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Abstract The central local metric dimension is a concept where a local metric set contains all central vertices. This concept
was introduced in 2023. Since this concept is related to distance in a graph. So, in real life, there are so many applications of
local metric dimension and central vertices. If a vital object is represented as a central vertex in a graph, then its placement
can use the concept of a central vertex so that people can easily reach it. Suppose the vital objects are health services,
education facilities, train stations, and water stations. The government can use the central local metric dimension concepts
to optimize transportation infrastructure management and create good transportation governance for these vital objects. Let
G be a connected graph with vertex set V (G) and order n. A central vertex in G is a vertex with the shortest distance to any
other vertex in G, and all central vertices in G are represented in a set that is a central set, denoted by S(G). Let W be a
local metric set of G, if S(G) ⊆ W , then W is a central local metric set of G. The cardinality of the central local metric set
with minimal cardinality is called the central local metric dimension of G. This paper presents some properties of the central
local metric dimension of G⊙H . The results show that the elements of the central set of G⊙H are vertices in V (G⊙H)

that correspond to the central set of G. Since in G⊙H , for all x0i, yij ∈ V (G⊙H) applies d(x0i, y
i
j) = 1, then there is no

intersection between the central set and the local basis set of it.
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1. Introduction

Graph theory is a branch of discrete mathematics that has undergone rapid development in recent years. Let G be
a graph with a vertex set V (G), an edge set E(G), and an order n. If there are vertices u and v in G so that u is
adjacent to v, then we denote it by u ∼ v or simply uv ∈ E(G). The distance between those two vertices is d(u, v)
[1]. The sum of all vertices that are connected to a vertex v is called the degree of v or deg(v). The maximal degree
of any vertex in a graph G is denoted by ∆(G) and the minimal degree of any vertex in a graph G is denoted by
δ(G). Lemma 1.1 describes the degree limitation of a vertex in a graph G.

Lemma 1.1
If x is a vertex in a graph G with order n, then 0 ≤ δ(G) ≤ deg(x) ≤ ∆(G) ≤ n− 1 [2].
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The eccentricity of the vertex u ∈ V (G), denoted by e(v), is the largest d(u, v) for all v ∈ V (G), and the radius
of G, denoted by rad(G), is the smallest eccentricity of all vertices in G. A vertex u ∈ V (G) is called a central
vertex of G if e(u) = rad(G). A central set of G, denoted by S(G), is a set whose its elements are all the central
vertices of G or S(G) = {s|e(s) = rad(G), s ∈ V (G)} [3].

Let W be a subset of V (G), W = {w1, w2, . . . , wk}, where k ≤ n, and the metric code of a vertex x ∈ V (G)
with respect to W is the k-vector r(u|W ) = (d(u,w1), d(u,w2), ..., d(u,wk)), for all u ∈ V (G). W is called a local
metric set if every pair of u ∼ v in G has a distinct metric code with respect to W , that is, r(u|W ) ̸= r(v|W ). The
local metric set with minimum cardinality is called the local basis set of G, and its cardinality is called the local
metric dimension of G, denoted by lmd(G) [4]. Okamoto et al. in [4] presented a characterization of all non-trivial
connected graphs of order n having local metric dimension 1, n− 1, or n− 2 and gave bounds for the local metric
dimension of a graph. Some essential properties of a local metric set supporting our main results are summarized
in the following lemma.

Lemma 1.2
Given a connected graph G and U ⊆ V (G), if there is a subset of U that is a local metric set of G, then U is also a
local metric set [4].

Lemma 1.3
Let G be a connected graph. If W ⊆ V (G), then for every vi, vj ∈ W with i ̸= j, r(vi|W ) ̸= r(vj |W ) [1].

Listiana et al. in [3] introduced the concept of the central local metric dimension of a graph as shown in Definition
1.1. The boundaries for the central local metric dimension of a graph G and some properties of the central local
metric dimension of some graphs with the same diameter and radius are also presented in [3], as shown in Theorem
1.1. In [2], Listiana et al. found that a central vertex of K1 +H is a single vertex in K1, so we have two possibilities
of lmds(K1 +H). In addition, those results are presented in Theorem 1.2 and Theorem 1.3.

Definition 1.1
Let W ⊆ V (G) be a local metric set of G. If the central set S(G) ⊆ W , then W is called a central local metric set,
and the minimum cardinality among the central local metric sets of G is called the central local metric dimension
of G, denoted by lmds(G).

Theorem 1.1
Let G be a connected graph with order n. If W is a local metric set of G, then:

a) max{|S(G)|, lmd(G)} ≤ lmds(G) ≤ min{|V (G)|, |S(G) ∪W |}
b) If diam(G) = rad(G) if and only if S(G) = V (G)
c) If S(G) = V (G) then S(G) is a central local metric set of G
d) lmds(G) = n if and only if diam(G) = rad(G)

Theorem 1.2
Let G ∼= K1 +H with V (K1) = {c} and |V (H)| = m. The central set G is S(G) = {c} if and only if no vertex in
H has degree m− 1.

