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Abstract

This research presents a proposal for the integration of different fields, including Parkinson’s disease (PD) detection, acoustic
voice analysis, and signal processing. The proposal entails the development of two and three dimensional parsimonious
models, predicated on feature spaces constituted by variants of Shannon’s permutation entropy and autocorrelation measures.
These models elucidate the structural and informative nature of vocal signals in individuals with and without the disease
(PD-NPD). The reduced-dimensional feature spaces (2D and 3D) are novel and were used for the automatic classification
of voices using support vector machines (SVM) with polynomial kernels and cross-validation, achieving average accuracy
values between 0.82 and 0.88. Furthermore, the identification of homogeneous subgroups according to the coordinates in the
space of 2D characteristics represents significant progress. The variables under consideration are candidates for biomarkers of
subtypes of speech disorders for Parkinson’s disease. The database used is freely accessible to facilitate reproducibility. The
results obtained are compared with a selection of variables proposed by other authors and also with independent databases.
The proposed approach is simple and precise and shows promise for the diagnosis and monitoring of PD through the effective
use of samples of the vowel /a/ of just one second with a reduced feature space that could improve clinical workflows.
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1. Introduction

Parkinson’s disease (PD) is a neuro-degenerative condition that affects millions of people worldwide. Among its
most debilitating manifestations are speech disorders, which can have a significant impact on the quality of life
of patients. Despite advances in diagnosis and treatment, early detection of these alterations remains a challenge.
In this context, voice signal analysis has emerged as a promising tool for the identification of vocal biomarkers
associated with the disease.

According to the World Health Organization [1] 2022 report, PD is a neurodegenerative disorder with increasing
global incidence. In 1990, there were approximately 2.5 million people diagnosed with PD and 6.1 million in 2016
[2]. Among the possible causes of PD, environmental causes such as exposure to pesticides [3] or genetic factors
[4] stand out.

The diagnosis of PD is mainly based on clinical criteria defined by the International Parkinson and Movement
Disorder Society (MDS). The characteristic symptoms of PD are motor symptoms such as tremor, rigidity at rest,
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bradykinesia, as well as cognitive and neuropsychiatric signs [5]. PD is a disease with heterogeneous features and
considerable differences in its course. More homogeneous subgroups can be identified based on clinical criteria
[6].

Regardless of initial symptoms, 60-80% of PD patients will experience voice changes as the disease progresses,
ranging from mild hypophonia to severe symptoms that can lead to anarthria [7].

Speech analysis of people with PD has been the subject of recent research, but is not yet included in the
recommendations highlighted by the MDS. Biomarkers are currently being sought to identify disease progression
in relation to speech disorders or specific speech alterations in patients with PD using different analysis techniques
[8,9, 10].

Speech studies in people with PD use different acoustic measures and phonations of different types (vowels,
words, sentences, spontaneous speech). Comparisons between studies are particularly challenging, as discrepancies
and difficulties in replicability are observed [11].

In recent years, automatic speech classification of people with and without PD has been studied. Examples
include [10, 12, 13, 14, 15, 16]. Due to its simplicity and acoustic richness, many studies use the sustained
phonation of /a/ for a few seconds. These studies propose a wide variety of acoustic measures, different criteria for
selecting measures, and algorithms for classifying patients with PD and subjects without Parkinson’s disease [12].

Recently, machine learning and deep learning techniques have emerged as promising tools for improving PD
diagnosis. In [17] a review paper presents a detailed analysis of the current state of the art of this techniques
applied to PD diagnosis, focusing on voice, handwriting, and wave spiral datasets. That study also evaluates
the effectiveness of various algorithms, including classifiers, on these datasets and highlights their potential in
enhancing diagnostic accuracy and aiding clinical decision-making. Several usual measures in speech analysis
such as jitter, shimmer and cepstral coefficients appear, however, the measures presented of the present research
are not explored.

The possibility of diagnosing PD using permutation entropy measures has not been found in the available
literature in the way presented here and is the main objective of the present study. Inspired by the causal plane
formed by normalized permutation entropy and statistical complexity, which has been successfully studied in
various biomedical and bioengineering research works (for example in [18, 19]), the aim of this study was to
define a low-dimensional feature space using entropic measures to differentiate both classes of interest, that is, to
allow the separation by machine learning algorithms of voices of people with PD and NPD. To this end, biomarkers
have been identified to differentiate phonations of /a/, which explain part of the disturbances observed in the voices.
Additionally, although the literature review in this study was not exhaustive, the results were compared with those
previously achieved by other authors who used a considerably larger number of variables for the separation between
the groups of interest [13, 14, 15].

The work is organized as follows: in Sections 2.1, 2.2 and 2.3, the database used, the autocorrelation and entropy
measures studied, and audio preprocessing are described. In Section 2.4, the automatic classification techniques
and the selected quality measures are defined. In Section 2.5, the procedure to define the feature spaces for the
2D model (Model 1) and the 3D models (Models 2 to 9) is described. In Section 2.6 analysis of the Sensitivity to
Noise. In Section 2.7 comparisons of the 3D model with other authors. In Section 2.8 includes information to enable
replication of the work. In Sections 3.1, 3.3 and 3.4, the results obtained with the 2D and 3D models built with
polynomial SVM are shown. In Section 3.2 in HUNIPA are analysis the relationship between results and clinical
symptoms obtained. In Section 3.5, the classification with other algorithms is performed, and in Section 3.6, 4D
models are analyzed. In Section 3.7 analysis of the Sensitivity to Noise. As outlined in Section 3.8, the 3D model
is compared to those of other authors in HUNIPA; the features used with other databases are detailed in the same
section. In Section 3.9 results with HUNIPA are compared by other independent database. Finally, in Section 4,
the findings are presented the discussion and in Section 5 conclusions are summarized.
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2. Materials and Methods

The database was constructed using audios of sustained phonation of the vowel /a/. The audios were recorded
in a controlled environment with a Focusrite Scarlett 2i2 audio interface and an AT2020 microphone (cardioid
condenser microphone). The recordings were made with a depth of 16 bits, at a sampling frequency of 44100 Hz
and were encoded in wav format. Autocorrelation and entropy measures were calculated from the audio signal in
search of those that best differentiated the automatic classification between PD and NPD.

2.1. Database

The database considered here is part of a speech corpus that includes recorded audios of subjects with and without
a diagnosis of PD. The construction was carried out in 2019 with the participation of specialists from two public
hospitals, Hospital Nacional Profesor Alejandro Posadas and Hospital General de Agudos Bernardino Rivadavia,
and from Universidad Nacional de La Matanza (UNLaM) [20].

The database was named HUNIPA-2019 because it was generated by public hospitals and public universities
in Argentina with voices of people with and without Parkinson’s disease.The dataset was recorded in compliance
with the Helsinki Declaration and approved by the Hospital Rivadavia Ethics Committee.

A corpus was recorded with phonation of vowels, words and phrases from which only the phonations of /a/ were
used here and is available for free download in [21].

Patients with PD received two neurological evaluations, using the Hoehn and Yahr (H&Y) scale [22] and the
Spanish version of the Unified Parkinson’s Disease Rating Scale (UPDRS), sponsored by the MDS [23, 24].
Patients with PD were evaluated and recorded in the “on” state, that is, with the medication taking effect and
motor symptoms at their best.

The patients were examined by otorhinolaryngology specialists who performed laryngoscopy and stroboscopic
examinations. As exclusion criteria, patients with PD who had more than 16 years of the disease, had
undergone basal ganglia surgery, experienced a stroke, had prior voice disorders, laryngeal pathology, or other
neurodegenerative diseases were discarded [25].

