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Banach spaces

Bochra Zeghad*

Department of Mathematics, Ferhat Abbas University Setif-1, Setif, Algeria

Abstract This paper introduces a modified Bregman extragradient algorithm designed to solve pseudomonotone
equilibrium problems in a real reflexive Banach space. The algorithm guarantees weak convergence under mild assumptions
and establishes strong convergence under additional conditions. In our proposed algorithm, we utilize two parameters with
the Bregman distance and a non-monotonic step size, which is independent of the Bregman Lipschitz constant, to enhance
the algorithm’s effectiveness. Furthermore, numerical experiments are conducted to validate the performance of the proposed
algorithm, demonstrating significant improvements in efficiency compared to traditional algorithms in similar settings.
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1. Introduction

Consider the equilibrium problem (EPb) as follows:
findv € S suchthat B(v,t) > 0,Vt € S, (D

where S is a nonempty, closed, and convex subset of a real reflexive Banach space F, B: S xS — R be a
bifunction. We denote by E* the dual of E. The FEPb provides a comprehensive framework that unifies several
mathematical concepts, such as optimization problems, variational inequalities, and game theory. Due to their
versatility and wide-ranging applications in fields like economics, mechanics, and signal processing (see, e.g.,
[8, 9]), EPb has been the focus of extensive theoretical and numerical research. In the special case where
B(v,t) := (¥v,t —v) with U : E — E, the EPb coincides with the variational inequality problem VI(¥;S)
defined as:
findv € § such that < v, t —v >>0,Vt € S.

On the other hand, if B(v,t) := h(v) — h(t), where h : S — R then the EPb reduces to the optimization problem

min h(v) s.t. v € S.
vES

Several studies have investigated iterative methods for solving the EPb in Hilbert and Banach spaces, such as
the proximal point method ([6, 12]), subgradient extragradient techniques (see, e.g., [1, 18, 14, 15]), the auxiliary
problem principle [10], and approaches based on gap functions [11]. Among these methods, the extragradient
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B. ZEGHAD 2745

algorithm with a monotonically decreasing step size { 0., } has attracted considerable attention for solving the EPb
in a real Hilbert space, as proposed by Hieu (see [7]). This method involves solving two optimization problems
over a closed convex set at each iteration. The iterative scheme is defined as follows

fn = arg min (gmB(vm,t) +1e- vm||2) :
te

Um+1 = arglélin (Q'mB(tmat) + % ||t - Um||2) s
te

and

. m—tm >+ [ vmt1—tm .
mln{<(|U I ;]\U[v + I ), Qm} if M >0,
Om+1 =
Om otherwise,

where M = B(Um, Vm+1) — B(Um, tm) — B(tm, Um+1). Under several conditions, the authors showed that the
sequences weakly converge to some solution of the EPb (see [7]).

Recently, Eskandani et al. [5] further developed the extragradient Algorithm in [7], by replacing the Euclidean
distance with a so-called Bregman distance to solve the EPb in Banach spaces as follows:

ty = argmin (0 B(vm, t) + Dy (t,vm))

teS
Vi1 = arg rélin (omB(tm,t) + Dy(t,vm)) ,
te

and

{min{g(Dg,(vm,tm)wa(vmwtm)), gm} if M >0,
Om+1 =

Om, otherwise,

where M = B(Vpn, V1) — B(Umy tm) — B(tm, Vmi1)-

Inspired by prior studies, including the classical extragradient algorithms and their modifications, a natural question
arises: Can we enhance these methods by introducing a new modified extragradient algorithm with a non-
monotonic step size that eliminates the need for prior estimates of the Bregman Lipschitz-like constants in solving
EPb within reflexive Banach spaces?

In this paper, we propose a modified Bregman extragradient algorithm designed to solve pseudomonotone FEPb
in Banach spaces E. The algorithm incorporates two new parameters, utilizes the Bregman distance, and employs
a non-monotonic step size that is independent of the Bregman Lipschitz constant, addressing the aforementioned
question. The weak convergence of the algorithm is ensured under mild assumptions, while strong convergence
is established when the equilibrium bifunction satisfies additional specific conditions. The algorithm associated
is of interest for several reasons, but especially that using non-monotonic step size that is independent of the
Bregman Lipschitz constants, offering greater flexibility compared to non-increasing monotone step sizes as in
[7, 5]. Furthermore, we introduce two parameters specifically designed to enhance the iterative process, resulting
in significant improvements in convergence speed and computational efficiency.

