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Abstract There are many models for which quantile function are available in tractable form, though their distribution
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entropy measures. In the present paper, we introduce quantile-based inaccuracy measure for doubly truncated random
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1. Introduction

The measure of uncertainty associated with a probability distribution is known as entropy, which was introduced
by Shannon [26]. In a sample space with corresponding probabilities p1, p2..., pn, there are n mutually exclusive
and exhaustive events E1, ...En. The entropy for these events is H(p) = −

∑n
i=1 pi log pi, where p = (p1, ...pn).

Kerridge [8] introduced a generalization of entropy was inaccuracy measure I(p, q) = −
∑n

i=1 pi log qi of two
probability distributions where qi is the probability that an experimenter assigned to the event and pi represents the
genuine probability of the ith event, then p = (p1, p2...pn) and q = (q1, q2...qn). Nath [23] further expanded this
measure to include continuous random variables. The inaccuracy measure between two random variable X and Y
is

I(X,Y ) = −
∫ ∞

0

f(x) log g(x)dx, (1)

where f(x) is the true probability density function of a random variable and g(x) is an assigned, assumed, or
approximated density function. Data for used objects is frequently reduced in reliability and life testing, making it
unsuitable for measuring inaccuracy (1). Nair and Gupta [21] therefore expanded (1) for the residual inaccuracy for
a pair of random variables. Inaccuracy measures for two past lifetime random variables were presented by Kumar
et al. [15]. Chanchal kundu et al. [17] introduce the interval inaccuracy measure for doubly truncated random
variables (X|t1 ≤ X ≤ t2) and (Y |t1 ≤ Y ≤ t2) are considered, where G(u) < G(v) and (t1, t2) ∈ D = (u, v) ∈
ℜ2 : F (u) < F (v) are absolutely continuous. Next, in the interval (t1, t2), the interval inaccuracy measure of X
and Y is defined as

IX,Y (t1, t2) = −
∫ t2

t1

f(x)

F (t2)− F (t2)
log

g(x)

G(t2)−G(t1)
dx. (2)

For information and results we studied Di Crescenzo et al.[3], Taneja et al. [29], Sunoj et al. [27], Misagh and Yari
[19].
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Kullback–Leibler divergence is a fundamental concept in information theory, statistics, reliability analysis, and
related domains to quantify the disrimination between two distributions. Kullback and Leibler [10] studied and
proposed Kullback-Leibler divergence between two random variable X and Y as

IX,Y =

∫ ∞

0

(
log

f(x)

g(x)

)
f(x)dx. (3)

In [4] Ebrahimi and Kirmani proposed and studied the residual Kullback-Leibler discrimination. Di Crescenzo and
Longobardi [2] gives Kullback-Leibler distance for two past lifetime. Yari et al. [18] gives the distance between
random lifetime X and Y at the interval (t1, t2) is the Kullback-Leibler discrimination measure as

KLX,Y (t1, t2) =

∫ t2

t1

f(x)

F (t2)− F (t1)
log

(
f(x)

F (t2)−F (t1)

g(x)
G(t2)−G(t1)

)
dx. (4)

The distribution function forms the basis for both theoretical studies and practical implementations involving these
information measures, yet they might not be appropriate in circumstances where the distribution is not analytically
tractable. Quantile function-based approaches have been demonstrated to be an effective and comparable substitute
for distribution in the modelling and analysis of statistical data. [5] Gilchrist and Nair et al. [20]. The quantile
function of a random variable X is given as

Q1(u) = F−1(u) = inf(x|F (x) ≥ u), 0 ≤ u ≥ 1. (5)

Recent attention has been generated by the research of information measures based on quantile function. Sunoj
et al. [6] studied and introduced quantile-based inaccuracy measures, including quantile-based past and residual
inaccuracy. For two non-negative, absolutely continuous random variables X and Y with respective quantile
functions Q1 and Q2 the quantile-based inaccuracy measure is defined as

IQ(X,Y ) = −
∫ 1

0

log g(Q1(u))du. (6)

And the quantile-based past inaccuracy measure and quantile-based residual inaccuracy measure is given as

IQ(X,Y, u) = −
∫ 1

u

f(Q1(p))

F̄ (Q1(u))
log

g(Q1(p))

Ḡ(Q1(u))
d(Q1(p)), (7)

ĪQ(X,Y ; v) = −
∫ v

0

f(Q1(p))

F (Q1(v))
log

g(Q1(p))

G(Q1(v))
d(Q1(p)). (8)

Sankaran et al.[25] studied and proposed quantile based Kullback Leibler measure, quantile based residual and
quantile based past Kullback Leibler divergence measure defined as

KLX,Y (Q) =

∫ 1

0

log

(
f(Q1)(u)

g(Q1(u))

)
f(Q1(u))dQ1(u), (9)

KLX,Y (Q1(u)) = − 1

1− u

∫ 1

u

log((q1(p))g(Q1(p)))dp+ log

(
1−G(Q1(u))

1− u

)
, (10)

K̄LX,Y (Q1(v)) = −1

v

∫ v

0

log((q1(p))g(Q1(p)))dp+ log

(
G(Q1(u))

u

)
. (11)

Quantile-based information measures have been studied by many researchers, Baratpour et al. [1], Kumar et al.
[12], Kumar et al. [13], Kittaneh [9], Kayal et al. [7].
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Many researchers have indicated that the quantile-based approach serves as an alternative to the conventional
distribution function approach. In their study, Sankaran et al. [25] developed a quantile-based version of the
Kullback-Leibler divergence and investigated its characteristics, with a particular focus on its application to lifetime
data analysis. Sunoj et al. [6] proposed a quantile version of inaccuracy measure also discuss many properties of
quantile-based inaccuracy measure. However a corresponding study of quantile inaccuracy for doubly truncated
random variable and quantile-based Kullback Leibler divergence measure for doubly truncated random variable
has not been covered in previous research. This motivates the use of quantile-based approaches, particularly for
defining measures like entropy and divergence. Recent research has highlighted the value of quantile-based entropy
measures, but there has been limited exploration of inaccuracy and divergence measures in the context of truncated
data. This paper aims to fill this gap by developing and studying quantile-based inaccuracy and Kullback–Leibler
divergence measures for doubly truncated random variables, offering new tools for statistical inference in such
constrained data environments. More results and applications are refer to Kumar and Dangi [16], Zamani and
Madadi [31], Wang and Kang [30], Tehlan and Kumar [28], Kumar et al.[14].
In the following paper, We outline our approach as follows. In Section 2, we propose and study quantile- based
inaccuracy for doubly truncated random variable and some of its important properties. Some characterization result
also discuss. In Section 3, we study quantile-based Kullback-Leibler divergence for doubly truncated random
variable. While explicit forms of their distribution functions are lacking, many models have quantile functions that
are available in a feasible form also discuss.

2. Quantile-based Interval Inaccuracy

Let X and Y be two random variables with quantile functions Q1(u) and Q2(u), and distribution functions F and
G, respectively. For a continuous distribution function F , it holds that F (Q1(u)) = u. Differentiating both sides
with respect to u, we get

q1(u) · f(Q1(u)) = 1. (12)

Here, f(Q1(u)) is referred to as the density quantile function, and q1(u) = Q′
1(u) is the quantile density function

corresponding to the quantile function Q1(u). Next, define Q3(u) = Q−1
2 (Q1(u)), which represents the relative

inverse quantile function between the distributions G and F , the quantile function of F (G−1(·)). Differentiating
Q3(u), we obtain q3(u) = Q′

3(u) = g(Q1(u)) · q1(u) where g is the density function of G, evaluated at Q1(u). This
setup forms the basis for defining a quantile-based version of the interval inaccuracy measure, which compares the
two distributions using their quantile and density functions.

