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Abstract Control charts are fundamental tools in Statistical Process Control (SPC), employed to monitor and improve
production processes. This study aims to evaluate the performance of the Maximum Exponentially Weighted Moving
Average (Max-EWMA) chart by incorporating Auxiliary Variables (AV) and Multiple Measurements (ME). This study also
evaluating the covariate method, a multiple measurement framework, and scenarios involving linearly increasing variance.
The evaluation focuses on the analysis of both Type I and Type II error rates, using simulation-based methodologies. The
results indicate that the Multiple Measurement approach consistently outperforms the Maximum EWMA ME (Covariate)-
AV Control Chart, exhibiting lower Type II error rates and higher robustness in detecting process shifts. An increase in
parameter A enhances the chart’s sensitivity to mean shifts, whereas parameter B shows negligible influence. Additionally,
Maximum EWMA ME (Linearly Increasing Variance)-AV Control Chart contributes to improved detection capability,
particularly under conditions of high correlation. Overall, the Maximum EWMA ME (Multiple Measurement)-AV Control
Chart demonstrates strong effectiveness and reliability across a variety of conditions, underscoring its practical utility in
process control applications.
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1. Introduction

Statistical Process Control (SPC) is the application of statistical tools to monitor and improve process quality [1].
Nowadays, various controls are used not only in industrial production, but also in many other industries. Statistical
quality control is an important tool widely used in the service delivery field to monitor the entire operation.
Techniques such as Shewhart, CUSUM, and EWMA control charts have since proven effective in improving
process performance [2]. The Exponentially Weighted Moving Average (EWMA), initially introduced by Robert
in 1959 [3], gained further refinement in 1999 by Xie, allowing simultaneous monitoring of process mean
and variability. This method surpasses the sensitivity of traditional Shewhart and CUSUM charts in detecting
trends, leading to the development of Maximum EWMA (Max-EWMA), which provides sensitivity comparable to
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independent control methods [4]. Recently, Sanusi, Teh, and Khoo (2020) proposed the Maximum EWMA chart
for simultaneous monitoring, expanding the utility of EWMA in modern process control [5].

EWMA-ME-AV represents an extension of the EWMA control chart, integrating auxiliary variables to address
measurement errors in observations [6]. Despite advancements, measurement errors persist in quality characteristic
assessments during control chart construction, potentially leading to misleading conclusions [7]. Assumptions of
precise measurements across all variables need careful consideration, as measurement error denotes differences
between actual and collected values, influencing control chart efficiency and decision-making accuracy. Effective
control charting requires precise measurements to reflect true process behavior accurately. Maravelakis, Panaretos,
and Psarakis (2004) utilized a covariate model to study the impact of measurement error, emphasizing its adverse
effect on EWMA efficiency [8]. Their research highlighted the benefits of incorporating multiple measurements
to enhance chart reliability [8]. Daryabari et al. (2017) further explored measurement error effects using a
linear covariate error model, demonstrating its detrimental impact on joint monitoring techniques like Maximum
EWMA and mean squared deviation charts [9]. Covariates, as independent variables associated with observed
variables, are crucial in estimating parameters through regression methods, enhancing the robustness of statistical
models [10, 11]. Several researchers, including Riaz (2008), Abbas, Riaz, and Does (2014), and others, leveraged
auxiliary information to develop efficient control charts [12]. Auxiliary variables, strongly correlated with
response variables, enhance measurement precision and improve control chart efficiency [13]. The strength of
correlation, often quantified by the Pearson correlation coefficient, underscores the statistical dependence between
variables [13]. Incorporating auxiliary information effectively explains quality characteristics, optimizing control
chart performance across diverse applications [14, 6, 12, 13, 15, 16, 17, 18, 19].

The Maximum EWMA using ME-AV control chart integrates these insights, utilizing auxiliary information to
mitigate measurement error impacts and enhance efficiency [6, 20]. This study investigates the Max-EWMA
control chart by incorporating measurement error handling and the use of auxiliary information to enhance process
monitoring. While similar studies have previously explored the development of such control charts, the novelty
of this research lies in the evaluation method applied. Prior research has primarily assessed chart sensitivity using
Average Run Length (ARL) simulations. In contrast, this study aims to evaluate the performance of the control
chart in terms of Type I error (α) and Type II error (β), providing a more detailed statistical perspective on the
chart’s ability to accurately detect true process states. This approach offers new insights into the reliability and
efficiency of control charts under measurement error conditions and auxiliary variable utilization.

2. Methods

2.1. Maximum EWMA using ME (Covariate)-AV

The observed value or the i-th measurement of a quality characteristic is denoted by Yi. It is assumed that this
quality characteristic has a true value (Xi) that follows a N (µx, σ

2
x) distribution when the process is in control. The

true value X is not known with certainty and is related to the observed value Y through the covariate relationship
given by the equation Y = A + B X + ε. In this equation, A and B are constants, and ε is an error term that is
a random variable following a N (0, σ2

m) distribution. Using those linear combination model, the value Y follows
a Normal distribution with mean µy = A+Bµx and variance σ2

y = B2σ2 + σ2
m [21]. Then, M (1)

YW,j and variance

V
(1)
j can be constructed as follows [22]:
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With expectation E(M (1)
YW,j) = µY and variance Var(M (1)

YW,j) =
1
n (B

2σ2 + σ2
m)(1− ρ2YW ) for the mean

differentiation estimators. For the variance differentiation estimators, the expectation is E(V (1)
j ) = 0 and the

variance is Var(V (1)
j ) = 1− (ρ∗)2, where:

Ȳj =
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n
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1

n

n∑
i=1

Wij ,

S2
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The function H(ξ, v) ∼ χ2
v, and Φ−1(·) is the inverse of the standard normal distribution function [22]. The

transformation estimators for the mean (Mje) and variance (Vje) each follow the equations:

M
(1)
je =

MYW,j − (A+Bµx)√
1
n (B

2σ2 + σ2
m)(1− ρ2YW )

(3)

V
(1)
je =

Vj√
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(4)

The EWMA for P (1)
i and variance Q

(1)
i follow equations:

P
(1)
i = θM

(1)
je + (1− θ)Pi−1, i = 1, 2, . . . (5)

Q
(1)
i = θV

(1)
je + (1− θ)Qi−1, i = 1, 2, . . . (6)

The Maximum EWMA-AV statistics follow the equation:

Mi = max
{∣∣∣P (1)

i

∣∣∣ , ∣∣∣Q(1)
i

∣∣∣} (7)

The Maximum EWMA-AV statistic plotted follows Maximum EWMA statistic (Mi) is defined to have non-
negative values, so that the lower control limit (LCL = 0) and the upper control limit (UCL) is defined in the
following equation [4]:

UCL = 1.12839 + 0.602810 · L ·
√

λ

2− λ
(8)

The derivation of the UCL value is obtained from the derivation of the expectation and variance of the Max EWMA
statistic, which does not have a closed-form solution and therefore is resolved using a numerical computational
approach (Monte Carlo simulations) [1, 4]. With λ is smoothing parameter (0 ≤ λ ≤ 1) and determined weighted
parameter L so that with combinations (λ, L) has ARL0 ≈ 370 [4].

2.2. Maximum EWMA using ME (Multiple Measurement)-AV

Based on the previous theory, handling measurement error can be done by taking repeated measurements k times
per unit and utilizing the covariate model Y = A+BX + ε, with X ∼ N (µx, σ

2) and ε ∼ N (0, σ2
m). Therefore,

the quality characteristic Ȳ ∼ N
(
A+Bµx,

B2σ2

n +
σ2
m

nk

)
[14]. With this information, the statistics M

(2)
YW,j and
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V
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The expected value of M
(2)
YW,j is µY , and the variance is

(
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(1− ρ2YW ) for the mean differentiation

estimators. For the variance differentiation estimators, the expectation is E(V
(2)
j ) = 0 and the variance is
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Where:
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The function H(ξ, v) follows a chi-squared distribution with v degrees of freedom, and Φ−1(·) is the inverse of the
standard normal distribution function. The transformation estimators for M (2)

je and V
(2)
je are given as:

M
(2)
je =

M
(2)
YW,j − (A+Bµx)√(

B2σ2

n +
σ2
m

nk

)
(1− ρ2YW )

(11)

V
(2)
je =

V
(2)
j√

1− (ρ∗)2
(12)

The statistics for the Maximum EWMA-AV and the upper control limit (UCL) follow Equation (8) and
Equation (9), respectively.

2.3. Maximum EWMA ME (Lineary Increasing Variance)-AV

In the two previous approaches, namely the Maximum EWMA ME (Covariate)-AV Control Chart and the
Maximum EWMA ME (Multiple Measurement)-AV Control Chart, it is assumed that the error variance is constant,
i.e., σ2

m(i) = σ2
m. In practice, however, it is rare to encounter error variances that are truly constant; instead,

the error variance tends to exhibit a linear trend, referred to as the Maximum EWMA ME (Linearly Increasing
Variance)-AV Control Chart. The observed value is denoted by Y , which has a true value X that is unknown and
follows a Normal distribution with mean µx and variance σ2

x. In the covariate relationship expressed by the equation
Y = A+BX + ε, where A and B are constants, ε is a random variable that follows a Normal distribution with
mean 0 and a variance that increases linearly, such that σ2

m = C +Dµx. Here, C represents the constant component
of the linearly increasing variance model, and D represents the linear rate of change in error variance with respect
to µx. Due to these relationships, the observed value Y ∼ N with expected value E(Y ) = µy = A+Bµx and

variance Var(Y ) = σ2
y = B2σ2 + C +Dµx [7]. Then, the mean and variance estimators
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With expectation and variance:

E(M (3)
YW,j) = µY , Var(M

(3)
YW,j) =

1
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The function H(ξ, v) ∼ χ2
v, and Φ−1(·) is the inverse of the standard normal distribution function [22]. The

transformation estimators for M (3)
je and V

(3)
je follow the equations:

M
(3)
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1
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(3)

V
(3)
je =
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Finally, the Maximum EWMA-AV statistic and the upper control limit (UCL) follow equations (8) and (9).

2.4. Data Assumption

Simulation data refers to data generated under the assumption that the distribution and parameters are known. The
assumed distribution and generated parameters are presented in Table 1.