This paper is organized as follows: in Section 2, we recall some definitions and important Lemmas used in this
paper. In Section 3, we give a new iterative algorithm for solving the EPb with convergence studies. In Section 4
includes numerical experiments to demonstrate the performance of the proposed algorithm on a test problem and
compare it with other algorithms. Finally, in Section 5 concludes the paper with a brief summary.

2. Preliminaries
In this section, we provide some definitions, important lemmas, and notions that we will need in the sequel.
Throughout this paper, we consider S to be a nonempty, closed, and convex subset of a reflexive real Banach

space E, with its dual space denoted by E*. The duality pairing between E and E* is represented by (., .), while
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2746 MODIFIED BREGMAN EXTRAGRADIENT ALGORITHM
the norm is denoted by ||.|| (not necessarily Euclidean). Denote by — and — the weak convergence and strong
convergence, respectively. Let B be a bifunction: E x £ — Rand ¢ : E — R atv € S is defined by
Op(v) :={v* € E* : h(t) — h(v) ><v";t—v >, Vte E}.
The function ¢ is called a Legendre function if it fulfills the following two conditions

* int(dom ) # () and Jy is single-valued on its domain;
* int(dom ¢*) # () and dp* is single-valued on its domain.

Where ¢* : E* — R U {+00} is the Fénchel conjugate function of ¢ given by
¢*(v*) = sup {{v,v") = p(v) : v € E}.
A normal cone of S at v € S is defined by
Ns(v):={v" € E* : <v";t —v ><0, VteS}.

Definition 2.1
Let ¢ : E — R U {400} be some function.

1. The function ¢ is called Gateaux differentiable at a point v € int(dom ¢) if the limit

o . p(v+ ht) —p(v)
t) = 1
#(09) i lim =

2

exists for any t € F;
¢ is Gateaux differentiable if it is Gateaux differentiable for every v € int(dom ¢);
we say that ¢ is Fréchet differentiable at v € int(dom ¢) if the limit in (2) is attained uniformly in ||¢|| = 1;
 is Fréchet differentiable on a subset S of F if the limit in (2) is attained uniformly for v € S and ||¢|| = 1;
The function ¢ is supercoercive if | 1”1m (ﬁ(vl),

v||—o0 ||V
6.  is weakly sequentially continuous if v,, — v implies p(v,,,) — ¢(v) as m — oo.

ok we

Definition 2.2
([4]) Assume that ¢ : E — RU {+0c0} is Giteaux differentiable. The Bregman distance with respect to ¢ is the
bifunction

D, : dom(p) x int(dom(p)) — [0, +00),

defined by
Dy(v,t) :== p(v) — p(t)— < Vo(t),v —t >, Vv € dom(B), t € int(dom(B)).

Unlike standard metrics, the Bregman distance neither exhibits symmetry nor satisfies the triangle inequality.
However, it generalizes certain well-known distances. It satisfies the three-point identity:

DW(th) + D@(t» s) - D@(v’ S) =< ch(s) - v@(t)a v—1>, (3)
and four-point identity
Dy(v,t) + Dy(w,s) — Dy(v,s) — Dy(w, t) =< V(s) — Vo(t),v —w >, 4)

for any v, w € dom p and t, s € int(dom ).
The Bregman projection ([4]) with respect to ¢ of v € int(dom ¢) onto S is characterized as the unique vector 75
fulfilling
P () o
& (v) = ggg(Dw(t, v)).
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Definition 2.3
([2]) The modulus of total convexity at a point v € int(dom ¢) is defined as a function v, (v, .) : [0, +00) — [0, o0],
given by:
Vo(v,d) = inf{D,(t,v) :y €domy, || t —v ||=d}.
If v, (v, d) is strictly positive for all d > 0, the function ¢ is said to be totally convex at v.
For a non-empty set S C E, the modulus of total convexity of ¢ on S is expressed as:

vp(S,d) = inf{v,(v,d) : v € SNint(dom ¢)}.

The function ¢ is referred to as totally convex on bounded subsets if v (S, d) remains positive for all d > 0 and for
any bounded, non-empty subset S.

Lemma 2.1

([16]) A uniformly Fréchet differentiable function ¢ : £ — R that is bounded on bounded subsets of E ensures
that V¢ is uniformly continuous on bounded subsets of E from the strong topology of E to the strong topology of
E*.