Definition 2.1
Consider two absolutely continuous, non-negative random variables, X and Y , with QFs Q1 and Q2, respectively.
Then the quantile-based interval inaccuracy measure is defined as

IQ(X,Y ;u1, u2) = −
∫ u2

u1

f(Q1(u))

F (Q1(u2))− F (Q1(u1))
log

g(Q1(u))

G(Q1(u2))−G(Q1(u1))
q1(u)du.

=−
∫ u2

u1

f(Q1(u))

F (Q1(u2))− F (Q1(u1))
log

g(Q1(u))

(Q3(u2))− (Q3(u1))
q1(u)du.

= log(Q3(u2)−Q3(u1))−
1

u2 − u1

∫ u2

u1

log
q3(u)

q1(u)
du. (13)

Let T be a non-negative continuous random variable representing the time until an event occurs. Let f(t) be the
probability density function, F (t) be the cumulative distribution function F̄ (t) = 1− F (t) be the survival function.
The hazard rate at time t is defined as

h(t) =
f(t)

1− F (t)
=

f(t)

F̄ (t)
.
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This function describes the instantaneous probability of failure at time t, given survival up to that point. If the
quantile function Q(u) is known, the hazard rate can also be expressed in terms of quantile function as

h(Q(u)) =
1

q(u)(1− u)

where Q(u) is the quantile function q(u) = Q′(u) is the quantile density function. Now we define hazard
quantile and reversed hazard quantile functions at time of interval u1 to u2 of random variable X are defined
as H1(u1, u2) = [q1(u)(u2 − u1)]

−1 and H̄1(u1, u2) = [q1(u)(u1 − u2)]
−1. These are equivalent to the hazard

and reverse hazard rate function in terms of the QF. Denote H3(u1, u2) and H̄3(u1, u2) the hazard quantile and
reversed hazard quantile function corresponding to the quantile function Q3 . In parallel to these hazard quantile
function Q3 we defined H3(u1, u2) = [q3(u)(u2 − u1)]

−1 and H̄3(u1, u2) = [q3(u)(u1 − u2)]
−1. The quantile-

based inaccuracy measures (13) has been expressed in terms of hazard quantile and reversed hazard quantile
functions.

IQ(X,Y ;u1, u2) = log(Q3(u2)−Q3(u1))−
1

u2 − u1

∫ u2

u1

log
H1(u1, u2)

H3(u1, u2)
du,

= log(Q3(u2)−Q3(u1))−
1

u2 − u1

∫ u2

u1

log
H̄1(u1, u2)

H̄3(u1, u2)
du.

The quantile version of proportional hazard model is Qy(u) = Qx(1− (1− u)
1
θ ) and the quantile version of reverse

hazard model is Qx(u) = Qy(u
θ) respectively. The quantile-based inaccuracy measures (13) has been expressed in

terms of proportional hazard rate model (PHRM) , given as follows

IQ(X,Y ;u1, u2) = θ − log θ + log[F̄ θ(Q1(u1)− F̄ θ(Q1(u2))]+

θ[F̄ (Q1(u2)) log F̄ (Q1(u2))− F̄ (Q1(u1)) log F̄ (Q1(u1))]

F̄ (Q1(u1))− F̄ (Q1(u2))

− 1

F̄ (Q1(u1))− F̄ (Q1(u2))

∫ u2

u1

f(Q1(u)) log λF (u)du.

The quantile-based inaccuracy measures (13) has been expressed in terms of proportional reverse hazard rate model
(QPRHRM), given as follows

‘IQ(X,Y ;u1, u2) = θ − log θ + log[F θ(u2)− F θ(u1)]−
θ[F (Q1(u2)) logF (Q1(u2))− F (Q1(u1)) logF (Q1(u1))]

F (Q1(u2))− F (Q1(u1))

− 1

F (Q1(u2))− F (Q1(u1))

∫ u2

u1

f(Q1(u)) log ϕF (u)du.

2.1. Properties of Inaccuracy Measures

In general, the measure of interval inaccuracy based on quantiles, as detailed in (12), does not maintain
monotonicity with respect to u1, u2. The next theorem presents the upper (lower) bounds for IQ(X,Y ;u1, u2)
based on monotone properties of it. Additionally helpful are bounds in cases when computing the real measure is
challenging.

Theorem 2.1
The quantile-based interval inaccuracy measure for IQ(X,Y ;u1, u2) is increasing (decreasing) in u1 and u2 if one
is fixed other is run if and only if

IQ(X,Y ;u1, u2) ≥ (≤)
(u2 − u1)q3(u1)

Q3(u2)−Q3(u1)
− log(

q3(u1)

q1(u1)(Q3(u2)−Q3(u1))
).
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4 QUANTILE-BASED STUDY OF INTERVAL INACCURACY MEASURES

Proof
From (13), we have

IQ(X,Y ;u1, u2) = log(Q3(u2)−Q3(u1))−
1

u2 − u1

∫ u2

u1

log
q3(u)

q1(u)
du.

This can be rewritte as

(u2 − u1)IQ(X,Y ;u1, u2) = (u2 − u1) log(Q3(u2)−Q3(u1))−
1

u2 − u1

∫
log

q3(u)

q1(u)
du. (14)

Taking the derivative of both sides of (14) with respect to u1 the result as

I
′

Q(u1, u2) =
1

(u2 − u1)
[IQ(X,Y ;u1, u2)−

(u2 − u1)q3(u1)

Q3(u2)−Q3(u1)
+ log(

H1(u1, u2)q3(u1)(u2 − u1)

Q3(u2)−Q3(u1)
)], (15)

Taking the derivative of both sides of (14) with respect to u2 the result as

I
′

Q(u1, u2) =
1

(u2 − u1)
[IQ(X,Y ;u1, u2)−

(u2 − u1)q3(u2)

Q3(u2)−Q3(u1)
+ log(

H1(u1, u2)q3(u2)(u2 − u1)

Q3(u2)−Q3(u1)
)], (16)

where H1(u1, u2) and H2(u1, u2)is hazard quantile function of X . Therefore, given the assumption, the desired
result follows immediately. The reverse result can be obtained by reversing the process and hence is omitted.

We provide the idea of quantile-based interval inaccuracy ratio in this section.

Proposition 2.1
For X and Y it is given by

IQR(X,Y ;u1, u2) =
IQ(X,Y ;u1, u2)

H(Q;u1, u2)
(17)

where H(Q;u1, u2) is the quntile Shannon interval entropy, IQR(X,Y ;u1, u2) provide dimensional measure of
closeness between X and Y if Q1 = Q2 then IQR(X,Y ;u1, u2) = 1. Further analog the quantile-based interval
inaccuracy measure is not symmetric that is IQR(X,Y ;u1, u2) ̸= IQR(X,Y ;u2, u1).
Next we find the decomposition of quantile-based inaccuracy in the terms or past quantile inaccuracy, residual
quantile inaccuracy and IQ(X,Y ;u1, u2).

Proposition 2.2
For arbitrary lifespan of (X,Y ) the function IQ(X,Y ) can be expressed as.