Table 1. Assumed distribution and generated parameters

Chart Assumption

Max EWMA Cov X ∼ N (µx, σ
2
x)

ε ∼ N (0, σ2
m)

Y ∼ N (µy = A+Bµx, σ
2
y = B2σ2

x + σ2
m)

(Y,W ) ∼ N2(µY , µW , σ2
Y , σ

2
W , ρYW )

Max EWMA MM X ∼ N (µx, σ
2
x)

ε ∼ N (0, σ2
m)

Ȳ ∼ N
(
µȲ = A+Bµx, σ

2
Ȳ
=

B2σ2
x

n +
σ2
m

nk

)
(Ȳ ,W ) ∼ N2(µȲ , µW , σ2

Ȳ
, σ2

W , ρȲ W )

Max EWMA LIV X ∼ N (µx, σ
2
x)

ε ∼ N (0, σ2
m = C +Dµx)

Y ∼ N (µy = A+Bµx, σ
2
y = B2σ2

x + C +Dµx)
(Y,W ) ∼ N2(µY , µW , σ2

Y , σ
2
W , ρYW )

Abbreviations: Max EWMA Cov = Maximum EWMA ME (Covariate)-AV; Max EWMA MM = Maximum
EWMA ME (Multiple Measurement)-AV; Max EWMA LIV = Maximum EWMA ME (Linearly Increasing
Variance)-AV. Based on Table 1, it is established that the required assumption is the assumption of a Normal
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distribution. A violation of the normality assumption will result in the constant value for the UCL of the Max-
EWMA statistic being invalid. This occurs because the constant value is derived from the expectation and
variance of the Max statistic, which in turn are obtained from the derivation of the statistics Mje ∼ N (0, 1)
and Vje ∼ N (0, 1). The distribution assumptions and parameters in Table 1 will be generated using several
combinations:

1. X ∼ N (µx = 3, σ2
x = 1.5)

2. ε ∼ N (µm = 0, σ2
m = 0.5)

3. Y ∼ N (µW = 4, σ2
W = 1)

4. δ = 0, 0.1, 0.2, . . . , 3 (mean shifts)
5. θ = 0, 0.1, 0.2, . . . , 3 (variance shifts)
6. A = 0, 1, 2, 3
7. B = 1, 2, 3
8. C = 0, 1
9. D = 1, 3, 5

The selection of the range of process shifts in the mean (δ) and variance (θ) is based on the mean and variance values
of the covariate variable (X) and the auxiliary variable (W ), so as to cover shifts from small to large magnitudes [6].

2.5. Simulation Studies

Type I error (α) and Type II error (β) are critical indicators of a control chart’s ability to accurately reflect the
true condition of a process in the context of statistical hypothesis testing. A Type I error occurs when the chart
incorrectly signals that the process is out of control when it is actually stable (δ = 0; θ = 1), while a Type II error
happens when the chart fails to signal a true shift in the process (δ = δi; θ = θi). These errors provide a direct
measure of control chart efficiency, as a reliable chart should minimize both false alarms (α) and missed detections
(β). A smaller β (Type II error) indicates that the control chart is more effective in detecting actual shifts or changes
in the process. This means the likelihood of failing to signal when the process is truly out of control is reduced. In
other words, the control chart has higher detection power, making it more reliable in identifying deviations from
the normal condition and ensuring better process quality monitoring. The Auxiliary Variables (AV) and Multiple
Measurements (ME) are integrated into the Max-EWMA control chart in the flowchart shown in Figure 1.

Monte Carlo simulation is a computational technique that uses repeated random sampling to model and analyze
complex systems or processes that are influenced by uncertainty. The simulation using the Type II error (β) through
Monte Carlo simulations is carried out in the following steps:

1. Generate random data for m = 1000 subgroups with known parameters and a specified process shift.
2. Calculate the control chart statistics.
3. Determine the control limits.
4. Compute Type II error (β) as the proportion of observations falling within the control limits.
5. Repeat steps 1–4 for r = 10,000 replications.
6. Calculate the average Type II error (β) across all repetitions.
7. Repeat the above procedure for all parameter combinations.

3. Result and Discussion

In addressing measurement error, two approaches can be employed: the covariate model and multiple measurement.
A covariate variable X is defined as the true value of the observed characteristic Y , which is not known with
certainty. The additive error covariate model can be expressed as:

Y = A+BX + ε,
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Figure 1. Flowchart integration of Auxiliary Variables (AV) and Multiple Measurements (ME) into Max-EWMA.

where A and B are constants and ε is a random variable following a normal distribution, denoted as ε ∼ N (0, σ2
m).

Under in-control process conditions, the population characteristic X is assumed to be known, so X ∼ N (µx, σ
2
x).

In relation to the covariate variable X , the variable Y follows a normal distribution with mean µy = A+Bµx and
variance σ2

y = B2σ2
x + σ2

m. To mitigate the impact of measurement error, a repeated measurement approach can be
taken, with k measurements. Therefore, the average of each measurement follows a normal distribution with mean:
µȳ = A+Bµx and variance: σ2

ȳ =
B2σ2

x

n +
σ2
m

nk . An auxiliary variable is one that is correlated with the observed
variable, and in process control, it is used as a consideration. Under in-control conditions, the characteristic Y and
the auxiliary variable W are assumed to follow a bivariate normal distribution:

(Y,W ) ∼ N2(µy, µw, σ
2
y, σ

2
w, ρ).
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If a process shift occurs in the mean by δ, the mean of the covariate variable X changes from µx to µx + δσ2
x [21].

If a process shift occurs in the variance by θ, the variance of the covariate variable X changes from σ2
x to θ2σ2

x [15].
Consequently, if there is a shift in either the mean or the variance, Y follows the assumptions based on the mean and
variance of the covariate variable X with the shift. Type I error and Type II error are crucial metrics that depict the
control chart’s effectiveness in accurately detecting the true state of the process within the framework of statistical
hypothesis testing. For a known population, the values of α and β can be calculated by performing simulations,
generating data for m subgroups, each consisting of n observations and k repetitions. Under in-control conditions,
the population is characterized as:

X ∼ N (µx = 3, σ2
x = 1.5), ε ∼ N (0, σ2

m = 0.5), (Y,W ) ∼ N2(µy, µw = 4, σ2
y, σ

2
w = 1, ρ).