Lemma 2.2

[3] The function ¢ : E — R U {+oo0} is totally convex on bounded subsets of E iff for any two sequences {v,, }
and {t,,} in int dom ¢ and dom ¢, respectively, such that the first one is bounded,

n}gnooDw(tm,vm) =0= mlgnOO It — v = 0.

Lemma 2.3
[17] Let the function ¢ : E — R be Gateaux differentiable such that Vy* is bounded on bounded subsets of dom
*. Let vy € E and {v,,} C dom . If Dy (vg, vp,) is bounded, then the sequence {v,, } is also bounded.

Theorem 2.1
[21] Let ¢ : E — R be a convex function which is bounded on bounded subsets of E. Then, the following are
equivalent:

(i) ¢ is supercoercive and uniformly convex on bounded subsets of X;
(il) dom ¢* = E*, E* is bounded on bounded subsets and uniformly smooth on bounded subsets of E*;
(iii) dom ¢* = E*, ¢* is Fréchet differentiable and V* is uniformly norm-to-norm continuous on bounded
subsets of E*.

Theorem 2.2
[2] Suppose that ¢ : E — R U {400} is a Legendre function. The function ¢ is uniformly convex on bounded
subsets of E if and only if ¢ is totally convex on bounded subsets of F.

Definition 2.4
A bifunction B: E x E — R is said to be

1. pseudomonotone on S, i.e.,
B(v,t) > 0= B(t,v) <0, Vu,teS;

2. y—strongly pseudomonotone on S, i.e., there exists a constant  such that
B(v,t) > 0= B(t,v) < —v|v—t|*>, Vo,teS;
3. Bregman Lipschitz type continuous on A with two positive constants L and Lo, i.e.,
B(v,t) + B(t,w) > B(v,w) — L1Dy(t,v) — Ly D,(w,t), Vt,v,w € S.
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Definition 2.5

The proximal operator J7, of a proper, convex and lower semicontinuous function  : S — R with respect to a

Gateaux differentiable function ¢ : E — R U {+o0} and a parameter 7 > 0 at v € E is given by
J<P

Th

(v) == ar;gerélin (Th(t) + Dy (t,v)) .

Lemma 2.4
([20]) Let S C E. Consider h:S — RU{+o00} as a convex function that is subdifferentiable and lower
semicontinuous. Then, ¢* is a solution to the following con optimization problem:

min {h(t) : t € S},
if and only if
0 € Oh(t*) + Ns(t¥),
where Oh(t*), Ns(t*) are the subdifferential of h and the normal cone of S at t*, respectively.

Lemma 2.5
[13] Let {am}, {bm} and {c,,}, be positive sequences such that

Gmt1 < Ambm + ¢y, Ym € N

o0

If {b,,} C [1,00), (b — 1) < occand > ¢, < 0o. Then lim a,, exists.

m=1 m=1 m— 00

Lemma 2.6
[3] Let {a,,}, {bm } be two nonnegative real sequences such that

a7n+1 S Ay, — bm

Then, lim a, € R,and >’ b, < cc.
m—oo m>1

3. MAIN RESULTS

In this section, by using tow parameters, the Bregman distance and non-monotonic adaptive step size criterion,
we propose modified extragradient algorithm for solving the EPb in E. Assume that the solution set of EPb,
represented by FQ(B, S), is nonempty.

Algorithm 3.1 (modified Bregman extragradient algorithm for solving the EPb)
1
Initialization: Given vy € S, 01 >0, ( € (0,1), p € <07 2C> and 7 € [,u, %) Select the sequences {o,,} C

[0,00) and {wy, } C [1,00) such that " 7, < occand > (wp,, —1) < oco.
m=1 m=1

Step 1: Compute

tm = argmin (70, B(vim, t) + Dy (t,vm)) = J7, p,  (Vm) -
tes 7

If t,,, = vy, then stop, and ¢,,, is a solution. Otherwise, go to next step.
Step 3: Compute

Um+1 = artg Iélin (MQmB(tmv t) + Ds& (tv Um)) = '];fgmB(tm,.) (Um) ,
€

where

: (D (tmvm)+ Dy (Vimt1,tm)) .
Qm+1{ mln{ @ tDe +1 ,wmgm+0m} if M >0, )

WmOm + Om otherwise,

and M = B(Vm, Vm+1) — B(vm, tm) — B(tm, Um+1). Set m := m + 1 and go to Step 1.
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Remark 3.1
The observation presented below was extracted from Algorithm 3.1

e When the parameters 7 = y = w,, =1 and o,,, = 0, Algorithm 3.1 reduces to the Bregman extragradient
algorithm introduced in [5]. The inclusion of the new parameters (7, u, wy,, 0., ) significantly improves the
numerical performance, yielding better results than the original formulation.

