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Abstract The central local metric dimension is a concept where a local metric set contains all central vertices. This concept
was introduced in 2023. Since this concept is related to distance in a graph. So, in real life, there are so many applications of
local metric dimension and central vertices. If a vital object is represented as a central vertex in a graph, then its placement
can use the concept of a central vertex so that people can easily reach it. Suppose the vital objects are health services,
education facilities, train stations, and water stations. The government can use the central local metric dimension concepts
to optimize transportation infrastructure management and create good transportation governance for these vital objects. Let
G be a connected graph with vertex set V(G) and order n. A central vertex in G is a vertex with the shortest distance to any
other vertex in G, and all central vertices in G are represented in a set that is a central set, denoted by S(G). Let W be a
local metric set of G, if S(G) C W, then W is a central local metric set of G. The cardinality of the central local metric set
with minimal cardinality is called the central local metric dimension of G. This paper presents some properties of the central
local metric dimension of G ® H. The results show that the elements of the central set of G ® H are vertices in V(G © H)

that correspond to the central set of G. Since in G ® H, for all zg;, y; € V(G ® H) applies d(xo;, y;’») = 1, then there is no
intersection between the central set and the local basis set of it.

Keywords Accessible transportation, central vertex, distance, eccentricity, optimization, properties, vital object

AMS 2010 subject classifications 05C12
DOI: 10.19139/s0ic-2310-5070-2639

1. Introduction

Graph theory is a branch of discrete mathematics that has undergone rapid development in recent years. Let G be
a graph with a vertex set V(G), an edge set E(G), and an order n. If there are vertices v and v in G so that u is
adjacent to v, then we denote it by u ~ v or simply uv € E(G). The distance between those two vertices is d(u, v)
[1]. The sum of all vertices that are connected to a vertex v is called the degree of v or deg(v). The maximal degree
of any vertex in a graph G is denoted by A(G) and the minimal degree of any vertex in a graph G is denoted by
0(G). Lemma 1.1 describes the degree limitation of a vertex in a graph G.

Lemma 1.1
If z is a vertex in a graph G with order n, then 0 < 6(G) < deg(z) < A(G) <n —1[2].
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The eccentricity of the vertex u € V(G), denoted by e(v), is the largest d(u, v) for all v € V(G), and the radius
of G, denoted by rad(G), is the smallest eccentricity of all vertices in G. A vertex u € V(G) is called a central
vertex of G if e(u) = rad(G). A central set of G, denoted by S(G), is a set whose its elements are all the central
vertices of G or S(G) = {sle(s) = rad(G), s € V(G)} [3].

Let W be a subset of V(G), W = {wy, wa, ..., w}, where k < n, and the metric code of a vertex z € V(G)
with respect to W is the k-vector r(u|W) = (d(u, w1), d(u, ws), ..., d(u, wy)), forallu € V(G). W is called a local
metric set if every pair of u ~ v in G has a distinct metric code with respect to W, that is, r(u|W') # r(v|W). The
local metric set with minimum cardinality is called the local basis set of GG, and its cardinality is called the local
metric dimension of G, denoted by Imd(G) [4]. Okamoto et al. in [4] presented a characterization of all non-trivial
connected graphs of order n having local metric dimension 1, n — 1, or n — 2 and gave bounds for the local metric
dimension of a graph. Some essential properties of a local metric set supporting our main results are summarized
in the following lemma.

Lemma 1.2
Given a connected graph G and U C V(G), if there is a subset of U that is a local metric set of G, then U is also a
local metric set [4].

Lemma 1.3
Let G be a connected graph. If W C V(G), then for every v;,v; € W with i # j, 7(v;|W) # r(v;|W) [1].

Listiana et al. in [3] introduced the concept of the central local metric dimension of a graph as shown in Definition
1.1. The boundaries for the central local metric dimension of a graph G and some properties of the central local
metric dimension of some graphs with the same diameter and radius are also presented in [3], as shown in Theorem
1.1.In [2], Listiana et al. found that a central vertex of K; + H is a single vertex in K7, so we have two possibilities
of imds (K + H). In addition, those results are presented in Theorem 1.2 and Theorem 1.3.

