. Since the
decision about the model depends on the value of the parameters of that model, the uncertainty of the parameter
estimates directly affects the validity of the strategy. To find the optimal strategies in the risk model, one proposed
approach is to reconsider the model and parameters under an alternative measure that is equivalent to the real-world
measure. This method is an effective measurement of the risk associated with an insurance portfolio.
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6 RISK MANAGEMENT STRATEGIES IN A COMPOUND POISSON MODEL

Let P denotes such a candidate set of probability measures. Then we have P = {Q : Q ~ P}. This assumption
allows us to use Girsanov’s theorem for changing measures, further restricting the alternative models so that they
only differ in terms of their drift coefficients. According to Girsanov’s theorem, for any ) € P, there exists a

progressively measurable proces w(t) = (wl(t),WQ(t),UJ3(t))/ € R3 and a measurable real-valued process af(t),
such that
aQ _

dP - a’(t)7
where

a(t) = exp ( —/O W' (s)dB(s) — ;/0 ||w(s)\|2ds), (12)

is a P martingale with filtration {; },c[0,7) and the process w(t) satisfies Novikov’s condition

1 t
EF [exp (5 /0 llw(s)|[?ds)] < oo,
where B(t) = (Bi(t), Ba(t), Bs(t)) and [|w(t)[|> = w}(t) + w3(t) + w3(t). Moreover, by Girsanov’s theorem for
Q@ € P, we can define the following Brownian motions:
dBE(t) = wy (t)dt + dBy (t), dBS (t) = wy(t)dt + dBs(t),
dBS (t) = ws(t)dt + dBs(t).

Therefore, the dynamic price process P(t) of risky asset, the process «(t) and the wealth process X ®(¢) under the
alternative real measure () can be rewritten as

dP(t) = P(t) (k(t) — wi(t)7(t) + T(t)dBY (1)),

da(t) = (a(b—at)) — Va(t)(liwa(t) + laws(t)))dt
/oD (hdBE (1) + LB (),

and
k k k )
dX*(t) = {e—nqt) = Y amgm(t) = Q) Y Chan(t) + > Muipai(t)g; (1)) ?
m=1 m=1 i#£]
+7(t) (k(t) — r — G(t)T(t)) + rX5(t) }dt
k k
H(D R+ > Muipsai(t)g () 2dBR (¢),
m=1 i#£]
+r(t)T(t)dBE (1), (13)
respectively.

Definition 1. The strategy s(t) = (7 (t), q(t)) for any ¢ € [0, T, is said to be admissible if it satisfies the following

conditions:

(i) For any t € [0,T], the strategy s(t) is {F;}-progressively measurable process with —oco < 7(t) < oo, and
¢ 4

Et%;,a(fo |5(t)| dt) < oco.

(ii) The stochastic equation (13) has an unique solution X *(¢) on the interval [0, T, with ng,a

where B, () = EQ(. |X*(t) = 2,a(t) = a).

t,x,«
The optimization problem is to determine the risk management strategies, which in our paper is the optimal

investment and reinsurance strategies that maximize the insurance company profitability. In the present paper,

|U(X*(T)] < oo,
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to obtain the risk management strategies, we assume that the optimization problem function following the form
given in [20] as

sup inf EQ / K(t dt 14
sup fuf, (14)
where the wealth process X S( ) given in (11) and K (¢) is a combination of progressively measurable process as
2
K(t) = %(le((tt)) Zi((?) - w3(t) 7y ) and by [21] the functions A, (t), A(t) and A;(t) are defined as follow
T1 Ts T3
yO(t,x,a)’ yO(t,z,a)’ yO(t,x,a)’

where the positive parameters T;, To and T3 are three main financial market factors representing the insurer’s
ambiguity aversion to the risk model from the insurance market, risky asset and the stochastic factor process,
respectively and the objective function O(¢, z, «) is given by

Au(t) = - Aa(t) = — Ag(t) = — (15)

T
O(t,z,a) = sup inf EC _[U(X*(T +/sts.
(t:,0) =sup fnt B, [U(X(T) + | K(s)ds]
In section 4, the value of objective function O(¢,z,«) will be computed based on the optimal proportional
reinsurance strategy.