Simulations are conducted for various parameter combinations:

• A = 0, 1, 2, 3,
• B = 1, 2, 3,
• ρ = 0, 0.25, 0.5, 0.95,
• δ = 0, 0.1, 0.25, . . . , 3,
• θ = 0.25, 0.5, 0.75, . . . , 3.

For the in-control process, the control chart parameters are set to L = 2.709 and λ = 0.05 to achieve an ARL0 =
370. The simulation involves 10,000 repetitions, and the values of α and β are calculated for the known parameters,
with the results presented in Figures 2–5. The values of Type I error (α) and Type II error (β) for various parameter
combinations are used to assess the sensitivity of the control chart under each parameter set, specifically A, B,
and ρ, in detecting process shifts in both mean and variance. In the covariate model Y = A+BX + ε, if B ≈ 1,
the covariate model simplifies to: Y = A+X + ε, allowing for the observation of the impact of the parameter A
on the Maximum EWMA-AV and Maximum EWMA ME (Multiple Measurement)-AV control charts. To observe
its effect on mean shift detection, variance changes are assumed insignificant. Given θ = 1, the variance of the
covariate variable X remains constant at σ2

x. Figure 2 illustrates the Type II error (β) values for the Maximum
EWMA-AV and Maximum EWMA ME-AV control charts, with parameter A taking values 0, 1, 2, 3, for mean
shifts (δ) ranging from 0 to 3, and different values of correlation (ρ) between the auxiliary variable W and observed
variable Y , from low to high correlation in each graph.

In Figure 2, if there is no correlation between the auxiliary variable and Y , Type II error (β) as a function of the shift
in means (δ) can be depicted as follows: As δ increases, the Type II error decreases for both methods, indicating
improved detection of out-of-control conditions. The Maximum EWMA ME (Multiple Measurement)-AV Control
Chart consistently shows lower Type II errors compared to the Maximum EWMA ME (Covariate)-AV Control
Chart, signifying its superior effectiveness. Additionally, higher values of A significantly reduce the Type II error
for the Maximum EWMA ME (Covariate)-AV Control Chart, indicating a strong influence of A. However, for
the Maximum EWMA ME (Multiple Measurement)-AV Control Chart, the values of A do not have a significant
impact, as many of the β values overlap, showing less sensitivity to changes in A.

In Figure 2, the Type II error (β) is illustrated as a function of the shift in means (δ) for various values of A
between two methods when there is a small correlation between the auxiliary variable (W ) and the observed
variable (Y ), that is ρ = 0.25. As δ increases, both methods exhibit a decrease in Type II error, indicating enhanced
ability to detect out-of-control conditions. The Maximum EWMA ME (Multiple Measurement)-AV Control Chart
demonstrates consistently lower Type II errors than the Maximum EWMA ME (Covariate)-AV Control Chart,
underscoring its greater effectiveness. For the Maximum EWMA ME (Covariate)-AV Control Chart, increasing A
values substantially lower the Type II error, highlighting a significant influence of A. In contrast, the Maximum
EWMA ME (Multiple Measurement)-AV Control Chart shows minimal sensitivity to changes in A, as the β values
for different A values largely coincide. This indicates that while the Maximum EWMA ME (Covariate)-AV Control
Chart’s performance improves with higher A values, the Maximum EWMA ME (Multiple Measurement)-AV
Control Chart remains equally effective across different A values when ρ = 0.25. Consequently, it is observed
that a small correlation value does not yield different results compared to a correlation value of 0.
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8 A CONTROL CHART APPROACH TO MONITOR AND IMPROVE PRODUCTION PROCESSES

Figure 2. Type II Error of Maximum EWMA-AV and Maximum EWMA ME-AV with B = 1, θ = 1, and different values of
A.

In Figure 2.C, with ρ = 0.5, the overall Type II error decreases further, meaning the correlation between the
auxiliary variable and Y enhances the detection capability of both methods, reducing the likelihood of false
negatives. The Maximum EWMA ME (Multiple Measurement)-AV Control Chart consistently results in lower
Type II errors compared to the Maximum EWMA ME (Covariate)-AV Control Chart, indicating its superior
effectiveness. The Maximum EWMA ME (Covariate)-AV Control Chart shows a significant reduction in Type
II error with increasing values of A, while the Maximum EWMA ME (Multiple Measurement)-AV Control Chart
remains less sensitive to changes in A, as many β values overlap. In Figure 2.D, Type II error (β) is calculated with
the correlation between the auxiliary variable (W ) and the observed variable (Y ) being high, with a value of 0.95.
For the Maximum EWMA ME (Multiple Measurement)-AV Control Chart, it has successfully detected a shift in
mean (δ) of 1 or greater perfectly, as indicated by the β values dropping to 0, but it creates false alarms when δ = 0
for A = 2 and A = 3, where β is also 0. To avoid false alarms, it is recommended to keep A no higher than 1 when
ρ is high. Overall, the Maximum EWMA ME (Covariate)-AV Control Chart is not as effective as the Maximum
EWMA ME (Multiple Measurement)-AV Control Chart. To observe its effect on variances shift detection, mean
changes are assumed to be insignificant. Given δ = 0, the mean of the covariate variable X remains constant at µx.