Theorem 1.3
Let S(G) and W be a central set and local basis set of G ∼= K1 +H , respectively. If there is no vertex in H has

degree |V (H)| − 1, then lmds(G) =

{
lmd(G) if S(G) ⊂ W

lmd(G) + 1 if S(G) ∩W = ∅
.

For graph K1 +H , let H be a graph nP2, then K1 + nP2
∼= fn. Based on Theorem 1.2, graph fn has a central

set is S(fn) = c. Let U = {x1, x2, x3} ⊂ V (fn) be a local basis set of f3, then S(G) ∩ U = ∅. By Theorem
1.3, lmds(f3) = |S(f3)|+ lmd(f3). Let W = {c, x1, x2, x3} ⊂ V (G), since U ⊂ W , by Lemma 1.2, W is also
a local metric set of fn. W contains a central vertex c or S(f3) ⊂ W . So, W is a central local basis set of f3
and lmds(f3) = 4. Figure 1(a) illustrates the central local metric dimension of f3 with the central local basis
set W = {c, x1, x2, x3}. In contrast, Figure 1(b) illustrates the local metric dimension of f3 with local basis set
U = {x1, x2, x3}. It shows that the fn has a central point that is not included in the local basis set.
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Figure 1. (a) The central local metric dimension of f3 and (b) The local metric dimension of f3

The central vertex and local metric set are two concepts related to distance. Thus, in real life, the concept
of central local metric dimension can be used to support the government in solving transportation management
problems involving vital objects, such as the placement of train stations that are easily accessible to the public and
can recognize two nearby locations. Another example is the optimization of the placement of a health center, water
stations, education facilities, and a disaster command post.

Susilowati et al. in [5] explored the central metric dimension of the edge coronation graph. W ⊆ V (G) is a
resolver set of G if every u and v in V (G) has a distinct metric code with respect to W . Then, the minimal
cardinality of a resolver set in G is called the central metric dimension of G, denoted by dimcen(G). They
showed some characteristics of central metric dimension, such as dimcen(G) = 1 if and only if G ∼= K1 and
dimcen(G) = |V (G)| − 1 if and only if G ∼= K1,n.

A vertex x in a graph G with order n is called a dominant vertex if deg(x) = n− 1 [6]. So, based on Theorem
1.2, a graph K1 +H has a single central vertex if H has only one dominant vertex. Graph friendship f3 in Figure 1
is an example of a graph with a dominant vertex, since vertex c is adjacent to all other vertices in f3 or deg(c) = 6.

In this paper, we explored the central local metric dimension of G⊙H . The formal definition of G⊙H refers
to [7]. Some properties of the local metric dimension of G⊙H can be seen in [8]. Theorem 1.4 and Theorem 1.5
are the result of the local metric dimension of G⊙H that also refers to [8]. This theorem will support the proof of
our next theorem.

Theorem 1.4
Let G be a connected graph with order n and H is non-empty set, then

a) if a vertex of K1 is not element of basic local set for K1 +H , then lmd(G⊙H) = n(lmd(K1 +H))
b) if a vertex of K1 is an element of basic local set for K1 +H , then for n ≥ 2, lmd(G⊙H) = n(lmd(K1 +

H)− 1)

Theorem 1.5
For any graph H with diam(H) = 2 and any connected graph with order n ≥ 2, then lmd(G⊙H) = n · lmd(H).

2. Main Results

Let G be a connected graph with order n and H be a graph with order m. The corona product graph G⊙H is a
connected graph obtained by taking one copy of graph G and n copies of graph H , where the i-th vertex in graph
G is connected to every vertex in the i-th copy of graph H , for 1 ≤ i ≤ n. Furthermore, the i-th copy of the graph
H on G⊙H is called Hi.
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Let V (G) = {x1, x2, x3, . . . , xn} be the vertex set of G and V (H) = {y1, y2, y3, . . . , ym} be the vertex set of
H , then V (G⊙H) can be defined as V (G⊙H) = V (G0) ∪ {yij |1 ≤ i ≤ n and 1 ≤ j ≤ m}, where V (G0) =

{x0i ∈ V (G⊙H)|xi ∈ V (G)}. Given a graph P4, with V (P4) = {x1, x2, x3, x4}, and a graph K3, with V (K3) =
{y1, y2, y3}, as illustrated in Figure 2(a). Then, we can see the illustration of graph P4 ⊙K3 in Figure 2(b), which
the vertex set of P4 ⊙K3 is V (P4 ⊙K3) = {x01, x02, x03, x04} ∪ {yij |1 ≤ i ≤ 4, 1 ≤ j ≤ 3}}.