Definition 1.1

Let W C V(@) be a local metric set of G. If the central set S(G) C W, then W is called a central local metric set,
and the minimum cardinality among the central local metric sets of G is called the central local metric dimension
of G, denoted by Imds(G).

Theorem 1.1
Let G be a connected graph with order n. If W is a local metric set of G, then:

a) maz{|S(G)|,Imd(G)} < lmds(G) < min{|V(G)],|S(G) UW|}
b) If diam(G) = rad(G) if and only if S(G) = V(G)

c) If S(G) = V(G) then S(G) is a central local metric set of G

d) Imds(G) = nif and only if diam(G) = rad(G)

Theorem 1.2
Let G = K; + H with V(K;) = {c¢} and |V (H)| = m. The central set G is S(G) = {c} if and only if no vertex in
H has degree m — 1.

Theorem 1.3
Let S(G) and W be a central set and local basis set of G = K, + H, respectively. If there is no vertex in H has

Imd(G) if S(G) c W
Imd(G)+1 ifS(@G)NW=0"

For graph K7 + H, let H be a graph nP,, then K; + nP, = f,. Based on Theorem 1.2, graph f,, has a central
set is S(fn) =c. Let U = {z1,x2, 23} C V(f,) be a local basis set of f3, then S(G)NU = . By Theorem
1.3, Imds(f3) = |S(f3)| + Imd(fs). Let W = {¢, z1, 22,23} C V(G), since U C W, by Lemma 1.2, W is also
a local metric set of f,,. W contains a central vertex ¢ or S(f3) C W. So, W is a central local basis set of f3
and Imds(f3) = 4. Figure 1(a) illustrates the central local metric dimension of f3 with the central local basis
set W = {¢, 21, x2, z3}. In contrast, Figure 1(b) illustrates the local metric dimension of f5 with local basis set
U = {x1,z2,x3}. It shows that the f,, has a central point that is not included in the local basis set.

degree |V (H)| — 1, then Imd,(G) = {
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Figure 1. (a) The central local metric dimension of f3 and (b) The local metric dimension of f3

The central vertex and local metric set are two concepts related to distance. Thus, in real life, the concept
of central local metric dimension can be used to support the government in solving transportation management
problems involving vital objects, such as the placement of train stations that are easily accessible to the public and
can recognize two nearby locations. Another example is the optimization of the placement of a health center, water
stations, education facilities, and a disaster command post.

Susilowati et al. in [5] explored the central metric dimension of the edge coronation graph. W C V(G) is a
resolver set of G if every u and v in V(G) has a distinct metric code with respect to W. Then, the minimal
cardinality of a resolver set in G is called the central metric dimension of G, denoted by dim ., (G). They
showed some characteristics of central metric dimension, such as dime,(G) =1 if and only if G = K; and
dimeen(G) = |V(G)| — 1 if and only if G = K7 .

A vertex z in a graph G with order n is called a dominant vertex if deg(x) = n — 1 [6]. So, based on Theorem
1.2, a graph K; + H has a single central vertex if H has only one dominant vertex. Graph friendship f3 in Figure 1
is an example of a graph with a dominant vertex, since vertex c is adjacent to all other vertices in f5 or deg(c) = 6.

In this paper, we explored the central local metric dimension of G ® H. The formal definition of G ® H refers
to [7]. Some properties of the local metric dimension of G ® H can be seen in [8]. Theorem 1.4 and Theorem 1.5
are the result of the local metric dimension of G ® H that also refers to [8]. This theorem will support the proof of
our next theorem.

Theorem 1.4
Let G be a connected graph with order n and H is non-empty set, then

a) if a vertex of K is not element of basic local set for K7 + H, then Imd(G © H) = n(lmd(K, + H))
b) if a vertex of K is an element of basic local set for K; + H, then for n > 2, Imd(G ® H) = n(Ilmd(K; +
H)-1)

Theorem 1.5
For any graph H with diam(H ) = 2 and any connected graph with order n > 2, then imd(G ® H) = n - lmd(H).