* Furthermore, by setting ¢(.) = 1 H||§, where ||.||, denotes the Euclidean norm, and assuming E is a real
Hilbert space, Algorithm 3.1 can be viewed as an extension and enhancement of the method in [7].

* Although similar extragradient algorithms have been studied in Hadamard spaces, such as in [19], our work
focuses on Banach spaces and employs Bregman distance with two parameters 7 and p, leading to different
approaches in terms of convergence analysis and numerical behavior.

3.1. Weak convergence
For the weak convergence theorem, consider the following assumptions.

Assumption 3.1
Let ¢ be a function such that

(Cy) ¢ is asupercoercive and Legendre function which is bounded;
(C2) ¢ is uniformly Fréchet differentiable;

(C3) ¢ is totally convex on bounded subsets of F;

(C4) Vg is weakly sequentially continuous.

Assumption 3.2
Let B be a bifunction such that

(Hy) The bifunction B is pseudomonotone on S;

(Hs) B is Bregman Lipschitz type continuous on H;

(H3) B(v,.) is convex and subdifferentiable on H for each fixed v € S;

(Hy) for every sequence {v,,} C S and v € H such that v,,, — v and limsupB(v,,,t) > 0, for all ¢ € S, then

m—r oo
B(v,t) > 0.

It has been proved that under the conditions (H;)—(Hs), the solution set EQ(B,S) of EPb is closed and convex
([18]).

We begin by proving the following necessary results:

Lemma 3.1
The sequence { o, } created by (5) is well defined and lim g, exists.

—+0o0

Proof
Since B fulfills (Hy), it follows that

¢ (Dv(tmv Um) + D@O(wala tm)) > ¢ (Dso(tma Um) + D@(Um+1a tm))
(B(Uma Um-‘rl) - B(U’m) t'rn) - B(tmv Um—i—l)) o (Lnga (tma Um) + L2Dga (Um-‘rla tm))
> 7€ .
~ max {Ll,LQ}

This, in addition to the expression (5), gives @n+1 > min{m,gm}. Moreover g, >

min {m, 91} . In contrast, it becomes clear from expression (5) that
Om+1 S Wm Om + Jm,Vm 2 1.
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It follows from conditions on {wy, }, {o:,} and Lemma 2.5 that ml_ig_loogm exists. Since min {m, Ql}

is the lower boundary of {g,, }, then lirfrl Om = 0> 0. O
m——+00

Remark 3.2
From the definition of {¢,,,} and Lemma 2.4, we have

0 € 0 (TomB(Um,t) + Dy(t,vm)) (tm) + Ns(tm).
This implies that there exists w € OB (vs,, t,,) and n € Ng(t,,), such that
TOomWw + Vo(tm) — Vo(vm) + 17 =0.
Thus, we have from the definition of Ng

< Vo(um) = Vo(tm), t — tm >=T0m < w,t —ty >+ <0t — by >,
< T0m < w,t—t, >, VtES.

Since, w € 9B (v, tm ), we have
<w,t —ty >< B(vm,t) — B(Um,tm), VL € S.
From the last two inequalities, we get
< Vo(um) = Vo(tm), t —tm >< 70m (B(Um,t) — B(vm, tm)), VL € S. (6)

If v,,, = t,,, then from (6) and 7, g,,, > 0, we obtain B(t,,,t) > 0, forallt € S. Thus ¢,,, € EQ(B, S).

