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Abstract This paper introduces a fine-tuned Convolutional Neural Network (CNN) for multiclass classification of brain
tumors on contrast-enhanced T1-weighted MRI scans. The proposed model integrates batch normalization, dropout, and
lightweight convolutional blocks to extract discriminative features while maintaining computational efficiency suitable for
embedded deployment. Experiments were conducted on the Figshare dataset comprising 3,064 MRI slices from 233 patients
with gliomas, meningiomas, or pituitary tumors. Images were preprocessed through resizing, normalization.
The model was trained using the Adam optimizer with a learning rate of 1e-4, a batch size of 32, and 100 epochs. Evaluation
metrics included accuracy, precision, recall, and F1-score. The fine-tuned CNN achieved an overall accuracy of 94.08%, with
class-specific performance indicating strong results for pituitary tumors (precision 95.65%, recall 95.96%) and meningiomas
(precision 90.20%, recall 88.81%), while glioma classification showed high sensitivity (recall 96.85%) but lower precision
(75.00%). To validate real-world applicability, the model was converted to TensorFlow Lite and deployed on a Raspberry Pi
4, achieving an inference time of approximately 60 ms per image.
These findings demonstrate that fine-tuned CNNs can offer a competitive and resource-efficient solution for computer-aided
diagnosis of brain tumors, balancing accuracy and practicality in clinical environments with limited computational resources.
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1. Introduction

Brain tumors represent one of the most complex and severe medical challenges due to their potential to impair
vital functions and their significant heterogeneity in terms of type, location, and behavior. According to the World
Health Organization (WHO), brain tumors are among the deadliest forms of cancer, with nearly 300,000 new cases
diagnosed worldwide annually.

These tumors can develop in various areas of the brain, potentially leading to profound effects on patients’
cognitive and motor skills. Brain tumors are generally categorized into two main types: benign and malignant.
Malignant tumors are particularly hazardous due to their ability to invade surrounding tissues rapidly, while benign
tumors, despite being non-cancerous, can still pose significant risks if they exert pressure on critical brain areas.
These complexities make the diagnosis and treatment of brain tumors particularly challenging.

Classifying brain tumors is crucial for guiding treatment decisions and assessing the prognosis. However,
achieving early and accurate diagnosis remains difficult due to the variability of symptoms, the intricate structure
of the brain, and the diverse nature of tumor types.
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Conventional diagnostic methods for brain tumors include biopsies, cerebrospinal fluid (CSF) analysis, and
imaging techniques such as radiography. While biopsies allow for tissue examination, they carry risks such as
infection and bleeding, with an accuracy rate of about 86.97% [1]. CSF analysis also involves risks like bleeding
and allergic reactions [2]. Radiographic imaging, although useful, exposes patients to radiation, thereby increasing
the risk of secondary cancers. Currently, magnetic resonance imaging (MRI) is widely used, providing detailed
images of the brain to localize and characterize tumors. However, the interpretation of MRI scans relies heavily on
human expertise, leading to potential diagnostic errors due to subjectivity, image complexity, and the large amount
of data that needs to be analyzed. Furthermore, the diagnostic process is often time-consuming and expensive,
highlighting the need for faster and more reliable methods.

To address these issues, computer-aided diagnosis (CAD) systems have emerged as a promising solution to
automate tumor detection, reducing the need for human intervention and enabling quicker and more accurate
analysis of MRI images. CAD systems can analyze MRI scans and generate precise diagnostic reports to assist
radiologists [3]. The integration of machine learning (ML) and deep learning (DL) techniques within CAD systems
has significantly improved the accuracy of tumor detection [4] [5] [6].

Traditional ML methods typically involve several steps, including preprocessing, feature extraction, and
classification. However, these techniques often rely on manual feature extraction, which can result in the loss of
important information [7]. Recent advances in AI, particularly in DL, offer an effective alternative. Convolutional
Neural Networks (CNNs), a specialized DL architecture, have shown great promise in interpreting complex medical
images, especially for tumor detection and classification. CNNs can automatically extract relevant features from
images without the need for manual intervention during feature extraction [8]. These models enable faster and more
accurate tumor classification, significantly reducing human errors, enhancing diagnostic precision, and speeding
up analysis times, which is crucial in clinical settings where time is critical.

Despite the progress made, current models still face limitations, particularly in handling image variability,
mitigating overfitting, and optimizing feature extraction. To overcome these challenges, it is necessary to develop
more robust and accurate AI models capable of processing the complex and diverse data from brain tumor MRI
images efficiently.