Figure 2 demonstrates the Type II error (β) as a function of the shift in variances (θ) for various values of A
(0, 1, 2, 3) using two methods: the Maximum EWMA ME (Covariate)-AV Control Chart (red lines) and the
Maximum EWMA ME (Multiple Measurement)-AV Control Chart (blue lines), with different values of correlation
(ρ) between the auxiliary variable (W ) and the observed variable (Y ) at ρ = 0, 0.25, 0.5, and 0.95. At low
correlation (ρ = 0 and 0.25), shown in Figure 2.A and Figure 2.B, the results are similar for both correlations,
but the Maximum EWMA ME (Multiple Measurement)-AV Control Chart consistently shows lower Type II
errors (β), indicating better effectiveness in detecting variance shifts. Increasing A decreases Type II error in
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the Maximum EWMA ME (Covariate)-AV Control Chart, enhancing control chart sensitivity. However, at high
correlation (ρ = 0.95), A values of 2 and 3 result in β values of 0 for θ = 0, indicating false alarms when no
variance shift occurs. This suggests that for high ρ values, large A values can lead to over-sensitive detection. In
contrast, the Maximum EWMA ME (Multiple Measurement)-AV Control Chart shows less significant impact from
A, with overlapping β values, indicating robustness and less sensitivity to changes in A compared to the Maximum
EWMA ME (Covariate)-AV Control Chart. To observe its effect on mean shift detection, variance changes are

Figure 3. Type II Error of Maximum EWMA-AV and Maximum EWMA ME-AV with B = 1, δ = 0, and different values of
A.

assumed insignificant. Given θ = 1, the variance of the covariate variable X remains constant at σ2
x. To observe

its effect on variance shift detection, mean changes are assumed to be insignificant. Given δ = 0, the mean of the
covariate variable X remains constant at µx.

Figure 3 demonstrates the Type II error (β) as a function of the shift in means (δ) for various values of B (i.e.,
B = 1, 2, 3) in terms of two methods comparison: Covariate (depicted by red lines) and Multiple Measurement
(depicted by blue lines), with different values of correlation (ρ) between the auxiliary variable (W ) and the observed
variable (Y ), ranging from low to high correlation in each graph. Furthermore, Figure 3 illustrates the Type II error
(β) values for the Maximum EWMA AV and Maximum EWMA ME AV control charts, with parameter B taking
values 1, 2, and 3, for variance shifts (θ) ranging from 0 to 3.
In Figure 4, the Maximum EWMA ME (Multiple Measurement)-AV Control Chart (blue lines) consistently shows
lower Type II errors (β) compared to the Maximum EWMA ME (Covariate)-AV Control Chart (red lines) for the
same values of δ and B, indicating that the Maximum EWMA ME (Multiple Measurement)-AV Control Chart is
more effective in identifying out-of-control conditions. Additionally, for both methods and across all values of ρ,
the differences in parameter B are not significant, as indicated by the overlapping lines for different B values. As
the variance shift increases, the Type II error decreases for all schemes, which aligns with the theory that larger
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Figure 4. Type II Error of Maximum EWMA-AV and Maximum EWMA ME-AV with A = 0, θ = 1, and different values of
B.

shifts are easier to detect than smaller ones. However, in the Maximum EWMA ME (Multiple Measurement)-AV
Control Chart, mean shifts (δ) greater than two are detected perfectly by the control chart, resulting in β values of
0, demonstrating the method’s superior sensitivity and accuracy in detecting larger shifts.
Figure 5.A illustrates the Type II error (β) of the Maximum EWMA control chart for different methods (Beta
Covariate and Beta Multiple Measurement) under the conditions A = 0, δ = 0, and ρ = 0. The x-axis represents
the shift in variance (θ), while the y-axis indicates the Type II error, which measures the probability of failing to
detect an out-of-control condition in Phase II. The blue lines depict the performance of the Maximum EWMA
ME (Multiple Measurement)-AV Control Chart, showing consistently low Type II errors across all values of θ
and different values of B, indicating this method’s robustness and reliability in detecting shifts in variance. In
contrast, the red lines represent the Maximum EWMA ME (Covariate)-AV Control Chart, which shows higher
Type II errors for smaller shifts (θ = 1) and a decreasing trend as θ increases. This suggests that the Maximum
EWMA ME (Covariate)-AV Control Chart becomes more effective with larger shifts but is initially less sensitive
compared to the Maximum EWMA ME (Multiple Measurement)-AV Control Chart. Furthermore, the Type II error
for the Maximum EWMA ME (Covariate)-AV Control Chart is affected by the value of B, with higher values of B
leading to higher errors for smaller shifts but greater sensitivity to larger shifts. Overall, the Maximum EWMA ME
(Multiple Measurement)-AV Control Chart is more reliable across all conditions, making it a preferable choice for
maintaining process control.