Lemma 3.2
Let {v,, } and {¢,,} be the two sequences generated by Algorithm 1. Fix v* € EQ(B,S). Then

. . 1 Com I Com
Dy (v, vm41) < Dy (v, 0m) — 1 ( — ) Dy (tm,vm) — 1 ( — Dy (i1, tm)-
T Qerl T Qerl

Proof
According to the definition of {v,,,1} and Remark 3.2, one has

< Vo(vm) = Vo(Umt1),t — tmt1 >< p0m (B(tm,t) — B(tm, vm+1)), Yt € S. @)
In particular, substituting t = v,,,+1 in (6), we get
< Vo(vm) = Ve(tm), Vm+1 — tm >< Tom (B(Um, Vm+1) — B(Um, tm)) , 8)
Addining (7) with (8)

THOm (B(vma VUm+1) — B(Om, tm) — B(tvaerl)) > N(<V<P(vm) = Vo(tm), vms1 — tm>)
+ T(<V(p(vm) - VQD(’Uerl), t— Um+1>)

+ TpomB(tm,t), VteS. 9
From the definition of o,,, we have
(B ves1) = Bt t) = Blt 1) € —— (Dyltns ) + Dolvmarnt)). (10)
By Bregman three point identity (3), it follows that
< Vo(vm) = Vo(tm), Vmt1 — tm >= Dy(Umi1,tm) + Do (tm, Vm) — Dy (Umt1,Um), (11)
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and
< Vo(um) = Ve(umi1),t = vms1 >= Dy(t, vm11) + Dp(Vimt1,vm) — Dy(t, vm)- (12)

Applying (10), (11) and (12) into (9), we obtain

TUCOm
Om+1

(Dap(tmavm) + Dap(vm-&-latm)) 2 1% (Dap(vm+17tm) + Dtp(tM7Um) - Dcp(vm—i-hvm))

+7 (Dw(ta Ume1) + Dsa(”m+1» Um) — D«p(tv Um))
+ Tpom B(tm,t), VteS.

Then

HCOom
Qm+1

Dtp(tavm+1) S Dtp(tavm) _Dcp(vm+1avm) + (Dgo(tmyvm) +D¢(Um+1;tm))

_g (Dap(vm-i-la tm) + Dap(tnu Um) - Dap(vm+17 Um))
FomBltn,t) (HES). (13)

Therefore, it follows from relation (13) that

Dv’(t’vmﬂLl) < Dsa(t7vm) - <H - MCQm) D@(tmvvm) - ('u - MCQm) Dw(Uerlatm)
T Om+1 T Om—+1

B (1 B g) DW('Um+lva) + pomB(tm, t) (Vt€S).

Noting that £ < (0, 1] then, we have

Dyt tms1) <Dyt v) — (’“‘ - “@m) Dot 0]

T Qm-}-l
B (M  pCom
T Om+1

> Dgp(vm-i-la tm) + ,UQmB(tma t)7 VteS. (14)

Let t =v* € EQ(B,S). Therefore, from the pseudo monotonicity of B, we have B(v*,t,,) > 0. Thus,
B(tm,v*) < 0. Hence from (14), we get

* 1 Om
Dy(v*,vm41) < Dy(v',om) —p (T — ; +1) Dy (tm, vm)
I Com
Y Do (vt tm)- 15
N(T Qm+1> go(v 1 ) (15

Lemma 3.3
The sequences {v,, } and {t,,} generated by Algorithm 3.1 are bounded.

Proof

From Lemma 3.1, one knows that lim Om
m——+o0o Qm+1

1
Ce(0,1),pe (O, 2C> and 7 € [u, %) yields that

. 1
lim (”—“CQ )=u<—<)>o.
m—oo \ T Om+1 T

Stat., Optim. Inf. Comput. Vol. 14, November 2025
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Lete € (0,4 (£ —¢)). Consequently, there exists mg € N satisfying

(“ - “CQ’"> >e> 0, Vm > mo. (16)
T Qerl
From Lemma 3.2, we have
Dw(v*,vm+1) < Dw(v*ﬂ)m) —-¢ (Dw(tm»vm) + Dw(vm+17tm)) ) (17)
which take the form
Am+1 S Am — bm7 (18)

where
Qm = D@(U*avm)v
bm = € (D(p(tm, Um) + D(p(vm+1a tm)) .

Thus, from Lemma 2.6, it follows that the limit of a,,, and lim b,, = 0 for all m > 0. Hence, from the definition

m—00
of b,,, we have
W}gnooDw(tm, Upm) = W}gnong,(va, tm) = 0. (19)
From Lemma 2.2 , we conclude that
lm ||ty — vl = lUm  ||vpmer —tm|| = 0. 20)
m——+oo m——+oo
Consequently,
mlirﬂm [vm+1 — vmll = 0.
Therefore, from Lemma 2.3 we have
im [[Vo(vmi1) — Vo(vs)|| = 0. 1
m——+oo

From Theorems 2.1 and 2.2, ¢* is bounded on bounded subsets of E* and hence V™ is also bounded on
bounded subsets of E*. From this, (17) and Lemma 2.3, the sequence {v,, } is bounded. As a result, {¢,,} is also
bounded. O

Now, we prove that the sequences {v,,} and {t,,} generated by Algorithm 3.1 converge weakly to an element
v* € EQ(B,S).