The non-Parkinson’s cases (NPD) were recorded in a controlled environment with the equipment described
previously. The whole database was evaluated by several speech therapists who have conducted perceptual studies
of voice quality in different instances. In the case of NPD voices, those with severe alterations were discarded.

The database used here consists of 110 cases, 55 PD and 55 NPD. The demographic characteristics of the
participants and the clinical status of the PD patients are displayed in Table 1. The PD patients have a mean age of
64 years with a standard deviation of 8§ years and a mean disease duration of approximately 6 years. In the NPD
cases, the mean age was 60 years, not significantly different from that of the PD cases, with no difference according
to the Wilcoxon test (p-value > 0.01).

According to the UPDRS scale, PD patients presented mean values of 30.35, with values ranging from a
minimum of 12 to a maximum of 53. On the H&Y scale, mean values of 1.59 were observed. These disease
indicators account for patients with PD in early stages.

The construction of the database of patients with PD implied that the different specialist assessments were carried
out on the same day. At the time of registration, the patients were medicated with an average amount of 800 mg of
levodopa and in a state of mild symptoms.

Table 1. Demographic characteristics of the participants and clinical condition of patients with PD. Mean (deviation) is
indicated.

Condition | # Age (years) | Illness period (years) | UPDRS III H&Y Levodopa (mg)
PD 55 | 64.09 (8.24) 6.11 (3.89) 30.35(11.17) | 1.59 (0.59) | 880.19 (479.22)
NPD 55 | 59.95(11.59)
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2.2. Autocorrelation and entropy measures

Several signal measures were calculated on the database, with the aim being to find the ones that would best help
to differentiate the classes of interest, i.e. subjects with PD and NPD.

The autocorrelation (AC) of a signal is a measure of the similarity between the signal and a lagged version of
itself and was proposed by [26, 27].

Mathematically, the normalized autocorrelation 7., (1) of a discrete signal subtracting its mean value is:

Z (xn, — me)(zp—; — me)
Tm;v(l) === ) ; (1)
Z (z,, — me)?

where [ is the time lag (or lag) and z,, represents the signal at time ¢,,, where n is the time index that spans the
corresponding range of the signal and me is the mean value.

In information theory, Shannon’s entropy [28, 29] measures the uncertainty of a message or information source.
It can also be considered as the average amount of information contained in the symbols associated with the
information source. If a message source produces N symbols S;, with probability of occurrence p;, Shannon’s
entropy H is calculated by the expression:

N
H=- Zpi In(p;). )
=1

If the symbols are equiprobable, the entropy reaches its maximum value, H = In(V), and if the probability is
concentrated in a few symbols it takes small values.
The permutation entropy (PE) of a signal provides a measure of the predictability of the data series comprising

it, where the probability is calculated in a specific way. Given a time series (1, 22,23, ...,z xN) the m-tuples are
considered:
S:_n(t) = (fEt,CL’t+7—,.’IJt+27,...7(Et+(m_1),r)’ 1<t< N — (m 1)7_7 (3)

where m (embedding dimension) and 7 (tau, time embedding delay) are positive integers with 1 < m and it is
often requested that m! < N. PE was introduced by Bandt and Pompe in 2002 [30].

If each entry of sI'(¢) is associated with its position and the vector sJ*(¢) is ordered in ascending order, a
permutation 7 of (1,2,...,m) is defined. With this idea, each permutation 7 defines a pattern in the signal. By
selecting the definition of normalized Shannon’s entropy and calculating the permutations following the proposal
of [30], the normalized Shannon permutation entropy is obtained.

m 2 PxI0(pr)
By = In(m!) ’ @)
where
_ #57(m)
R Ny (5a)
S;”(ﬂ') = {S;n(t) : S:_”(t)ﬂ.(i) < S:_”(t).,r(l-_;,_l)} . (5b)

The PE captures the ordinal structure present in a time series, but does not take into account variations in
the amplitude of pattern components. In time series, such as those derived from speech signals, the information
associated with changes in magnitude is important.

In [31], an alternative way to calculate p, is proposed, where the contribution of s7*(¢) € S*(r) depends on the
variation of the amplitude of the components of s”*(¢) by incorporating a weight.
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If s7(¢) contributes in an amount w(t),

Q
pr = 20, (62)
is defined with
Q(m) = w(t), (6b)
sy (t)esy (m)
and
N—(m-1)T
Q= > w. (6¢)
t=1
In this work, the following expression was used to calculate the weights
m 1 m
w(t) = ; (zesr — M(1))" (7a) and  M(1)=— ; Tegke, (7b)

which defines the weighted permutation entropy (WPE).

Slope entropy (SlopePE) is another alternative that takes into account variations in amplitude. Basically, for
7 = 1, the procedure consists of calculating the permutation entropy on the slope series quantified from the original
time series. The slope is estimated with the previous sample and a quantifier Q) with 5 levels is used [32]. In general,
the above indicated procedure is repeated to obtain the permutation entropy on the (m — 1)-tuples QA s (t) where:

QAS:I)(t) = (Q(xt72r - .I'th), Q(:th?ﬂ - xt727>7 ey Q(xtfmT - xtf(mfl)'r)) 5 (8)

with Q(«) € {—2,-1,0,1,2}.
Spectral entropy (SE) provides a measure of the spectral distribution of the signal energy. If (f1, fo,..., fn)

are the frequency components of a given signal (1, x2,...,2x), then the SE is Shannon’s entropy of the set of
frequencies 1, 2, ..., N with which the energy proportion can be calculated to define the “probabilities” given by
[33]:
_ P :
i 1<i<N. €))

If the set of values in the expression (9) is restricted to those corresponding to a given frequency band, a measure
of the spectral distribution of the energy of the signal under analysis in the band considered is obtained.

2.3. Preprocessing

Measures were calculated on a 1 second signal length taken from the central part of the recordings. Autocorrelation
and permutation, weighted permutation and slope entropies were calculated for different values of their
parameters. In general, formants are better defined in healthy voices than in pathological voices [34]. Additionally,
hypernasality disorders may appear in pathological voices, which manifest as a formant below 500 Hz for /a/.
Therefore, having measures of the spectral distribution of energy in bands that contain formant information may
result in biomarkers of interest for this study. To capture differences in the spectral distribution of energy between
PD and NPD, total spectral entropy (SE) and 9-band spectral entropy (BSEi) were calculated [35].

Since the fundamental frequency FO, amplitude and formants [36] are temporally less stable in PD compared to
NPD, entropic measures of the FO, amplitude and formants F1 and F2 curves were calculated.

Table 2 shows a summary of the measures calculated with the parameters explored to build the feature space
with which the machine learning algorithm was fed to construct the models. The criteria for selecting parameter
ranges (such as m and rau) followed the recommendations of Riedl et al. [37] and Myers and Khasawneh [38].
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Table 2. Variable names and parameters of the features explored.

Variables | Name Parameters explored
WPE Weighted Permutation Entropy m: 3 to 6; tau: 1 to 15
AC Autocorrelation lag: 1 to 50
PE Permutation Entropy m:3to6

tau: 1 to 15
SlopePE | Slope Entropy m: 3 to 6; tau: 1 to 15
SE Total Spectral Entropy -

Bands between: 0, 500, 1000,
BSEi Band Spectral Entropy 2000, 3000, 4000, 5000, 6000,
7000, 8000 Hz.