3. Optimal risk management strategies

Now we are ready to state our main result regarding the optimal strategies for the perturbed continuous compound
Poisson risk model. We study the optimal stochastic control problem (14) to get the explicit expressions for the
optimal strategies in the reinsurance and investment treaty aiming to minimise the risk of insurance company. This
leads to novel concepts of optimality which require development of new methodologies for solving the problems.

Theorem 3.1
Consider the optimal stochastic control problem (14). Then for y > 0, ({,z,a) € [0,7] X R x R with the

condition O(T, z, ) = —% exp(—yx), the optimal investment proportional strategt is given by
2
* _ ary —r(T—t) 1 l
t,a) = e H t
™ () Kk(t) —r (y—l—Tg 2( ))
Wa oy 1 h
= — + —H t)), 16

() (y+T2 ®) (10)

where

d3 (1 — edl (Tit))

Hy(t) = ,
2(t) 2dy + (d1 + dg)(edl(T_t) — 1)

a7

with dy = ((a +~1)? + (137 )y+T2) dy = a+~ly, d3 = ¥ and the condition H,(T) = 0. Moreover, the

. . . y+T1 ?j+T1
optimal proportional reinsurance is given by
. 28(1 +6)1+06M La
i) = 220 - (18)
26(146) + (y+ Ty)er(T—1)
where the positive matrix M is defined by
GG Apipe Mpaps . A
Migpn G5 Apaps ... Auopk
M = : : : : : . 19
Mkp Mgtz Mgps .. CF
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8 RISK MANAGEMENT STRATEGIES IN A COMPOUND POISSON MODEL

Proof
Using the principle of dynamic programming, for y >0, (t,z,a) € [0,7] x R x R™ with the condition
OT,z,a) = —% exp(—yx), we have the HIB equation for the optimal stochastic control problem (14) as

00(t,z,a)  O00(t,x, )
ot ap (cmma)

sup inf
SE€S ((1)=(Ca(9).Ca (1) Ca(1) ) €R

k k k
=S g ® — GO R0 + S Mt )
m=1 m=1 i#£]

(1) (K (1) = 7 = wa(t)7(t)) + ra)

0029 (4 o) aflnlt) + aen)

k )2
+18 O(t,z, ) ZC’EI’L 2 )+Z)\MiMjQi(t)Q,j(t)+ (m(t)(k(t) = 1)) )

2 Ox? oy ay?
e 1) (k(t) — 1) ?0(t, z, o
Lo+ P80 | Lm0 =1 POl
1 owi(t) | wi(t) | wi(t)\y _
250 " 80 )] .

Now, we try to solve the euation (20) to obtain the optimal values for 7 (¢) and ¢(t). We guess that the solution to
euation (20) is specified by the following form
1
Gt,z,a) = 2 exp { —yae" TV L Hy(t) + ozHg(t)}, 21

where Ho(t) is given in (17) and H;(¢) is a function of time ¢, which will need to be determined later with the
condition Hy(T') = 0. From (17) the corresponding partial derivatives of the function G(¢, x, «) are given by

LG(B:?OZ) = (y:m“eT(T_t) + a}glt(t) + Oéa}th(t))G(t»xva)a
LG%’;’O{) = fyeT(T*t)G(t,x, ), % = y2€2T(T7t)G(tvx7 @),
W = H,(t)G(t, z, a), % = H3(1)G(t,z,q),
% = —ye" TV Hy ()G (t, z, ).

We first fix s and take the derivative of the equation in euation (16) with respect to wy, ws and ws, respectively.
Based on the first-order necessary condition, we obtain the minimum value w*(t, &) = (w} (£), w3 (t, o), w3 (t, @)
which minimizes the equation in (16) as

k k
1
W) =L TN Can () + Y Mmipsai(t)g; (1) *,
m=1 i#£]
wi(t,a) = YToerT =g - —Zl va(t)Ha(t

wilt, o) = 7—12\/ t) Ha(t (22)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



A. BAZYARI 9

Substituting the equation (18) and partial derivatives of the function G(¢, z, «) in equation (16), we obtain

1 T
—cye" T 4 a(b — a)Hy(t) + ia(lf(f +

T2(O)(k(t) —r) Ly +Ta)

Ts

OH(t) | OH(1) 1) + ZQ(? + 1)) H3(t)

ot ot

(k(t) — r)m(t)Ha (t)e" T~V

+1Hf{ yy+T)2th)

ay? gl
—yr(O(R() =)0+ inf | L(g(t) =0, (23)
where the function L(¢(t)) is defined by
k
L(gt) = " (na(t) + > amgm(t
m=1

1 k
2 y(y + Y1) T Z 22 () + Z )\,Ui,ujqi(t)Qj(t))-
i#£]

Taking the derivative of the equation in equation (19) with respect to 7(¢), we obtain the minimum value 7* (¢, «)
as given in (16).