2. Main Results

Let GG be a connected graph with order n and H be a graph with order m. The corona product graph G ® H is a
connected graph obtained by taking one copy of graph GG and n copies of graph H, where the i-th vertex in graph
G is connected to every vertex in the i-th copy of graph H, for 1 < ¢ < n. Furthermore, the i-th copy of the graph

Hon G ® H is called H;.
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Let V(G) = {x1, 22,23, ...,2,} be the vertex set of G and V(H) = {y1,v2,¥3,--.,ym} be the vertex set of
H, then V(G ® H) can be defined as V (G ® H) = V(Go) U{y}|1 <i<n and 1 <j < m}, where V(Go) =
{x0; € V(G ® H)|z; € V(G)}. Given a graph Py, with V(P;) = {21, 22, 3,74}, and a graph K3, with V (K3) =
{y1,v2, 3}, as illustrated in Figure 2(a). Then, we can see the illustration of graph Py ® K3 in Figure 2(b), which
the vertex set of P, ©® K3 is V(P4 ® K3) = {01, T02, 03, Toa} U {y§|1 <1<4,1<j<3}}.

1

O
O
=0
O
~

(@) (b) ¥

Figure 2. (a) Graph P4 and K3 (b) Graph P, ® K3
Figure 3 is another example of graph G ® H, where G = Cy and H = C5. Let V(Cy) = {z1, 22,23, 24} be

a vertex set of Cy and V(C5) = {y1,92,ys,y4, Y5} be a vertex set of C5, then the vertex set of Cy ® C5 is
V(C4© C5) = {xo1, Toz, Toz, Toa} U {y;[1 <i < 4,1 <j <5}

(@) & (b) ®

Figure 3. (a) Graph C4 and Cj5 (b) Graph C4 © Cj
Lemma 2.1 relates to the diameter and radius of G ©® H. We also emphasise that in this paper, we use a connected
graph G of order n, while graph H is an arbitrary graph of order m, if not otherwise stated.

Lemma 2.1

If G is a connected graph and H is any graph, then rad (G ©® H) = rad (G) + 1 and diam (G ® H) = diam (G) +
2.
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Proof. Given that GG is a connected graph and H is any graph. To prove the Lemma, we divided it into two steps
as follows:

* Take a vertex u in V(G) so that u is a central vertex of G. Let u = xy, since u is a central vertex
of G, then the eccentricity of z is e (xx) = rad(G). In G ® H, each vertex of H; is connected to the
vertex zo; € V(G © H), where x; is a vertex in V(G), so that d(zo;, y) = 1,Vy: € V(G © H). Take i = k,
then the eccentricity of zox i8 e (vor) = e(zx) + 1. Since e(zx) = rad(G), then e(xor) = rad(G) +1 =
rad(G ® H). Consequently, xoy, is a central vertex of G ® H and rad(G ® H) = rad(G) + 1.

e In the same way, take vertex u and v in G, so that d(u,v) = diam(G). Let u=2x; and v =
x;, then d(xy,z;) = diam(G). Now, take y;’?, yé. € V(G ®H), so that there are zo, and g in
V(G ® H) with d(xo,x0) = diam(G). It is easy to see that d(mok,yf) =1 and d(mol,yé) =1.
Consequently, d(y¥,y}) = d(y}, zox) + d(zor, zo) + d(zor, y}) = 1+ d(zok, zor) + 1 = d(xor, zor) + 2 =
diam(G © H). Since d(xok, zor) = diam(G), then d(y},y}) = diam (G) + 2. Thus diam (G © H) =
diam (G) + 2.

It is proved that diam (G © H) = diam (G) + 2 and rad (G © H) = rad (G) + 1. O

In G® H, there is a subgraph (z;) + H; = K; + H. Let H = K,,, then the graph K; + K, be a complete
graph of K14,, since K1 + K, & K4, It is easy to see that diam (K1 4,,) = rad(Ki4.,) = 1, so by Theorem
1.1, imds(Ky + K,,) = |V (K14m)| = 1+ m. Lemma 2.2 depicts about the diameter of K; + H when H # K,,.