Theorem 3.1
Let Assumptions 3.1-3.2 be satisfied. Then for each v* € EQ(B,S) # (), the sequences {v,, } and {¢,,} generated
by Algorithm 1, converge weakly to v*.

Proof

To show that {v,,} converges to a solution of EPb, it is left to prove that any cluster point of {v, } belongs to
EQ(B,S). Let v be a cluster point of {v,,,} . Hence {v,,} is bounded, there exists a subsequence {v,,, } of {v,,}
such that v,,, — v as k — oo. From (20), we also have t,,, — v. Next, we show that v € EQ(B,S). Letting

L
— ’Cﬂ) > 0, we have
Omy +1

T1Omy B(tmy, 1) > Dy(t, Umy41) — Do(t, Um,,)- (22)

Passing to the limit in (22), we obtain

m = my, in (14) and using (%

limsup7pom, B(tm,,t) > limsup (Dy(t, vme+1) — Do(t,vm,))

k—o0 k—ro0
> h]rcn sSup (Dsa(t’ Ukarl) - Dtp<tv Umk) - D@(Umk ) Ukarl)) )
— 00
= limsup < Vo(vm,) — Ve(Ump11),t — Um,, > -
k— o0

Stat., Optim. Inf. Comput. Vol. 14, November 2025
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It follows from (21), boundedness of {v,, }, the parameters 7, i, 0,,, > 0 and Condition (H,) that

0 < limsupB(t,,,t) < B(v,t), (VteS). (23)

k—o0

Then v € EQ(B,S). By utilizing equations (3.1) and (16), it follows that {v,, } is Bregman monotone with respect
to EQ(B,S). Then {v,,} converges weakly to a point in S([5, Lemmas 10]). Consequently, the desired result is
obtained by applying [5, Lemmas 11,12]. O

3.2. Strong convergence

Next, we examine the strong convergence of the algorithm, which guarantees that the iterates converge in a stronger
sense than weak convergence. The specific assumption required for strong convergence will be outlined in the
following.

Assumption 3.3
Assume the following conditions

(H’1) The bifunction B is y—strongly pseudomonotone on S;
(Hs2) B is Bregman Lipschitz type continuous on #;
(H3) B(v,.) is convex and subdifferentiable on 7 for each fixed v € S;
(H4) for all bounded sequences v,,, and ¢,,, in S,

lvm — tm|l = 0 = B(vm,tm) — 0.

Theorem 3.2
Let Assumption 3.3 and (Cy, Cy,C3) in Assumptions 3.1 be satisfied. Then. for each v* € EQ(B,S) # 0, the
sequences {v,, } and {¢,, } generated by Algorithm 3.1, converges strongly to v*.

The proof of strong convergence for Algorithm 3.1 is based on the same reasoning as in [5].

Proof

As shown in Theorem 3.1, all cluster points of the sequence {v,,} are elements of EQ(B,S) . Now, consider
arbitrary subsequences {v,,} and {v,,, } of {v,, } that converge strongly to p and ¢, respectively. From the
expression (4), it follows that

<p =4, Vo(Wm,) = Vo(vm,) >= Dy(p,vm,) — Dp(q; vm,,) — Dp(Ds vm,,) — Dip(q; vm,,)-

According to (17), lim D, (p,v,,) and lim D,(q, v,,) exist. By utilizing this fact, Lemma 2.1, and letting
m—0o0 m—0o0
m — oo, it follows that p = ¢. Hence, the sequence {v,,} converges strongly to a point in FQ(B,S). Next, we
show that if v,,, — v, then v,,, — v. Assume that v,,, — v. Therefore, by (20), t,,,,, — v. Substituting ¢ = v into
(7), we get