Figure 2. (a) Graph P4 and K3 (b) Graph P4 ⊙K3

Figure 3 is another example of graph G⊙H , where G = C4 and H = C5. Let V (C4) = {x1, x2, x3, x4} be
a vertex set of C4 and V (C5) = {y1, y2, y3, y4, y5} be a vertex set of C5, then the vertex set of C4 ⊙ C5 is
V (C4 ⊙ C5) = {x01, x02, x03, x04} ∪ {yij |1 ≤ i ≤ 4, 1 ≤ j ≤ 5}.

Figure 3. (a) Graph C4 and C5 (b) Graph C4 ⊙ C5

Lemma 2.1 relates to the diameter and radius of G⊙H . We also emphasise that in this paper, we use a connected
graph G of order n, while graph H is an arbitrary graph of order m, if not otherwise stated.

Lemma 2.1
If G is a connected graph and H is any graph, then rad (G⊙H) = rad (G) + 1 and diam (G⊙H) = diam (G) +
2.
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Proof. Given that G is a connected graph and H is any graph. To prove the Lemma, we divided it into two steps
as follows:

• Take a vertex u in V (G) so that u is a central vertex of G. Let u = xk, since u is a central vertex
of G, then the eccentricity of xk is e (xk) = rad(G). In G⊙H , each vertex of Hi is connected to the
vertex x0i ∈ V (G⊙H), where xi is a vertex in V (G), so that d(x0i, y

i
j) = 1,∀yij ∈ V (G⊙H). Take i = k,

then the eccentricity of x0k is e (x0k) = e(xk) + 1. Since e(xk) = rad(G), then e(x0k) = rad(G) + 1 =
rad(G⊙H). Consequently, x0k is a central vertex of G⊙H and rad(G⊙H) = rad(G) + 1.

• In the same way, take vertex u and v in G, so that d(u, v) = diam(G). Let u = xk and v =
xl, then d(xk, xl) = diam(G). Now, take ykj , y

l
j ∈ V (G⊙H), so that there are x0k and x0l in

V (G⊙H) with d(x0k, x0l) = diam(G). It is easy to see that d(x0k, y
k
j ) = 1 and d(x0l, y

l
j) = 1.

Consequently, d(ykj , y
l
j) = d(ykj , x0k) + d(x0k, x0l) + d(x0l, y

l
j) = 1 + d(x0k, x0l) + 1 = d(x0k, x0l) + 2 =

diam(G⊙H). Since d(x0k, x0l) = diam(G), then d(ykj , y
l
j) = diam (G) + 2. Thus diam (G⊙H) =

diam (G) + 2.

It is proved that diam (G⊙H) = diam (G) + 2 and rad (G⊙H) = rad (G) + 1. 2

In G⊙H , there is a subgraph ⟨xi⟩+Hi
∼= K1 +H . Let H = Km, then the graph K1 +Km be a complete

graph of K1+m since K1 +Km
∼= K1+m. It is easy to see that diam(K1+m) = rad(K1+m) = 1, so by Theorem

1.1, lmds(K1 +Km) = |V (K1+m)| = 1 +m. Lemma 2.2 depicts about the diameter of K1 +H when H ̸= Km.

Lemma 2.2
Let x0 ∈ V (K1) and H is a connected graph with order m:

a) If ∀y ∈ V (H), deg(y) ̸= m− 1, then diam(K1 +H) = 2
b) If ∃y ∈ V (H), deg(y) = m− 1 then diam(K1 +H) = diam(H) = 2.

Proof. Given a trivial graph K1 with x0 ∈ V (K1), and H is a connected graph of order m. Then K1 +H
is defined as a graph with vertex set V (K1 +H) = {x01|x0 ∈ V (K1)} ∪ {y1j |yj ∈ V (H), 1 ≤ j ≤ m}. So, two
conditions in graph H must be considered.

a) When ∀y ∈ V (H), deg(y) ̸= m− 1. Take x01 ∈ V (K1 +H), then x01 is connected to ∀y1j ∈ V (K1 +H),
1 ≤ j ≤ m. Based on Lemma 1.1, x01 has a maximum degree of K1 +H , which means that vertex x01

is connected to all other vertices in K1 +H . Consequently, d(x01, y
1
j ) = 1, ∀y1j ∈ V (K1 +H) and the

eccentricity of x01 is e(x01) = 1. Take any two vertices ys and yt in H , where ys ≁ yt. Since in graph
H there is no vertex y with deg(y) = m− 1, the eccentricity of y1j is e(y1j ) = 2, for 1 ≤ j ≤ m. Thus,
diam(K1 +H) = e(y1j ) = 2. It is proved that diam(K1 +H) = 2.

b) When ∃y ∈ V (H), deg(y) = m− 1. Take y = ys, so ys is connected to all other vertices in graph H
and the eccentricity of ys is e(ys) = 1. Take any two vertices yk and yl in H , where yk ≁ yl, then the
eccentricity of yk and yl are e(yk) = 2 and e(yl) = 2. Consequently, diam(H) = e(yk) = e(yl) = 2. Further,
for x01 ∈ V (K1 +H), where x0 ∈ V (K1), we have the eccentricity of x01 is e(x01) = e(y1s) = 1. While, the
eccentricity of y1k and y1l are e(y1k) = e(y1l ) = 2, for 1 ≤ j ≤ m. Thus, diam(K1 +H) = 2. It is proved that
diam(K1 +H) = diam(H) = 2.