AWPE Amplitude Weighted Permutation Entropy m: 3; tau: 1 to 15

FOWPE | Frequency FO Weighted Permutation Entropy m: 3; tau: 1 to 15
(fundamental frequency)

FIWPE | FIWPE Frequency F1 Weighted Permutation Entropy | m: 3; tau: 1 to 15

(lowest frequency formant)

F2WPE | F2WPE Frequency F2 Weighted Permutation Entropy | m: 3; tau: 1 to 15

(second frequency formant)

2.4. Classification models and model quality measures

Machine learning (ML) algorithms are reliable even in small samples, as argued by [39]. Here, for the automatic
classification between phonations of people with and without PD, a group of three supervised classification
techniques were applied: support vector machine (SVM), k-Nearest Neighbors (kNN), and Random Forest (RF).
The choice of these techniques was made based on the fact that each of them uses a different principle for the
operation of its algorithm for classification.

The selected algorithms (SVM, RF, kNN) are relevant for classification and are among the most widely used in
the literature, especially for classification of voices of people with and without Parkinson’s disease [17].

In this work, the R language “caret” packages have been used for binary classification algorithms. Random
Forest [47], SVM [48] and kNN [49] were used. For a more in-depth and detailed treatment of these classifiers, see
references [50, 51].

Linear SVM was initially thought of as a binary classification algorithm in an n-dimensional space that defines
a hyperplane separating the classes. This hyperplane is chosen in a way that it maximizes the margin between
the classes, that is, the distance between the closest data points of the two different groups. These points that are
close to the hyperplane are called support vectors, and they are crucial for the definition of the optimal hyperplane.
There are different types of SVMs, mainly differentiated by the type of kernel they use. Most of them are linear,
polynomial and radial (method = ”svmPoly”; ”svmRadial””). SVM is a very stable methodology [40, 41, 42].

kNN classifies an object according to the most common class among its k nearest neighbors. This non-parametric
method is simple to implement, robust to noisy training data, and effective. This type of classifier is memory-based,
does not require any model for tuning, and has proven successful in a large number of classification problems
[43, 44]. The employed methodology is the “kknn” method from the caret package.
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The RF method was proposed by [45]. It is a method that uses ensembles of decision trees in splits with randomly
generated vectors or random subsets of training data, and calculates a score based on the components of each tree. In
the context of classification, the prediction made by RF results from the most frequent class in the set of predictions
obtained by each decision tree [46]. In this case, the ”rf” method from the caret package is employed.

To assess the quality of the automatic classification, indicators calculated from the confusion table [50] were
used. In the classification, a positive label was assigned to the PD condition and a negative label to the NPD
condition. The possible predictions can be: true positive (TP), true negative (TN), false positive (FP) or false
negative (FN). To measure the quality of the classification, the following indicators were used: precision (Acc) and
F1 score (F1). Acc is defined as the proportion of well predicted data, i.e. Acc=(TP + TN)/(TP+FP+TN+FN).
The F1 score is the harmonic mean between the precision given by TP/(TP+FP) and the retrieval defined by
TP/(TP+FN), that is, F1=2 x(precision xretrieval)/(precision+retrieval). Also, Receiver Operating Characteristics
(ROC) was generated and the Area Under The Curve (AUC).

To avoid overfitting in the classification, cross-validation (CV) was used in the training process. This involves
dividing the data into multiple subsets (partitions), training the model multiple times (iterations) with different
combinations of hyperparameter subsets, and evaluating its performance [50]. For each subset of hyperparameters,
10 partitions with 10 randomly selected iterations were used, which allowed the mean Acc to be calculated and
then the maximum mean Acc obtained to be used to define the optimal model (method = "repeatedcv”’, number =
10, repeats = 10).

2.5. Analysis procedure

Considering that the objective of this research is to establish models for classification between the classes of
interest (PD and NPD) from feature spaces with the minimum possible number of variables, autocorrelation (AC)
and weighted permutation entropy (WPE) were in first place analyzed.

Significant differences were observed in the magnitude of the first coefficients of the signal autocorrelation in
several numbers of PD versus NPD cases (Figure 1). Differences were also observed in the weighted permutation
entropy (Figure 2). In preliminary tests, AC and together with WPE were found to perform better, with respect to
the average Acc using the polynomial SVM algorithm.

To select the parameters of the measurements (m, tau, lag), it was adapted a technique successfully used in other
contexts (e.g., [19]). This selection was made seeking its remarkable conceptual simplicity, computational speed,
and robustness to noise.

Once AC and WPE were selected as the main variables of the feature space, their distribution, their mean values
and their dispersion for different variations of their corresponding parameters (lag, m, tau) were studied separately.
This made it possible to determine the range of parameters to define the best model, using a lag from 1 to 50 for
AC and, for WPE, an embedding dimension (m) from 3 to 6 and an embedding time delay (tau) from 1 to 15.

Figure 1 shows that PD cases generally tend to have higher autocorrelation values compared to NPD cases. At
mean values, the autocorrelation was higher for all lags in PD cases.

Figure 2 shows the WPE mean calculated with an embedding dimension (m) of 6 for different values of time
delay (tau), for which values between 1 and 15 were used, showing lower mean values in PD cases.

Figure 3 presents the procedure scheme followed to select the best pair of parameters for AC and WPE. First,
the signal is processed considering the lag variation for AC using values from 1 to 50 and WPE parameters with
m ranging from 3 to 6 and tau ranging from 1 to 15. Then, using polynomial SVM with CV, the average Acc is
calculated for each partition and the highest value in the iterations was identified. Then, using polynomial SVM
with CV, the mean Acc was calculated for each partition and the highest value in the iterations was found to select
the model’s parameters.

Following the procedure described above, the highest mean Acc was obtained for WPE with tau=13, m=6 and
for AC with lag=13. With these parameters, Model 1 was then defined as the WPE x AC plane. It proved stable,
varying between 1 and 1.5% in response to variations of 15% in tau and 23% in lag parameters.

By adding a dimension to Model 1, 3-dimensional feature spaces were explored. For this purpose, other entropic
measures were considered for the third variable and, by varying their parameters, the model was optimized using a
procedure analogous to that used for Model 1. That is to say, the maximum mean Acc was sought using SVM with
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Autocorrelation (AC)
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Figure 1. Autocorrelation mean, of the whole databse, for different lags according to disease condition. Red PD (upper
curve), Blue NPD (lower curve).

Weighted Permutation Entropy (WPE)
S

Tau

Figure 2. Weighted entropy mean with embedding dimension 6 (WPE), for the whole database, for different embedding
times delays (tau) (Red PD, Blue NPD).

CV and the parameters indicated in Table 2. Eight different and parsimonious 3-dimensional models were obtained
from the corresponding feature spaces (Models 2 to 9, see for details Table 3).

To analyze the performance of the machine learning algorithm and validate the results, a classification using
other techniques (radial SVM, RF, and kNN) was performed on the 9 models presented in Table 6.

Finally, the sample of 110 elements was randomly divided, with 80% used for training and 20% for testing. This
partition was used to train and test the 9 proposed models (Table 7) using an SVM with a polynomial kernel, and the
hyperparameters of the best model were calculated. For the R caret algorithm, the hyperparameters are: d (degree
of the polynomial kernel), v (scale factor), and C (cost that controls the penalty applied to misclassifications) [48].
The hyperparameters explored were: d: {1, 2, 3}; ~v: {0.001, 0.01; 1}; C: {0.25, 0.5, 1}.