This paper proposes an innovative approach using an optimized Convolutional Neural Network, referred to
as Fine-Tuned Convolutional Neural Network ( CNN), for brain tumor classification. This method utilizes an
advanced architecture that incorporates regularization techniques and convolutional kernel optimization to extract
finer and more relevant features from MRI images. The primary goal of this study is to develop a model capable
of classifying three major types of brain tumors: gliomas, meningiomas, and pituitary tumors, using MRI images
from various modalities. The model was evaluated using the Figshare dataset, a public collection of 3,064 brain
tumor MRI images [9], and demonstrated impressive results with an accuracy of 94.08%, outperforming traditional
models. The main contributions of this study are:

• Development of a lightweight and optimized CNN for multiclass brain tumor classification on MRI (glioma,
meningioma, pituitary), achieving high performance (94.08% accuracy), competitive with state-of-the-art
models while remaining simple and efficient.

• Successful deployment on Raspberry Pi 4 with real-time inference ( 60 ms/image), demonstrating feasibility
in resource-constrained clinical environments.

In conclusion, this study demonstrates how AI, particularly convolutional neural networks, can revolutionize
brain tumor diagnosis by providing a faster, more accurate, and more reliable method compared to current
approaches. This model could significantly enhance computer-aided diagnostic (CAD) systems, support
radiologists in clinical decision-making, and improve the efficiency of patient treatment processes.

The rest of this paper is as follows: Section 2 provides an overview of related studies. Section 3 introduces the
database along with the preprocessing steps. Section 4 describes the proposed model, while Section 5 focuses on
the training protocol and implementation aspects. Section 6 explains the evaluation metrics. Section 7 discusses
the tumor classification results and compares them with existing approaches. Section 8 addresses inference and
deployment on embedded devices, with a case study on the Raspberry Pi. Finally, Section 9 concludes the work
and highlights potential directions for future research.
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2. A brief review of existing methods

Recent advances in machine learning (ML) and deep learning (DL) have significantly improved the accuracy
of brain tumor detection [10–30]. Numerous studies have employed a variety of techniques ranging from
traditional feature extraction methods to sophisticated models like Convolutional Neural Networks (CNNs)
[13] and Capsule Networks (CapsNet) [15]. These approaches have demonstrated substantial improvements in
classification performance, particularly when combined with preprocessing techniques, transfer learning, and
innovative architectures. Below, we summarize key works in this field, highlighting their methods, classifiers,
and performance results. Table 1 provides a summary of relevant work in brain tumor detection.

Reference Method/Approach Techniques Used Classifier/Model Accuracy (%)
Cheng et al. [10] Manual tumor contour extraction GLCM, Density histograms, BoW SVM High accuracy
Ismail et al. [11] Statistical feature extraction Gabor filters, DWT MLP 91.9
Tahir et al. [12] Image preprocessing Noise reduction, edge detection, contrast enhancement SVM 86
Paul et al. [14] CNN CNN CNN 90.26

Afshar et al. [15] Capsule Networks Capsule Networks Capsule Networks Not specified
Sultan et al. [16] 16-layer CNN CNN CNN 96.1 - 98.7

Hossain et al. [17] Fuzzy C-Means clustering with CNN CNN + Fuzzy C-Means CNN 97.9
Anaraki et al. [20] CNN + Genetic Algorithms CNN, GA CNN 90.9

Talo et al. [21] ResNet34 for transfer learning ResNet34 CNN Not specified
Swati et al. [22] Fine-tuning of VGG19 VGG19 CNN Not specified

Lu et al. [23] Enhanced AlexNet AlexNet CNN 90.7
Sajjad et al. [24] Augmented VGG19 VGG19 CNN 90.7

PDCNN [25] Parallel Dilated CNN Dilated convolutions, ensemble models PDCNN 98.35 - 98.67
[26] Hybrid methods PLS, pre-trained DL models Hybrid (SVM, KNN, etc.) 98.95
[27] EfficientNet with transfer learning EfficientNetB0-B4, fine-tuning EfficientNet 99.06

Table 1. Summary of Related Works in Brain Tumor Detection

The studies reviewed here highlight several important developments in brain tumor classification. Traditional
feature extraction methods, such as Gray Level Co-occurrence Matrix (GLCM), Density Histograms, and Discrete
Wavelet Transform (DWT), have been used to extract relevant tumor features and provide robust classification
results. In particular, the use of Support Vector Machine (SVM) classifiers and Multilayer Perceptron (MLP)
classifiers has been common in earlier works, showing respectable accuracy rates. In more recent years, deep
learning models, particularly Convolutional Neural Networks (CNNs), have achieved state-of-the-art results in
brain tumor detection. These models benefit from the ability to automatically learn relevant features from raw
image data, eliminating the need for manual feature extraction. Innovative architectures, such as Capsule Networks
(CapsNet) [15] and Parallel Dilated Convolutional Neural Networks (PDCNN), have shown promise in overcoming
the limitations of traditional CNNs, capturing both global and local features more effectively.