2

Now, we will discuss the central local metric dimension of G⊙H . The following are some properties related to
the central set on the graph G⊙H and a lower bound on the central local metric dimension on the corona graph
G⊙H .

Lemma 2.3
Let S(G) = {s1, s2, ..., sp} be a central set of G with p ≤ n, then a central set of G⊙H be S(G⊙H) = {s0k ∈
V (G⊙H)|sk ∈ S(G)}.

Proof. Given graph G⊙H with vertex set V (G⊙H) = V (G0) ∪ {yij |1 ≤ i ≤ n, 1 ≤ j ≤ m}, where V (G0) =
{x0i ∈ V (G⊙H)|xi ∈ V (G)}. Let S(G) = {s1, s2, ..., sp} be a central set of G with p ≤ n. Take sk ∈ S(G),
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then e(sk) = rad(G), ∀sk ∈ S(G). Since S(G) ⊆ V (G), then sk ∈ S(G) and sk ∈ V (G). Let sk = xk, then for
every xk ∈ V (G) exist x0k ∈ V (G⊙H) so that based on Lemma 2.1, e(x0k) = rad(G) + 1 = rad(G⊙H). Thus,
x0k is a central vertex of G⊙H , ∀xk = sk ∈ S(G). Let x0k = s0k ∈ S(G⊙H), then central set of G⊙H be
S(G⊙H) = {s0k ∈ V (G⊙H)|sk ∈ S(G)}. 2

In G⊙H , a vertex x0i ∈ V (G⊙H) is adjacent to every vertex in Hi. Consequently, d(x0i, y
i
j) = 1. So, the

vertex x0i cannot distinguish any two adjacent vertices in the graph G⊙H . Let W be the local basis set of graph
G⊙H , then x0i /∈ W . We have lemma 2.4 inspired by this condition to facilitate the proof of the next theorem.

Lemma 2.4
Let W be a local basis set of G⊙H , then S (G) ∩W = ∅.

Proof. Let W be a basis local set of G⊙H , so lmd (G⊙H) = |W |. From Lemma 2.3, S(G⊙H) = {s0k ∈
V (G⊙H)|sk ∈ S(G)}. Suppose that W ∩ S (G⊙H) is non-empty set, that is, there exist x0k ∈ W and x0k ∈
S(G⊙H) such that for any two adjacent vertices u, v ∈ V (G⊙H) it follows that d(u, x0k) ̸= d(v, x0k). Let
u = ykj , v = ykl ∈ V (Hi), where j ̸= l, then vertices u and v are adjacent to x0i. Consequently, d (u, x0i) =
d (v, x0i) = 1. It is contradiction with d(u, x0i) ̸= d(v, x0i). Thus, W ∩ S (G⊙H) is an empty set. 2

Based on Definition 1.1, for a connected graph G with a local metric set W , if S(G) ⊆ W , then W is a central
local metric set of G. Whereas, in Lemma 2.4 we get that a central set of G⊙H is disjoint from its basis local set.
Then, we obtain Corollary 2.1 and Corollary 2.2 as a consequence of Definition 1.1 and Lemma 2.4.

Corollary 2.1
lmds(G⊙H) > lmd(G⊙H).

Corollary 2.2
The central local metric dimension of G⊙H is lmds (G⊙H) = |S(G⊙H)|+ lmd(G⊙H).

Corollary 2.1 and Corollary 2.2 show the relationship between the central local metric dimension of G⊙H ,
lmds(G⊙H), and the local metric dimension of G⊙H , lmd(G⊙H). They show that the central local metric
dimension of G⊙H is greater than the local metric dimension. Based on Lemma 2.4, the central sets of the graph
G⊙H are disjoint from the local metric sets. Thus, the central local metric dimension of the graph G⊙H is the
sum of the cardinality of the central sets of G⊙H and the local metric dimension of G⊙H .

Let H be an empty graph Km, then G⊙Km applies deg(yij) = 1, ∀yij ∈ V (Hi), 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Theorem 2.1 discussed a central local metric dimension of G⊙H when H is an empty graph.