Next, 4-dimensional feature spaces were analyzed by adding one dimension to the best 3D model obtained

(Model 2). The mean accuracy (Acc) of the 4D spaces was calculated, and none of them performed better than
Model 2.
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8 USING REDUCED FEATURE SPACE (2D AND 3D) BASED ON ENTROPIC MEASURES...

For/(lag) = 1:50;; m= 3:6; t(tau) = 1:15
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Figure 3. Scheme to explore the autocorrelation (AC) and the weighted permutation entropy (WPE) parameters, which enable
the optimization of the 2D space (Model 1), using polynomial SVM. Acc refers to Acc Mean accuracy.

2.6. Sensitivity of the 3D Model to Noise

In order to build large audio sample bases, for remote monitoring or self-tracking, it is important to analyze the
performance of classification algorithms with lower quality samples than those used in this work. For example, in
PD voices, signs are observed in high frequency bands [52] where different types of noise have an influence. When
audios are recorded in uncontrolled environments, the pathological characteristics of the voice are mixed with
characteristics of the ambient noise, which in general could negatively affect performance. In addition, spectral
distortions produced by the use of low-quality recording devices could also reduce performance.

Since for this research the database does not have low quality recordings, in order to have a reference of the
impact of noise on the measurements, computer simulated noise (white noise and pink noise) [60] and noise
taken from a real environment were added to the audios used in this work, in different signal-to-noise ratios. The
measurements used by the 3D algorithm were calculated from the distorted audios and the validation was repeated
with the same audios used in the validation stage without noise.

2.7. Comparisons of the 3D model with other authors and other databases

Section 3.2 analyzes the relationship between the obtained results in section 3.1 and clinical symptoms. It considers
the previous study by Giuliano et al. [25], which was conducted at HUNIPA and evaluated perceptual voice quality
and estimated the integrated perturbation index (IPI).

To define their classification models, other authors propose higher-dimensional feature spaces than those
considered here in HUNIPA-2019 database. In particular, [13] proposes around 300 measures derived from the
sustained phonation of the vowel /a/, which can be calculated using the author’s own software (Voice Analysis
Toolbox). Using these measures as a starting point, [14] and [15] propose a selection of 10 or 11 variables.

In Section 3.8, using the variables proposed in the aforementioned works as a starting point, which represent
10D and 11D models, the classification results are shown using the database employed in this research, applying
SVM with a polynomial kernel and using CV. The mean Acc values obtained are compared with the best feature
space (3D) previously established.

In the study by [15], the 11 variables group measures are categorized into four distinct types: jitter, shimmer,
harmonic noise, and cepstral measures. In the Section 3.6, the HUNIPA database was utilized to examine 4D
models, with each of the 11 variables identified serving as the fourth variable in the analysis.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



M. GIULIANO, L. FERNANDEZ, W. LEGNANI 9

Guatelli et al. [53] presents the analysis of voice recordings from the HUNIPA database through spectrogram
analysis and convolutional neural networks (CNN). A multilayer neural network is used to classify convolutional
feature vectors and is compared with the use of extreme learning machines (EML). Several experiments have
been conducted considering four types of spectrograms with the convolutional neural network models AlexNet,
VGG-16, SqueezeNet, Inception V3, and ResNet-50. Section 3.8 shows the best results from Guatelli 2023 in the
HUNIPA database.

In Section 3.9, an analysis of the measures proposed in the classification of individuals is conducted from two
independent databases.To ensure a comprehensive comparison, two datasets that have been thoroughly analyzed in
the literature were considered: GITA [54] and NeuroVoz [55] .

The GITA dataset was recorded by the Noel Clinic in Medellin (Colombia Republic) from 100 native Colombian
Spanish speakers, with 50 healthy controls (NPD) and 50 patients with Parkinson’s disease (PD). The NeuroVoz
dataset was compiled by the Polytechnic University of Madrid in collaboration with the Gregorio Marafién Hospital
in Madrid, Spain. This dataset includes material from 107 native adult speakers of Castilian Spanish (56 NPD and
51 PD).

The recordings for both corpora were obtained under controlled environmental conditions, with a sampling rate
of 44.1 kHz and 16-bit quantization. Both datasets were recorded in accordance with the Declaration of Helsinki
and were approved by their respective ethics committees.

The databases were used in the bibliography by several authors. In this research were comapared the results
presented in Ibarra et al. [56], where a set deep learning (DL) architectures were used for classification.

2.8. Reproducibility of results

For the reproducibility of the work in [21], the audios of the database are freely accessible at the following link:

https://figshare.com/articles/dataset/Audios_vowel_ A_PD/21453867/1

The algorithms utilized are available in the open-source toolkit designed for the analysis of entropic data, which
can be found at the following link:

https://www.entropyhub.xyz/

The parameterized HUNIPA database and preprocessing algorithms can be found at the following link:
https://drive.google.com/drive/folders/19GQjwli9v7SinjlLs6vhlkAhhdYggBgu?
usp=sharing

The first author can also be contacted directly for further references.

3. Results

With the procedure proposed, it was possible to define one 2D model and 8 3D models. The results showing the
best quality measures in the PD and NPD classification were those of Model 1 and Model 2, giving two feature
spaces which will be discussed in the conclusions section.

3.1. WPE x AC 2D feature space (Model 1)

Model 1 was defined using the 2D feature space defined by WPE with m=6 and fau=13 and AC taking a lag=13. AC
shows differences in the medians between people with and without PD according to Wilcoxon’s median difference
test for independent samples (p-value < 0.0001). In contrast, the WPE with m=6 and tau=13 does not show any
significant differences for the same test (p-value = 0.236).

Figure 4 shows the WPE x AC plane with the identification of disease condition (PD and NPD), in which 4
subgroups can be observed within the cases. A subgroup of PD has a higher AC (SG1-PD) and another one a
higher WPE (SG2-PD), showing a clear difference with NPD in both cases. The lower AC and WPE values mostly
correspond to NPD people (SG3-NPD). There is also a clear fourth subgroup in which the PD cases do not differ
from NPD cases (SG4).
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A PoFem @ Pomale 4 nwPOFem @ NPD-Male

Figure 4. WPE x AC feature space (Model 1): Weighted Permutation Entropy vs Autocorrelation, group number
(SG:1;2;3;4), according to disease condition (red PD, blue NPD) and gender (triangle female, circle male).

Table 3. Distribution of the groups according to gender, disease condition and mean in the WPE x AC feature space.

SG #F | #M | # Total | AC Mean | WPE Mean | Disease condition
SG1 | 10 | 15 25 0.717 0.632 PD

SG2 | 3 8 11 0.332 0.831 PD

SG3 | 13 | 11 24 0.084 0.685 NPD

SG4 | 34 | 16 50 -0.044 0.738 PD-NPD

Total | 60 | 50 110 0.194 0.711

Table 3 shows the number of individuals split by gender of each SG and the mean of each group. SG4 has
composed by most females and SG2 has a great quantity of males, more than half. SGI is slightly more composed
by males meanwhile SG3 slightly composed by more female.

Table 3 also shows the mean of each group in the characteristics space. The difference of means according to
SG is significant by the Lawley-Hotelling statistical test (p < 0.0001). There are also differences in the total group
(WPE x AC) by gender (p < 0.01), but there are no differences by gender combined with SG and neither gender
combined with disease condition (p > 0.01).

Using the feature space, the best Acc mean value of 0.826 with a deviation of 0.102 was obtained for Model 1
(WPE x AC), using SVM with a polynomial kernel.