Now, by taking the first and second derivatives of the function L(¢(t)) with respect to g(t) for any ¢ € [0, 7], we
get

OL(q(t)) _ yer =0 (

aqm(t) o 75&m¢]m( )725(1+5)(1—qm( )) 2

k
+ Y Ay (1 = g5(t))

j=Lj#m

+y(y + Y0 T (¢ dm Z Mt (1)),

j=L,j#m

0°L(q(t))
A

and forj #m, j=1,2,...,k, we have

OL(q(t))  9°L(q(1))
O (1)0q;(t) — 9q;()Oqm (t)

For simplicity and better understanding, we can give these derivatives in the matrix form as

er(T—t)Cgl@ﬁ(l _|_5) + (y+ Tl)@T(T_t)),

= ye" TN gty (2B(146) + (y + T1)e"TY).

L(a))  0°L(q) 0*L(a(1))
g3 (t) 0q1(t)0q2(t)  ~°°  0q1(t)0qx(t)
an)) 0*L(q()) 0*L(q(1))
9q2(1)dq1 (1) dqZ(t) TTT 0q2(t)0qk () = ye' (Tt (25(1 +6) + (y + Tl)er(Tft))M,
2L(q)  0°L(q) o*L(a(v))
Oqr(t)0q1(t)  Oqw(t)0g2(t) "~ a2 (t)

where the matrix M given in (19). By the Lemma 1 of [22], M is a positive definite matrix, therefore, L(q(t)) is a
convex function with respect to the points g1 (t), g2(t), . . ., gm (t). Therefore, applying the first-order optimization
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10 RISK MANAGEMENT STRATEGIES IN A COMPOUND POISSON MODEL

condition, the vactor G(t) = (q1 (), d2(t), - - -, Gm(t))" which minimizes the function L (q(t)) satisfies the equation

(2B(1+6) + (y + T1)e"T"D)M.4(t) = 28(1 + §)M.1 + é.a,

where 1 and a are defined by 1 = (1,1,..., 1)/ and a = (a1, az, .. .,ak)/, respectively. Since M is a positive
definite matrix, the invertibility of this matrix exists, therefore, the minimum value §(¢) as given in (18), and this
completes the proof. O

We note that in the equation (18) if 6 = 0, then the strategy for proportional reinsurance simplifies as §,, () =
Wﬁi—f)erg,ﬂ, m =1,2,...,k, which satisfies the condition §,,(t) € [0, 1]. In addition, when ¢ # 0, to make
sure that the strategy given in (18) is a general optimal strategy for proportional reinsurance risk process, we
need to investigate this strategy for different cases of the value of parameters. In the following subsection, we only
consider two dependent policyholders, i.e., k = 2, and sudy the optimal strategies for proportional reinsurance. The
following methods are useful for deriving the results on optimal strategies for more than dependent policyholders.
If the value of k takes larger, then the parameters and variables of the risk model increase and the analysis of model
increases geometrically.

24y°+? 56yyl1ds 3217d3 a?

W12 ~ GADditd) T @rd)? S 3@

24472 o2
(y+7)% = 203 +3)%"

3.1. Optimal proportional reinsurance for two dependent policyholders

To obtain the optimal proportional reinsurance of risk process for two dependent policyholders, i.e., k = 2, define
the parameters

D, = angz - (12)\M1u2, Dy = G2C12 - a1>\ﬂ1ﬂ2,
D3 = (7G5 — N3, (24)
Using the parameters given in (23), for k£ = 2, the equation (21) becomes
0Dy 4+ 28(1+ 0)Ds
26(1+6) + (y + T1)erT=0) Dy’

§Ds + 2B(1 + 8)Ds
26(1+6) + (y + T1)erT=) Dy’

Q1 (t) = (

Ga(t) = ( (25)

For this case, the following theorem gives the optimal proportional reinsurance and the value of objective function
O(t,z,a).