Theorem 2.1
Let G be a connected graph with order n. If H = Km, then lmds(G⊙H) = lmds(G)

Proof. Let W1 be a central local basis set of G. By Lemma 2.3, we have S(G⊙H) = {s0k ∈ V (G⊙H)|sk ∈
S(G)}, then ∀s0k ∈ S(G⊙H), exist sk ∈ S(G), so that sk ∈ W1. It is easy to see that |S(G⊙H| = |S(G)|.
Let W2 be a central local basis set of G⊙H , then ∀s0k ∈ S(G⊙H), s0k ∈ W2. Thus, S(G⊙H) ⊆ W2.
Take W2 = {w0l ∈ V (G⊙H)|wl ∈ W1}, so |W2| = |W1| = lmds(G). Take any two vertices yij , y

i
j+1 ∈ V (Hi)

and x0i = w0i ∈ W2, then d(yij , w0i) = d(yij+1, w0i) = 1. Similarly, if the vertex x0l = w0l ∈ W2 is taken, then
d(yij , w0l) = 1 + d(w0i, w0l) = d(yij+1, w0l). Consequently, r(yij |W ) = r(yij+1|W ). Since H = Km is an empty
graph, then yij and yij+1 are not adjacent, ∀yii , yij+1 ∈ V (Hi), 1 ≤ i ≤ n. Thus, W2 is a central local basis set of
G⊙H . Next, we prove that W2 is the central local basis set. Take U where S(G⊙H) ⊆ U ⊆ V (G⊙H) with
|U | < |W2|. Let |U | = |W2| − 1, then there are two adjacent vertices x0s and x0t where xs ∨ xt /∈ W1 such that
r(xos|W2) = r(xot|W2). Consequently, U is not the central local metric set of G⊙H . So W2 is the central local
metric set on G⊙H with minimal cardinality. In other words, W2 is the central local basis set of G⊙H . Hence
lmds(G⊙H) = |W2| = |W1| = lmds(G). 2

By Theorem 2.1, for G = Cn, we get lmds(Cn ⊙Km) = lmds(Cn) = n, for n ≥ 3 and m ≥ 2 as in [9]. Figure
4 is an illustration of the central local metric dimension of P4 ⊙K3. Graph P4 is a graph with S(P4) = {x2, x3},
which for every two adjacent vertices u, v in P4 applies r(u|S(P4)) ̸= r(v|S(P4)), so lmds(P4) = 2. Based on
Lemma 2.4 we have S(P4 ⊙K3) = {x02, x03} and based on Theorem 2.1, lmds(P4 ⊙K3) = lmds(P4) = 2.
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Figure 4. The illustration of the central local metric dimension of P4 ⊙K3

Next, Theorem 2.2 and Theorem 2.3 discussed the central local metric dimension of G⊙H when H is not an
empty graph.

Theorem 2.2
Let G be a connected graph with order n and H be a graph with no dominant vertex, then

lmds(G⊙H) = |S(G⊙H)|+ n(lmd(K1 +H)− αi)

for αi = 1 when x0i is an element of a local basis set of K1 +Hi, or αi = 0 when x0i is not an element of a local
basis set of K1 +Hi.

Proof. Graph H is a graph without a dominant vertex, it is mean that ∀y ∈ V (H), deg ̸= m− 1. So, there
is a subgraph ⟨x0i⟩+Hi

∼= K1 +H in G⊙H . It is possible a vertex x0i be an element of local basis set of
⟨x0i⟩+Hi. In fact, we know that every x0i in G⊙H can not distinguished each vertex in Hi. By Theorem 1.4 and
Corollary 2.2, we have lmds(G⊙H) = |S(G⊙H)|+ n(lmd(K1 +H)− 1) when x0i is an element of ⟨xi⟩+Hi

or lmds(G⊙H) = |S(G⊙H)|+ n(lmd(K1 +H)) when x0i is not an element of ⟨xi⟩+Hi. Consequently,
lmds(G⊙H) = |S(G⊙H)|+ n(lmd(K1 +H)− αi) for αi = 1 when x0i is an element of a local basis set of
K1 +Hi, or αi = 0 when x0i is not an element of a local basis set of K1 +Hi. 2

Theorem 2.3
Let G and H be a connected graph with order n and m, respectively. If ∃y ∈ V (H), deg(y) = m− 1, then

lmds(G⊙H) = |S(G⊙H)|+ n(lmd(H))

Proof. Since ∃y ∈ V (H), deg(y) = m− 1, based on Lemma 2.2, diam(H) = 2. Then, from Corollary 2.2
and Theorem 1.5, we have lmds(G⊙H) = |S(G⊙H)|+ n(lmd(G⊙H)). It is proved that lmds(G⊙H) =
|S(G⊙H)|+ n(lmd(H)). 2

In Theorem 1.1, it is stated that for any connected graph G with order n, the central set S(G) = V (G) if and
only if diam(G) = rad(G). That is, all vertices xi in the graph G are central vertices. Then, from Theorem 1.2,
it is stated that for a graph H with order m where ∀y ∈ V (H), degH(y) ̸= m− 1, the central vertex of the graph
K1 +H is a single vertex in K1. From these two conditions, Theorem 2.4 is as follows.