3.2. Relationship between results and clinical symptoms

The proposed characteristic measures in Model 1 and the four subgroups were analyzed according to the different
variables associated with clinical symptoms in patients with PD in HUNIPA. The nonparametric Kruskal-Wallis
test was used to analyze differences in means according to the three SG subgroup with PD (SG1, SG2 and SG4).
SG1 and SG2 groups did not show significant differences in disease progression (UPDRS and H&Y) or disease
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duration. In turn, the SG4 group stood out with significantly lower differences than SG1 and SG2 in the same
disease characteristics (p-value < 0.05).

Variations were identified among the SG groups with respect to age, with a younger demographic observed in
SG3 (Mean: 55 years) and no substantial differences observed among the other groups (SG1 and SG2).

Integrated Perturbation Index acoustic analysis (IPI) and perceptual evaluation of voice quality were carried out
by a speech therapy specialist [25]. The voice perturbations are defined as any abnormality in the vocal quality,
pitch, loudness or vocal effort that disturbs communication or generates a negative effect on the voice-related
quality of life.

IPI is a quantitative indicator that allows voice signals to be classified into levels of acoustic alteration: normal,
risk zone and severe [57], [58]. The Acoustic Analysis and Graphing of Speech Signals (ANAGRAF) software
was used to estimate the IPI values. Table 4 reveals a moderate relationship between IPI and SG, with a Cramér’s
contingency coefficient of 0.33.

Table 4. Integrated Perturbation Index acoustic analysis (IPI) and SG (N=55).

Condition IPI | SG1 | SG2 | SG4 | Total
Normal 1 1 5 7
Risk 14 1 12 27
Alteration 10 9 2 21
Total 25 11 19 55

The perceptual analysis was carried out by a speech therapy specialist, who rated the stimuli in GRBAS
(Dysphonia Grade, Roughness, Breathiness, Asthenia and Strain) scale with the help of the Audio-Perceptual
Evaluation System (EVAPER) [59]. The value of alteration was classified as low, mild or severe. As shown in
Table 5 there was a low relationship between perceptual evaluation and SG, with a Cramér’s contingency coefficient
of 0.24.

Table 5. Perceptual evaluation of voice quality an SG (N=55).

Alteration perceptual | SG1 | SG2 | SG4 | Total
Low 20 5 17 42
Mild 2
Severe
Total 25 11 18 55

3.3. 3D feature spaces (Models 2 to 9)

Table 6 shows the results obtained with the 3-dimensional models. The 3D models were nominalized according to
the descending order of the mean Acc from Models 2 to 9. For each model, the optimized features or parameters
can be observed in each component of the feature space. The mean Acc ranges from 0.879 to 0.821, with similar
deviations, in all cases, of approximately 0.1.

Summarizing, the best 3D model is Model 2 (WPE x AC x BSE), which is the space formed by the AC (lag=13),
WPE (m=6 and fau=13) and BSE4, the spectral entropy of the band ranging from 2000 to 3000 Hz. Figure 5 shows
the differences in the values of the variables in Model 2 according to disease condition (PD-NPD).
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Table 6. Parameters selected for the 3rd variable added to the 2D space in order to generate a 3D space, with the entire
sample and with maximum mean Acc and deviation using SVM with a polynomial kernel.

Mean Acc
Variable Selected (Max
Model 3rd variable name parameters obtained) Deviation

Spectral entropy b Spectral - Band 4

Model 2 b;’n i PY BY | BsE4 between 2000 and | 0.879 0.094

3000 Hz

Model 3 Entropy onampli- |,y /pp m=3, tau=2 0.867 0.102
tude curve

Model 4 FZWPE Entropy on | p)\pp m=3, tau=9 0.843 0.103
F2 frequency curve

Model 5 Entropy on F1 fre- | ) ypp m=3, tau=15 0.841 0.094
quency curve

Model 6 Permutation PE m=6, tau=13 0.835 0.111
Entropy

Model 7 Spectral entropy SE - 0.824 0.097

Model 8 SlopePE = Slope | ¢, pp m=6, tau=7 0.830 0.119
entropy

Model 9 Entropy on FO fre- | pywpp m=3, tau=13 0.821 0.107
quency curve

1,004

0,751

0,251

0,004

-0,50

g

FD

NPD
Cond

[] wee [] ac [] Bs¢

Figure 5. Boxplot WPE (Weighted Permutation Entropy) and AC (Autocorrelation) and BS4 (Band Spectral Entropy 2000-
3000 Hz), according to disease condition (PD, NPD).
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3.4. Hyperparameters of the defined Models and quality measures

Table 7 presents the hyperparameters (d, v, C), adjusted with CV for SVM with a polynomial kernel, in each of
the defined feature spaces models. The Acc values are within the expected order but slightly lower than the mean
value shown in Table 6.

Table 7. Description of the 2D and 3D models. Hyperparameters for the best polynomial SVM model trained with 80% of
the sample and CV: d (degree of the polynomial kernel), v (scale factor), and C (cost that controls the penalty applied to

misclassifications). Quality measures with the 20% test: Acc, F1 and AUC.

Polynomial SVM Quality measures
Models hyperparameters with 80% with the 20% test
training (N=88) (N=22)

d-v-C) Acc | Flscore | AUC
Model 1 | WPE x AC 3-0.1-05 0.773 | 0.706 | 0.818
Model 2 | WPE x AC x BS4 1-0.1-0.5 0.864 | 0.842 | 0.909
Model 3 | WPE x AC x AWPE 2-01-1 0.818 | 0.778 | 0.892
Model 4 | WPE x AC x F2WPE 3-0.1-05 0.818 | 0.778 | 0.818
Model 5 | WPE x AC x FIWPE 2-0.1-1 0.773 | 0.737 | 0.810
Model 6 | WPE x AC x PE 2-01-1 0.727 | 0.625 | 0.810
Model 7 | WPE x AC x SE 2-01-1 0.818 | 0.778 | 0.818
Model 8 | WPE x AC x SlopePE 2-0.1-1 0.773 | 0.706 | 0.818
Model 9 | WPE x AC x FOWPE 2-0.1-0.25 0.682 | 0.667 | 0.818

3.5. Model comparison using other classification techniques: kNN, radial SVM and RF

In order to compare the results obtained with models 1 to 9 using SVM with a polynomial kernel, the procedures
are repeated with other classification models and CV: SVM with a radial kernel, RF and kNN. Table 8 presents the
results obtained.

Table 8. Mean accuracy of the Classification with SVM, RF and kNN for the techniques used for the comparison of the
performance of the classification of the 2D and 3D Models.

Model Space Acc Polynomial SVM | Acc Radial SVM | Acc RF | Acc kNN
Model 1 | WPE x AC 0.826 0.830 0.782 0.798
Model 2 | WPE x AC x BS4 0.879 0.857 0.806 0.830
Model 3 | WPE x AC x AWPE 0.867 0.822 0.791 0.802
Model 4 | WPE x AC x F2WPE 0.843 0.816 0.795 0.789
Model 5 | WPE x AC x FIWPE 0.841 0.801 0.777 0.792
Model 6 | WPE x AC x PE 0.835 0.828 0.791 0.799
Model 7 | WPE x AC x SE 0.824 0.843 0.788 0.840
Model 8 | WPE x AC x SlopePE 0.830 0.850 0.821 0.862
Model 9 | WPE x AC x FOWPE 0.821 0.805 0.831 0.799
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The results are consistent and, in general, a better mean Acc is observed using SVM with a polynomial kernel
and results a worse one with RF. Only for the spectral entropy (SE) and the slope entropy (SlopePE) variables have
better mean Acc results been observed with kNN and radial SVM.