Proof

IQ(X,Y ) = F (Q1(u1))ĪQ(X,Y ;u1) + [F (Q1(u2))− F (Q2(u1))]IQ(X,Y ;u1, u2) + F̄

(Q1(u2))IQ(X,Y ;u2)− [logG(Q1(u1)) + log Ḡ(Q1(u2)) + logG(Q1(u2))−G(Q1(u1))].

Four parts make up the quantile inaccuracy measure. i) the random variable’s inaccuracy measure truncated above
u1. ii) the inaccuracy measure in the range (u1, u2), assuming that the item failed before to u2 but subsequent
to u1. iii) the measure of inaccuracy for random variables truncated below u2; and iv) the measure of inaccuracy
determines if the item has failed before u1, in between u1 and u2, or after u2. When u1 = u2 = u then above can
be expressed as

IQ(X,Y ) = F (Q1(u))ĪQ(X,Y ) + F̄ (Q1(u))IQ(X,Y )− logG(Q1(u))− log Ḡ(Q1(u)).
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The following section presents the bounds of the quantile-based interval inaccuracy.
On differentiating (13) with respect to u1 and u2, we get

∂IQ(X,Y ;u1, u2)

∂u1
= HX

1 (u1, u2)[IQ(X,Y ;u1, u2) + logHY
1 (u1, u2)] +HY

1 (u1, u2), (18)

and

∂IQ(X,Y ;u1, u2)

∂u2
= HX

2 (u1, u2)[IQ(X,Y ;u1, u2) + logHY
2 (u1, u2)] +HY

2 (u1, u2). (19)

When IQ(X,Y ;u1, u2) is increasing in each of u1 and u2 while keeping the other fixed, then equation (18) and
(19) together imply that

HY
1 (u1, u2)

HX
1 (u1, u2)

− logHY
1 (u1, u2) ≤ IQ(X,Y ;u1, u2) ≤

HY
2 (u1, u2)

HX
2 (u1, u2)

− logHY
2 (u1, u2). (20)

The follwing preposition provides the bounds for the quantile interval inaccuracy measure. The proof is derived
from (13) and is therefore omitted.

Proposition 2.3
If g(Q(u)) is decreasing in u, then

− logHY
1 (u1, u2) ≤ −IQ(X,Y ;u1, u2) ≤ − logHY

2 (u1, u2). (21)

For increasing g(Q(u)) the above inequalities are reversed.
In the next two theorems, we gives upper and lower bounds for the quantile interval inaccuracy, based
on the monotonic behavior of the quantile generalized failure rate function for Y note that ∂HY

1 (u1,u2)
∂u1

=

HY
1 (u1, u2)(

g′(Q1(u1))
g(Q1(u))

+HY
1 (u1, u2)) and ∂HY

1 (u1,u2)
∂u2

= −HY
1 (u1, u2)H

Y
2 (u1, u2)).

Theorem 2.2
For fixed u2,
(i) if HY

1 (u1, u2) is decreasing in u1 then IQ(X,Y ;u1, u2) ≥ − logHY
1 (u1, u2);

(ii) if HY
1 (u1, u2) is increasing in u1, then

IQ(X,Y ;u1, u2) ≤ − logHY
1 (u1, u2)−

∫ u2

u1

f(Q1(u))

F (Q1(u2))− F (Q1(u1))
log

G(Q1(u2))−G(Q1(x))

G(Q1(u2))−G(Q1(u1))
d(Q1(u)).

(22)

Proof
Observe that (13) can be rewritten as

IQ(X,Y ;u1, u2) = −
∫ u2

u1

f(Q1(u) logH
Y
1 (u1, u2)d(Q1(u1))

F (Q1(u2))− F (Q1(u1))
−
∫ u2

u1

f(Q1(u))

F (Q1(u2))− F (Q1(u1))

log
G(Q1(u2))−G(Q1(x))

G(Q1(u2))−G(Q1(u1))
d(Q1(u)). (23)

For 1 < x, log G(Q1(u2))−G(Q1(x))
G(Q1(u2))−G(Q1(u1))

≤ 0, and HY
1 (x, u2) ≤ logHY

1 (u1, u2) if HY
1 (u1, u2) is decreasing in u1

hence from (23) we obtain,

IQ(X,Y ;u1, u2) ≥ −
∫ u2

u1

f(Q1(u)

F (Q1(u2))− F (Q1(u1))
logHY

1 (x, u2)d(Q1(u1))

≥ − logHY
1 (u1, u2).
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6 QUANTILE-BASED STUDY OF INTERVAL INACCURACY MEASURES

(ii) The second section proceeds naturally by utilising the knowledge that logHY
1 (x, u2) ≥ logHY

1 (u1, u2).
Let us suppose that, for a fixed u2, we aim to characterize the distributions that achieve the upper and lower
bounds of the quantile-based interval inaccuracy measure, as stated in the preceding theorem. IQ(X,Y ;u1, u2) =
logHY

1 (u1, u2) and HY
1 (u1, u2) is decreasing in u1. Then by differentiating with respect u1 and using (18), we

get a result g′(Q1(u1))
g(Q(u1))

= 0, which in turn gives via ∂
∂u1

HY
1 (u1, u2) = (HY

1 (u1, u2))
2 that HY

1 (u1, u2) cannot be
decreasing, constant, or zero. Consequently, the inequality in part (i) of the preceding theorem must be strict. (ii)
Next, we will assume the inequality in the second part of the theorem is established i.e.,

IQ(X,Y ;u1, u2) = − logHY
1 (u1, u2)−

∫ u2

u1

f(Q1(u))

F (Q1(u2))− F (Q1(u1))
log

G(Q1(u2))−G(Q1(x))

G(Q1(u2))−G(Q1(u1))
d(Q1(u))

and HY
1 (u1, u2) is increasing in u1. Differentiating with respect to u1 and applying (18), we obtain, HY

1 (u1, u2) +
g′(Q1(u1))
g(Q(u1))

= 0, which gives that HY
1 (u1, u2) = k(Q(u2)) which is either a function of u2 only or a constant.

While the proof for the next theorem is similar to the previous one, we provide an overview of the proof here
for completeness.

Theorem 2.3
For fixed u1,
(i) if HY

2 (u1, u2) is increasing in u2 then IQ(X,Y ;u1, u2) ≥ − logHY
2 (u1, u2);

(ii) if HY
2 (u1, u2) is decreasing in u2, implies that

IQ(X,Y ;u1, u2) ≤ − logHY
2 (u1, u2)−

∫ u2

u1

f(Q1(u))

F (Q1(u2))− F (Q1(u1))
log

G(Q1(x))−G(Q1(u1))

G(Q1(u2))−G(Q1(u1))
d(Q1(u)).

(24)

Proof
Observe that (13) can be expressed as

IQ(X,Y ;u1, u2) = −
∫ u2

u1

f(Q1(u) logH
Y
2 (u1, x)d(Q1(u1))

F (Q1(u2))− F (Q1(u1))
−
∫ u2

u1

f(Q1(u))

F (Q1(u2))− F (Q1(u1))

log
G(Q1(x))−G(Q1(u1))

G(Q1(u2))−G(Q1(u1))
d(Q1(u)). (25)

The remaining proof follows from (25) by applying the fact that, for x < u2, log G(Q1(x))−G(Q1(u1))
G(Q1(u2))−G(Q1(u1))

≤ 0, and
HY

2 (u1, x) ≤ logHY
2 (u1, u2) if HY

2 (u1, u2) is increasing (decreasing) in u2. By using the aforementioned analogy,
we can demonstrate that the equality in the theorem’s first section will not hold. The equality will apply to the
second section if Hu2

u1
= k.