Theorem 2.4
Let G be a connected graph with order n and diam(G) = rad(G). If there is H with |V (H)| = m and deg(y) ̸=
m− 1, ∀y ∈ V (H), then lmds(G⊙H) = n · lmds(K1 +H).

Proof. Let Hi be the i− th copies of H in G⊙H . For every ⟨x0i⟩+Hi, take W0i = {wor ∈ V (G⊙H)|wr ∈
Wi} as a central local basis set of ⟨x0i⟩+Hi, where Wi is a central local basis set of K1 +H . Since ∀y ∈ V (H),
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deg(y) ̸= m− 1, then based on Theorem 1.2, a central vertex of K1 +H is a single vertex in V (K1). So,
since ⟨x0i⟩+Hi

∼= K1 +H , then ∀x0i ∈ V (G⊙H), x0i ∈ W0i. Take xi ∈ Wi, where diam(G) = rad(G). So,
from Theorem 1.1, S(G) = V (G), that is ∀xi ∈ V (G), xi ∈ Wi, 1 ≤ i ≤ n. Whereas in Lemma 2.3, a central set
of S(G⊙H) = {s0k ∈ V (G⊙H)|sk ∈ S(G)}, it is applies ∀x0i ∈ V (G⊙H), x0i ∈ W0i. Take X =

⋃n
i=1 W0i,

since xi ∈ Wi, for 1 ≤ i ≤ n, then S(G) ⊂ Wi and S(G⊙H) ⊂ W0i. There are several possibilities for any two
adjacent vertices u, v and v on the graph G⊙H with respect to X as follows.

• u, v ∈ V (Hi). Since each of u and v is adjacent to x0i, there is w0i ∈ W0i\{x0i} so that d(u,w0i) ̸= d(v, w0i).
Consequently, r(u|X) ̸= r(v|X).

• u, v ∈ V (G). Since for every u = xk and v = xl, k ̸= l, there are x0k ∈ W0i and x0l ∈ W0i, respectively, so
that x0k, x0l ∈ X , then r(u|X) ̸= r(v|X).

• u ∈ V (Hi) and v ∈ V (G). Since for every v = xi ∈ V (G) there is x0i ∈ W0i, then r(u|X) ̸= r(v|X).

Thus, X is the central local metric set of G⊙H . Further, it is shown that W is the minimal central local metric set.
Take any U where S(G⊙H) ⊂ W with |U | < |W |. Since X =

⋃n
i=n W0i, where W0i is a central local basis set of

⟨x0i⟩+Hi, then there exists i such that at most as many as |Wi| − 1 vertices in ⟨x0i⟩+Hi are element of U . Since
W0i is the local basis of the graph ⟨x0i⟩+Hi, there exist two adjacent vertices in K1 +Hi that have the same
representation in U . Thus, U is not a central local metric set of G⊙H . Consequently, X =

⋃n
i=1 W0i is the central

local basis of G⊙H . Thus, it is proved that lmds(G⊙H) = |X| =
∑n

i=1(lmds(K1 +H)) = n(lmds(K1 +H)).
2

david.iapress@gmail.com Let H be a sequence of n connected graph H1, H2, ...,Hn, where the order of Hi is
mi, 1 ≤ i ≤ n. Let V (G0) = {x0i ∈ V (G⊙H)|xi ∈ V (G)} and V (Hi) = {yj |1 ≤ j ≤ mi}, then the vertex set of
G⊙H is V (G⊙H) = V (G0) ∪ {yij |1 ≤ i ≤ n, 1 ≤ j ≤ mi}. Hence, we obtain Lemma 2.5 about the central set
in the graph G⊙H.

Lemma 2.5
Let S(G) = {s1, s2, ..., sp} be a central set of G with p ≤ |V (G)|, then a central set of G⊙H be S(G⊙H) =
{s0k ∈ V (G⊙H)|sk ∈ S(G)}

Proof. Given graph G⊙H with vertex set V (G⊙H) = V (G0) ∪ {yij |1 ≤ i ≤ n, 1 ≤ j ≤ mi}, where V (G0) =
{x0i ∈ V (G⊙H)|xi ∈ V (G)}. Let S(G) = {s1, s2, ..., sp} be a central set of G with p ≤ n. Take sk ∈ S(G)
then e(sk) = rad(G), ∀sk ∈ S(G). Since S(G) ⊆ V (G), then sk ∈ S(G) and sk ∈ V (G). Let sk = xk, then for
every xk ∈ V (G) exist x0k ∈ V (G⊙H) so that e(x0k) = e(xk) + 1 = rad(G) + 1 = rad(G⊙H). Thus, x0k is
a central vertex of G⊙H, ∀xk = sk ∈ S(G). Let x0k = s0k ∈ S(G⊙H), then the central set of G⊙H be
S(G⊙H) = {s0k ∈ V (G⊙H)|sk ∈ S(G), 1 ≤ k ≤ p}. 2