3.6. 4D Model evaluation

With the addition of the third feature from Models 3 to 9 to Model 2 (WPE x AC x BSE), 4-dimensional feature
space models were studied. Table 9 shows the mean Acc values obtained. It is observed that none of the 4D models
outperforms Model 2. In some cases, the result is similar, with the disadvantage of increased dimensionality and
the resulting computational and overall procedural cost.

Table 9. Four-dimensional models, with different variables (Y") added to the space of Model 2 (WPE x AC x BSE x Y).

Mean accuracy with the indicated fourth variable.

Y 4th variable Parameters | Mean Acc | Deviation
PE PE Permutation Entropy m=6 tau=13 0.874 0.097
AWPE AWPE Entropy on Amplitude Curve m=3 tau=2 0.861 0.114
FOWPE | FOWPE Entropy on FO Frequency Curve | m=3 tau=13 0.858 0.105
FIWPE | FIWPE Entropy on F1 Frequency Curve | m=3 tau=15 0.871 0.093
F2WPE | F2WPE Entropy on F2 Frequency Curve | m=3 tau=15 0.866 0.088
SlopePE | SlopePE m=6 tau=7 0.873 0.102
SE Spectral entropy (SE) - 0.850 0.103

Table 10. The 4D models were evaluated by incorporating a variable Y into the three-dimensional models from Giuliano et
al. [15] (WPE x AC x BS4 x Y). The acoustic measurements were evaluated according to the classification groups, with
accuracy and deviation values obtained from the HUNIPA-2019 database.

Group[15] Type of measure Y Feature Name according to Tsanas [13] | Mean Acc | Deviation
Gl Jitter Vi Jitter — FO_abs_dif 0.866 0.095
V51 GQ — std_cycle_closed 0.856 0.111
G2 Shimmer V34 Shimmer — F'0_abs0th_perturb 0.849 0.105
G3 HNR and NHR V338 DFA 0.832 0.118
(Harmonic Noise) V59 VFER — std 0.872 0.097
V70 IMF — NSR_entropy 0.842 0.110
G4 MFCC V137 std_9th delta 0.831 0.115
(Mel-frequency V141 std_delta delta log energy 0.828 0.116
cepstral coefficients) | V152 std_10th delta-delta 0.831 0.111
V71 mean_Log energy 0.869 0.081
V75 mean_MFCC_3rd coef 0.877 0.102

As stated in the work of [15], 339 dysphonia measures proposed by Tsanas [13] were analyzed from four
groups that characterize the most common problems in the dysfunctional voices of patients with PD. Problems in
periodicity are quantified in the variations of the signal cycle by cycle. These variations are measured in relation to
two groups: group 1 (G1), which focuses on fundamental frequency (FO) jitter, and group 2 (G2), which focuses on
amplitude shimmer. Group 3 (G3) problems are associated with incomplete closure of the vocal folds; this condition
can be linked to noise, specifically to harmonic noise (HNR-NHR). Finally, the variables in Group 4 (G4) are
associated with articulatory problems in the vocal tract and are cepstral measures of the MFCC type (mel-frequency
cepstral coefficients). From the set of 339 features, 11 were selected using different statistical techniques: principal
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components (PCA), Analysis of Variance (ANOVA), logistic regression with penalty (RL). A final model was
achieved with an accuracy between 0.80 and 0.82 in classifying people with and without Parkinson’s, identifying
as relevant variables.

As outlined in Table 10, each of the 11 variables is considered separately as the 4th variable in Model 2, and
the mean classification accuracy is calculated using a polynomial SVM. This table indicates the original name
proposed in Tsanas et al. [13] for variables. The mean Acc is high, but it does not exceed the level achieved with
only the three variables in Model 2.

3.7. Analysis Sensitivity of the 3D models to the noise

To analyze the performance of the 3D models in the presence of noise, white, pink and real ambient noise
were added to the original database records. The ambient noise was taken from an environment with electronic
equipment, air conditioning units, and the presence of distant murmurs of voices. The audios was evaluated using
the trained Model 2 and the performance in the 20% validation set was measured. The results are shown in Table 11,
the trained Model 2 (Table 7) was applied and the quality de la classification was observed for different signal-to-
noise ratios (SNR).

Table 11. Evaluating the performance of Model 2 (WPE x AC x BSE) with the addition of pink noise, white noise, gaussian
noise, and ambient noise at the validation stage (N=22).

Pink noise White noise Ambient noise
ACC F1 AUC | ACC F1 AUC | ACC F1 AUC
0dB 0.500 0.667 0.760 | 0.500 0.667 0.760 | 0.500 0.667 0.760
5dB 0.500 0.667 0.760 | 0.500 0.667 0.760 | 0.591 0.710 0.893
10 dB 0.681 0.764 0.876 | 0.636 0.714 0.884 | 0.773 0.783 0.917
15 dB 0.767 0.777 0.893 | 0.818 0.833 0.893 | 0.864 0.842 0.896
20 dB 0.864 0.842 0.901 | 0.818 0.800 0.876 | 0.864 0.842 0.876
25 dB 0.864 0.842 0.893 | 0.864 0.842 0.900 | 0.864 0.842 0.896
30 dB 0.864 0.842 0.909 | 0.864 0.842 0.909 | 0.864 0.842 0.909
Sinruido | 0.864 0.842 0.909 | 0.864 0.842 0.909 | 0.864 0.842 0.909

SNR

3.8. Comparison of the 3D model with 10D, 11D and CNN models by other authors

Using the Hunipa database, 10D and 11D variable models were considered as a starting point for binary
classification (PD-NPD), using SVM with a polynomial kernel and cross-validation (CV). The feature spaces
proposed in Arora et al. [14] (10D models) and Giuliano et al. [15] (11D model) were taken, and the mean Acc
value was calculated. The results are shown in Table 12. The selection of feature selection (FS) proposed by the
authors was based on the 339 measures proposed by Tsanas [13].

In Arora et al. [14] six techniques are considered for the selection of 10 variables (10D models) and results are
compared (see Table III in [14]). The FS techniques proposed are: (1) minimum redundancy maximum relevance
(mRMR); (2) Gram-Schmidt orthogonalization (GSO), (3) Relief, (4) least absolute shrinkage and selection
operator (LASSO), (5) variable ensemble proposed [14], and (6) the method proposed in [13]. The authors highlight
the 6 models of 10 variables (10D) as robust and parsimonious.

In HUNIPA dataset with the 10D models, from (1) to (6), mean Acc values between 0.602 and 0.712 were
obtained, which are much lower than the models presented here. With the 11D model identified as (7), a mean Acc
of 0.850 was achieved, which is higher than the one previously obtained, but lower than that obtained here with
Models 2 and 3, which are developed from a feature space with only 3 variables. (Table 12).
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Table 12. For the HUNIPA dataset. Variable groups (FS) and mean Acc and standard deviation for the classification using
SVM with a polynomialkernel (1) to (7). CNN classification (8) and (9).