2.2. Characterization Theorem

In this section, we analyze a class of continuous lifetime distributions and establish characterization theorems using
the quantile generalized failure rate function, the quantile geometric vitality function, and the quantile inaccuracy
measure, under the frameworks of the quantile proportional hazard rate model and the quantile proportional reverse
hazard rate model.
The general characterization problem involves determining the conditions under which the quantile interval
inaccuracy measure uniquely determines the underlying distribution function. In what follows, we present and
discuss a corresponding characterization result.

Theorem 2.4
For two absolutely continuous non-negative random variable X and Y , if IQ(X,Y ;u1, u2) increasing with u1,
(when u2 is fixed) and decreases with u2 (when u1 is fixed), and if HY

i (u1, u2) = θHX
i (u1, u2); for θ > 0; and

i = 1, 2 respectively. Then IQ(X,Y ;u1, u2) uniquely determines the distribution function.
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Proof
Using (18) and (19), we derive

∂

∂u1
IQ(X,Y ;u1, u2) = HX

1 (u1, u2)[IQ(X,Y ;u1, u2) + log θ − θ + logHX
1 (u1, u2)] (26)

and,

∂

∂u2
IQ(X,Y ;u1, u2) = −HX

2 (u1, u2)[IQ(X,Y ;u1, u2) + log θ − θ + logHX
2 (u1, u2)]. (27)

Then for any fixed u1 and arbitrary u2, HX
1 (u1, u2) is a positive solution of the equation η(xu2

) = 0, where

η(xu2
) = xu2

[IQ(X,Y ;u1, u2) + θ − θ + log η(xu2
)]− ∂

∂u1
IQ(X,Y ;u1, u2). (28)

Similarly, for fixed u2 and arbitrary u1, HX
2 is a positive solution of the equation ζ(yt1) = 0, where

ζ(yu1
) = yu1

[IQ(X,Y ;u1, u2) + log θ − θ log yu1
] +

∂

∂u2
IQ(X,Y ;u1, u2). (29)

Taking the derivatives of η(xu2
) with respect to xu2

and ζ(yu1
) with respect to yu1

, we get

∂η(xu2)

∂xu2

= IQ(X,Y ;u1, u2) + log θ − θ + 1 + log η(xu2
). (30)

and
∂ζ(yu1

)

∂yu1

= IQ(X,Y ;u1, u2) + log θ − θ + 1 + log η(yu1
). (31)

Further second order derivative are ∂2η(xu2
)

∂x2
u2

= 1
xu2

> 0 and ∂2ζ(yu1
)

∂y2
u1

= 1
yu1

> 0. So, both of η(xu2
) and ζ(yu1

min-

imized at xu2 = exp[θ − log θ − 1− IQ(X,Y ;u1, u2)] = yu1 respectively. Here η(0) = − ∂
∂u1

IQ(X,Y ;u1, u2) <
0; Since we assume that IQ(X,Y ;u1, u2) is increasing in u1 and also when (xu2

→ ∞), η(xu2
) → ∞. Similarly

ζ(0) = ∂
∂u2

IQ(X,Y ;u1, u2) < 0, and ζ(yu1) → ∞ as yu1 → ∞. Therefore, both the equation η(xu2) = 0, ζ(xu2 =

0 have unique positive solution HX
1 (u1, u2) and HX

2 (u1, u2), respectively. Thus, the proof is completed by utilizing
the result that the QGFR function uniquely characterizes the distribution function, as demonstrated by Navarro and
Ruiz [24].

Example 2.1
Suppose X and Y be follow Pareto II distribution with their quantile function respectively, Q1(u) =

b((1− u)
−1
p1 − 1); p1 > 0 , b > 0 and Q2(u) = b((1− u)

−1
p1 − 1); p1 > 0 , b > 0. Then Q3(u) = 1− (1− u)

p2
p1 and

q3(u) =
p2

p1
(1− u)

p2
p1

−1. Then from (13) we have

IQ(X,Y ;u1, u2) = log(Q3(u2)−Q3(u1))−
1

u2 − u1

∫ u2

u1

log
q3(u)

q1(u)
du.

IQ(X,Y ;u1, u2) = log((1− u1)
p2
p1 − (1− u2)

p2
p1 )− log(

1

p2
)− 1

u2 − u1
(
p2 + 1

p1
)((u2 log(1− u2)

− u2 + log(1− u2))− (u1 log(1− u1) + u1 − log(1− u1))).

IQ(X,Y ;u2, u1) = log((1− u1)
p1
p2 − (1− u2)

p1
p2 )− log(

1

p1
)− 1

u2 − u1
(
p1 + 1

p2
)

((u2 log(1− u2)− u2 + log(1− u2))− (u1 log(1− u1) + u1 − log(1− u1))).
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8 QUANTILE-BASED STUDY OF INTERVAL INACCURACY MEASURES

This clear shows that the quantile-based interval inaccuracy measure is not symmetric (see Figure 1), that is in
general, IQ(X,Y ;u1, u2) ̸= IQ(Y,X;u2, u1).
In figure 1, Plotting the interval inaccuracy measures acquired in example (2.1) with regard to u1 is done assuming
u2 = 0.8. The plot of IQ(X,Y ;u1, u2), IQ(Y,X;u2, u1) is shown by the curve line with the bold (thick). From
the figure, we notice that the case considered in example (2.1), inaccuracy measure cross at the point when
u1 = u2 = 0.8. We can see the measure IQ(X,Y ;u1, u2) represent the bold line which is not monotonic in the
interval of (0, 1) and IQ(X,Y ;u1, u2) ≥ IQ(Y,X;u2, u1) at the interval of (0, 0.8) .

Figure 1. Quantile- based Interval Inaccuracy vs Quantile function

An example is provided below to illustrate the effectiveness of the quantile-based interval Inaccuracy measure in
equation (13).

Example 2.2
X and Y be two non-negative exponential distribution with their quantile functions respectively Q1(u) =

− 1
λ1

log(1− u) ;λ1 > 0 and Q2(u) = − 1
λ2

log(1− u) ;λ2 > 0, Then Q3(u) = Q−1
2 (Q1(u)) = 1− (1− u)

λ2
λ1

and q3(u) =
λ2

λ1
(1− u)

λ2
λ1 − 1. Thus from (13) we get

IQ(X,Y ;u1, u2) = log
(
(1− u1)

λ2
λ1 − (1− u2)

λ2
λ1

)
− log

(
λ2

λ1

)
−
(

1

u2 − u1

)(
λ2

λ1
− 1

)
((u2 log(1− u2)− u2

+ log(1− u2))− (u1 log(1− u1) + u1 − log(1− u1))) + log

(
1

λ1

)
+

1

u2 − u1
(log(

1

1− u2
)u2

− u2 + log(1− u2)− log(
1

1− u1
)u1 + u1 − log(1− u1)).