Figures 5.B (with ρ = 0.25), 5.C (with ρ = 0.5), and Figure 5.D (with ρ = 0.95) show the Type II error (β) of
the Maximum EWMA control chart for the β Covariate and β Maximum EWMA ME (Multiple Measurement)-
AV Control Charts, with A = 0 and δ = 0. Across those figures, there is no significant difference observed in the
overall patterns. However, it is evident that the Type II error gradually decreases for all scenarios as θ increases,
indicating an improvement in the detection capability for larger shifts in variance. The values of B do not show
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Figure 5. Type II Error of Maximum EWMA-AV and Maximum EWMA ME-AV with A = 0, θ = 1, and different values of
B.

a significant impact on the Type II error, as the lines for different B values overlap considerably. This suggests
that the effect of B on the Type II error is minimal in these scenarios. Additionally, the β Maximum EWMA
ME (Multiple Measurement)-AV Control Chart consistently maintains a lower Type II error compared to the β
Maximum EWMA ME (Covariate)-AV Control Chart across all values of θ and ρ, highlighting its robustness and
effectiveness in detecting shifts in variance. Overall, increasing ρ from 0.25 to 0.5 does not lead to substantial
changes in the performance of either method, reinforcing the stability of the detection methods against varying
correlations between the auxiliary variable and Y .

In real-world populations, it is often observed that the variance of errors is not constant. The error variance can
vary linearly with the covariate variable X . Considering the covariate model Y = A+BX + ε, under in-control
process conditions, X is normally distributed with mean µx and variance σ2

x, denoted as X ∼ N (µx, σ
2
x). The

error follows a normal distribution with mean 0 and variance σ2
m = C +Dµx, denoted as ε ∼ N (0, C +Dµx). In

relation to the covariate variable X , the variable Y follows a normal distribution with mean µy = A+Bµx and
variance σ2

y = B2σ2
x + σ2

m. To mitigate the impact of measurement error, a repeated measurement approach can be
employed, with k measurements. Consequently, the average of each measurement follows a normal distribution
with mean µ̄y = A+Bµx and variance σ̄2

y =
B2σ2

x

n +
σ2
m

nk . Each σ2
m adheres to a linearly increasing variance

rule. Additionally, the auxiliary variable W and the observed variable Y follow a bivariate normal distribution:
(Y,W ) ∼ N2(µy, µw, σ

2
y, σ

2
w, ρ). Type I error (α) and Type II error (β) are crucial metrics that depict the control

chart’s effectiveness in accurately detecting the true state of the process within the framework of statistical
hypothesis testing. For a known population, the values of α and β can be calculated by performing simulations.
Under in-control conditions, the population is characterized as X ∼ N (µx = 3, σ2

x = 1.5), ε ∼ N (0, σ2
m), and

(Y,W ) ∼ N2(µy, µw = 4, σ2
y, σ

2
w = 1, ρ). The values of A, B, C, and D are simulated for several criteria.
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Since this chapter focuses on examining the effect of linear changes in error variance, values of A = 0 and B = 1
are applied for C = 0, 1 and D = 1, 3, 5. If a process shift occurs in the mean by δ, the mean of the covariate variable
X changes from µx to µx + δσ2

x. If a process shift occurs in the variance by θ, the variance of the covariate variable
X changes from σ2

x to θ2σ2
x. Consequently, if there is a shift in either the mean or the variance, Y follows the

assumptions based on the shifted mean and variance of the covariate variable X . In simulations, various parameter
combinations are tested: ρ values of 0, 0.25, 0.5, and 0.95; mean shifts δ ranging from 0, 0.1, 0.25 up to 3; and
variance shifts θ ranging from 0.25, 0.5, 0.75 up to 3. For the in-control process, the control chart parameters are
set to L = 2.709 and λ = 0.05 to achieve an ARL0 of 370. The simulation involves 10,000 repetitions, and the
α and β values are calculated for the known parameters, with the results presented in Figures 5–6. The values of
Type I error (α) and Type II error (β) for various parameter combinations are used to assess the sensitivity of the
control chart under each parameter set when the variance error of the population is linearly increasing, specifically
parameters C, D, and ρ, in detecting process shifts in both mean and variance.

Figure 6. Type II Error of Maximum EWMA ME (Linearly Increasing Variance) with A = 0, B = 1, θ = 1, and different
values of C and D.

In the covariate model Y = A+BX + ε, if A = 0 and B = 1, the model simplifies to Y = X + ε, allowing for
the observation of the impact of the random variable ε that has variance linearly increasing (σ2

m = C +Dµx) on
the sensitivity of the Maximum EWMA AV and Maximum EWMA ME AV control charts. To observe its effect
on mean shift detection, variance changes are assumed insignificant. Given θ = 1, the variance of the covariate
variable X remains constant at σ2

x. Figure 5 illustrates the Type II error (β) values for the Maximum EWMA
AV and Maximum EWMA ME AV control charts, with combinations of parameter C taking values 0 and 1, and
parameter D taking values 1, 3, and 5 for mean shifts (δ) ranging from 0 to 3, with different values of correlation
(ρ) between the auxiliary variable (W ) and the observed variable (Y ) from low correlation to high correlation in
each graph. In Figure 5.A and Figure 5.B, which depict the Type II error (β) as a function of mean shift (δ) with
a low correlation (ρ = 0 or 0.25) between the auxiliary variable and the observed variable, the red lines represent
C = 0 and the blue lines represent C = 1. The different line patterns indicate various values of D (1, 3, 5). As δ
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increases, β decreases for both values of C, indicating that larger mean shifts are easier to detect. This aligns with
theoretical expectations. For C = 1 (blue lines), the Type II error is generally lower across all values of δ and D,
suggesting that setting C to 1 improves the sensitivity of the control chart in detecting mean shifts.