Theorem 3.2
Suppose that the conditions in Theorem 3.1 hold for &£ = 2. When D; < Ds, the optimal proportional reinsurance
is given by

(¢i),a3(1)), if 0<t<ty,
q*(t) =< (@ (1), 1), if th<t<t, 26)
(1,1), if t<t<T,

with the objective function

7% exp (yxe’"(T’t) + Hqq(t) + OéHQ(t))7 if 0<t<ty,
O(t,z,a) = G(t,r,a) = —% exp (yze" T + His(t) + aHs(t)), if tp<t<t, (27)
—% exp (yze" T + Hys(t) + aHs(t)), if 1 <t<T,
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and when Dy > D, the optimal proportional reinsurance is given by

(1), q5(), if 0<t<tg,
7 (t) =14 (L@(), if to<t<t|, (28)
(1,1), if ¢, <t<T,

with the objective function

— 1 exp (ywe" =9 4+ Hiy(t) + aHa(t)), if 0<t<t,
O(t,z,a) = G(t,z,a) = —% exp (yae" =Y + Hi5(t) + aHa(t)), if to<t<t), (29)
—% exp (yae" =Y + His(t) + aHa(t)), if ¢ <t<T,

where
() = Say + 2B(1 +6)¢ — Muypo(y + Y1p)e2r(T—1) o
1 (G (2B(1+0) + (y + Tr)e2r(T-0) ’
G (t) = (5a2+26(1+5)§22—,\ulMQ(y+T1)62r(T_t) -
: (3(28(1+6) + (y + T1)e>r(T-1) ’
1 5a1
heregt ’ 32
1 r n((y+T1)(<12+)\H1M2)) ( )
1 (SGQ
h=Te ’ 33
1 . n((y+T1)(C22+)\u1u2)) (33)
T if 6Dy < (y+ Y1)Ds
=1 e () if (y + Y1) D5 < 6Dy < (y+T1)Dse’™, (34)
0, ifoDy > (y + ’rl)D3erT7
T if 6Dy < (y+ Y1)Ds ,
t6: T_%ln (%)’ if(y+T1)D3 <(5D2 < <y+T1>DSerT7 (35)
0, if 0Dy > (y + Tl)D3erT7

and the functions Hyy, H12, H13, H14 and Hy5 will be given in equations (32) and (33).

Proof

(a) If Dy < Do, then ty > t{,, therefore, in this case we have the following different cases:

(a1) When 0 < ¢ < t{,, then the optimal proportional reinsurance strategy is ¢*(t) = (qi (t), ¢5(t)), where ¢; (t) and
¢;(t) are equal to ¢; (t) and o (¢) given in (24), respectively.

(a2) When t > t{, then g (t) > 1, therefore, we let ¢5(¢t) = 1. Putting ¢5(¢) = 1 into the last part of equation (19),
we obtain the optimization problem

qirg) L(q(t)) = qirg) {yeT(Tft) (14+0)((1=q(t))ar + B(L — q1(£))*CF) + arq1(t) + a2)
+%y(y + )X TGt (1) + G + 2Mmpaaqr (1)} (36)

For t < T, it can be shown that the minimum value of ¢; (¢) in the problem (25) is ¢y (¢) as given in (28), therefore,
for t{, <t < t,, the optimal proportional reinsurance strategy is ¢*(t) = (q} (t), ¢5(t)) = (G:(¢),1).
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12 RISK MANAGEMENT STRATEGIES IN A COMPOUND POISSON MODEL

(a3) When t{, < t < T, itis easy to see that the optimal proportional reinsurance strategy is ¢* (t) = (¢; (t), ¢3(t)) =
1,1).

((b) If) D1 > Do, then ty < tj, and as the similar method presented above, we have the following different cases:

(b1) When 0 < ¢ < to, then the optimal proportional reinsurance strategy is ¢*(£) = (qi(t), ¢3(t)), where ¢; (t) and

¢; (t) are equal to ¢ (t) and do(¢) given in (24), respectively.