In figure 2, assuming different value of u2, λ1 = 2, λ2 = 1.2 then the quantile-based interval inaccuracy measures
attained in example (2.2) are mapped according to u1. In figure 3, assuming different value of u1, λ1 = 2, λ2 = 1.2
then the quantile-based interval inaccuracy measures attained in example (2.2) are mapped according to u2.
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Figure 2. Quantile-based Interval Inaccuracy vs Quantile function

Figure 3. Quantile- based Interval Inaccuracy vs Quantile function
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10 QUANTILE-BASED STUDY OF INTERVAL INACCURACY MEASURES

Example 2.3
Assume that there are two distribution function with quantile function Q1(u) = c1u

λ1(1− u)−λ2 ; c1, λ2 > 0 and
Q2(u) = c2u

1
λ3 ; c2, λ3 > 0. Here Q1(u) and Q2(u) are the quantile function of Davis and Power distribution

respectively Q3(u) = ( c1c2 )
λ3uλ1λ3(1− u)−λ2λ3 . Then quantile-based interval inaccuracy (13) is given as

IQ(X,Y ;u1, u2) = log((
c1
c2

)λ3uλ3
2 (1− u2)

−λ3 − (
c1
c2

)λ3(u1)
λ3(1− u1)

−λ3)− log(λ3) + log c1

− 1

u2 − u1

∫ u2

u1

log((
c1
c2

)λ3uλ3(1− u)−λ3(
1

u
+

1

1− u
)du

+
1

u2 − u1

∫ u2

u1

log((1− u) + u(1− u)−2)du.

Example 2.4
Assumed the QF of Govindarajulu and Inverted reciprocal exponential distribution as Q1(u) = 2u−
u2 and Q2(u) =

−λ
log u , ;λ > 0. Then Q3(u) and q3(u) can be obtained as Q3(u) = exp( −λ

2u−u2 ), q3(u) =

( 2λ(1−u)
(2u−u2)2 )(exp−( λ

2u−u2 )). Substituting these values in (13) we obtain

IQ(X,Y ;u1, u2) = log(exp(− λ

2u2 − u2
)− exp(− λ

2u1 − u1
))− log(2λ)

− 1

u2 − u1

∫ u2

u1

log(
(1− u)

(2u− u2)2
exp(− λ

2u− u2
)du

+ log 2 +
1

u2 − u1
(u2 log(1− u2)− u2 + log(1− u2)− u1 log(1− u1) + u1 − log(1− u1)).

Example 2.5
Suppose X and Y be follow Pareto II distribution with quantile function respectively, Q1(u) = b((1− u)

−1
p1 −

1); p1 > 0 , b > 0 and Q2(u) = b((1− u)
−1
p1 − 1); p1 > 0 , b > 0. Then Q3(u) = 1− (1− u)

p2
p1 and q3(u) =

p2

p1
(1− u)

p2
p1

−1. Then from (13) we get

IQ(X,Y ;u1, u2) = log[(1− u1)
p2
p1 − (1− u2)

p2
p1 ]− log(

1

p2
)− 1

u2 − u1
(
p2 + 1

p1
)((u2 log(1− u2)− u2

+ log(1− u2))− (u1 log(1− u1) + u1 − log(1− u1))).

Example 2.6
Let X and Y where X follow generalized lambda distribution and Y follow the uniform distribution with
their quantile functions Q1(u) = λ1 +

1
λ2
(uλ3 − (1− u)λ4) and Q2(u) =

2u
λ2

+ (λ1 − 1
λ2
), where λi > 0; i =

1, 2, 3, 4, respectively with support (λ1 +
1
λ2
, λ1 = 1

λ2
). Simple calculation lead to Q3 = 1

2 (u
λ3 − (1− u)λ4 + 1)

and q3(u) =
1
2 (λ3u

λ3−1 + λ4(1− u)λ4−1). Then from (13) we get

IQ(X,Y ;u1, u2) = log(
1

2
(uλ3

2 − (1− u2)
λ4 + 1)− 1

2
(u1

λ3 − (1− u1)
λ4 + 1))− 1

(u2 − u1)∫ u2

u1

log(
1

2
(λ3u

λ3−1 + λ4(1− u)λ4−1))du+
1

u2 − u1

∫ u2

u1

log(
1

λ2
(λ3u

λ3−1 + λ4(1− u)λ4−1)).

Example 2.7
Consider Van- Staden loots and uniform distribution with their quantile function where Q1(u) = λ1 +
λ2((

1−λ3

λ4
)(uλ4 − 1)− (λ3

λ4
)((1− u)λ4 − 1)) and Q2(u) = u, respectively where λi > 0 for i = 1, 2, 3, 4. Here

Q3(u) = λ1 + λ2((
1−λ3

λ4
)(uλ4 − 1)− (λ3

λ4
)((1− u)λ4 − 1)) and q3(u) = λ2((1− λ3)u

λ4−1 + λ3(1− u)λ4−1).
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Then from (13) we obtain

IQ(X,Y ;u1, u2) = log(λ1 + λ2((
1 + λ3

λ4
)(uλ4

2 − 1)− (
λ3

λ4
)((1− u2)

λ4 − 1))− (λ1 + λ2((
1− λ3

λ4
)

(uλ4
1 − 1)− (

λ3

λ4
)((1− u1)

λ4 − 1))))− 1

u2 − u1

∫ u2

u1

log((1− λ3)u
λ4−1 + λ3(1− u)λ4−1)

+
1

u2 − u1

∫ u2

u1

log((1− λ3)u
λ4−1 − λ3(1− u)λ4−1).

Example 2.8
Let X and Y two distribution function where X follow Power-Pareto distribution with quantile function then

Q1(u) =
cuλ

1−u , c, λ > 0 and Y have quantile function Q2(u) = αuβ α, β > 0 where Q3(u) =
c

1
β u

λ
β

(1−u)
1
β α

1
β

and

q3(u) =
c

1
β

α
1
β
[λβ (u)

λ
β−1(1− u)

−1
β − 1

β (u)
λ
β (1− u)

1
β−1]. Then from (13) we get

IQ(X,Y ;u1, u2) = log

 c
1
β u

λ
β

2

(1− u2)
1
β α

1
β

− c
1
β u

λ
β

1

(1− u1)
1
β α

1
β

− log

(
c

1
β

α
1
β

)
− 1

u2 − u1∫ u2

u1

log

(
λ

β
(u)

λ
β−1(1− u)

−1
β − (1− u)

1
β−1(

1

β
)u

λ
β

)
+ log c+

1

u2 − u1

∫ u2

u1

log
(1− u)λuλ−1 + uλ

(1− u)2
du.

Example 2.9
Let X follows a generalized lambda distribution function and Y follows power distribution where Q1(u) =
1
θ1

+ ( 1
θ2
)(uθ3 − (1− u)θ4) and Q2(u) = uα, θ1, θ2 > 0Q3(u) = ( 1

θ1
+ ( 1

θ2
)(uθ3 − (1− u)θ4))

1
α where q3(u) =

1
θ2
[θ3(u)

θ3−1 + θ4(1− u)θ4−1]. From (13) we get

IQ(X,Y ;u1, u2) = log

[(
1

θ1
+ (

1

θ2
)(u1

θ3 − (1− u2)
θ4)

) 1
α

−
(

1

θ1
+ (

1

θ2
)(u1

θ3 − (1− u1)
θ4)

) 1
α

]
.