Variable selection technique Model dimension l\iiin Deviation

(1) mRMR [14] 10D 0.703 0.123

(2) GSO [14] 10D 0.657 0.140

(3) Relief [14] 10D 0.702 0.103

(4) LASSO [14] 10D 0.602 0.114

(5) Ensemble ranking [14] 10D 0.673 0.091

(6) Tsanas et al. [13] 10D 0.712 0.123

(7) Giuliano et al. [15] 11D 0.850 0.112
(8) Guatelli et al. [53] CNN 0.839 -
(9) Guatelli et al. [53] EML 0.800 -

This research in Model 2 3D (WPE x AC x BSE) | 0.879 0.094

In addition, the maximum average accuracy obtained by Guatelli et al. [53] with the HUNIPA database was
included. The authors used spectrogram images and classified them using convolutional neural networks (CNN)
and extreme learning machines (EML), obtaining Acc 0.83 and 0.80, respectively, as shown in (8) and (9) of the
Table 12.

3.9. A comparison of the 3D model with independent databases

Three independent databases (HUNIPA, GITA, and NeuroVoz) were analyzed, both separately and in
combination, and the results are shown in Table 13. Better results were achieved by changing BS4 (2000 - 3000 Hz)
to BS7 (6000 - 8000 Hz) for 3D models, from Model 2 (WPE x AC x BD4) to Model 10 (WPE x AC x BD7). The
mean Acc values were comparable to those reported by Ibarra et al. [56] using CNN (Table 14). Figure 6 illustrates
the differences in spectral band entropy (BS4 and BS7) according to the databases and disease conditions.

In Ibarra et al. [56] used several deep learning (DL) architectures: multilayer perceptrons (MLP), a combination
of convolutional neural networks (CNN) and MLP, recurrent neural networks (RNN), a combination of CNN and
long short-term memory (LSTM) networks, and combinations of time-distributed 2D CNN and 1D CNN. Table 14
shows the best classification results obtained with DL architectures in the NeuroVoz and GITA databases by the
authors.

4. DISCUSSION OF RESULTS AND FUTURES WORKS

This work is framed within the field of acoustics and signal processing, specifically applied to the biomedical field,
with special attention to the identification of speech deficiencies in individuals with Parkinson’s disease. The study
emphasizes signal measures such as autocorrelation, weighted permutation entropy, and band spectral entropy,
which are well established in signal processing and show strong discriminative power in this context. However,
these measures are novel because they are not commonly used in the classification of voices with and without PD.

As is well established, AC accounts for differences and similarities in the temporal structure of the signal, and
here it allows the recognition of signal properties to characterize groups of similar cases and differentiate the classes
of interest.

The incorporation of WPE not only characterizes its temporal sequential structure but also reflects the variations
in signal magnitude between the classes of interest, accounting for short-term patterns and instantaneous amplitude
variations. Permutation entropy measures are not found in the literature in the style presented here for voices with
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Table 13. The mean and standard deviation of accuracy (Acc.) were calculated for the three features with the same parameters
Model 2 (WPE x AC x BD4) and Model 10 (WPE x AC x BD7). These metrics were evaluated separately for each corpus
(HUNIPA, GITA and Neurovoz) for the vowel /a/ (in 1 second of phonation) separately and all together. .

Database Model Mean Acc. | Deviation | Name Selected parameters
AC lag =13
HUNIPA Model 2 0.879 0.094 WPE m=6,7=13
BSE4 | Band 4: 2000-3000 Hz
AC lag=13
HUNIPA Model 10 0.846 0.099 WPE m=6,7=13
BSE4 | Band 7: 6000-8000 Hz
AC lag=13
GITA Model 10 0.711 0.136 WPE m=6,7=13
BSE7 | Band 7: 6000-8000 Hz
AC lag =13
NeuroVoz Model 10 0.708 0.124 WPE m=6,7=13
BSE7 | Band 7: 6000-8000 Hz
AC lag =13
Mixed datasets | Model 10 0.724 0.068 WPE m=6,7=13
BSE7 | Band 7: 6000-8000 Hz

Spectral entropy by bands: BD4 and BDT

GITAFD GITANPD HUNIPA:PD HUNIPANFD. NeuroVoz:NFD NeuroVoz:PD
Database and Condition PD-NPD

[0 es¢ O 857

Figure 6. Spectral entropy by bands (BS) according to disease condition and database (BS4: 2000-3000hz; BS7: 62000-
8000hz).

and without PD. [61] propose analyzing permutation entropy for phonations of PD and NPD individuals, but only
the difference in means was analyzed.

The feature space defined by AC and WPE was found to provide a good representation of the cases analyzed
and was identified as the privileged feature plane (Model 1: WPE x AC) and shows strong discriminative power. It
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Table 14. Performance of different neural networks on the vowel /a/ in GITA and NeuroVoz corpora, retaining only the
best configurations. Deep Learning architectures: convolutional neural networks (CNN), long short-term memory (LSTM)
networks, and combinations of time-distributed 2D-CNN and 1D-CNN, Time-CNN-LSTM. Values reported as mean and
standard deviation in Ibarra et al. [56].

Corpus Network Acc. | Deviation
2D-CNN 70.5 9.8

GITA Time-CNN-LSTM | 72.4 10.6
1D-CNN 72.6 10.2
2D-CNN 74.9 10.9

NeuroVoz | Time-CNN-LSTM | 71.8 17.0
1D-CNN 71.5 6.6

allowed the identification of four subgroups of individuals with similar characteristics in both PD and NPD cases.
Future research could investigate the relationship between these groups and voice disorders, in order to differentiate
the types of alterations between cases.

On the other hand, the inclusion of the BSE provides information about the energy distribution by bands, which
were selected based on phono-audiological criteria [34]. This proved to be another feature that emerged from the
research, confirming its discriminatory nature between PD and NPD subjects, which gives the model using the
3D feature space a better performance as a discriminator of the classes. Considering that this entropy contains
information in the frequency domain about how the energy of the signal is distributed and is a direct characteristic
of how sounds are produced, there is a difference found between the two groups analyzed.

Different entropy options were evaluated as possible third dimensions to improve the 2D model proposed, and
in all cases, the mean accuracy was improved. The best results were obtained with the 3D model incorporating
BSE, which highlighted an average correct classification rate of almost 88% (Model 2: WPE x AC x BSE). In
addition, the four-dimensional models (4D) showed a worse mean accuracy, further confirming the applicability of
the three-dimensional models.

The proposed models offer advantages such as low differential dimensionality, explanatory power, computational
efficiency, and result interpretability. However, they also have disadvantages, including dependencies on signal
length, sampling theorem conditions, signal reconstruction, and selection of some parameters like the embedding
time dimension, embedding time delay, time lag and spectral band.

A large number of dysphonia measures available for voice study can potentially lead to a degradation in analysis
performance during the statistical analysis phase. Although modern algorithms aim to mitigate this issue, even
powerful classifiers can be degraded due to computational complexity and the presence of high-dimensional
datasets, especially with few cases. Therefore, it is particularly useful to reduce the dimensionality to a minimal set
of features, as this facilitates inference and understanding of the problem by analyzing the most relevant features
[50].

The performance of the best 3D model was compared to several 10D models proposed by [14] and the 11D model
introduced by [15]. While these authors highlighted the strengths of their models, the 3D model demonstrated
superior accuracy when applied to the used database with their feature selection criteria.

This article obtains accuracy results comparable to the performance of CNN models proposed by other authors
using the same databases studied. In the HUNIPA database, better performance is obtained than that presented in
Guatelli et al.[53], 0.88 compared to 0.84.