(b2) When t > tg, then ¢y (t) > 1, therefore, we let ¢} (¢t) = 1. Putting ¢ (¢) = 1 into the last part of equation (19),

we obtain the optimization problem

qirg) L(q(t)) = qirg) {yeT(Tft) (14 0)((1 = g2(t))az + B(1 — q2())?C3) + azqa(t) + a1)
%y(y + T T (G (1) + G + 20 p2ax(t) }- (37)

For ¢ < T, it can be shown that the minimum value of ¢, (¢) in the problem (27) is ¢; (¢) as given in (29), therefore,
for tg <t < t}, the optimal proportional reinsurance strategy is ¢*(t) = (g (t), g3 (t)) = (1,q1(t)).

(bs) When ¢} <t < T, itis easy to see that the optimal proportional reinsurance strategy is ¢* (t) = (¢; (t), ¢3(t)) =
(1,1).

Now substituting the optimal reinsurance strategy (16) and (qf (t),q5 (t)) into (24), and solve the equation, we have

OH,(t)
ot

Bly+7Ys) Yy
== Y Hi(t) — ————=0 38

— (a+~l)Ha(t) +

and

OH,(t)
at

+ abHo(t) + L(q; (1), g3(t)) — yee" ™= = 0. (39)

Solving equation (30) leads to Hy(¢) given in (17). On the other hand, since the equation (31) depends on
(¢i(t), ¢3(t)), therefore, to solve it we consider D; < D5 and Dy < D; for the following different cases.

(a) If D1 < D4, we have the following different cases:

(a1) When 0 < ¢ < tj, use the strategies in (24), from (31) we get

T
Hy(t) = Hi1(t) = / (ang(s) + L((jl (s), dg(s)) — yceT(T_s))ds +cq, (40)

where ¢; is a constant that will be determined later.
(az) When ¢, < t < t1, we use the strategy ¢*(t) = (¢} (), ¢5(t)) = (@(t),1) into (31), we get

T
Hi(t) = Hi5(t) = / (abHs(s) + L(Gi(t),1) — yee =) ds + ca, 1)
t

where c¢5 is a constant that will be determined later.
(az) When t; < ¢ < T, we use the strategy ¢*(t) = (¢} (¢),¢3(t)) = (1,1) into (31), we get

T
H(t) = His(t) = / (abHs(s) + L(1,1) — yce" ™)) ds. (42)
t

On the other hand, since for any (¢,z, ) € [0,T] x R x RT, G(t,z, ) is a solution of HIB equation (20), this
means that the equalities

Hy(ty) = Hia(tp), Hys(t) = His(th),
8H11(t6) _ 8H12(t6) 8H12(t1) _ aHlS(tl)
oty oty 7 ot oty
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must be hold. By solving these equalities, we derive the constants ¢; and co as

c2=/ (L(1,1) = L(1(s), 1) ) ds, Cl:/t/ (L(G1(s),1) = L(G1(s), d2(s)) ) ds + ca.

tl 0

(b) If D1 > D4, we have the following different cases:
(b)) When 0 <t < tg, use the strategies in (28) and (29), from (31) we get

Hy(t) = Hi4(t) = /t (ang(s) + L((jl (s), cjg(s)) — yceT(Tfs))ds + c3, 43)

where c3 is a constant that will be determined later.
(b2) When ty < ¢ < t7, we use the strategy ¢*(t) = (qf(t), a (t)) = (1, (jg(t)) into (31), we get

T
H(t) = Hi5(t) = / (abHs(s) + L(1,Ga(t)) — yee" =) ds + ca, (44)
t

where ¢4 is a constant that will be determined later.
(bs) When ¢} < ¢ < T, we use the strategy ¢*(t) = (¢} (¢),¢5(t)) = (1,1) into (31), we get

T
Hy(t) = Hy3(t) = / (abHa(s) + L(1,1) — yceT(T_S))ds. (45)
t

As the same before, since for any (¢, z,a) € [0,T] x R x RT, G(t,z, ) is a solution of HIB equation (20), this
means that the equalities

Hiy(to) = His(to), Hi3(th) = His(t)),
O0H14(to) _ OHy5(to) O0H13(t}) _ 0H15(t})
dto oty ot oty 7’

must be hold. By solving these equalities, we derive the constants c3 and c4 as

T T
cy = / (L(l, 1) — L(l,ﬁz(s)))ds, c3 = / (L(l,qg(s)) — L((h(S),ég(s)))ds + ¢4,
) "
and this completes the proof. -