The integration of transfer learning, using pre-trained models such as VGG19 [31], ResNet34 [32], and
EfficientNet [33], has further boosted the performance of tumor detection systems, especially when coupled
with data augmentation techniques. These hybrid approaches, combining deep learning with traditional machine
learning techniques like fuzzy clustering and genetic algorithms, have yielded even better results, as seen in the
high accuracies achieved by Hossain et al. [17] and Anaraki et al. [20].

Overall, the increasing use of deep learning techniques, especially CNNs and their variants, along with advanced
preprocessing and transfer learning strategies, marks a significant improvement in the field of brain tumor detection.
Despite these advancements, challenges remain, such as improving model generalization across diverse populations
and ensuring the interpretability of these models in clinical settings. Our work aims to address these challenges by
developing more robust and interpretable models, ultimately enhancing the accuracy and reliability of brain tumor
diagnostics.

3. Dataset and Preprocessing:

In order to assess the performance of our proposed model, we used the CE-MRI dataset available on Figshare [9].
This comprehensive dataset includes 3,064 contrast-enhanced T1-weighted MRI slices from 233 patients diagnosed
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with meningiomas, gliomas, or pituitary tumors. The data was collected between 2005 and 2010 from hospitals
across China. Initially, the images had a resolution of 512×512 pixels but were downsampled to 256×256 pixels
to optimize computational efficiency. The dataset is organized into three anatomical views—axial, coronal, and
sagittal—and is distributed as follows: 708 slices for meningiomas, 1,426 slices for gliomas, and 930 slices for
pituitary tumors. Figure 1 shows an example of a Figshare dataset. (a) Glioma. (b) Meningioma. (c) Pituitary
tumor.

Figure 1. Sample of Figshare dataset. a Glioma. b Meningioma. c Pituitary tumor.

The original images, stored in the MATLAB-compatible .mat format, were converted into NumPy arrays to
facilitate handling in Python. Finally, the dataset was split into training, validation, and testing sets, with 80%
allocated for training and 20% reserved for validation and testing. All images were normalized by scaling pixel
values and resized to the model’s input dimensions of 256 × 256 pixels, ensuring consistency across the dataset.

4. Proposed Model

In this work, we introduce a refined Convolutional Neural Network architecture for multiclass classification of
brain tumors in MRI images. Unlike traditional binary classification, which only distinguishes the presence or
absence of a tumor, our model provides a more detailed analysis by categorizing various types of brain tumors, such
as glioblastoma, meningioma, and others, thereby supporting more accurate and personalized clinical decision-
making.
The proposed Fine-Tuned CNN architecture, as shown in Figure 2, incorporates several enhancements over
standard models to improve performance on complex image analysis tasks, including classification and detection.
Key modifications include the use of Batch Normalization (BN) and Dropout techniques to regularize the model
and prevent overfitting, while ensuring faster convergence and high accuracy. These improvements allow the model
to handle variations in input data, such as differences in lighting, orientation, or perspective, by leveraging data
augmentation strategies.

This architecture is specifically designed for deployment in real-world clinical settings, with optimization for
environments with limited computational resources, such as mobile devices or embedded systems. The model’s
compatibility with TensorFlow Lite ensures its practicality for real-time applications, enabling fast and efficient
tumor detection in clinical practice. The training pipeline for the model follows a structured process consisting of
five main steps:

1. Input Step: MRI images are collected and split into training, validation, and testing datasets for the training
process.
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Figure 2. Illustration of proposed Model.

2. Image Preprocessing: Images are normalized by scaling pixel values from the range [0, 255] to [0, 1], and
resized to a standard size (256 × 256 pixels) to match the model’s input dimensions.

3. Model Training:

• Input: Augmented images are fed into the network.
• Feature Extraction: The model extracts essential features such as edges, textures, and regions of

interest indicative of possible tumor locations.
• Tumor Detection: The extracted features are analyzed to locate and classify potential tumor areas in

the MRI images.

4. Classification and Evaluation: The model is evaluated on previously unseen data to determine its accuracy
in classifying different tumor types.

5. Final Model: After evaluation, the model is fine-tuned and validated to ensure it provides robust tumor
classifications in real-world applications.

The structure of the proposed model is outlined in Table 2, which details the network layers and their operations.