In Figure 5.C and Figure 5.D, with relatively high correlation (ρ = 0.5 or 0.95), a similar trend is observed: β
decreases with increasing δ for both C = 0 (red lines) and C = 1 (blue lines). However, the difference between
C = 0 and C = 1 is more pronounced in this high-correlation scenario. For C = 1, the Type II error is consistently
lower, especially for larger values of δ, indicating that the control chart is more effective in detecting mean shifts
when C is set to 1. Additionally, for higher values of D, the lines tend to converge, suggesting that the impact of
D diminishes with high correlation. Comparing both figures, the improvement in detection with C = 1 is evident
in both low and high-correlation scenarios, but the advantage is more significant when the correlation is high
(ρ = 0.95). This indicates that setting C = 1 enhances the control chart’s performance, particularly in environments
with strong correlations between auxiliary and observed variables.

To observe its effect on variances shift detection, mean changes are assumed to be insignificant. Given δ = 0,
the mean of the covariate variable X remains constant at µx. Figure 6 illustrates the Type II error (β) values for the
Maximum EWMA ME AV and Maximum EWMA AV control charts, with combinations of parameter C taking
values 0 and 1, and parameter D taking values 1, 2, and 3 for variance shifts (θ) ranging from 0 to 3. The graphs also
incorporate different values of correlation (ρ) between the auxiliary variable (W ) and the observed variable (Y ),
specifically ρ = 0, 0.25, 0.5, and 0.95 in each subplot. In the first two graphs in Figure 7, where ρ = 0 and ρ = 0.25

Figure 7. Type II Error of Maximum EWMA ME (Linearly Increasing Variance) with A = 0, B = 1, δ = 0, and different
values of C and D.

(low correlation), both the blue (C = 1) and red (C = 0) lines show a general decrease in β as θ increases. The
blue line starts at a higher β compared to the red line, indicating that when C = 1, the method is less sensitive to
variance shifts initially but becomes more sensitive as θ increases. The different patterns of the lines, representing
different D values (1, 3, 5), show minor variations but follow the same trend.
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In Figure 7.D, where ρ = 0.95 (high correlation), the Type II error values are overall lower than in the first figure,
suggesting higher sensitivity to variance shifts. Here, the blue lines (C = 1) and red lines (C = 0) do not show
as much separation as in the first figure, indicating that the high correlation makes the distinction between C
values less pronounced. Overall, the figures demonstrate that higher correlation between the auxiliary and observed
variables decreases the Type II error, enhancing sensitivity to variance shifts, with the parameter C having a more
significant effect at lower correlation levels.

3.1. Impact Each Parameters

The impact of each parameter based on the simulation results on the Type II Error (β) value is presented in the
Table 2.

Table 2. Impact of Each Parameter Based on Simulation Study Results

Control Chart Parameter Detection Impact
Max EWMA ME
(Covariate)-AV

A Mean shift (δ) Increasing A decreases Type II error (β) in the Covariate
method for detecting mean shifts, enhancing control
chart sensitivity (Figure 2).

A Variance shift (θ) Increasing A decreases Type II error (β) in detecting
variance shifts (Figure 3).

B Mean shift (δ) Increasing B slightly decreases Type II error (β) in
detecting mean shifts (Figure 4).

B Variance shift (θ) Increasing B slightly decreases Type II error (β) in
detecting variance shifts (Figure 5).

ρ Mean shift (δ) Higher ρ reduces Type II error (β), improving detection
of mean shifts (Figure 2).

ρ Variance shift (θ) Higher ρ improves detection of variance shifts by
reducing Type II error (β) (Figure 3).

Max EWMA
ME (Multiple
Measurement)-AV

A Mean shift (δ) Increasing A reduces Type II error (β) for detecting
mean shifts (Figure 2).

A Variance shift (θ) Increasing A reduces Type II error (β) for detecting
variance shifts (Figure 3).

B Mean shift (δ) Increasing B slightly reduces Type II error (β), but with
limited sensitivity improvement (Figure 4).

B Variance shift (θ) Similar slight decrease in Type II error (β) with
increasing B (Figure 5).

ρ Mean shift (δ) Higher ρ improves mean shift detection by reducing
Type II error (β) (Figure 2).

ρ Variance shift (θ) Higher ρ enhances detection of variance shifts (Figure
3).

Max EWMA ME
(Linearly Increasing
Variance)-AV

C Mean shift (δ) Decreasing C lowers Type II error (β), with moderate
sensitivity improvement (Figure 6).

C Variance shift (θ) Lower C improves detection of variance shifts slightly
(Figure 7).

D Mean shift (δ) Decreasing D reduces Type II error (β) and enhances
detection sensitivity (Figure 6).

D Variance shift (θ) Similar improvement observed for variance shifts with
lower D (Figure 7).
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3.2. Data Real Implementation

The results of real data implementation of the three approaches to the presence of measurement error in control
charts for monitoring real process data shown in following the figure 8.

Figure 8. Implementation of Control Chart.

The results of the sensitivity comparison of the three approaches to the presence of measurement error in control
charts for monitoring real process data can be interpreted as follows.

1. Control charts without handling measurement error and without involving auxiliary variables exhibit lower
sensitivity compared to the covariate and Maximum EWMA ME (Multiple Measurement)-AV Control
Chart approaches, as indicated by the slower ability of the control chart to detect out-of-control (OOC)
observations.

2. The control chart with the highest sensitivity is the Max-EWMA ME (Multiple Measurement) AV chart,
which is capable of detecting shifts in both the process mean and variability simultaneously.