We note that from the relation (22), for k = 2, the minimum value w* (¢, a(t)) = (w7 (), w} (¢, a(t)), wj(t, (1))
is given by

[N

wi(t) = Tre T (G (1) + G5 (1) + 2 mp2ai* (a3 (1)) *,
* 1Yy =
Wa (t,()l(t)y 4 ;2 O[(t),

wi(t,alt)) = —%leg(t) a(t). (46)

4. Verification theorem
In this section, we prove a verification theorem to show the optimal strategy s*(t) = (7*(t),q*(t)) given in
Theorem 3.2. This verification theorem is based on the Corollary 1.2 in [23]. To do it, we use some mathematical

expressions and give the admissibility and some properties of optimal strategy s(t) = (W(t), q(t)) in Theorem 3.2.
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14 RISK MANAGEMENT STRATEGIES IN A COMPOUND POISSON MODEL

Theorem 4.1

Suppose that the conditions in Theorem 3.2 hold and s*(t) = (7r*(t)7 q*(t)) candidates for the optimal strategy
s(t) = (w(t),q(t)) given in that theorem, then we have the following properties for the optimal strategy s*(¢) and
objective function G(t, z, a):

1) s*(t) is an admissible strategy.

2) For Q € P, E9(supyc(o ) ’G(t,Xs*(t),a(t))’4) < 0o, where @ is defined by a(t) in equation (12) with
w(t, a(t)).

1 [ (wi(®)? (w3 (t,a(t))? (w3 (t(8)))* |2
3) EQ(SuPte[O,TME( A T sz:(t) + SA:(t) )| ) < oc.

Proof

We will prove the above properties one by one. But to make the proof process to be understood easily, we firstly
prove the property (2) and then prove properties (1) and (3), respectively.

Proof of property (2). Substituting the strategy 7 (¢, (t)) and ¢*(t) = (¢;(t), ¢3(t)) into the equation (13), then
we have

t
dX*(t) = ue™+ / " AL (g% (s) = T1e" T2 Ay (q"(5))
0

1 I
y+To EN(S)) }

T / e (Ay(q* (5))) *dBL(s)

+ 72a(8)er(T—s)(

y+ T

t
r(T—s) 31 b Q
+ /0 "I (als)* (L s V() B (s), @7)

where

k
As(q*(5) = Y G (5) + 201 piaai™ (s)a57 (s)

m=1

Then using the wealth process (47) for the given objective function, we get

|G(t, X*" (1), a(t)*] = % exp { — 4yX* (t)e" T 4+ 4H\ (t) + 4Ha(t)a(t) }

IN

Myexp{ — 4yX* (t)eT(T_t)}
t
Yy 2

M. —4

vexp{ —dy [ ool

t 1
~ay [T (Anq () B
0

—@AEm@ﬁ(

where M; and M, are two constants which satisfy the following inequalities:

b

IA

N(s))ds

1L h Q
T + mN(s))dBl ()}, (48)

M, > %exp (4H1(t) + 4Hs(t)a(t)),
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and

t
My > My exp ( — 4y(ue’"T + / e(T=5) (Al(q*(s)) — wler(T_S)Ag(q*(s))))7
0

=

for any t € [0, T]. Moreover, since (A2(g*(s))) "7 ~*) is bounded for any s € [0, T], then we have the following
exponential integral:

exp(/o —4yeT(T_s)(Ag(q*(s)))%ngz(s)) = exp(/ 8y2er (1= é’%42((]*(5))(13)

0

xexp(f/ 8y (T S)Ag(q*(s))ds
0

t 1
+ [ a0 (A (o)) FdBE ).
0
Therefore, it follows that
t 1
E9{ exp (/ —4ye" T (As(q*(5))) *dBY (s))} < oo. (49)
0

Now, we try to find an estimator for the expression

t
Yy 2 1 l1
4 Ny
exp{ y/o y+T27 a(s)( ST, + o (s))ds

—4y/0 'y(oz(s))%(y_:,r2 + l—lN(S))dB?(s)}

First, consider the following equality

! 2 1 ¢ z Ly
exp{—4y/0 y—i/’fgfy afs )(y—i-Tg + — (s))ds—4y/0 y(a(g))2( 1 +7N( ))dBlQ(s)}
¢ I
=exp { —16@/2/O 92a(s)( ! +ﬁN(s))2ds