4.1. Model Architecture

The network begins with several Convolutional Layers designed to capture low-level features such as edges and
textures. These layers progressively increase in complexity, with the network learning to identify more intricate
features like tumor shapes and boundaries as it deepens.

Each convolutional layer is followed by a MaxPooling Layer , which reduces the spatial resolution of the
feature maps, helping the network focus on the most significant aspects of the images. This helps in minimizing
computational cost while maintaining key information necessary for classification.

To prevent overfitting, a Dropout Layer is introduced after the first fully connected Dense Layer , with a dropout
rate of 50%. This improves generalization and ensures the model does not rely too heavily on any single feature,
enhancing its ability to perform well on unseen data.

Finally, a Softmax Layer at the output produces a classification score across three categories, corresponding to
different tumor types, ensuring that the model can effectively classify images into one of the three tumor classes.
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Table 2. A Fine-Tuned CNN Architecture for Tumor Classification.

Layer Operation Input Size Output Size Details
1 Convolutional Layer (256, 256, 3) (256, 256, 32) 3x3 Filters, Stride: 1
2 MaxPooling Layer (256, 256, 32) (128, 128, 32) MaxPooling 2x2, Stride: 2
3 Convolutional Layer (128, 128, 32) (128, 128, 64) 3x3 Filters, Stride: 1
4 MaxPooling Layer (128, 128, 64) (64, 64, 64) MaxPooling 2x2, Stride: 2
5 Convolutional Layer (64, 64, 64) (64, 64, 128) 3x3 Filters, Stride: 1
6 MaxPooling Layer (64, 64, 128) (32, 32, 128) MaxPooling 2x2, Stride: 2
7 Convolutional Layer (32, 32, 128) (32, 32, 128) 3x3 Filters, Stride: 1
8 MaxPooling Layer (32, 32, 128) (16, 16, 128) MaxPooling 2x2, Stride: 2
9 Convolutional Layer (16, 16, 128) (16, 16, 128) 3x3 Filters, Stride: 1
10 MaxPooling Layer (16, 16, 128) (8, 8, 128) MaxPooling 2x2, Stride: 2
11 Convolutional Layer (8, 8, 128) (8, 8, 128) 3x3 Filters, Stride: 1
12 MaxPooling Layer (8, 8, 128) (4, 4, 128) MaxPooling 2x2, Stride: 2
13 Flatten Layer (4, 4, 128) (2048) Flattening to 1D
14 Dense Layer 2048 512 Fully Connected, ReLU Activation
15 Dropout Layer 512 512 Dropout Rate: 0.5
16 Dense Layer 512 128 Fully Connected, ReLU Activation
17 Softmax Layer 128 3 Output Layer (3 Tumor Types)

This architecture was intentionally designed to provide a balance between efficiency and computational
complexity. By using a series of relatively shallow convolutional layers and avoiding deeper, more computationally
expensive models like ResNet or DenseNet, our design remains lightweight and suitable for real-time deployment
on mobile or embedded systems. This ensures that the model can run efficiently on devices with limited
computational resources, such as those used in clinical environments.

The use of Batch Normalization and Dropout improves model robustness, preventing overfitting and ensuring
that it performs well across different conditions and datasets. These features help maintain high performance even
when deployed in diverse, real-world clinical settings.

4.2. Feature Extraction and Selection

Effective feature extraction and selection play a crucial role in the model’s performance. In this case, the key
features are extracted through convolutional operations, which focus on edges, textures, and patterns relevant to
tumor identification. Statistical properties, such as mean, standard deviation, and texture descriptors like Local
Binary Patterns (LBP) and Haralick features, help characterize the tumors in the images. Feature selection
techniques such as Principal Component Analysis (PCA), Pearson’s Correlation Coefficient (PCC), and Analysis of
Variance (ANOVA) are used to reduce dimensionality and ensure that only the most informative features are passed
to the classification layers, improving the model’s predictive accuracy and reducing computational overhead. This
model offers a robust, efficient, and scalable solution for brain tumor classification, with high potential for real-time
deployment in clinical settings.