0 < 1o, (Bl 0) = Bllu:v) ) = (Vo(0,) = Vo0, 1), Vi1 = 0),
= 10 (Bltmys 0) = Blbmys vy 1)) + (V0(0m) = V(tmys1), Vg1 = 0,
< my (Bt ©) = Bltmy: V1)) + V6 (0m) = Vo ms1) | [0y 11 = 0]l
Using (20), (21), Lemma 3.1, condition Hy, and the boundedness of {v,, }, it follows that
11;2 iong(tmk, v) > 0. (24)
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Given that B(t,,,, v) > 0, there exists a constant « such that B(t,,,,v) < —7||tm, — v||*>. Combining this with
(24), we conclude that

k—o0

0 < liminfB(t,,,v) < liminf (f’yHtmk_ — 5||2> < —x <limsup [, — v|2> <0.
k—ro0 k—o0

Consequently, t,,,, — v, and therefore, v,,, — v. O

4. Tllustrative experiments

The numerical results are presented in this section to demonstrate the performance of our proposed algorithm. All
the programs were implemented in MATLAB (R2023a) on a Intel(R) Core(TM) 15-8265U CPU @ 1.60 GHz 1.80
GHz with RAM 8.00 GB.

Example 4.1

Consider the enhanced version of the Nash—Cournot oligopolistic equilibrium model [18]. Assume there are n
companies that manufacture the same commodity. Let v represent a vector where each element v; specifies the
quantity of the commodity generated by the company . The price function P for each individual company is
defined as:

Py(S) = ¢; —1;S, where ¢; >0, ¢ >0, and S = > v

i=1

The function of income F;(v) is given by:
Fi(z) = Pi(S)vi — ti(vi),

where ¢;(v;) is the value tax and fee for producing ;.
The strategy framework is given by:

C:=C xCyx - xCp,, whereC;=[v" v*].

Each firm strives to achieve its optimum profit by taking into account the amount of demand based on the
production of other companies.
A point p* € C is an equilibrium point of the model if

Fi(p*) > E;(p*[vi]), Vx, €Ci, Vi=1,2,...,n,

where p*[v;] is the vector obtained from p* by replacing the i-th component with v;.
Define

p(o.t) == Fivlt]), and B(v,1) = p(v,t) — p(v,v),
=1
and the problem becomes:

Find p* € C such that B(p*,t) >0, VyeC.

Consider the bifunction B : S x & — R defined in the context of the Nash-Cournot equilibrium model as
follows:

B(v,t) =(Pv+Qt+q,t —v), Vou,teSs,

where S C R™ is the feasible set, ¢ € R™ is a given vector, P and @ € R"*" are matrices, where (@) is
symmetric positive semidefinite, and () — P is symmetric negative semidefinite, ensuring that B is monotone.
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The two matrices P, () are generated randomly (Generate two random orthogonal matrices O; and O; using the
RandOrthMat function. Create diagonal matrices A; and A, with values within [0, 2] and [—2, 0], respectively.
Define B; = 014,07 (positive semi-definite) and By = 024,01 (negative semi-definite). Set Q = By + BY,
T=DB+ B2T ,and P = @ — T. Randomly generate the vector g with elements in the range [—1, 1]). We use the
same stopping rule D,, = ||t,,, — va2 < 107°. In the numerical results presented in the following tables, ’Iter.
represents the number of iterations, while "CPU(s)’ denotes the execution time in seconds. The set S is given by:

S={veR":-5<vy; <5, i=12,...,n}

The optimization subproblems in these examples have been solved by FMINCON optimization toolbox in

MATLAB software. In all experiments, we selected the parameters for Algorithm 3.1 as follows: g9 = 0.1, { = 0.1,

T=4.5, wy = ————7 and oy, = % To investigate the sensitivity of the proposed algorithm to
20(m+1) (m+1)

parameter choices, we performed a series of experiments varying the value of p. The results, illustrated in

Fig. 1, show how g influences the convergence behavior and computational performance of the algorithm.

Furthermore, the performance of Algorithm 3.1 was evaluated for different Bregman distances and different values

n (60,120, 180, 240). Let ¢ : R"™ — R be defined by

ip):= fzn:vi log (v;) .

i=1

. 1

i o(0) = o]

iii o(v) =Y log (v).
i=1

Additionally, we establish that the corresponding Bregman distances can be expressed as

i Do(v,t) =3 (vi log (7) - v) which is called the Kullback-Leibler distance(shortly denoted by KLD);
=1

il Dy(v,t):=1%v-— t|*, which is called the squared Euclidean distance(denoted by SED);

iii D,(v,t):=) <log (%) + 2% — ), which is called Itakura-Saito distance (ISD).

ti
i=1 !

The numerical results shown in Fig. 2 and Table 1 indicate that the proposed algorithm achieves superior
performance when the Bregman distance is chosen as the Kullback-Leibler distance (KLD).