—ay [ 2(0) (g + - V) )

xexp{/ 16y272(y+%+ ll N(s))st
1 1 l
— 4y 2 AN d
Y Z/Jr?fz7 (y+T2 +y7 (9)]als)ds}
=C1 + Cy,

where

Cr=exp{— 16y2/0 ’yQOz(s)(y_:,r2 + Zi—l’y]\f(s))%ls - 4y/0 fy(oz(s))%(y_'_l,r2 + LlN( ))dB?(s)},

and

¢ 1 I 2 1 1 L
= 169°7?(—— + —N — 4q)? 2 —N .
Cy exp{/0 [ 6y°y (y—i—Tg + . (8)) ds — 4y y+T2’y (y—i—Tz + . (8))]a(s)ds}
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For the term C;, we have

1 b

EQ(C? = EQ(G‘XP{ - 32y2/0 'yZOz(s)(y T, + LUVN(S)) ds
—Sy/o V(Q(S))%(y —|—1T2 + Z%N(s))dB?(s)}) < 00, (50)

since C? is a supermartingale. On the other hand, 78y'y(y +1Y2 + Z%N (5)) is bounded on the interval [0, 7],

therefore, according to Lemma 4.3 in [24], 012 is a martingale.
For the term Cs, we have

1 I
+7
y+Te  yy

EQ(C?) = EQ(eXp{32y2/O 7201(5)( N(s))QdS

2
27 1 L
8y y—|—T2a(s)(y—|—T2 + —yvN(s))ds}).

On the other hand, by Theorem 5.1 in [24], we have the inequality

2

l 2 1 l
+—1N(s))2—8y2 7 ( LN <4

32¢3%~2 + S —_—
yﬁy(y+T2 Yy y+ Y y+To  yy ())*2(l1+lz)

which is sufficient condition for
EQ(C2) < . (51)

Moreover, applying the relations (48)-(51), and Cauchy-Schwartz inequality, for any ¢ € [0, T], we have

EQ(|Gt, X" (1), a(t))|)

IN

MgEQ{exp(/O —4yer =) (Az(q*(S)))%dB(?(S))}EQ(0102)

IN

Mo E { exp ( /0 ~ayer ) (Ay(q” (5))) *dBY(s)) }
X (EQ(C)EQ(C2))? < o0, (52)

and this completes the proof of part (2).

Proof of property (1). From the process of solving HIB equation, we know the optimal strategy s*(t) is
progressively measurable. From the equations (16), (25) and (26), the optimal proportional reinsurances g¢; ()
and ¢3(t) are deterministic and state independent. On the other hand, the optimal strategy s* (¢, «(t)) is a mean-
reverting square root process, although it is generally an unbounded random variable for any fixed given time,
its first and second order moments are bounded (the detailed proof for the boundedness of its moments can be
found in ([25], p. 308), thus condition (1) in Definition 1 holds. For the condition (2) of Definition 1, by the proof
of property (2), we have deduced that the solution of equation (13) has the form of equation (47). Moreover, in
property (2), we proved that £ (|G(t, X5 (1), at)) |4) < oo for t € [0, T], which by the similar method we can
prove that E? (|G(T, X*"(T), a(T)) |4) < 00. Therefore, s*(t) is an admissible strategy.

Proof of property (3). Let Z(t) = %(y(wi(lt))z + y(wg(fr’(:(t)))z + y(w?t(ff?(t)))z). Since for any [ > 0, E? (a(t))l <
0o, then by (34) we result that

EQ(Z(1))" < . (53)
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From equation (15), we have O(t,z,a) = L = —yYAZz = —sz. Therefore, applying the Cauchy-Schwarz
inequality and the inequalities (52) and (53), we have
L (i) | (Wit a(t)? | Wit at))? 2
E°Q( su — L + 2 3
G Ca T A& 8oty )
s* 2
= E?( sup |Z()G(t, X" (1), a(t))])
t€[0,T)
2 o 2
=E°( sup |Z(t)|".|G(t, X (t),a(t)])
t€[0,T)
< (B2 sup |Z(0)]")? x (BQ( sup |Gt X* (1), a(t))]")? < oo,
t€[0,T) t€[0,T]
and this completes the proof. O