5. Training Protocol and Implementation Details

The training and evaluation of the proposed Convolutional Neural Network (CNN) model were implemented
using the Python programming language, leveraging the Scikit-Learn and Keras libraries. The experiments were
conducted on Google Colab, an online platform equipped with GPU resources, facilitating the acceleration of
computational tasks involved in machine learning. For optimal training efficiency, a batch size of 32 was selected,
allowing the simultaneous processing of 32 samples in each iteration. This batch size strikes a balance between
memory usage and training speed, enabling efficient learning while minimizing the risk of memory overflow. The
model underwent training for 100 epochs, ensuring multiple passes over the entire dataset, which allowed the
model to refine its parameters incrementally. The learning rate was set at 0.0001 to provide controlled and gradual
updates to the model’s weights. This lower learning rate ensured stable convergence, avoiding potential issues with
erratic weight adjustments that could impair model performance. This training configuration, in combination with
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the computational power of Google Colab, enabled the effective and time-efficient training of the CNN model.
Hyperparameter tuning played a crucial role in optimizing the CNN model. The learning rate, batch size, and
dropout rate were carefully adjusted to maximize the model’s ability to learn and generalize from input images,
which is vital for accurate disease detection across different datasets. The ADAM optimizer was used to update
weights, known for its effectiveness and robustness in deep learning tasks. The sparse categorical cross-entropy
loss function was employed, well-suited for multiclass classification, as it handles the distinct categories present in
the dataset. To ensure optimal computational efficiency, the images were resized to 256×256 pixels and normalized
in RGB format. This pre-processing strategy enhanced the model’s ability to extract meaningful features from the
images, contributing to its improved performance. To summarize the key training parameters, Table 3 provides a
comprehensive list of hyperparameters. The learning rate was set at 0.0001, guiding the pace of weight adjustment.
Dropout rates were tested at values of 0.5 to mitigate overfitting by randomly deactivating a portion of neurons
during training. These adjustments were essential in optimizing the model’s learning capacity, thereby increasing
its overall accuracy and effectiveness in medical diagnostic applications.

Table 3. Hyperparameters used for training the CNN model

Hyperparameter Value
Learning Rate 0.0001

Batch Size 32
Epochs 100

Dropout Rate 0.5
Optimizer ADAM

Loss Function Sparse Categorical Cross-Entropy

6. Evaluation Metrics:

To assess the performance of the proposed Fine-Tuned CNN (CNN) model, a comprehensive set of evaluation
metrics was employed. These metrics not only provide an overall measure of accuracy but also allow for a detailed
analysis of the model’s performance on each class. The following metrics were used:

• Precision: Measures the proportion of true positive predictions out of all positive predictions made by the
model. It is particularly useful for understanding the model’s ability to avoid false positives.

Precision =
TP

TP + FP
• Recall (Sensitivity): Indicates the proportion of true positive predictions out of all actual positive instances

in the dataset. It is important for understanding the model’s ability to identify all relevant instances of a class.

Recall =
TP

TP + FN
• F1-Score: The harmonic mean of precision and recall, providing a balanced measure of a model’s

performance. The F1-score is particularly important when dealing with imbalanced datasets, as it combines
both false positives and false negatives.

F1-Score = 2 · Precision · Recall
Precision + Recall

• Accuracy: The overall percentage of correct predictions made by the model across all classes. While widely
used, accuracy can be misleading in imbalanced datasets, which is why additional metrics are considered.

Accuracy =
TP + TN

TP + TN + FP + FN
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7. Tumor Classification Results and Discussion:

The results obtained for tumor classification based on performance metrics are presented in Table 4. This table
summarizes the model’s performance for three tumor types: meningiomas, gliomas, and pituitary tumors, in terms
of accuracy, precision, recall, and F1-score. These metrics are essential for evaluating the classification model’s
effectiveness, and each metric provides complementary information about the model’s ability to correctly identify
the different tumor classes. For the meningioma class, the model achieves a precision of 90.20%, meaning that
90.20% of the tumors classified as meningiomas were actually of that class. The recall is 88.81%, meaning that
88.81% of the true meningiomas were correctly identified, with about 11.19% being missed. The F1-score for this
class is 89.47%, showing a good balance between precision and recall, reflecting solid performance in detecting
meningiomas. On the other hand, the classification of gliomas presents more mixed results. The precision for
this class is 75.00%, which is relatively low, suggesting that the model tends to misclassify some gliomas as
other tumor types. However, the model achieves an outstanding recall of 96.85%, meaning that almost all true
gliomas are correctly detected. This shows that the model is highly sensitive to this class, but at the cost of an
increased number of false positives. The F1-score for gliomas is 81.71%, reflecting a compromise between high
recall and low precision. Results for pituitary tumors are the best among the three classes. The precision reaches
95.65%, indicating that the majority of pituitary tumors classified as such were indeed of this class. The recall is
95.96%, meaning that almost all pituitary tumors were correctly identified. The F1-score is 95.80%, showing an
excellent balance between precision and recall for this class. These results suggest that the model is particularly
effective at classifying pituitary tumors, with few misclassifications. In terms of overall performance, the average
precision is 86.95%, reflecting the model’s general ability to perform correct classifications. The average recall
is 93.87%, indicating that the model succeeds in identifying most tumors, although some misclassifications may
occur, particularly for gliomas. The average F1-score of 88.99% confirms that the model maintains a good balance
between precision and recall overall, though some classes require specific improvements. Accuracy is an essential
metric for evaluating the model’s performance as a whole. The average accuracy obtained in this study is 94.08% .
This high score suggests that the model successfully classifies the majority of the test set samples correctly, which
is an indicator of good overall performance. However, it is important to note that this metric can be misleading if
the classes are imbalanced. For instance, if one class is underrepresented, accuracy may remain high even if the
model does not correctly identify that class. In this case, although the global accuracy is high, performance varies
considerably between classes, especially for gliomas where precision is lower. Table 4 presents the performance
measures for tumor classification.