Lemma 2.2
Let 2o € V(K1) and H is a connected graph with order m:

a) If Yy € V(H), deg(y) # m — 1, then diam(K; + H) = 2
b) If 3y € V(H), deg(y) = m — 1 then diam(K, + H) = diam(H) = 2.

Proof. Given a trivial graph K; with zg € V(K3), and H is a connected graph of order m. Then K; + H
is defined as a graph with vertex set V(K + H) = {zo1|zo € V(K1)} U {yjly; € V(H),1 < j < m}. So, two
conditions in graph H must be considered.

a) When Vy € V(H), deg(y) # m — 1. Take zo1 € V(K1 + H), then x, is connected to Vy; € V(K + H),
1 < j < m. Based on Lemma 1.1, z¢; has a maximum degree of K; + H, which means that vertex xg;
is connected to all other vertices in K + H. Consequently, d(zo1,y;) =1, Vy; € V(K1 + H) and the
eccentricity of xg; is e(xg1) = 1. Take any two vertices y, and y; in H, where ys ~ ;. Since in graph
H there is no vertex y with deg(y) = m — 1, the eccentricity of y; is e(yj) =2, for 1 < j < m. Thus,
diam (K, + H) = e(y;j) = 2. Itis proved that diam(K, + H) = 2.

b) When Jy € V(H), deg(y) =m — 1. Take y = ys, so ys is connected to all other vertices in graph H
and the eccentricity of y, is e(ys) = 1. Take any two vertices y; and y; in H, where yj ~ y;, then the
eccentricity of yi and y; are e(y,) = 2 and e(y;) = 2. Consequently, diam(H) = e(yx) = e(y;) = 2. Further,
for zo; € V(K1 + H), where o € V (K1), we have the eccentricity of zg; is e(z1) = e(y!) = 1. While, the
eccentricity of y; and y} are e(y;) = e(y;}) = 2, for 1 < j < m. Thus, diam(K; + H) = 2. It is proved that
diam(K;, + H) = diam(H) = 2.

O

Now, we will discuss the central local metric dimension of G ©® H. The following are some properties related to
the central set on the graph G ® H and a lower bound on the central local metric dimension on the corona graph
GOoOH.

Lemma 2.3

Let S(G) = {s1, 52, ..., S} be a central set of G with p < n, then a central set of G ©® H be S(G © H) = {sox €
V(Go H)|si € S(G)}.

Proof. Given graph G ® H with vertex set V(G @ H) = V(Go) U {y}|1 <i<n,1 <j <m}, where V(G) =
{z0; € V(G ® H)|z; € V(G)}. Let S(G) = {s1,52,...,5,} be a central set of G with p < n. Take s; € S(G),
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then e(sg) = rad(G), Vs € S(G). Since S(G) C V(G), then s, € S(G) and s, € V(G). Let s = xy, then for
every zj € V(G) exist zgr, € V(G ® H) so that based on Lemma 2.1, e(xo;) = rad(G) + 1 = rad(G ® H). Thus,
xok 1s a central vertex of G ® H, Vx = s € S(G). Let xox = sor € S(G ® H), then central set of G ® H be
S(GOH)={sor € V(G H)|s € S(G)}. O

In G® H, a vertex zo; € V(G ® H) is adjacent to every vertex in H;. Consequently, d(zo;, y;) = 1. So, the
vertex xo; cannot distinguish any two adjacent vertices in the graph G ©® H. Let W be the local basis set of graph
G © H, then z(; ¢ W. We have lemma 2.4 inspired by this condition to facilitate the proof of the next theorem.

Lemma 2.4
Let W be a local basis set of G ® H, then S (G) N W = ().