5. Numerical examples

In this section, we present some numerical examples to analyze the theoretical results and investigate the sensitivity
of optimal strategies on some parameters. To investigate the sensitivity of optimal strategies, we consider two
dependent policyholders with claim amounts random X/} and X? follow exponential distribution with parameters
oy = 1 and ay = 2, respectively. The Poisson processes N (t), Na(t) and N (¢) within the interval time [0, T, with
T = 10, have the intensity parameters A\; = 2, Ao = 4, and A\ = 2.5, respectively. We suppose that the volatility of
the stock price rate has the form

T(t) =rt2.

Moreover, to compute the optimal reinsurance strategy we use the standard Brownian motions as given in (6.1) of
[26] and the basic parameters of risk model are given in Table 1.

Table 1. The basic parameters of risk model

a b I lo T B ¥ Y T To
3 4 05 07 008 04 005 05 05 0.6

With some computations, we have obtained the values of parameters. These values are reported in Table 2. From

Table 2. The computed parameters of risk model

M1 p2 a1 aa 1 va ¢ G D, Dy D3
1 0.5 4.5 3.25 2 0.5 9 3.25 10.56 23.625 27.69

this table, we see that Dy < Dy and 6Dy < (y + Y1)Ds. Thus, we set ¢, = 10 and the optimal proportional
reinsurance strategy is (g (¢), ¢5(t)) = (Gi(t),G2(t)). In Figures 1 and 2, we investigate the effect of intensity
parameter A and insurer’s ambiguity aversion Y; to the risk model from the reinsurance market on the optimal
reinsurance proportion. Figure 1 shows that the reinsurance proportions in both two lines of business of the
insurance company decrease with the A increasing, which means that the higher dependence of the two lines
of business in an insurance company, the lower reinsurance retention proportion is arranged by the insurer. From
Figure 2, we find that when the insurer has higher ambiguity-averse level T; on the parameters of insurance market,
he/she will arrange lower reinsurance retention proportion.

Figure 3 shows the effect of absolute risk aversion coefficient y on the optimal investment strategy. We find that
no matter under the risk model, the more risk averse the insurer is, the less proportion of the insurance surplus
is invested in the risky asset. Figure 4 shows the effect of ambiguity-averse level T5 on the optimal investment
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Figure 1. Effect of intensity parameter A on the optimal reinsurance proportion

——T :1‘
ossE ) =1 .
e e GG ‘:‘
F-- Yy :3;. 5 I“.

0.35

Optimal reinsurance proportion

_y=8
1.2 -—-y=6
s | y:4
=B y=2
Q
a
2 ~
S o08p -,
= -
s <
£ -
3 06 b
2 e
£ -~
= szl
£ 04
B
o
02F memasoen. .
I S
0
1 15 2 25 3

Figure 3. Effect of intensity parameter y on the optimal investment proportion

strategy. We find that when the insurer has higher ambiguity-averse level T3 on the parameters of insurance market,
he/she will arrange lower investment strategy. Figure 5 shows the effect of parameter y on the optimal investment
strategy. It shows that with the increase of parameter -y, the corresponding investment proportion increases too.

6. Concluding remarks

In this paper, we investigated the optimal risk management strategies for an insurer with a diffusion approximation
in a dependent compound Poisson process. We assumed that the dependent risk model consists of the constant
reinsurance premium rate, combination of the number of claims occurring by policyholders within a finite time,
and perturbed by correlated standard Brownian motions, where the price of the risk-free bond is described by a
stochastic differential equation. We derived the optimal strategies and solution of the associated HIB equation for
the optimization problem. A verification theorem using some mathematical expressions were given to guarantee the
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Figure 4. Effect of insurer’s ambiguity aversion T2 on the optimal investment proportion
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Figure 5. Effect of parameter « on the optimal investment proportion

optimal strategy and studied the admissibility and some properties of optimal strategy. Furthermore, in the given
numerical examples the effects of intensity parameter A and insurer’s ambiguity aversion Y to the risk model from
the reinsurance market on the optimal reinsurance proportion and the effects of risk aversion coefficient y, insurer’s
ambiguity aversion Y5 and parameter v on the optimal investment strategy are investigated.
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