3. Quantile-based Interval Kullback-Leibler Divergence

As an extension of (4) we propose quantile-based Kullback-Leibler divergence measure for doubly truncated
random variable

KLX,Y (Q;u1, u2) =

∫ u2

u1

f(Q1(u)

F (Q1(u2))− F (Q1(u1))
log

(
f(Q1(u))

F (Q1(u2))−F (Q1(u1))

g(Q1(u))
G(Q1(u2))−G(Q1(u1))

)
d(Q1(u)). (32)

Assuming both systems X and Y have survived up to time u1 and are observed to fail by time u2, KLX,Y (Q;u1, u2)
assesses the discrepancy between their failure time in the interval (u1, u2).
KLX,Y (Q;u1, u2) satisfies all properties of quantile-based Kullback-Leibler discrimination measure can be rewrite
as,

KLX,Y (Q;u1, u2) = −
∫ u2

u1

f(Q1(u))

F (Q1(u2))− F (Q1(u1))
log

g(Q1(u))

G(Q1(u2))−G(Q1(U1))
d(Q1(u))−H(Q;u1, u2),

(33)

= log
G(Q1(u2))−G(Q1(u1))

u2 − u1
− 1

u2 − u1

∫ u2

u1

log
f(Q1(u))

g(Q1(u))
dQ(u). (34)
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12 QUANTILE-BASED STUDY OF INTERVAL INACCURACY MEASURES

Another way of (32) written as

KLX,Y (Q;u1, u2) = log
Q3(u2))−Q3(u1)

u2 − u1
− 1

u2 − u1

∫ u2

u1

log(q3(u))du. (35)

Now in furthers results we observe some decomposition of quantile Kullbcak-Leibler divergence measure in
the terms or quantile-based past Kullbcak-Leibler divergence measure, quantile-based residual Kullbcak-Leibler
divergence measure and KLX,Y (Q;u1, u2).

Proposition 3.1
Let X and Y represent the non-negative lifetime of two systems. For all 0 ≤ u1 < u2 < ∞, the quantile-based
Kullback-Leibler discrimination measure is decomposed as follow:

X,Y (Q) = F (Q1(u1))K̄LX,Y (u1) + F̄ (Q1(u2))KLX,Y (u2) + (F (Q1(u2)− F (Q1(u1))KLX,Y (Q;u1, u2)

+ F (Q1(u1)) log
F (Q1(u1))

G(Q1(u1))
+ F̄ (Q1(u2)) log

F̄ (Q1(u2))

Ḡ(Q1(u2))
+ F (Q1(u2))− F (Q1(u1))

log
F (Q1(u1))− F (Q1(u1))

G(Q1(u2))−G(Q1(u1))
.

Accept the following analysis: There are four components that make up the quantile-based Kullback discrimination
measure between the random lifetimes of systems X and Y : There are four types of discrimination that need to be
made: i) between the past lives of two systems at time u1; ii) between the residual lifetime of X and Y that have
both survived up to time u2; iii) between the lifetimes of both systems in the interval (u1, u2); iv) between two
random variables to determine whether the systems have failed at u1, between u1 and u2, or after u2.

This section investigates the properties of KLX,Y (Q;u1, u2) and identifies its similarities with KLX,Y (Q1(u1))
and K̄LX,Y (Q1(u2)). The interval distance has lower and upper bounds given by the following assertion. First, we
define ordering by likelihood ratio.

Definition 3.1
X is considered larger than Y is likelihood ratio sense (X ≥ Y ) if the ratio f(Q(u))

g(Q(u)) is increasing in u over the
combined supports of X and Y .

On differentiating (32) with respect to u1 and u2, we get

∂KLX,Y (Q;u1, u2)

∂u1
= HX

1 (u1, u2)[logH
Y
1 (u1, u2)− logHX

1 (u1, u2) + 1 +KLX,Y (Q;u1, u2)]−HY
1 (u1, u2).

(36)

and

∂KLX,Y (Q;u1, u2)

∂u2
= −HX

2 (u1, u2)[logH
Y
2 (u1, u2)− logHX

2 (u1, u2) + 1 +KLX,Y (Q;u1, u2)]−HY
2 (u1, u2).

(37)

When KLX,Y (Q;u1, u2) is increasing in each of u1 and u2 while other fixed then the above together implies,

HY
1 (u1, u2)

HX
1 (u1, u2)

+ logHX
1 (u1, u2)− logHY

1 (u1, u2)− 1 ≤ KLX,Y (Q;u1, u2)

≤ HY
2 (u1, u2)

HX
2 (u1, u2)

+ logHX
2 (u1, u2)− 1− logHY

2 (u1, u2).
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Theorem 3.1
Let X and Y are random variables with common support (0, 1) then,
(i) X ≥ Y implies:

log
HX

1 (u1, u2)

HY
1 (u1, u2)

≤ KLX,Y (Q;u1, u2) ≤ log
HX

2 (u1, u2)

HY
2 (u1, u2)

(38)

when the f(Q1(u))
g(Q1(u))

is decreasing in u > 0 then the above inequality are reserved.
(ii) Decreasing g(Q(u)) in u > 0

log
1

HY
1 (u1, u2)

≤ KLX,Y (Q;u1, u2) +HX(u1, u2) ≤ log
1

HY
2 (u1, u2)

(39)

for increasing g(Q(u)) the inequality are reversed.

Proof
Because of increasing f(Q1(u))

g(Q1(u))
> 0, from (32) we have

KLX,Y (Q;u1, u2) ≤
∫ u2

u1

f(Q1(u)

F (Q1(u2))− F (Q1(u1))
log

(
f(Q1(u))

F (Q1(u2))−F (Q1(u1))

g(Q1(u))
G(Q1(u2))−G(Q1(u1))

)
d(Q1(u)) = log

HX
2 (u1, u2)

HY
2 (u1, u2)

.

and

KLX,Y (Q;u1, u2) ≥
∫ u2

u1

f(Q1(u)

F (Q1(u2))− F (Q1(u1))
log

(
f(Q1(u))

F (Q1(u2))−F (Q1(u1))

g(Q1(u))
G(Q1(u2))−G(Q1(u1))

)
d(Q1(u)) = log

HX
1 (u1, u2)

HY
1 (u1, u2)

which gives (38). When f(Q1(u))
g(Q1(u))

is decreasing, the proof is similar. Furthermore, for all u1 < u < u2 decreasing
g(Q1(u)) in u > 0 implies g(Q(u2)) < g(Q(u)) < g(Q(u1)) then we get:

KLX,Y (Q;u1, u2) ≤ − logHY
2 (u1, u2)−HX(u1, u2),

and
KLX,Y (Q;u1, u2) ≥ − logHY

1 (u1, u2)−HX(u1, u2).

so that (39) holds when g(Q1(u)) is increasing then proof is similar.

In the following theorem, sufficient condition for KLX1,Y (Q;u1, u2) to be smaller then KLX2,Y (Q;u1, u2).

Theorem 3.2
Let X1, X2 and Y be non-negative random variables with probability density function f1, f2 and g, respectively. If
X1 ≥ Y , then KLX1,Y (Q;u1, u2) ≤ KLX2,Y (Q;u1, u2).