Table 4. Performance metrics for tumor classification

Tumor Class Accuracy Precision Recall F1 Score
Meningioma 92.11% 90.20% 88.81% 89.47%

Glioma 94.08% 75.00% 96.85% 81.71%
Pituitary 96.05% 95.65% 95.96% 95.80%
Average 94.08% 86.95% 93.87% 88.99%

The results show that, overall, the model performs well in tumor classification, with exceptional results for
pituitary tumors and solid performance for meningiomas. However, gliomas present a particular challenge due
to their low precision despite excellent recall. This may be due to misclassifications, particularly false positives,
which can be improved by adjusting the decision threshold or using techniques like data augmentation for this
class. To improve results, particularly for gliomas, it would be useful to explore strategies such as hyperparameter
optimization, oversampling underrepresented classes, or adopting more complex models to better distinguish these
tumors from others.

The model demonstrates great effectiveness in detecting pituitary and meningioma tumors, but improvements
can be made for glioma classification. By adjusting the model to improve precision while maintaining high
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recall, it would be possible to optimize overall results and reduce misclassifications, particularly for the less well-
discriminated classes. Although the overall accuracy is high, targeted improvements for each class will allow for a
better balance across the different performance metrics, further enhancing the robustness of the model.

The accuracy and loss curves for the three classes (Glioma, Meningioma, and Pituitary) are presented in figure
3. These curves help analyze the performance evolution of the classification during training for each class.

The accuracy curve for the Glioma class ( figure 3 (a)) shows a rapid increase during the early epochs, followed
by stabilization around 80-85% for the validation accuracy, indicating some divergence between the training and
validation data. The loss curve also decreases significantly at the beginning, but the validation loss remains slightly
higher, indicating some overfitting of the model.

The Meningioma class ( figure 3 (b)) shows a similar pattern to Glioma, with a rapid increase in accuracy early
on, followed by the validation accuracy stabilizing around 80%. However, some fluctuations are observed in the
validation loss curve, which may indicate slight instability or overfitting on the validation data. The training loss
decreases steadily.

The Pituitary class ( figure 3 (c)) stands out with a stable accuracy curve, where the training and validation curves
follow very similar trajectories, indicating good generalization. The loss curve decreases quickly and remains stable
throughout the training, with the validation loss closely following the training loss, showing minimal overfitting.

The curves indicate that the Pituitary class is the most stable and performs the best, with good generalization to
the validation data. The Meningioma class shows good performance but with some fluctuations, while the Glioma
class shows more marked divergence between training and validation curves, suggesting some instability and the
need for further refinement.

The confusion matrix is used to evaluate the performance of the model in terms of correctly and incorrectly
classifying different tumor classes. The values are calculated based on the precision and recall obtained for each
class, assuming an equal distribution of images between the classes (1021 images per class). The total number of
images is 3064. Table 5 shows the Confusion Matrix for the Proposed Model.

Table 5. Confusion Matrix for the Proposed Model

True/Auto Meningioma Glioma Pituitary tumor
Meningioma 902 49 24

Glioma 64 1001 15
Pituitary tumor 9 0 912

From the confusion matrix, we can observe the model’s performance for each class:

• Meningioma: The model correctly classified 902 meningioma images (True Positives, TP). There were 49
false positives (FP) where gliomas were misclassified as meningiomas, and 24 false negatives (FN) where
meningiomas were misclassified as gliomas or pituitary tumors.

• Glioma: The model correctly classified 1001 glioma images. There were 64 false positives (FP) where
meningiomas were misclassified as gliomas, and 15 gliomas were misclassified as pituitary tumors (false
negatives).

• Pituitary tumor: The model correctly classified 912 pituitary tumor images. There were 9 false positives
where meningiomas were misclassified as pituitary tumors, but no false negatives for this class.