Furthermore, the dimension of the central local metric on the graph G⊙H is discussed in Theorem 2.5. In that
theorem, the term dominant vertex v ∈ V (H) denotes a vertex adjacent to every other vertex in the graph H . Let
H be a graph with |V (H)| = m, v be a dominant vertex in H if deg(v) = m− 1.

Theorem 2.5
Let G be a connected graph with order n ≥ 2 and H be a sequence of connected graph H1, H2, ...,Hn, where the
order of Hi is mi, 1 ≤ i ≤ n. If there are k graph Hi contains the dominant vertex, then

lmds(G⊙H) = |S(G⊙H)|+
k∑

i=1

(lmd(Hi)) +

n∑
i=n−k

(lmd(K1 +Hi)− αi)

for αi = 1 when x0i is an element of a local basis set of K1 +Hi, or αi = 0 when x0i is not an element of a local
basis set of K1 +Hi.

Proof. Let G be a connected graph with order n ≥ 2 with the vertex set is V (G) = {xi|1 ≤ i ≤ n} and H be
the sequence of n connected graphs of H1, H2, ...,Hn. Graph ⟨xi⟩+Hi

∼= K1 +Hi for each 1 ≤ i ≤ n, then
lmd(⟨xi⟩+Hi) = lmd(K1 +Hi). Since there are graphs Hi that contain the dominant vertex and there are n− k
graphs Hi without the dominant vertex, then there are two different local basis sets for ⟨xi⟩+Hi. Let B0i be
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the local basis set of ⟨xi⟩+Hi for Hi that contains the dominant vertex, and B′
0i be the local basis set of the

graph ⟨xi⟩+Hi for Hi without the dominant vertex. Take B0i = {b0r ∈ V (G⊙H)|br ∈ Bi} and B′
0i = {b′0r ∈

V (G⊙H)|b′r ∈ B′
i}, where Bi is a local basis set of K1 +H with H contain the dominant vertex and B′

i is
a local basis set of K1 +H with H without the dominant vertex. Take W =

⋃k
i=1 B0i ∪

⋃n
i=n−k(B

′
0i − {x0i}).

Then, there are several possibilities for any two adjacent vertices u and v on the graph G⊙H such that they have
different representations in W .

• u, v ∈ V (Hi). Vertex u and v, adjacent to x0i, respectively, so d(u, x0i) = d(v, x0i) = 1. There are two
conditions for this possibility. First, when u and v are two adjacent vertices in graph Hi that contains the
dominant vertex, then there is s ∈ Bi\{x0i} so that d(u, s) ̸= d(v, s). Consequently, r(u|W ) ̸= r(v|W ).
Second, when u and v are two adjacent vertices in graph Hi without the dominant vertex, then there is
s ∈ B′

i − {x0i} so that d(u, s) ̸= d(v, s). Consequently, r(u|W ) ̸= r(v|W ).
• u, v ∈ V (G0). Take u = p and v = r in V (G) so that there are x0p and x0r in V (G⊙H). Let Hp be

a graph that contains the dominant vertex, and let Hr be a graph without the dominant vertex. Then
for every s ∈ B′

r − {x0r}, d(x0p, s) = 1 + d(x0p, x0r) > d(x0r, s). Similarly, ∀s ∈ Bp\{x0p}, d(x0r, s) =
1 + d(x0r, x0p) > d(x0p, s). Consequently, r(xop|W ) ̸= r(xor|W ).

• u ∈ V (Hi) and v ∈ V (G). Take v = xi in V (G), so that there is x0i in V (G⊙H). There are two conditions
in this possibility. First, when u = yij is a vertex in Hi that contains the dominant vertex, then there is s ∈
Bk\{x0k}, k ̸= i, so that d(yij , s) = 2 + d(x0i, x0k) > d(x0i, s) = 1 + d(x0i, x0k). Consequently, r(yij |W ) ̸=
r(x0i|W ). Second, when u = yij is a vertex in Hi without the dominant vertex, then there is s ∈ B′

k − {x0k},
k ̸= i, so that d(yij , s) = 2 + d(x0i, x0k) > d(x0i, s) = 1 + d(x0i, x0k). Consequently, r(yij |W ) ̸= r(x0i|W ).