Proof
From (34) we have

KLX1,Y (Q;u1, u2)−KLX2,Y (Q;u1, u2)

= −KLX2,X1
(Q;u1, u2) +

∫ u2

u1

[
1

F1(Q1(u2))− F1(Q1(u1))
− 1

F2(Q1(u2))− F2(Q1(u1))

]
log

f1(Q1(u))

g(Q1(u))
du

≤
∫ u2

u1

[
1

F1(Q1(u2))− F1(Q1(u1))
− 1

F2(Q1(u2))− F2(Q1(u1))

]
log

f1(Q1(u))

g(Q1(u))
du

≤ f1(Q1(u2))

g(Q1(u))

∫ u2

u1

[
1

F1(Q1(u2))− F1(Q1(u1))
− 1

F2(Q1(u2))− F2(Q1(u1))

]
du = 0

where the first inequality arises because KLX2,X1
(Q;u1, u2) ≥ 0 and the second inequality follows from the fact

that f1(Q1(u))
g(Q1(u))

is increasing in Q1(u ≥ 0).
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Proposition 3.2
For a continuous, differentiable and invertible function ϕ(.), the expression of quantile based Kullback Leibler
divergence measure (32) is defined as

KLϕ1(X),ϕ2(Y )(Q;u1, u2) = − 1

Q−1
1 (h(Q1(u2))−Q−1

1 (h(Q1(u1))

∫ u2

u1

log

( d
du (Q

−1
1 (h(Q1(u)))

d
duQ

−1
2 (h(Q1(u))

)
d

dp
(Q−1

1 (h(Q1(u)))dp+ log

(
Q−1

2 (h(Q1(u2))−Q−1
2 (h(Q1(u1))

Q−1
1 (h(Q1(u2))−Q−1

1 (h(Q1(u1))

)
,

where h(.) = ϕ−1(.).

Proof
Let fϕ1

(Q1(u)), Fϕ1
(Q1(u)) and gϕ2

(Q2(u)), Gϕ2
(Q2(u)) denote the probability distribution function and

cumulative distribution function of random variable respectively. By (32),

KLϕ1(X),ϕ2(Y )(Q;u1, u2) =

∫ u2

u1

f(h(Q1(u)))h
′(Q1(u))

F (h(Q1(u2)))− F (h(Q1(u1)))
log

 f(h(Q1(u))h
′(Q1(u))

F (h(Q1(u2)))−F (h(Q1(u1)))

g(h(Q1(u)))h′(Q1(u))
G(h(Q1(u2)))−G(h(Q1(u1)))

 d(Q1(u)).

(40)

By quantile function (5) we have F−1(u) = Q1(u) and therefore

G(h(Q1(u))) = G(h(F−1(u))) = Q−1
2 (h(Q1(u))). (41)

Similarly we have
F (h(Q1(u))) = F (h(F−1(u))) = Q−1

1 (h(Q1(u))). (42)

On differentiating (41) and (42) with respect to u, we get

g(h(Q1(u)))h
′(Q1(u))q1(u) =

d

du
(Q−1

2 (h(Q1(u)))), (43)

and
f(h(Q1(u)))h

′(Q1(u))q1(u) =
d

du
(Q−1

1 (h(Q1(u)))). (44)

Substituting (43) and (44) in (40) we get desire result.

Example 3.1
If X follows exponential distribution with QF Q(u) = − 1

λ log(1− u), then X
1
α follows Weibull distribution

with Q(u) = (− 1
λ log(1− u))

1
α . Let X and Y be two exponential distribution with QF respectively by

Q1(u) = − 1
λ1

log(1− u) and Q2(u) = − 1
λ2

log(1− u). Then the quantile- based Kullback Leibler divergence
for two Weibull distribution can be obtain from propositon (3.2) by taking ϕ1(X) = X

1
α and ϕ2(Y ) = Y

1
α .

From these transformation we have ϕ−1(Q1(u)) = h(Q1(u) = (Q1(u))
α which implies that h′(Q1(u))q1(u) =

α((Q1(u))
α−1q1(u). Consequently, Q−1

2 (h(Q1(u))) = 1− e−λ2(Q1(u))
α

and Q−1
1 (h(Q1(u))) = 1− e−λ1(Q1(u))

α

and correspondingly
d

du
Q−1

2 (h(Q1(u))) = λ2α(Q1(u))
α−1e−λ2(Q1(u))

α

q1(u),

and
d

du
Q−1

1 (h(Q1(u))) = λ1α(Q1(u))
α−1e−λ1(Q1(u))

α

q1(u).

Now using in (40) becomes

KLϕ1(X),ϕ2(Y )(Q;u1, u2) = log

(
e−λ2(Q1(u1))

α − e−λ2(Q1(u1))
α

e−λ1(Q1(u1))α − e−λ1(Q1(u2))α

)
− 1

e−λ1(Q1(u1))α − e−λ1(Q1(u2))α∫ u2

u1

log
e−λ1(Q1(u1))

α

e−λ2(Q1(u1))α
(1− e−λ1(Q1(u))

α

)du.
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Example 3.2
For two independent exponential distribution with quantile function Q1(u) =

−λ
log u and Q2(u) =

−λ2

log u where

λ1, λ2 > 0 and Q3(u) = e
−λ2
λ1 log u, q3(u) = λ2

λ1
u

λ2
λ1

−1, we get our result from

KLX,Y (Q;u1, u2) = log
Q3(u2))−Q3(u1)

u2 − u1
− 1

u2 − u1

∫ u2

u1

log(q3(u))du.

KLX,Y (Q;u1, u2) = −log(
λ2

λ1
)− (

1

u2 − u1
)(
λ2

λ1
− 1)[u2 log u2 − u2 − u1 log u1 + u1]

+ log[u
λ2
λ1
2 − u

λ2
λ1
1 ]− log(u2 − u1).

and

KLY,X(Q;u2, u1) = −log(
λ1

λ2
)− (

1

u2 − u1
)(
λ1

λ2
− 1)[u2 log u2 − u2 − u1 log u1 + u1]

+ log[u
λ1
λ2
2 − u

λ1
λ2
1 ]− log(u2 − u1).

This explicitly shows that the quantile-based Kullback-Leibler discrimination measure is not symmetric, that is
KLX,Y (Q;u1, u2) ̸= KLY,X(Q;u2, u1).
In figure 4, assuming u2 = 0.8, and λ1 = 1, λ2 = 2 the quantile-based interval Kullback-Leibler divergence
measures obtain in example (3.1) are plotted with respect to u1. Both dark(thin) line represent the graph of
KLX,Y (Q;u1, u2),KLY,X(Q;u2, u1). When u1 = u2 < 0.6 then KLX,Y (Q;u1, u2) = KLY,X(Q;u2, u1).

Figure 4. Plot a Quantile-based Interval Kullback-Leibler Divergence vs Quantile function
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Example 3.3
Let us consider two non-negative exponential distribution with quantile functions where Q1(u) = − 1

λ1
log(1−

u) ;λ1 > 0 and Q2(u) = − 1
λ2

log(1− u) ;λ2 > 0, Then Q3(u) = Q−1
2 (Q1(u)) = 1− (1− u)

λ2
λ1 and q3(u) =

λ2

λ1
(1− u)( λ2

λ1
)− 1. Thus from (32), we get

KLX,Y (Q;u1, u2) = − 1

u2 − u1
(
λ2

λ1
− 1)(u2 log(1− u2)− u2 + log(1− u2)− u1 log(1− u1)

+ u1 − log(1− u1)) + log((1− u1)
λ2
λ1 − (1− u2)

λ2
λ1 )− log(u2 − u1)− log(

λ2

λ1
).