These results suggest that the model has a good ability to distinguish between the different tumor classes, with
particularly high performance for the pituitary tumor class, which has a low number of false positives and false
negatives.

The table 6 presents a comparison of the performance of the proposed approach ( Our ) with several state-of-the-
art models. All models were evaluated on the same Figshare dataset, and their performances are measured in terms
of accuracy .

The performance results of the compared models vary considerably, ranging from 90.8% for CapsNets [15] to
99.06% for EfficientNetB2 [27] . The majority of the models rely on traditional CNN architectures, with some
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Glioma: Train Acc=85.77%, Test Acc=94.08%, Precision=75.00%, Recall=96.85%, F1-score=81.71%.

(a) Glioma Class.

Sujet 11: Train Acc=85.57%, Test Acc=92.11%, Precision=90.20%, Recall=88.81%, F1-score=89.47%, Time=32.84s
Meningioma: Train Acc=85.57%, Test Acc=92.11%, Precision=90.20%, Recall=88.81%, F1-score=89.47%

(b) Meningioma Class.
Pituitary : Train Acc=85.54%, Test Acc=96.05%, Precision=95.65%, Recall=95.96%, F1-score=95.80%.

(c) Pituitary Class

Figure 3. Accuracy and loss curves for the Glioma, Meningioma, and Pituitary classes.

variations like VGG19 [22] [24] , CNN + GA [20], and Partial Least Squares [26] . Model performances range
from 94% to 97% , while more advanced approaches, such as EfficientNetB2 [27] , achieve 99.06% accuracy.
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Table 6. Performance comparison between the proposed model and other state-of-the-art models

Ref Dataset Classifier Accuracy (%)
[15] Figshare CapsNets 90.8
[16] Figshare CNN 96.1
[20] Figshare CNN + GA 90.9
[22] Figshare VGG19 94.8
[24] Figshare VGG19 94.5
[26] Figshare Partial Least Squares 98.95
[27] Figshare Fine-tuned EfficientNetB2 99.06
[28] Figshare CNN 97.8
[29] Figshare CNN 97.0
[30] Figshare CNN 92.6
Our Figshare Fine-Tuned CNN 94.08

The proposed approach , based on a Fine-Tuned CNN , achieves an accuracy of 94.08% , placing it in the
same range as models using VGG19 [22] [24] and classical CNN , but slightly behind cutting-edge models like
EfficientNetB2 [27] . However, it is important to note that the fine-tuned approach has allowed for competitive
results, while remaining relatively simpler than more complex pre-trained models.

The Fine-Tuned CNN model shows strong results with an accuracy of 94.08% , making it a relevant approach for
classification on the Figshare dataset [9]. This performance is similar to several CNN and VGG19 models [22] [24],
demonstrating the effectiveness of fine-tuning in adapting the model to the specific characteristics of the dataset.

One of the key advantages of the fine-tuned approach is its ability to adjust the model weights specifically
for the application at hand, thereby improving its performance without the complexity of deeper models like
EfficientNetB2 .

The CNN -based models in the table show performances ranging from 92.6% to 97.8% , placing Our at a
competitive level. Models such as CNN + GA [20] and classic CNN versions show similar performance to Our ,
with accuracies of 94.2% and 94.08% , respectively. Models using more complex architectures like EfficientNetB2
[27] and VGG19 [22] deliver superior performance, with accuracy reaching 99.06% for EfficientNetB2 [27] .
While Our does not reach these results, it remains a robust and efficient approach, especially for applications
where simplicity and adaptability are key.

Approaches such as CapsNets [15] and Partial Least Squares [26] exhibit lower performance, with accuracies
of 90.8% and 98.95% , respectively. This suggests that traditional CNN -based models tend to outperform newer
approaches like CapsNets on this specific dataset.

The Fine-Tuned CNN approach presented in this paper offers a competitive alternative to existing models, with
an accuracy of 94.08% . While it does not surpass the most recent models like EfficientNetB2 [27] , it provides
notable advantages in terms of simplicity and specificity, compared to more complex architectures. Fine-tuning the
model on the Figshare dataset [9] has led to relevant results, and further improvements in parameter tuning and the
integration of additional techniques could push performance to even higher levels.

8. Inference and Deployment on Embedded Platform: Case Study on Raspberry Pi

The deployment of the Fine-Tuned convolutional neural network model on a Raspberry Pi (Figure 4) demonstrates
the feasibility of using embedded systems for real-time medical diagnostics. The Raspberry Pi, a compact and
cost-effective computing platform, offers portability and independence from high-performance servers, making it
an attractive choice for resource-constrained clinical environments.
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Figure 4. Raspberry Pi 4 Model B.