Thus, W =
⋃k

i=1 Bi ∪
⋃n

i=n−k(B
′
i − {x0i}) is a local metric set of G⊙H. Since d(xoi, y

i
j) = 1, for 1 ≤ i ≤ n

and 1 ≤ j ≤ mi, then x0i is not element of local metric set W . While, in Lemma 2.5 we have the central set of
G⊙H is S(G⊙H) = {s0k ∈ V (G⊙H)|sk ∈ S(G)}. So, S(G⊙H) ∩W = ∅. Take X = S(G⊙H) ∪W , then
based on Lemma 1.3, X is also a local metric set of G⊙H. Next, it is shown that X is the minimal central
local metric set. Take U ⊂ V (G⊙H) with S(G⊙H) ⊂ U and |U | < |X|. Since X = S(G⊙H) ∪W , then there
exists j such that at most as many as |Bj |+ |B′

j − {x0j}| − 1 vertices in K1 +Hj are members of U . Since
Bi and B′

i are the local basis of the graph K1 +Hi, there exist two adjacent vertices in K1 +Hi that have the
same representation in U . So, U is not a central local metric set of G⊙H. Consequently, X = S(G) ∪W is the
central local basis of G⊙H. So, it is proved that lmds(G⊙H) = |S(G⊙H)|+ |W | = |S(G⊙H)|+

∑k
i=1 Bi +∑n

i=n−k(Bi − {x0i})′ = |S(G⊙H)|+
∑k

i=1(lmd(K1 +Hi)) +
∑n

i=n−k((lmd(K1 +Hi)− {xi0}). Further, for
graph K1 +Hi when Hi is contains the dominant vertex, diam(Hi) = 2. So that, by Theorem 1.5, lmds(G⊙H) =

|S(G⊙H)|+
∑k

i=1(lmd(Hi)) +
∑n

i=n−k((lmd(K1 +Hi)− αi) for αi = 1 when x0i is an element of a local
basis set of K1 +Hi, or αi = 0 when x0i is not an element of a local basis set of K1 +Hi. 2

3. Conclusion

In this paper, we explore the central local metric dimension of the corona product graphs G⊙H and G⊙H, where
H is a sequence of connected graph H1, H2, H3, ...,Hn. The result shows that the main properties of the central
set in graph G⊙H is S(G⊙H) = {s0k ∈ V (G⊙H)|sk ∈ S(G)}, meaning that the corona operation on graph
G⊙H can preserve the central set in graph G. Since every i-th vertex in graph G is adjacent to every vertex in the
i-th copy of graph H, the central set in graph S(G⊙H) is mutually disjoint to its local difference set. Thus, the
central local metric dimension of the graph S(G⊙H) is the sum of the cardinality of the central set S(G) and the
cardinality of the central local basis set of G⊙H .

The central local metric dimension of graph G remains open for further research. Some topics that can be
explored include the application of the central local metric dimension concept to other types of graphs and network
structures. The application of the central local metric dimension concept to the management of transportation
systems or other vital objects are still available to explore.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



Y. LISTIANA, L. SUSILOWATI, S. SLAMIN, K. DLIOU 9

Acknowledgement

This research is funded by Indonesian Education Scholarship, Center for Higher Education Funding and
Assessment, and Indonesian Endowment Fund for Education.

REFERENCES

1. L. Susilowati, I. Sa’adah, R. Z. Fauziyyah, A. Erfanian, and Slamin The dominant metric dimension of graphs, Heliyon, vol. 6, no.
3, p. e03633, Mar. 2020, doi: 10.1016/J.HELIYON.2020.E03633.

2. Y. Listiana, L. Susilowati, S. Slamin, K. Dliou The central local metric dimension of graphs with a single central vertex, Journal of
Discrete Mathematical Sciences and Cryptography, 2025, In Press

3. Y. Listiana, L. Susilowati, S. Slamin, and F. J. Osaye, central local metric dimension on acyclic and grid graph, AIMS Math., vol.
8, no. 9, pp. 21298–21311, 2023, doi: 10.3934/MATH.20231085.

4. F. Okamoto, B. Phinezy, and P. Zhang The local metric dimension of a graph, Math. Bohem., vol. 135, no. 3, pp. 239–255, 2010,
doi: 10.21136/MB.2010.140702.

5. L. Susilowati, S. Slamin, U. Maulida, N. Estuningsih, S. Zahida, S. Prabhu On the central resolver set of the edge coronation graphs,
Journal of Discrete Mathematical Sciences & Cryptography (JDMSC), Vol. 28, No. 1, 2025, pp 29-42

6. H. Iswadi, E.T Baskoro, R. Simanjuntak On The Metric Dimension of Corona Product of Graphs, Far East Journal of Mathematical
Sciences (FJMS), Vol.52, No. 2, 2011, pp 155-170

7. F. Harary Graph Theory, First Edition, Boca Raton, FL: Taylor and Francis Ltd., 1969.
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