The results obtained with the two independent databases considered (GITA and NeuroVoz) in the models with
the same parameters are close to those obtained by Ibarra et al. However, this author uses DL techniques that are
more computationally demanding and less explainable. On the other hand, when proposing models with a mix of
all databases, the result improves contrary to what is reported in Ibarra et al. [56] The dependence on the data
domain does not seem to be as strong with the proposed models.
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As stated in Ibarra et al.[56], it is necessary to explore techniques for analyzing the voices of Parkinson’s patients
that are independent of the origin of the voices. The 3D models that include weighted permutation entropy are
competitive. However, the optimal characteristics depend on the database used. Future work will seek to analyze
the generalizable characteristics that are not dependent on the domain of the data.

In this research was proposed a working hypothesis that low-dimensional spaces are preferable when they
can elucidate the structural and informational nature of the problem, as was the case in this study. It has been
considered that a reduction in dimensions reduces noise or overfitting, thereby allowing 3D models to obtain
superior classification results compared to higher-dimensional models.

The study employed supervised learning techniques for binary classification, a common approach in machine
learning [50]. This involved identifying a function the feature set to the binary outcome, distinguishing between
individuals with PD and healthy controls (NPD). The results obtained show the consistent of the methodology,
despite the sample size, as the models were compared their performance using different classification techniques,
including polynomial and radial SVM, kNN and RF. To assess model performance and prevent overfitting 10-fold
cross-validation was employed. The results were similar for all methods, with polynomial SVM performing best in
terms of mean accuracy. This suggests that the models are well configured and effective in capturing the relevant
patterns by using cross-validation.

The high classification ability of the selected features with the SVM polynomial model supports the suitability of
this scheme, in coincidence with the findings reported in the review by [62]. SVM are a powerful and versatile class
of supervised learning algorithms, particularly well-suited for classification tasks, including binary classification
problems. While not strictly a nonparametric test in the traditional statistical sense, SVM exhibit robustness
and flexibility, making them suitable for complex, non-linearly separable data often encountered in real-world
scenarios. In study of [39] of commonly used machine learning techniques in small sample settings revealed that
SVM is among the most frequently employed methods.

A review of machine learning and deep learning algorithms for PD detection is presented in [17] and it shows a
frequently election of the SVM technique among researchers.

The selection of these classification techniques was predicated on their widespread utilization within the extant
literature and their efficacy in this particular instance. Their effectiveness was demonstrated in the context of binary
classification of PD and NPD, as well as the selection of optimal parameters for the measures employed in 2D and
3D spaces. One of the objectives of the research was the interpretability of the parameters and their possible
relationship with the clinical symptoms of the patients and with the results obtained it was accomplished.

In [17] are analyzed various databases and machine learning and deep learning algorithms to classify individuals
with and without PD. The studies identify distinct acoustic measures utilized for classification, with results
demonstrating an accuracy ranging upper of 60%.

The present study aligns with the machine learning systems described by [17], following usual methodological
guidelines. Additionally, it explores heterogeneous subgroups within Parkinson’s patients, a topic that has received
little attention in the existing literature.

From the authors’ point of view, the work presented here represents a contribution regarding previous studies
[16, 15], where lower accuracy was obtained with a greater number of computational resources, a higher number
of variables, and longer audio lengths. Furthermore, this study contributes to the reproducibility of the present
research and facilitates further investigations by making the audio from the constructed database freely accessible
to the scientific community [21].

The signal characteristics associated with Parkinson’s disease, as found in the literature [7, 10] and in review
studies [63, 12, 17] are largely related to variations in measures such as jitter, shimmer, cepstral coefficients,
among others.

PD is a heterogeneous disease with considerable differences in progression, and more homogeneous subgroups
can be identified based on clinical observations [6, 10]. The defined 2D and 3D characteristic spaces and subgroups
were partially analyzed in terms of gender, age, stage of disease progression, among other factors, and dysphonia
measures used by speech therapists were considered. It was observed that the SG3 group, composed solely of NPD,
was the youngest on average and had the fewest voice alterations, while the SG2 group, composed solely of PD,
had the most alterations. In the future, these analyses will be further explored with health specialists.
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A particularly significant finding is the identification of subgroups of individuals with homogeneous
characteristics within the feature space. The subgroups could be associated with subtypes of PD. Furthermore, it is
possible to correlate cases based on clinical symptoms previously studied in the same database, such as alterations
identified in laryngoscopy with a laryngeal stroboscope in patients with PD [25].

The UPDRS and H&Y scales are indicators of disease progression and are widely used by clinicians. In the
particular case of the database used, the patients correspond to PD in the early stages of the disease. This makes
the results more promising, with patients in more severe condition could be expected to show greater alterations in
their voice.

Future work will focus on evaluating the robustness and generalizability of the method using larger and more
diverse datasets. Gender-specific considerations in voice analysis will also be explored, taking into account
potential differences in vocal characteristics between males and females. The parameters that define the variables
for male or female gender could be optimized and defining models for each gender. It is also interesting to consider
patients with different degrees of disease progression using scales such as H&Y or UPDRS, which are commonly
used by physicians.

The measurements proposed here are accessible to low-cost equipment and in controlled low-noise
environments, such as a medical center. So far, a quality microphone and a signal-to-noise ratio greater than or
equal to 20 dB are required to record one second of sustained phonation of the vowel /a/. It is also recommended a
computer system that links the patient’s medical history to the analysis of the phonation signal, which is currently
under development [64].

A collaboration with the Posadas National Hospital in Argentina is developed to provide tools for integrating
voice analysis into clinical assessments. The methodology proposed for voice analysis has the potential to simplify
PD screening processes, reduce computational requirements, and improve accessibility. In the near future, we will
seek to work together with Parkinson’s treating physicians in the workflow for the acquisition, preprocessing,
feature extraction and classification of signals such as voice in patients with neurological disorders.

The results obtained in this research agree with [17] that advances in the analysis of multimodal information
about PD (audio, writing, gait, depression, etc.) will have a significant impact on the identification, monitoring and
treatment of PD in the near future. These innovations may lead to the development of PD diagnostic tools that are
easy to use, non-invasive and easily integrated into clinical settings. They also offer the possibility of identifying
people at risk of developing PD, allowing early detection and intervention. They also have the potential to improve
patients’ quality of life and inform the development of new treatment strategies.

The results reinforce the interest in the line of research related to acoustic parameters and entropic measures. A
new data corpus is also being developed, which will allow the replication of the analyses and testing of the models
proposed here. One issue to consider, which is a question to be answered in the near future, is how to record with a
mobile phone instead of a higher-quality microphone to facilitate the work of medical professionals and minimize
the impact that recording methods have on the performance of analysis techniques.

5. CONCLUSIONS

The manuscript presents an innovative methodology for PD detection through speech analysis, yielding promising
results in low-dimensional (2D and 3D) feature spaces. The simplicity and accuracy of the proposed approach offer
great potential for advancing the diagnosis and monitoring of PD. In particular, the methodology proves effective
with phonation samples of the vowel /a/ as short as one second, which could help streamline clinical workflows.

The work presented here identifies just three signal features that their use is not widespread as are the AC,
WPE, and BSE measures, holistically model and explain signal characteristics, directly derived from the temporal
and spectral properties of speech signals. Also, it allowed the identification of four subgroups with similar
characteristics in both classes (PD - NPD).

The proposed two-dimensional and three-dimensional feature spaces provide parsimonious models that achieve a
classification accuracy of between 80% and 90%. In the studies carried out, the classification performance remains
practically stable for SNR values above 20 dB. As the database is small, the study carried out can be considered
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a preliminary stage to identify informational measures and subgroups oriented towards the search for biomarker
proxies that allow for the knowledge of subtypes of Parkinson’s disease.
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