Proof. Let W be a basis local set of G ©® H, so Imd (G ® H) = |W|. From Lemma 2.3, S(G ® H) = {sox €
V(G ® H)|sk € S(G)}. Suppose that W NS (G ® H) is non-empty set, that is, there exist xor, € W and gy €
S(G © H) such that for any two adjacent vertices u,v € V(G © H) it follows that d(u,zor) # d(v, zox). Let
u= yf,v = yF € V (H,), where j # [, then vertices u and v are adjacent to zo;. Consequently, d (u,zo;) =
d (v, xo;) = 1. It is contradiction with d(u, xg;) # d(v, xo;). Thus, W N S (G ® H) is an empty set. ad

Based on Definition 1.1, for a connected graph G with a local metric set W, if S(G) C W, then W is a central
local metric set of G. Whereas, in Lemma 2.4 we get that a central set of G ® H is disjoint from its basis local set.
Then, we obtain Corollary 2.1 and Corollary 2.2 as a consequence of Definition 1.1 and Lemma 2.4.

Corollary 2.1
Imds(G® H) > Imd(G o H).

Corollary 2.2
The central local metric dimension of G © H is Imd, (G © H) = |S(G © H)| +Imd(G © H).

Corollary 2.1 and Corollary 2.2 show the relationship between the central local metric dimension of G ® H,
Imds(G ® H), and the local metric dimension of G ©® H, Imd(G @ H). They show that the central local metric
dimension of G ® H is greater than the local metric dimension. Based on Lemma 2.4, the central sets of the graph
G © H are disjoint from the local metric sets. Thus, the central local metric dimension of the graph G ©® H is the
sum of the cardinality of the central sets of G ® H and the local metric dimension of G ® H.

Let H be an empty graph K,,, then G ® K,,, applies deg(y;-) =1, Vyj— eV(H;),1<i<nand1<j<m.
Theorem 2.1 discussed a central local metric dimension of G ® H when H is an empty graph.

Theorem 2.1 L
Let G be a connected graph with order n. If H = K,,, then Imds(G © H) = Imd,(G)

Proof. Let TW; be a central local basis set of G. By Lemma 2.3, we have S(G ® H) = {sor € V(G ©® H)|si €
S(G)}, then Vso, € S(G © H), exist s, € S(G), so that s, € Wy. It is easy to see that |S(G © H| =|S(G)|.
Let W5 be a central local basis set of G ® H, then Vsor € S(G ® H), sor, € Wa. Thus, S(G© H) C Whs.
Take Wy = {wo; € V(G © H)|w; € W1}, so [Wa| = [W1| = Imd,(G). Take any two vertices y},y%,, € V(H;)
and 20; = wo; € Wa, then d(y}, wo;) = d(y}, , wo;) = 1. Similarly, if the vertex zo; = wo; € Wy is taken, then
d(yh, wor) = 14 d(woi, wor) = d(y} 1, wor). Consequently, r(y:|W) = r(yi,,|W). Since H = K,, is an empty
graph, then y} and y%, | are not adjacent, Vy;,y% , € V(H;), 1 <i < n. Thus, W5 is a central local basis set of
G ® H. Next, we prove that W5 is the central local basis set. Take U where S(G ® H) CU C V(G ® H) with
|U| < |W3|. Let |U| = |Ws| — 1, then there are two adjacent vertices o, and xo, where zs V z; ¢ W such that
7(xos|Wa) = r(2,t|W2). Consequently, U is not the central local metric set of G ® H. So W is the central local
metric set on G ® H with minimal cardinality. In other words, W5 is the central local basis set of G ® H. Hence
Imds(G @ H) = |[Wa| = |[W1| = Imd,(G). O

By Theorem 2.1, for G = C,,, we get Imd,(C,, ® K,,) = Imds(C,,) = n, forn > 3 and m > 2 as in [9]. Figure
4 is an illustration of the central local metric dimension of P, ® K3. Graph P is a graph with S(P;) = {29, x5},
which for every two adjacent vertices u,v in Py applies r(u|S(Py)) # r(v|S(Py)), so Imds(P,) = 2. Based on
Lemma 2.4 we have S(Py ® K3) = {z02, 703} and based on Theorem 2.1, Imds(Py ® K3) = Imds(Py) = 2.
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Figure 4. The illustration of the central local metric dimension of Py ® K3

Next, Theorem 2.2 and Theorem 2.3 discussed the central local metric dimension of G ® H when H is not an
empty graph.