3. The Max-EWMA ME (Covariate) AV control chart is more sensitive than the standard Max-EWMA control
chart, as demonstrated by the shift in the EWMA statistic that can indicate a monotonically increasing pattern
of process changes.

4. When the non-constant error variance is considered as a controlled variable, the Max-EWMA ME (Linearly
Increasing Variance) control chart can show that both the mean and variance of the production process are
jointly stable and statistically in control.
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4. Conclusion

Evaluate Performance of Control Chart Using Type I and Type II Errors in Control Charts: Type I error (α) and
Type II error (β) are essential metrics for evaluating control chart effectiveness in accurately detecting the true state
of a process within statistical hypothesis testing. By performing simulations with known populations, generating
data for multiple subgroups and repetitions, these errors can be quantified to assess the performance of control
charts. Under in-control conditions, the study used various parameter combinations (A, B, ρ, δ, and θ) to simulate
different scenarios, revealing the sensitivity of control charts to shifts in mean and variance.

Impact of Parameter A on Mean Shift Detection: The study examined the effect of parameter A on the Maximum
EWMA AV and Maximum EWMA ME AV control charts for different mean shifts (δ) and correlation values (ρ).
Results indicated that higher values of A significantly reduced Type II error for the Covariate method, enhancing
detection sensitivity. However, the Maximum EWMA ME (Multiple Measurement)-AV Control Chart method
showed lower Type II errors across all values of A and ρ, demonstrating its superior effectiveness and robustness
in detecting mean shifts.

Impact of Parameter A on Variance Shift Detection: When analyzing variance shifts (θ), the Covariate method’s
sensitivity improved with increasing values of A, particularly at low correlations (ρ). However, at high correlations
(ρ = 0.95), large A values led to false alarms, indicating over-sensitivity. The Maximum EWMA ME (Multiple
Measurement)-AV Control Chart exhibited consistently lower Type II errors and showed less sensitivity to changes
in A, highlighting its robustness in variance shift detection across different correlations.

Impact of Parameter B on Mean Shift Detection: For mean shift detection, the study found that the Maximum
EWMA ME (Multiple Measurement)-AV Control Chart consistently outperformed the Covariate method, with
lower Type II errors across different values of B and ρ. The impact of B on detection sensitivity was minimal,
as indicated by overlapping lines for different B values. This suggests that while both methods detect larger
mean shifts more effectively, the Maximum EWMA ME (Multiple Measurement)-AV Control Chart remains more
reliable and robust.

Impact of Parameter B on Variance Shift Detection: Similar to mean shift detection, the Maximum EWMA
ME (Multiple Measurement)-AV Control Chart showed lower Type II errors compared to the Covariate method
across various values of B and ρ for variance shift detection. The impact of B was negligible, with overlapping
lines indicating minimal effect. This consistency across different scenarios reinforces the Maximum EWMA ME
(Multiple Measurement)-AV Control Chart’s reliability and robustness in detecting variance shifts.

Effect of Maximum EWMA ME (Linearly Increasing Variance)-AV Control Chart on Mean Shift Detection: The
study investigated the impact of linearly increasing variance (σ2

m = C +Dµx) on mean shift detection using
different combinations of parameters C and D. Results showed that setting C to 1 generally improved control
chart sensitivity, particularly at high correlations (ρ). As δ increased, Type II error decreased, indicating enhanced
detection capability for larger mean shifts. This trend was more pronounced at high correlations, highlighting the
importance of considering linear variance changes in control chart design.

Effect of Linearly Increasing Variance on Variance Shift Detection: When examining variance shifts under linearly
increasing variance conditions, the study found that higher correlations (ρ) improved detection sensitivity, reducing
Type II errors. The impact of parameter C was more significant at lower correlations, with C = 1 showing
higher initial Type II errors but improved sensitivity for larger variance shifts (θ). High correlation reduced the
distinction between different C values, emphasizing the importance of correlation in control chart performance.
Overall Effectiveness of Maximum EWMA ME (Multiple Measurement)-AV Control Chart: Across all scenarios
and parameter combinations, the Maximum EWMA ME (Multiple Measurement)-AV Control Chart consistently
demonstrated lower Type II errors compared to the Covariate method. This method’s robustness and reliability in
detecting both mean and variance shifts make it a preferable choice for maintaining process control. The study’s
findings highlight the superiority of the Maximum EWMA ME (Multiple Measurement)-AV Control Chart in
various conditions, providing valuable insights for improving control chart design.
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The study evaluated the performance of Maximum EWMA using auxiliary variable and covariate control charts
using Type I and Type II errors, analyzing various parameter combinations for mean and variance shifts. Findings
showed that the Maximum EWMA ME (Multiple Measurement)-AV Control Chart consistently outperformed the
Covariate method, demonstrating lower Type II errors and greater robustness in detecting shifts. Higher values
of parameter A improved mean shift detection sensitivity, while parameter B had minimal impact. Maximum
EWMA ME (Linearly Increasing Variance)-AV Control Chart enhanced detection capability, particularly at higher
correlations. Overall, the Maximum EWMA ME (Multiple Measurement)-AV Control Chart proved effective
across diverse conditions, emphasizing its reliability in process control applications.

Limitations and Suggestions

The control chart in this study was developed under the limitation of assuming a Normal distribution and monitoring
a univariate quality characteristic. It is recommended that future research focus on developing robust control charts
that can accommodate distributions other than Normal and are capable of monitoring more than one observed
quality characteristic (multivariate monitoring).
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