Example 3.4
Assume that there are two distribution function with quantile function Q1(u) = c1u

λ1(1− u)−λ2 ; c1, λ2 > 0 and
Q2(u) = c2u

1
λ3 ; c2, λ3 > 0. Here Q1(u) and Q2(u) are the quantile function of Davis and Power distribution

respectively. Q3(u) = ( c1c2 )
λ3uλ1λ3(1− u)−λ2λ3 Then from (32) we get

KLX,Y (Q;u1, u2) = − 1

u2 − u1

∫ u2

u1

log λ3du− 1

u2 − u1

∫ u2

u1

log(
c1
c2

)λ3uλ3(1− u)−λ3

[
1

u
+

1

1− u

]
du+ log

[
( c1c2 )

λ3uλ3
2 (1− u2)

−λ3

u2 − u1

]
.

Example 3.5
Consider the QF of Govindarajulu and Inverted reciprocal exponential distribution as Q1(u) = 2u−
u2 and Q2(u) =

−λ
log u , ;λ > 0. Then Q3(u) and q3(u) can be obtained as Q3(u) = exp( −λ

2u−u2 ), q3(u) =

( 2λ(1−u)
(2u−u2)2 )(exp−( λ

2u−u2 )).Then from (32) we obtain

KLX,Y (Q;u1, u2) = − log 2λ− 1

u2 − u1

∫ u2

u1

log

(
(1− u)

(2u− u2)2
exp(

−λ

2u− u2
)

)
du

+ log

[
exp

−λ

2u2 − u2
2
− exp

−λ

2u1 − u1
2

]
− log(u2 − u1).

Example 3.6
Suppose X and Y be follow Pareto II distribution with quantile function respectively, Q1(u) = b((1− u)

−1
p1 −

1); p1 > 0 , b > 0 and Q2(u) = b((1− u)
−1
p1 − 1); p1 > 0 , b > 0. Then Q3(u) = 1− (1− u)

p2
p1 and q3(u) =

p2

p1
(1− u)

p2
p1

−1. Then from (32) we get

KLX,Y (Q;u1, u2) = − 1

u2 − u1

(
p2
p1

− 1

)
(u2 log(1− u2)− u2 + log(1− u2)− u1 log(1− u1)

+ u1 − log(1− u1)) + log((1− u1)
p2
p1 − (1− u2)

p2
p1 )− log(u2 − u1)− log

(
p2
p1

)
.

Example 3.7
Consider Van- Staden loots and uniform distribution with quantile function where Q1(u) = λ1 + λ2((

1−λ3

λ4
)(uλ4 −

1)− (λ3

λ4
)((1− u)λ4 − 1)) and Q2(u) = u, respectively where λi > 0 for i = 1, 2, 3, 4. Here Q3(u) = λ1 +

λ2((
1−λ3

λ4
)(uλ4 − 1)− (λ3

λ4
)((1− u)λ4 − 1)) and q3(u) = λ2((1− λ3)u

λ4−1 + λ3(1− u)λ4−1). Then from (32) we
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get

KLX,Y (Q;u1, u2) = − log λ2 −
1

u2 − u1

∫ u2

u1

log((1− λ3)u
λ4−1 + λ3(1− u)λ4−1)du− log(u2 − u1)

+ log[(λ1 + λ2((
1− λ3

λ4
)(u2

λ4 − 1)− (
λ3

λ4
)((1− u2)

λ4 − 1)))− (λ1 + λ2)((
1− λ3

λ4
)(u1

λ4 − 1)

− (
λ3

λ4
)((1− u1)

λ4 − 1))].

Example 3.8
Let X and Y where X follow generalized lambda distribution and Y follow the uniform distribution with
their quantile functions Q1(u) = λ1 +

1
λ2
(uλ3 − (1− u)λ4) and Q2(u) =

2u
λ2

+ (λ1 − 1
λ2
), where λi > 0; i =

1, 2, 3, 4, respectively with support (λ1 +
1
λ2
, λ1 − 1

λ2
). Simple calculation lead to Q3 = 1

2 (u
λ3 − (1− u)λ4 + 1)

and q3(u) =
1
2 (λ3u

λ3−1 + λ4(1− u)λ4−1). From (32) we get

KLX,Y (Q;u1, u2) = − 1

u2 − u1

∫ u2

u1

log
1

2
[(λ3u

λ3−1 + λ4(1− u)λ4−1)]du

+ log

 1
2

(
uλ3
2 − (1− u2)

λ4 + 1
)
− 1

2

(
uλ3
1 − (1− u1)

λ4 + 1
)

u2 − u1

 .

Example 3.9
Let X and Y two distribution function where X follow Power-Pareto distribution with quantile function Q1(u) =

cuλ

1−u , c, λ > 0 and Y have quantile function Q2(u) = αuβ , α, β > 0 where Q3(u) =
c

1
β u

λ
β

(1−u)
1
β α

1
β

and q3(u) =

c
1
β

α
1
β
[λβ (u)

λ
β−1(1− u)

−1
β − 1

β (u)
λ
β (1− u)

1
β−1]. Then from (32) we get

KLX,Y (Q;u1, u2) = − log(
c

1
β

α
1
β

)− 1

u2 − u1

∫ u2

u1

log
λ

β
(u2)

λ
β−1(1− u2)

−1
β − 1

β
(u1)

λ
β (1− u1)

1
β−1du

+ log

 c
1
β u

λ
β

2

(1− u2)
1
β α

1
β

− c
1
β u

λ
β

1

(1− u1)
1
β α

1
β

− log(u2 − u1).

Example 3.10
Let X follows a generalized lambda distribution and Y follows power distribution where Q1(u) =

1
θ1

+ ( 1
θ2
)(uθ3 −

(1− u)θ4) and Q2(u) = uα, θ1, θ2 > 0 Q3(u) = ( 1
θ1

+ ( 1
θ2
)(uθ3 − (1− u)θ4))

1
α where q3(u) =

1
θ2
[θ3(u)

θ3−1 +

θ4(1− u)θ4−1]. Then from (32) we get

KLX2,X1
(Q;u1, u2) = − 1

u2 − u1

∫ u2

u1

log

(
1

θ2

(
θ3(u)

θ3−1 + θ4(1− u)θ4−1
))

du

+ log((
1

θ1
+ (

1

θ2
)(uθ3

2 − (1− u2)
θ4))

1
α − (

1

θ1
+ (

1

θ2
)(uθ3

1 − (1− u1)
θ4))

1
α )− log(u2 − u1).

In figure 5, assuming the different value of u1 and θ1 = 2, θ2 = 1, θ3 = 2.8, θ4 = 0.4, α = 0.3 in
KLX1,X2

(Q;u1, u2) as obtain in example (3.10).
In figure 6, assuming the different value of u2 and θ1 = 2, θ2 = 1, θ3 = 2.8, θ4 = 0.4, α = 0.3 in
KLX2,X1(Q;u1, u2) as obtain in example (3.10).

Stat., Optim. Inf. Comput. Vol. x, Month 202x



18 QUANTILE-BASED STUDY OF INTERVAL INACCURACY MEASURES

Figure 5. Quantile-based Interval Kullback-Leibler Divergence vs Quantile function

Figure 6. Quantile-based Interval Kullback-Leibler Divergence vs Quantile function
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4. Conclusion

In the present paper we highlights the significance of using quantile-based methods in statistical analysis,
particularly for doubly truncated random variables. Since many models have easily expressible quantile functions
but lack explicit distribution forms, the proposed quantile-based inaccuracy measure and Kullback–Leibler
divergence offer practical and flexible tools. These measures not only enhance our understanding of information
loss and divergence in truncated settings but also open up new avenues for research and application where
traditional methods fall short due to intractable distribution functions. The study provides a foundation for
extending quantile-based techniques to more complex data structures and inference problems.
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