Theorem 2.2
Let G be a connected graph with order n and H be a graph with no dominant vertex, then

Imd,(G® H) = |S(G ® H)| +n(lmd(K; + H) — a;)

for cc; = 1 when x; is an element of a local basis set of K1 + H;, or o; = 0 when x; is not an element of a local
basis set of K1 + H;.

Proof. Graph H is a graph without a dominant vertex, it is mean that Yy € V(H), deg # m — 1. So, there
is a subgraph (z¢;) + H; 2 K; + H in G ® H. It is possible a vertex xo; be an element of local basis set of
(x0:) + H;. In fact, we know that every z; in G ® H can not distinguished each vertex in H;. By Theorem 1.4 and
Corollary 2.2, we have imds; (G © H) = |S(G © H)| + n(lmd(K, + H) — 1) when x; is an element of (z;) + H;
or Imds(G® H) =1|S(G® H)| + n(lmd(K;, + H)) when x(; is not an element of (z;) + H;. Consequently,
Imds(G® H) =1|S(Go H)|+n(lmd(Ky + H) — «;) for a; = 1 when z; is an element of a local basis set of
K1 + H;, or a; = 0 when zq; is not an element of a local basis set of K + H,. O

Theorem 2.3
Let G and H be a connected graph with order n and m, respectively. If 3y € V(H), deg(y) = m — 1, then

Imd, (G ® H) = |S(G ® H)| + n(lmd(H))

Proof. Since Jy € V(H), deg(y) =m — 1, based on Lemma 2.2, diam(H) = 2. Then, from Corollary 2.2
and Theorem 1.5, we have Imd,(G ® H) = |S(G © H)| + n(lmd(G ® H)). It is proved that imds;(G ® H) =
|S(G® H)| +n(lmd(H)). O

In Theorem 1.1, it is stated that for any connected graph G with order n, the central set S(G) = V(G) if and
only if diam(G) = rad(G). That is, all vertices z; in the graph G are central vertices. Then, from Theorem 1.2,
it is stated that for a graph H with order m where Vy € V(H), degr (y) # m — 1, the central vertex of the graph
K; + H is a single vertex in K. From these two conditions, Theorem 2.4 is as follows.

Theorem 2.4
Let G be a connected graph with order n and diam/(G) = rad(G). If there is H with |V (H)| = m and deg(y) #
m—1,Vy € V(H), then imds(G®© H) =n-lmds(K; + H).

Proof. Let H; be the i — th copies of H in G ® H. For every (zo;) + H;, take Wy; = {w,, € V(G © H)|w, €
W;} as a central local basis set of (xzq;) + H;, where W is a central local basis set of K7 + H. Since Yy € V(H),
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deg(y) # m — 1, then based on Theorem 1.2, a central vertex of K + H is a single vertex in V(K;). So,
since (xo;) + H; =2 K1 + H, then Vao; € V(G ® H), zo; € Wy,. Take x; € W;, where diam(G) = rad(G). So,
from Theorem 1.1, S(G) = V(G), that is Vz; € V(G),z; € W;,1 < i < n. Whereas in Lemma 2.3, a central set
of S(G ® H) = {S()k- S V(G O) H)|Sk- S S(G)}, it is applies Vxo; € V(G ®© H),in € Wy;. Take X = U?:l Woi,
since z; € W;, for 1 <4 < n, then S(G) C W; and S(G ® H) C Wy,. There are several possibilities for any two
adjacent vertices u, v and v on the graph G ©® H with respect to X as follows.

* u,v € V(H;). Since each of u and v is adjacent to z;, there is wo; € Wo;\{xo;} so that d(u, wo;) # d(v,wo;).
Consequently, r(u|X) # r(v|X).

e u,v € V(Q). Since for every u = x and v = x;, k # [, there are xor, € Wy, and xo, € Wy;, respectively, so
that zox, zo; € X, then r(u|X) # r(v|X).

* u € V(H;) and v € V(G). Since for every v = x; € V(G) there is zo; € Wy;, then r(u|X) # r(v|X).