Table 1. Comparison of iterations and CPU time for different dim.

n KLD SED ISD
Iter. CPU(s) | Iter. CPU(s) | Iter. CPU(s)
60 12 3.78 31 1.79 82 28.01
120 10 2.77 29 2.13 98 29.02
180 9 3.01 31 4.36 113 45.79
240 11 4.87 33 7.73 128  70.71

Finally, the Algorithm 3.1 (shortly Alg. 1), was compared with the explicit extragradient Algorithm suggested by
Hieu et al. [7] (shortly, EEG Alg), the improved extragradient Algorithm introduced by Zeghad et al. [22] (shortly,
IISE Alg) and the Bregman explicit extragradient Algorithm proposed by Eskandani et al. [5] (shortly, BEEG Alg)
to assess its efficiency and effectiveness. The control parameters of all algorithms are choose as follows:
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— 45
u=35

0 5 10 15 20 25 30 35 40 45 50
Number of lterations

Figure 1. Numerical behavior of Algorithm 3.1 with p € {0.5,1.5,2.5,3.5,4.5}.
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Number of lterations Number of lterations

Figure 2. Example 4.1, Top Left: n = 60; Top Right: n= 120, Bottom Left: n = 180; Bottom Right: n = 240.

e Alg. 1: p(v) = —zn:vi log (v;).

=1
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« BEG Alg: 0o = 0.1, ¢ = 0.1.

1 1
e IISEAlg:09=0.1,( =01, 4=0.7,vy=0.2, w,, = , O = .
&0 20 (m +1)*"! (m+1)7°
* BEEG Alg: gp =0.1,{ =0.1and p(v) = —>_v; log (v;).
i=1

We test the algorithms for different values of n (n = 50,100, 150,200, 500). The numerical results for all
algorithms are presented in Fig. 3 and Table 2. It can be observed that our algorithm (Algorithm 3.1) outperforms
EEG Alg, IISE Alg and BEEG Alg in terms of the number of iterations (Iter.) and execution time in seconds
(CPU(s)), while achieving the same tolerance.

Table 2. Comparison of iterations and CPU time for different dim.

n Alg. 1 EEG Alg TISE Alg BEEG Alg
Iter. CPU(s) | Iter. CPU(s) | Iter. CPU(s) | Iter. CPU(s)
50 11 2.45 33 0.57 21 0.42 75 13.92
100 9 2.74 41 1.80 33 1.66 85 26.09
150 8 3.13 50 4.57 36 3.60 80 31.83
200 7 3.19 43 7.03 33 6.77 91 43.72
102 10
— Aig. 1 —— Alg.1
—— IISE Alg —— ISE Alg
EEG Alg EEG Alg
10° \ BEEG Alg | § 10° \ BEEG Alg|
\ \
102 10?2
OE DE
104 10
10® 108
108 ; : ; ; ; ; ! 108 ; ; ; ; ; ; ! ;
0 10 20 30 40 50 60 70 80 0 10 20 30 4 5 60 70 8 9
Number of Iterations Number of Iterations
10° 10° T
\ EEG Alg 10° ,'\ EEGAlg |]
100 \ BEEG Alg | § BEEG Alg
10?2
102
QE QE 104
104
108
108 108
108 ; ; ; ; ; ; ! 10710 ; ; ; ; ; ; ! ; ;
0 10 20 30 40 50 60 70 80 0 10 2 30 40 5 60 70 8 90 100

Number of lterations

Number of lterations

Figure 3. Example 4.1 , Top Left: n = 50; Top Right: n= 100, Bottom Left: n = 150; Bottom Right: n = 200.
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10°

T
Algorithm 3

' s Algorithm 2
EEG Alg
10° ¢ L BEEG Aly |1

10'8 I I I I I L L
0 10 20 30 40 50 60 70 80

Number of lterations

Figure 4. Numerical behavior of all Algorithms n = 500.

5. Conclusions

This study proposed a modified Bregman extragradient algorithm for solving pseudomonotone equilibrium
problems in reflexive Banach spaces. By introducing two parameters, the Bregman distance, and a non-
monotonic step size independent of the Lipschitz constant, the algorithm demonstrated enhanced convergence
and computational efficiency. Theoretical analysis established both weak and strong convergence under specific
conditions, while numerical experiments validated its superior performance compared to traditional methods.
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