8.1. Objective of Embedded Deployment

The primary goal of deploying the Fine-Tuned CNN model on the Raspberry Pi is to enable real-time inference in
resource-constrained environments. This type of deployment is particularly relevant for medical scenarios where
high-performance hardware may not always be available, such as in rural areas or mobile clinics.

The specific objectives include:

• Portability and Autonomy: Providing a portable solution that does not rely on remote servers or constant
internet connectivity. This allows for quick, on-site diagnostics, reducing wait times for patients and medical
staff.

• Resource Optimization: Adapting the model to run efficiently on embedded platforms with limited memory
and processing power. The goal is to maximize the model’s performance while minimizing energy and
computational requirements.

• Affordability in Low-Cost Clinical Environments: Providing an affordable solution for healthcare
facilities with limited financial resources, without compromising diagnostic quality. The Raspberry Pi is
an affordable platform, making it accessible for a wide range of medical applications.

• Real-Time Performance: Enabling fast classification of MRI images, with an inference time of around 60
ms per image, allowing physicians to obtain immediate results and make informed decisions quickly.

Thus, the embedded deployment on Raspberry Pi aims to democratize access to advanced diagnostic
technologies while overcoming cost and resource limitations.

8.2. Model Deployment Workflow

The deployment involved loading and executing the TensorFlow Lite model on the Raspberry Pi with the following
workflow:

• Loading the Model: The TensorFlow Lite model was loaded into a Python program running on the
Raspberry Pi. This process prepared the model for inference on the embedded platform.

• Preprocessing Images: Input images were preprocessed to match the model’s input requirements. This
included resizing to 256 × 256 pixels and normalizing pixel values to a range of 0–1 to ensure the data
was in the correct format for inference.
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• Real-Time Classification: The model classified brain MRI images into three categories: gliomas,
meningiomas, and pituitary tumors. The average inference time recorded was approximately 60 ms per
image, indicating real-time processing capability on the embedded platform.

8.3. Performance Measurements

To evaluate the performance of the model deployed on the Raspberry Pi, several metrics were considered,
including inference time, CPU usage, and energy consumption. These measurements are crucial for determining
the feasibility of the deployment in resource-limited medical environments.

• Inference Time: The average inference time per image was measured at 60 ms, which allows for quick,
real-time diagnostics. Tests were conducted with different image sizes to observe their impact on processing
time.

• CPU Usage: CPU usage was monitored throughout the inference process. On average, CPU utilization
fluctuated around 75% during classification periods, which is within an acceptable range for embedded
deployments.

• Energy Consumption: The estimated energy consumption during image processing was approximately 5W,
making the Raspberry Pi an energy-efficient solution for mobile clinical applications.

These tests demonstrate that the Raspberry Pi 4 Model B can provide a reliable solution for real-time medical
diagnostics, while respecting resource constraints.

8.4. Future Improvements

Future work will focus on further optimizing the model for embedded systems using techniques such as model
quantization. This approach will reduce the precision of the model weights to formats like INT8, which will lower
memory usage and inference time while maintaining model performance. Additionally, incorporating hardware
accelerators such as the Google Coral TPU or NVIDIA Jetson Nano could significantly enhance the deployment’s
performance and scalability, making the system even more suited for real-time, resource-constrained clinical
environments.

9. Conclusion:

This study demonstrates that our fine-tuned CNN can deliver competitive performance for multiclass brain tumor
classification on the Figshare dataset, achieving an overall accuracy of 94.08%. While not surpassing state-of-
the-art models such as EfficientNetB2, the proposed approach offers notable advantages in terms of simplicity,
efficiency, and adaptability. Class-wise analysis highlights excellent performance for pituitary tumors and solid
results for meningiomas, but reduced precision for gliomas due to frequent false positives. Addressing this
limitation will require targeted strategies such as data balancing, threshold adjustment, or ensemble methods.

The successful deployment on a Raspberry Pi underscores the model’s feasibility for real-time inference in
resource-constrained settings. With an inference time of 60 ms per image and energy consumption around 5 W,
the system provides a cost-effective and portable solution for decentralized diagnostics, particularly in rural or
low-income healthcare contexts.

Future work will focus on enhancing model generalization and efficiency through quantization, pruning, and
integration with hardware accelerators such as Coral TPU or Jetson Nano. Additional validation on external
datasets, prospective testing, and interpretability techniques will be essential for clinical translation. Overall, the
proposed fine-tuned CNN represents a promising step toward practical, accessible, and accurate computer-aided
diagnostic systems for brain tumor classification.
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