Thus, X is the central local metric set of G ® H. Further, it is shown that W is the minimal central local metric set.
Take any U where S(G ® H) C W with |U| < |W|. Since X = |J}_,, Wo,;, where Wy, is a central local basis set of
(x0:) + H;, then there exists ¢ such that at most as many as |IW;| — 1 vertices in (zq;) + H; are element of U. Since
Wo; is the local basis of the graph (z(;) + H;, there exist two adjacent vertices in K; + H; that have the same
representation in U. Thus, U is not a central local metric set of G ® H. Consequently, X = |J;._, Wy, is the central
local basis of G ® H. Thus, it is proved that Imd,(G ® H) = |X| = Y7, (Imds(K; + H)) = n(imd, (K, + H)).
O

i pres PRl Lol e e sl TSR e Lo o e e i d
GOMis V(GOH)=V(Go)U{yil <i<n,1<j<m;} Hence, we obtain Lemma 2.5 about the central set
in the graph G © H.

Lemma 2.5
Let S(G) = {s1, s2,..., 5, } be a central set of G with p < [V(G)], then a central set of G ® H be S(G ®H) =
{sor € V(G OH)|sp € S(G)}

Proof. Given graph G © H with vertex set V(G ©@ H) = V(Go) U {y}[1 <i <n,1 < j <m;}, where V(Go) =
{z0; e V(GO H)|z; € V(G)}. Let S(G) = {s1, s2,...,sp,} be a central set of G with p < n. Take s € S(G)
then e(sy) = rad(G), Vsi € S(G). Since S(G) C V(G), then s; € S(G) and s, € V(G). Let s, = x, then for
every x € V(G) exist zor, € V(G @ H) so that e(zgr) = e(xg) + 1 = rad(G) + 1 = rad(G ® H). Thus, zg is
a central vertex of G ® H, Vay = sx € S(G). Let zor = sor € S(G ® H), then the central set of G ® H be
S(GOH)={sor € V(GO H)|sr € S(G),1 <k <p}. O

Furthermore, the dimension of the central local metric on the graph G ® H is discussed in Theorem 2.5. In that
theorem, the term dominant vertex v € V' (H) denotes a vertex adjacent to every other vertex in the graph H. Let
H be a graph with |V (H)| = m, v be a dominant vertex in H if deg(v) =m — 1.

Theorem 2.5
Let G be a connected graph with order n > 2 and H be a sequence of connected graph Hy, Ho, ..., H,,, where the
order of H; is m;, 1 <1 < n. If there are k graph H; contains the dominant vertex, then

k n
Imd (G OH) =[S(GoH)|+ > (ImdH;))+ > (Imd(Ki+ H;) — a;)
=1 i=n—k

for a; = 1 when z; is an element of a local basis set of K1 + H;, or o¢; = 0 when x; is not an element of a local
basis set of K1 + H;.

Proof. Let G be a connected graph with order n > 2 with the vertex set is V(G) = {z;|]1 <i <n} and H be
the sequence of n connected graphs of Hy, Hs,..., H,. Graph (z;) + H; = K, + H; for each 1 <1i <mn, then
Imd({x;) + H;) = Imd(K; + H;). Since there are graphs H; that contain the dominant vertex and there are n — k
graphs H; without the dominant vertex, then there are two different local basis sets for (x;) + H,. Let By; be
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the local basis set of (z;) + H; for H; that contains the dominant vertex, and B{,; be the local basis set of the
graph (x;) + H; for H; without the dominant vertex. Take By; = {by, € V(G © H)|b, € B;} and B}, = {bj, €
V(G ® H)|b, € B}}, where B; is a local basis set of K; + H with H contain the dominant vertex and B is
a local basis set of K1 + H with H without the dominant vertex. Take W = Ule By; U UZL:nf w(Bo; — {z0i}).
Then, there are several possibilities for any two adjacent vertices u and v on the graph G ® H such that they have
different representations in W'.

e u,v € V(H;). Vertex u and v, adjacent to xq;, respectively, so d(u,zg;) = d(v,xzq;) = 1. There are two
conditions for this possibility. First, when « and v are two adjacent vertices in graph H; that contains the
dominant vertex, then there is s € B;\{zo;} so that d(u,s) # d(v,s). Consequently, r(u|W) # r(v|W).
Second, when v and v are two adjacent vertices in graph H; without the dominant vertex, then there is
s € Bl — {x¢;} so that d(u, s) # d(v, s). Consequently, r(u|W) # r(v|W).

* u,v € V(Gp). Take u=p and v =r in V(G) so that there are z(, and z¢, in V(G © H). Let H, be
a graph that contains the dominant vertex, and let H, be a graph without the dominant vertex. Then
for every s € Bl — {zo,}, d(zop,s) = 1+ d(xop, or) > d(xor, s). Similarly, Vs € B,\{zop}, d(zor,s) =
1+ d(zor, zop) > d(xop, s). Consequently, r(xop|W) # r(zor|W).

e u € V(H;)and v € V(G). Take v = z; in V(G), so that there is xq; in V(G @ H). There are two conditions
in this possibility. First, when u = yj is a vertex in H; that contains the dominant vertex, then there is s €
Bi\{xor}, k # i,sothat d(y}, s) = 2 + d(woi, xox) > d(zoi, s) = 1 + d(xos, zor). Consequently, r(yi W) #
7(xo;|W). Second, when u = y! is a vertex in H; without the dominant vertex, then there is s € Bj, — {zox}
k 7é ’i, so that d(y;, S) =2+ d(l'()i, (ﬁ(]k) > d((E()i7 S) =1+ d(.’EOi, {I?()k). Consequently, T(yﬂW) 7& r(x()i|W).

Thus, W = ¥, B;UU?, (B} — {z0;}) is a local metric set of G ® H. Since d(woi,ys) =1, for 1 <i<n
and 1 < j < m,, then z(; is not element of local metric set W. While, in Lemma 2.5 we have the central set of
GOHisS(GOH)={sokr € V(GOH)|sr € S(G)}. So, S(GOH)NW = (). Take X = S(G® H)UW, then
based on Lemma 1.3, X is also a local metric set of G ® H. Next, it is shown that X is the minimal central
local metric set. Take U C V(G © H) with S(G ©® H) C U and |U| < |X]. Since X = S(G © H) U W, then there
exists j such that at most as many as |B;|+ |B} — {zo;}| — 1 vertices in K; + H; are members of U. Since
B; and B are the local basis of the graph K; + H;, there exist two adjacent vertices in K7 + H; that have the
same representation in U. So, U is not a central local metric set of G ® H. Consequently, X = S(G) U W is the
central local basis of G ® H. So, it is proved that iImds; (G ©® H) = |S(G O H)| + |[W| =|S(G © H)| + Zle B; +
Z?:n—k(Bi — {JUOZ'})/ = ‘S(G ® H)| + Zle(lmd(Kl + Hl)) + Z:l:n_k((lmd(Kl + Hi) — {Ilo}) Further, for
graph K + H; when H, is contains the dominant vertex, diam(H;) = 2. So that, by Theorem 1.5, Imd (G ® H) =
1S(G @ H)| + 8 (Imd(H,)) + 37 ((Imd(K;y + H;) — ;) for a; = 1 when x; is an element of a local

i=n—k
basis set of K + H;, or a; = 0 when x; is not an element of a local basis set of K| + H;. O

3. Conclusion

In this paper, we explore the central local metric dimension of the corona product graphs G ® H and G ® H, where
‘H is a sequence of connected graph H;, Hy, Hs, ..., Hy,. The result shows that the main properties of the central
set in graph G © H is S(G® H) = {sor. € V(G @ H)|s € S(G)}, meaning that the corona operation on graph
G © H can preserve the central set in graph G. Since every i-th vertex in graph G is adjacent to every vertex in the
i-th copy of graph H, the central set in graph S(G ® H) is mutually disjoint to its local difference set. Thus, the
central local metric dimension of the graph S(G @ H) is the sum of the cardinality of the central set S(G) and the
cardinality of the central local basis set of G © H.

The central local metric dimension of graph G remains open for further research. Some topics that can be
explored include the application of the central local metric dimension concept to other types of graphs and network
structures. The application of the central local metric dimension concept to the management of transportation
systems or other vital objects are still available to explore.
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